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Quantum-limited thermometry of a Fermi gas with a charged spin particle
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We investigate the sensitivity of an ion sensor in determining the temperature of an atomic Fermi gas. Our
study extends to charged impurities the proposal by M. T. Mitchison et al. [Phys. Rev. Lett. 125, 080402 (2020)],
where atomic neutral impurities were used as an in situ thermometer of the quantum gas. We find that the long-
range character of the atom-ion interaction enhances the thermometer’s sensitivity for certain system parameters.
In addition, we investigate the impact of the ion quantum motional state on the sensitivity by assuming that it
is confined in a harmonic trap. We observe that the temperature sensitivity of the ion is noticeably influenced
by its spatial extension, making the latter a versatile tool to be manipulated for improving the thermometer
performance. We finally discuss our findings in the context of current experimental atom-ion mixtures.
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I. INTRODUCTION

Quantum impurities in a bath such as that provided by
ultracold atomic gases is currently a very active field of
research owed to the advances and prospects offered by
atomic physics laboratories. Indeed, these systems enable
with their degree of controllability to investigate various out-
of-equilibrium phenomena such as Anderson orthogonality
catastrophe [1,2] and the formation of polaronic states [3,4],
to mention a few. The former is fundamental for understand-
ing phenomena in the solid-state realm like the Kondo effect
[5] and transport of heavy impurities in a Fermi liquid [6],
while mediated interactions are important for pairing forma-
tion [7–9]. In particular, in recent years, the study of Fermi
polarons with neutral impurities in bulk systems has been
quite vigorous both experimentally [10–13] and theoretically
[14–16]. Albeit not yet mature as the neutral counterpart, an
important experimental effort has been undertaken to immerse
charged impurities such as ions in quantum gases [17–19].
Sympathetic cooling of ions in a Fermi gas with calcium ions
has been experimentally investigated [20], which culminated
with the approach of the s-wave regime of atom-ion collisions
[21,22]. In addition to the aforementioned out-of-equilibrium
phenomena, ions in a 1D fermionic bath have been proposed
to study induced interactions in a Li-Yb+ mixture [23] (see
also Ref. [24] for neutral ytterbium impurities), Peierls in-
stability [25], and bipolaron states with low effective mass
[26]. Such interesting many-body quantum physics, however,
requires a Fermi gas to reach very low temperatures, i.e., on
the order of a few percentage of the Fermi temperature. It
is therefore crucial to devise experimental schemes to attain
those temperatures as well as to determine accurately its un-
certainty.
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Recently, M. T. Mitchison et al. [27] have proposed an
interferometric method to probe locally the temperature of a
Fermi gas by means of a neutral spin impurity. The method
relies on the fact that the Pauli exclusion principle slows the
decay of coherence of the spin impurity allowing for enhanced
signal-to-noise ratios. Therefore, by tracking the dynamics
of the spin impurity and, importantly, without requiring its
thermalization, it is possible to estimate the temperature with
high accuracy. Here, we extent the method to an ionic im-
purity probe, whose impurity-gas interaction is longer-ranged
compared to the neutral case. We find that the r−4 tail of the
atom-ion polarization potential has a profound impact on the
thermometer sensitivity, quantified by the quantum signal-to-
noise ratio Q, and that for some system parameters, it reaches
a larger performance than a neutral probe. We investigate Q
in reliance of the density of the gas, the number of two-body
bound states, and finite-width of the ion spatial density, i.e.,
confinement. The latter is shown to enable to obtain higher
signal-to-noise ratios and at shorter times. Let us also note that
ions have been already used as probes of the density profile of
a condensate [28,29] as well as to trace molecule gases [30]
and proposed for measuring density-density correlations [31]
and the local single-particle energy distribution of a degener-
ate Fermi gas [32].

The paper is organized as follows: in Sec. II we describe
our system, while in Sec. III, the Cramer-Rao bound together
with the interferometric protocol for sensing the gas tem-
perature is summarized. This summary, which is based on
the ideas of Ref. [27] together with a few remarks from our
side, is provided for the sake of completeness. The results are
exposed and discussed in Sec. IV, whereas the experimental
applicability of the extended method to the ionic probe is
discussed in Sec. V. Finally, in Sec. VI, we recapitulate our
findings and provide an outlook for future work.

II. SYSTEM

We consider the system displayed pictorially in Fig. 1. A
(trapped) ion (or more), whose wave function is denoted by

2643-1564/2022/4(2)/023069(15) 023069-1 Published by the American Physical Society

https://orcid.org/0000-0003-1054-5250
https://orcid.org/0000-0002-4314-6902
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023069&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.1103/PhysRevResearch.4.023069
https://creativecommons.org/licenses/by/4.0/


LORENZO OGHITTU AND ANTONIO NEGRETTI PHYSICAL REVIEW RESEARCH 4, 023069 (2022)

FIG. 1. Schematic of the system: a positively charged ion, im-
mersed in a Fermi gas (red wavy particles), acts as a thermometer for
measuring the gas temperature ratio T/TF. As it is shown in the inset,
such an ion is harmonically trapped with Gaussian spatial density
|χ (r)|2 (blue shadowed area), i.e., it is prepared in the ground state,
and has a spin degree of freedom denoted pictorially by an arrow.

χ (r), has two internal states |0〉 and |1〉. The ion is immersed
in a homogeneous spin-polarized noninteracting Fermi gas
(henceforth also referred to as bath) of mean density n̄. The
gas density defines the following bath characteristics: the
Fermi wave vector kF = (6π n̄)1/3, the energy (or temperature)
EF = h̄2k2

F/2m = kBTF, and the time τF = h̄/EF. Here, kB is
the Boltzmann constant and m the mass of the atom. In the
case of a neutral impurity probe [27], one can assume that
the impurity internal state |0〉 does not interact with the bath,
while the state |1〉 interacts via a short-range impurity-bath
pseudopotential. This is legitimate, because one can tune the
impurity-bath interaction such that the scattering length van-
ishes, thereby resulting effectively in a vanished potential.1

In the present setting, however, the electric field of the ion
polarizes the neighbourhood independently of the atom-ion
scattering length such that the r−4 tail of the spin-independent
polarization potential cannot be set to zero in our model. In
other words, this tail is always present, unless the gas density
is so low that the interaction can be replaced by a pseudopo-
tential, thus falling back again into the neutral probe scenario.
Controlling the atom-ion scattering length and therefore the
ion internal state means that we manipulate the short-range
part of the potential only (e.g., the number of bound states).
Given this, both ion internal states interact (asymptotically)
with the bath via the two-body polarization potential

V (r) = −C4

r4
(1)

with C4 = αe2/8πε0 (in SI units). Here, α is the (static) po-
larizability of the atom, e is the elementary electronic charge

1This is permitted because of the separation of length scales
involved in the system, that is, the range of the impurity-bath inter-
action is much smaller than any other length scale.
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FIG. 2. Regularized atom-ion polarization potentials Vreg(r) cor-
responding to a � −R� with three different bound state properties:
no bound states in blue dot-dashed, one bound state in green dashed,
and two bound states in orange dotted (see legend for bound state
energies). Two-body polarization potential (1) in thin black solid.
The inset illustrates the r−4 tail of the potential without bound states.

(i.e., only singly ionized atoms) and ε0 the vacuum permit-
tivity. We note that recently Feshbach resonances in hybrid
atom-ion systems have been observed [22], thus provid-
ing the perspective to control (magnetically) the interspecies
interactions.

The potential (1) introduces two more length and energy
scales: R� = (2μredC4/h̄2)1/2 and E � = h̄2/[2μred(R�)2] with
μred = mM/(m + M ) being the reduced atom-ion mass and M
is the ion mass. Due to the singularity of Eq. (1) at short range
and for the sake of a simpler analytical treatment, we use the
regularization [33,34]

V (s)
reg (r) = −C4

r2 − c2

r2 + c2

1

(r2 + b2)2
. (2)

An example of the spatial dependence of this potential is
shown in Fig. 2. By tuning the parameters b and c one can
control the sign and strength of the three-dimensional s-wave
atom-ion scattering length a as well as the number of bound
states, which can be attained by preparing the ion in specific
electronic configurations, i.e., spin state |s〉, and by controlling
external magnetic fields. Towards this end, we employ the
strategy already used in Ref. [34], namely, we impose that the
scattering length equals in magnitude the scattering amplitude
of the regularized potential in Born approximation and that the
potential supports a fixed number of bound states (one or two).
For the case without bound states, we just seek for parameters
that generate a potential without bound states, but that yield a
certain value of the scattering length.

For the purpose of thermometry, we are interested mainly
in the dynamics of the ion’s internal degrees of freedom, since
these two states are utilized to read out the gas temperature
and its uncertainty, while the motional degrees of freedom

023069-2



QUANTUM-LIMITED THERMOMETRY OF A FERMI GAS … PHYSICAL REVIEW RESEARCH 4, 023069 (2022)

affect the ion-gas interaction, as we shall see later. Hence, the
ionic probe internal state Hamiltonian reads as2

ĤP = E0|0〉〈0| + E1|1〉〈1|. (3)

On the other hand, the many-body Hamiltonian of the bath is
given by

ĤB =
∫
R3

dr �̂†(r)

[
− h̄2

2m
∇2 + Vext (r)

]
�̂(r), (4)

where Vext (r) denotes the external trap potential, �̂ is the
fermionic antisymmetric field operator satisfying the anti-
commutation rule {�̂(r), �̂†(r′)} = δ(r − r′). The (many-
body) interaction between the ion and the quantum gas is
described by the Hamiltonian

ĤI =
∑
s=0,1

∫
R3

dr �̂†(r)V (s)
reg (r)�̂(r) ⊗ |s〉〈s|, (5)

where V (s)
reg relies on the ion internal state via the short-range

physics we discussed earlier, namely, by tuning the atom-
ion scattering length with different choices of the parameters
b and c. Moreover, we note that [ĤP, ĤI] = 0.

The ion spin dynamics can be described by a single time-
dependent function, as we show in some detail in Appendix A.
Specifically, the ion Bloch vector v, whose density matrix is
ρ̂P = 1

2 (I + v · σ̂ ), is given by3

v(t ) ≡ (vx, vy, vz ) = (Re[ν(t )], Im[ν(t )], 0), (6)

where the so-called time-dependent decoherence function is
defined as

ν(t ) = TrB[eiĤ1t/h̄e−iĤ0t/h̄ρ̂B(T )] (7)

with Ĥs = 〈s|ĤB + ĤI|s〉, s = 0, 1, ρ̂B(T ) the thermal state at
temperature T of the bath, and σ̂ = (σ̂x, σ̂y, σ̂z ) the vector of
Pauli matrices. We note that since the z component of the
Bloch vector is zero [see Eq. (6)], the populations of the states
|0〉 and |1〉 are conserved in time and equal to 1/2, while the
coherences evolve accordingly to Eq. (7) (pure dephasing).
Notwithstanding, when π/2 pulses are applied to ion internal
state prior and after the impurity and the bath interact, as we
shall discuss in the interferometric protocol of Sec. III, vz(t )
relies on ν(t ).

By means of the well-known Levitov formula [35,36],
the decoherence function can be computed exactly via the

2We note that we do not include the motional part of the ion, i.e.,
its (spin-independent) Hamiltonian in the trap, as we consider it as a
static impurity, namely, a mere scattering center for the bath. Even in
the nonstatic approximation, however, this Hamiltonian, being spin-
independent, would simply add a global phase that can be removed
by moving the system description in the interaction picture. We can
thus safely ignore it.

3Here, we implicitly assume that the ion internal state lies in the
equatorial plane as shown in Fig. 3 (see protocol in Sec. III). Let us
also note that the populations of the eigenstates of σ̂x are conserved
as a consequence of [ĤP, ĤI] = 0.

formula4

ν(t ) = det[1 − n̂ + n̂eiĥ0t/h̄e−iĥ1t/h̄], (8)

where n̂ = (eβ(ĥB−μ) + 1)−1 is the Fermi distribution, μ de-
notes the chemical potential, β = (kBT )−1, and

ĥB = − h̄2

2m
∇2 + Vext (r),

ĥα = ĥB + V (s)
eff (r) with s = 0, 1.

(9)

In our setting, the Fermi gas is homogeneous and as a con-
sequence Vext = 0. The effective impurity-gas interaction is
given by

V (s)
eff (r) =

∫
dr′V (s)

reg (r − r′)|χ (r′)|2. (10)

Here, the reliance of V (s)
reg on the ion internal state |s〉 highlights

the fact that we can associate to it two scattering lengths for
different pairs (b, c). As it can be seen, the ion motional state
χ (r′) determines the shape of the effective interaction (see
also Fig. 9 in Sec. IV B). In the following sections we shall
consider two different forms of the ionic probe’s probability
density |χ (r)|2. Firstly, we shall treat the ion as a static point
particle and set |χ (r)|2 = δ(r) or, in spherical coordinates

|χ (r)|2 = 1

4πr2
δ(r). (11)

Secondly, we shall replace the point-like distribution of
Eq. (11) with a finite-width Gaussian, that is, δ(r) 	→
�σ (r) = exp[−r2/(2σ 2)]/

√
2πσ 2. In the limit σ → 0, we

retrieve Eq. (11) for which V (α)
eff (r) = V (α)

reg (r). We make use
of a Gaussian spatial density as it represents the ground state
of an ion in a Paul trap [37] (i.e., secular approximation) as
well as the one in an optical trap [38].

III. THERMOMETRY WITH A SPIN IMPURITY

In this section, we recap the key aspects of the interfer-
ometric protocol proposed in Ref. [27]. For more details,
however, we refer to that paper.

Quantum Cramer-Rao bound. In order to motivate the pro-
tocol discussed below, it is necessary to resort to the theory of
quantum parameter estimation [39–42]. Let us start by invok-
ing the so-called quantum Cramer-Rao bound (QCRB). This
provides a bound (from below) on the attainable uncertainty
�T for the estimation of the temperature of the gas after
N independent realizations, i.e., measurements, according to
�T 2 � 1/NFT � 1/NFQ

T , which is valid for any unbiased
estimator [43]. Note, however, that the first inequality, i.e.
�T 2 � 1/(NFT ), is reached for N � 1 within the maximum
likelihood estimation procedure [44]. Here, FT is the (classi-
cal) Fisher information [44]

FT ≡ FT (X̂ ) = −
∑
s=±

p(xs|T )
∂2

∂T 2
ln[p(xs|T )] (12)

4We note that the Levitov formula can be applied to quadratic and
time-independent Hamiltonians only.
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with X̂ being any hermitian operator (i.e., observable),
whereas p(xs|T ) is the conditional probability to obtain from
a measurement the outcome xs, i.e., an eigenvalue of X̂ , given
the gas temperature T . Let us underscore that the probability
p(xs|T ) results from measurements described by projections
(or more generally by positive operator-valued measurement
operators) on the corresponding eigenspaces of X̂ . Further-
more, since we consider a two-level system, not more than
two outcomes, i.e., eigenvalues of X̂ , are possible. Given this,
FT is related to its quantum counterpart FQ

T by the identity
FQ

T = maxX̂FT (X̂ ) with FT (X̂ ) as in Eq. (12).5 It turns out
that FQ

T = FT (�̂T ) with �̂T being the symmetric logarithmic
derivative operator (SLD) [39]

�̂T ∝ cos(ϕ)σ̂‖ + sin(ϕ)σ̂⊥, tan(ϕ) = |ν|(1 − |ν|)2∂T φ

∂T |ν| .

(13)

Here, σ̂‖ = cos(φ)σ̂x + sin(φ)σ̂y, σ̂⊥ = cos(φ)σ̂y − sin(φ)σ̂x

and ν = |ν|eiφ . In other words, the Fisher information retained
in the projective measure of �̂T on a two-level system is
higher or equal than in the measurement of any other observ-
able, and it equals the quantum Fisher information. It is for
this reason that the protocol outlined below aims at measur-
ing the observable represented by the symmetric logarithmic
derivative and inferring the temperature and its uncertainty
from it.

Before explaining the protocol, let us briefly discuss the
estimation of the relative error on the measure of T . The
quantum signal-to-noise ratio (QSNR) Q is defined via the
quantum Fisher information by Q2 = T 2FQ

T and satisfies the
following inequality:

�T

T
� 1

Q
√

N
, (14)

which gives a lower limit of the attainable temperature uncer-
tainty.

In the case of a two-level system, FQ
T can be expressed in

terms of the decoherence function ν(t ) [45]. In polar coordi-
nates, it reads

FQ
T = 1

1 − |ν|2
(

∂|ν|
∂T

)2

+ |ν|2
(

∂φ

∂T

)2

= F‖
T + F⊥

T . (15)

Here, F‖
T and F⊥

T denote the contributions parallel and per-
pendicular to the Bloch vector, namely, they correspond to the
measurement of σ̂‖ and σ̂⊥, respectively. More precisely, it
means that if we would perform a projective measurement of

5Here, the notation is rather compact. More precisely, we mean
the following: first, one needs to diagonalize the operator X̂ , whose
eigenvectors are |xs〉. Thus the projection operators P̂s = |xs〉〈xs| are
defined. This is carried out for any observable X̂ . The Fisher informa-
tion is then defined as a function of the set {P̂s}. Thus the maximum
over such a set for any X̂ is sought. We note that one could also
look for the optimal probe state, ρ̂P, for a certain measurement, and
therefore ask how the probe has to be prepared to attain the minimal
uncertainty. Here, however, the state of the probe is determined by
the interaction with the gas.

FIG. 3. Schematic of the interferometric protocol with its five
steps that allow to determine the expectation value of the SLD. The
SLD is the estimator of the temperature that maximizes the quantum
Fisher information.

the SLD in the eigenbasis of either σ̂‖ or σ̂⊥ we would obtain a
Fisher information via the respective conditional probabilities
p(�‖,⊥

s |T ) of measuring the outcome �‖,⊥
s in one of the two

eigenbasis given by either F‖
T or F⊥

T . We note, however, that
measuring the probe in those two eigenbasis implies that the
gas temperature has to be known a priori, since the eigen-
vectors of σ̂‖ and σ̂⊥ depend on both angles φ and ϕ. In other
words, one would need to set the measurement apparatus upon
the gas temperature itself, which is our unknown. We shall
come back to this point in the following paragraph.

Protocol. Let us describe briefly the main steps of the pro-
tocol sketched in Fig. 3 in order to determine the expectation
value of the SLD-operator. The atomic probe is initially pre-
pared in the state |0〉. Therefore the initial total density matrix
is defined as: ρ̂ = |0〉〈0| ⊗ ρ̂B(T ). After a π/2-pulse, which
takes the impurity-probe to the state |+〉 = (|0〉 + |1〉)/

√
2,

the system evolves for a time t according to Eq. (6) with
decoherence function given by Eq. (8). Then, a second π/2-
pulse is performed with a certain phase θ and the energy is
projectively measured. This kind of measurement yields an
expectation value of the energy proportional to cos(θ )〈σ̂x〉 +
sin(θ )〈σ̂y〉. Accordingly to Eq. (13) as well as the definitions
of σ̂‖ and σ̂⊥, one can determine 〈�̂T 〉 by choosing θ = φ + ϕ.
We repeat this procedure until the desired precision is reached.
The number N of independent repetitions realizes a measure-
ment of the gas temperature with an error bounded from below
by the right-hand-side of Eq. (14). In Appendix A, we provide
some details on the aforementioned sequence of pulses.

A few comments are in order now. First, measuring the
energy is an experimentally more feasible task than perform-
ing a measurement in the eigenbasis of σ̂‖ and σ̂⊥, which
in addition rely on the unknown T . Second, the procedure
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outlined above is referred to estimation from the first moment
in parameter estimation theory. Indeed, we estimate the gas
temperature by measuring the expectation value of the SLD,
i.e., the energy. Of course, the value of the phase θ depends on
the gas temperature, but one would perform several repetitions
of the procedure by varying θ in the Ramsey interferometer
sequence. By assessing the Fisher information (12) for various
θ , its maximum is reached for the actual gas temperature, i.e.,
our best estimation of T . Third, the corresponding uncertainty
is given by �T = �E (∂〈E〉/∂T )−1 with �E2 being the vari-
ance of the energy. It can be shown that �T = 1/

√
FT [44].

The standard deviation on the mean of the estimation is then
given by �T/

√
N , that is, the right-hand side of Eq. (14). A

crucial element of this discussion, however, is the determi-
nation of the conditional probability p(λs|T ) with λs being
the eigenvalues of �̂T and s = ±. We shall come back to this
point in Sec. V.

Finally, let us discuss the preparation of the initial prod-
uct state ρ̂ = |0〉〈0| ⊗ ρ̂B(T ) that it is an assumption of the
interferometric protocol, which is not so easily realizable as
for a neutral impurity by tuning the impurity-bath interaction
to zero, as we discussed at the beginning of Sec. II. Towards
this aim, we propose three solutions, the third one of which
is otulined in more detail in the next paragraph. In the first
solution, we assume that the impurity is initially neutral and
prepared in the internal state |0〉, whose interaction with the
bath is tuned to zero by means of Feshbach resonances like in
the original proposal of Ref. [27]. Then, with a two-photon
process as the one utilized in Ref. [46], the ion is created
and instantaneously (with respect to the system dynamics)
its internal state is brought in the equatorial plane of the
Bloch sphere and interactions with the gas take place upon
the ion internal state. An alternative second solution relies
on the utilization of Rydberg dressing of the atomic bath as
suggested in Ref. [47]. More precisely, the ion is located at
μm distances from the bath in order to ensure no interaction
between it and the bath. Thus the atoms in the bath are slightly
coupled to Rydberg state in order to enhance the spatial range
of the atom-ion interaction via the increase of the atomic
polarizability of the bath. At this stage, the equal superposition
state of the ion internal states can be prepared. This solution,
however, loses the in situ character of the protocol, since the
ion is positioned at a certain distance from the gas.

Setup for a single internal state. We propose another solu-
tion for preparing the initial state ρ̂ = |0〉〈0| ⊗ ρ̂B(T ) that is
particularly suitable if we aim at using only one ion internal
state interacting with the gas. This solution mimics the case
of the neutral impurity, where the interaction with the internal
state |0〉 and the fermions is tuned to zero. Indeed, as we shall
see in Sec. IV, the use of a single internal state enables to
attain an even higher sensitivity of the thermometer.

Specifically, the previously discussed interferometric pro-
tocol cannot be employed exactly in the same way, since
the two-level system is reduced to a single internal state. To
overcome this, we suggest to map the two-level system into
the setup displayed in Fig. 4, where the states |0〉, |1〉 are
replaced by the left and right wave functions ψL(x) and ψR(x)
of the ion in a double-well potential. Only the right well is
immersed in the gas, letting the ion in state ψL(x) to evolve
freely without interaction with the gas. When the barrier is

FIG. 4. Setup for a single internal state. Initially the ion is pre-
pared in one of the two internal states, but the two-level system of
the interferometric protocol is now represented by the ground states
ψL (x) and ψR(x) of a double well potential. At t = 0, the ion is
prepared in the left well such that it does not interact in the bath.
At t > 0, the barrier is lowered such that tunneling takes place and
the ion is prepared in an equal superposition state of the left and right
states. In this way, the ion’s wave-function component in the ψR(x)
state interacts with the bath and probing of its temperature can take
place.

lowered, due to the tunneling effect, the ion occupies the
right well and at a precise time its state is described by an
equal superposition of ψL(x) and ψR(x), thus mimicking a
π/2-pulse. Immediately after that time, the barrier is raised
again in order to suppress tunneling and let the ion to probe
the Fermi gas. When the QSNR maximum is attained, as
we shall discuss in Sec. IV, a second π/2 pulse is applied,
namely, the barrier is lowered again to allow tunneling and
thus to move the ion back to the left well. In such a way, the
previous interferometric protocol can be still applied, albeit
with different type of measurements.

Let us remark that Ramsey interferometry with motional
states of an atom in an optical lattice has been experimentally
realized [48] (also with the ground and first excited state of
a quasi-1D condensate [49]). Additionally, the dynamics of
Coulomb crystals in a double well potential has been the-
oretically investigated [50,51], while state-dependent optical
potentials for trapped ions have been recently demonstrated
in the laboratory [52]. The latter paves the way to engineer
state-dependent potentials such as those created by microwave
fields in atom chips [53,54]. These studies together with
the possibility to employ optimal control methods [55] for
steering the impurity dynamics appropriately corroborate the
feasibility of the suggested scheme.
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Decoherence and precision. To broadly understand how
the thermometric precision can be affected by the parameters,
we summarize some aspects of the decoherence dynamics.
At short times, the decay of |ν| is due to collective exci-
tations of the Fermi sea and the decoherence dynamics is
essentially unaffected by the temperature. At large times,
the dynamics is governed by low-energy excitations with
temperature-dependent distribution and |ν| decays exponen-
tially with rates depending on T [15]. It is intuitively clear
that the probing time should be large enough in order to probe
the gas temperature. According to Eq. (15), however, high
precision is achieved for large values of the derivative of |ν|
with respect to T . Nonetheless, being the decay exponential
at large times, it implies that long probing times decrease
the quantum signal-to-noise ratio. For the same reason, a
choice of the parameters that enhances the decoherence in the
temperature-independent regime would result in less precise
measurements. On this regard, we shall see in Sec. IV A how
the effective interaction (10) affects the dependence on kFa of
the maximum of Q over time.

IV. RESULTS

To begin with, let us first provide a few pieces of infor-
mation on the results we are going to discuss that will be
helpful for the subsequent analyses. Our investigations will
mostly focus on the case for which the ion is prepared only
in one of the two internal states, since we aim at demonstrat-
ing the impact of the long-ranged atom-ion potential on the
thermometer sensitivity (in Sec. III an alternative interfero-
metric protocol is suggested). In order to apply the protocol
discussed in Sec. III, however, we shall provide our findings
corresponding to the scenario for which the ionic impurity
is prepared in a superposition of the two internal states as
well, where both states interact with the gas. Hence, unless
explicitly indicated, the interaction parameter kFa refers to the
case with the single interacting state |s〉 with s = 0 or 1 and
the atom-ion scattering length is assumed to be a � −R�.6 We
shall explore different scenarios of the regularized atom-ion
polarization potential (also shown in Fig. 2), for which the
absence or presence of one or more bound states is assumed.
This will enable us to investigate the impact of bound states
on the dynamics of the probe and, most importantly, on the
precision of the temperature estimation. Let us remark that the
choice of a negative scattering length motivates the scenario
without bound states. In fact, a negative scattering length
implies that the corresponding state is deeply bound and that
it has a rather small size. Hence, if recombination timescales
are long enough, it is unlike that such states are populated.
We note that in a different context than ours, precisely in
this regime of interactions and time scales phenomena such
as attractive polarons have been predicted [56]. We shall turn
back to this matter in Sec. V.

As far as the interaction parameter kFa is concerned, we
note that, differently from the neutral impurity case where
the s-wave scattering length is the only parameter character-

6The choice of a negative scattering length is motivated by recent
experimental investigations [21,22].

TABLE I. Most relevant physical quantities for some atom-ion
species: kF = 0.5/R� (top row) and kF = 1.5/R� (bottom row).

Atom - ion (R� (nm)) Mean density (cm−3) τF (μs) TF (μK)

6Li–174Yb+ (69.77) 6.2 × 1012 3.7 2.07
1.7 × 1014 0.41 18.64

40K–174Yb+ (219.24) 2.0 × 1011 240 0.032
5.4 × 1012 26 0.29

40K–40Ca+ (171.92) 4.15 × 1011 145 0.053
1.1 × 1013 16 0.47

izing the two-body interaction, for the long-ranged atom-ion
polarization potential the reliance of kFa on the scattering
length is less trivial. Indeed, its typical length scale R� is
comparable to the mean interparticle distance and the system
properties depend not only on a and the effective range of
the two-body potential, but also rely on the presence of the
long-range tail of the interaction. Hence, while in the neutral
case a specific choice of the product kFa can be obtained for a
fixed gas density by a single value of the scattering length, in
the atom-ion scenario the same value of the scattering length
can result in different two-body potentials leading to different
system properties.

In Table I, we report the Fermi time and temperature for
different atom-ion pairs for two values of the interaction pa-
rameter kF = 0.5/R� and 1.5/R�, from which we obtain the
corresponding gas densities.7

A. Static ion approximation

We shall first consider the case with zero bound states
(dot-dashed line in Fig. 2). This will allow us for a direct
comparison with the pseudopotential for neutral atoms and
thus highlight the effect of the long-range character of the
polarization potential more clearly. For the same reason, we
shall first consider the case for which the ion probe is localized
at r = 0 with |χ (r)|2 = δ(r). Note that this is how the static
ion approximation has to be intended and it is achieved either
by confining the ion in a very tight trap or by considering the
mass of the ion to be much larger than the mass of the atoms in
the gas, i.e., infinite mass limit. To compare directly with the
neutral impurity case, our analysis begins with the case where
only one of the two internal states interacts with the bath. The
parameters for this regularized potential are b � 0.0023 R�

and c � 0.4878 R� that correspond to a � −R�.8 We finally

7As it can be seen, there is a rather large variation of the two time
and energy scales for three exemplary atom-ion pairs. In particular,
the Fermi temperature for the pair 6Li–174Yb+ is the largest, reflect-
ing the fact that a lighter atom with a heavy ion are also easier to cool
down to the s-wave collisional regime, while for the pair 40K–174Yb+

with the largest R� (due to the larger atomic polarizability) it is more
challenging to attain the quantum degeneracy. Furthermore, larger
gas densities reduce the coherence time τF which has the smallest
value for lighter atoms, that is, for the atom-ion pair 6Li–174Yb+.

8In presence of two-body bound states, the parameters of the regu-
larized atom-ion polarization potential assume the following values:
b � 0.07018 R� and c � 0.1455 R� for one supported bound state,
whereas b � 0.09 R� and c � 0.0718 R� for two bound states.
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FIG. 5. Quantum signal-to-noise ratio for kFa = −0.5 and −1.5 in the static impurity approximation. (a) and (b) for an ion with an
atom-ion polarization potential without bound states, whereas (c) and (d) for a neutral impurity with impurity-bath interaction given by the
pseudopotential.

remark that the QSNR is calculated via the relation Q2 =
T 2FQ

T , where the quantum Fischer information is obtained
from Eq. (15).

Temperature and time dependence of QSNR. We consider
kFa = −0.5 and −1.5 in the case with one internal state and
we start by analyzing the temperature and time dependence of
the quantum signal-to-noise ratio. These two choices result in
values of the mean density and Fermi time of typical quantum
gas experiments (see also Table I). As we can observe in
Fig. 5, the temperature dependence is only slightly affected by
the two different types of potentials (atom-ion polatization in-
teraction vs. pseudopotential) for both of the two values of the
interaction parameter. Indeed, the yellow (i.e., bright) region
corresponding to the maximum of Q appears roughly in the
same range of the Fermi temperature ratio [∼0.4, see panels
(a) and (b) versus panels (c) and (d)]. The time dependence
of Q for the two kFa, however, is significantly modified: the
region of highest precision, i.e., higher Q, it is extended to
longer probing times for a charged impurity [panels (a) and
(b)], while it occurs at earlier times and for a smaller time
window for the case of a neutral impurity [panels (c) and (d)].
This behavior suggests that Vreg suppresses the decay of |ν|,
as it also clearly showed in Fig. 6. Moreover, the shift of the
yellow region to longer times also suggests that the potential
takes more time to bring the system in the regime where the
dynamics is governed by particlelike excitation, which are
more sensitive to the gas temperature. Concerning that point,

Fig. 6 shows clearly that the long time behavior of the deco-
herence function is more affected by the gas temperature as
well as that the larger the temperature, the stronger the effect

FIG. 6. Decoherence function for kFa = −0.5 for a static impu-
rity. Solid line for the atom-ion polarization potential without bound
states and two different temperatures (see legend), while the dotted
line for the pseudopotential. In the main panel, the time dependence
of |ν(t )| is shown, while in the inset its real part is displayed.
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on the decoherence function. As a consequence, it results in a
better temperature probe at long times.

Finally, Fig. 5 shows that the use of an ion probe is more
favorable in some circumstances. Indeed, in the case of low
densities [panels (a) and (c)], i.e., small |kF|, a limited gain
in the thermometer sensitivity can be obtained, but for longer
interrogation times. On the other hand, at large values of |kFa|
[panels (b) and (d)], that is, high gas densities, i.e. large |kF|
for the polarization potential, the use of an ion instead of a
neutral impurity particle significantly enhances Q (up to 5
times more at the maximum), and therefore the temperature
sensor accuracy, in a large part of the considered time range.
Hence, such findings demonstrate that using ionic impurities
for sensing the temperature of a Fermi gas result in a superior
thermometer performance.

Interaction dependence of the maximal QSNR at fixed T.—
At fixed T = 0.2 TF, Fig. 7(a) shows that the monotonous
behavior of Qmax = maxt {Q(t )} in the case of the neutral
impurity (grey asterisks) is not reproduced with the ion, where
instead a peak appears (blue diamonds). In order to understand
the onset of the latter, one can observe that the two potentials
give a similar dependence on kFa in the extremal regions of the
considered range of Fig. 7 (i.e., small and large magnitudes
of |kFa|). Indeed, the dependence on kFa can be mapped to
a dependence on the mean interparticle distance of the bath
particles d̄ = (n̄)−1/3 ∝ 1/|kFa|.9 When d̄ is sufficiently large,
i.e., d̄ � 8 R� corresponding to kFa � −0.5 and small den-
sities, the two potentials give similar results. In this regime,
the rate of collisions affecting the ionic probe is small and
the decoherence function ν(t ) decays slowly compared to τF

(see also Fig. 6). This allows the ion to probe the bath for
a longer time, thus resulting in increasing Qmax values for
decreasing values of |kFa|. On the contrary at large densities,
i.e., d̄ � R� and kFa � −4, the rate of collisions between the
particles of the bath and the strongly repulsive core of the
potential is higher. Both with the regularized pseudopotential
and Vreg, when |kFa| increases, the decoherence function ν(t )
decays more rapidly (not shown) and the values reached by
Qmax are lower.10 When the probe is an ion, an intermediate
regime can be identified where the balance between interac-
tions with the repulsive core and the attractive well of Vreg

strongly suppresses the decay of ν(t ), and therefore allowing
to attain much higher values of the quantum signal-to-noise
ratio. Besides this, we attribute the enhanced precision to
the accumulated phase given by the long-range polarization

9Here, the overbar indicates that the length has been rescaled with
respect to a.

10Let us underscore that the interaction parameter |kFa| has to be
interpreted differently for the neutral and charged impurity. Indeed,
for the ionic impurity, we keep fixed the scattering length, while we
vary the wave vector kF, i.e., the gas density. Conversely, when the
impurity is neutral, although the value of |kFa| can in principle corre-
spond to any of the possible combinations of the two terms, one has
to consider a fixed gas density, and hence kF, and a varying scattering
length. Otherwise, at large magnitudes of the interaction parameter,
the applicability of the pseudopotential would be invalided, as d̄
would be comparable or even smaller than the effective range of the
van der Waals interaction.

FIG. 7. (a) Qmax ≡ Q(tmax) for different values of kFa at T =
0.2 TF and for an internal ion state only (e.g., the state |1〉). (b) Qmax

for different values of kFa0 (i.e., state |0〉) at T = 0.2 TF and fixed
kFa1 = −1.5 R� (purple triangles) and kFa1 = −0.5 R� (red circles),
i.e., state |1〉. (c) Values of tmax corresponding to (b). (d) Same data
of (b) plotted against a0. All the lines are merely a guide to the eye.
Their discontinuity in (b)–(d) indicates that the thermometer does not
work when kFa0 = kFa1 (see text).

potential, i.e., the relative phase proportional to the integral
of the atom-ion potential over the density perturbations of
the bath because of the presence of the impurity. Since the
atom-ion potential is long-range, it will collect more of those
perturbations. However, as in the case of low densities, a
large Q requires a long probing time which could affect the
effectiveness of the protocol. Note that the attractive region of
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the potential with no bound states is not visible in Fig. 2 (blue
dot-dashed line), because it is considerably more shallow
than the other two cases. Similar results are obtained when
the atom-ion polarization potential supports one bound state
[green squares in Fig. 7(a)] or two bound states (not shown)
with the only difference that a slight shift of the maximum
of Qmax occurs. This indicates that the phenomenon does not
rely on the number of bound states, but it is rather a peculiarity
of the long-range character of the two-body interaction. As
already mentioned, the most relevant case for the applica-
tion of the protocol explained in Sec. III is the one where
the two internal states interact with the gas, whose result is
displayed in Figs. 7(b)–7(d). To understand the plots, it is
necessary to quickly explain the meaning of the interaction
parameters kFa1 and kFa0. The choice of the value kFa1 =
−1.5 R� or kFa1 = −0.5 R� (purple triangles and red circles,
respectively), with a1 � −R� the scattering length relative to
the state |1〉, fixes the density of the bath. Consequently, the
variation of kFa0 corresponds to the tuning of the atom-ion
scattering length a0 of the state |0〉. In this way, different
values of the interaction parameter kFa0 are obtained without
changing the density of the bath. Note that the thermometer
does not work when kFa0 = kFa1, since the two potentials are
identical and therefore the induced dephasing dynamics is the
same. This is can be also recongnized in Eq. (B3) and it is
indicated in the panels (b)–(d) of Fig. 7 by the discontinuity
of the connecting line. The plot in Fig. 7(b) shows that the
nonmonotonous behavior that we attribute to the long-range
of the potential is preserved and that a proper choice of the
parameters can lead to a higher sensitivity. Other than the
enhancement of the sensitivity, a shift in the position of the
peaks is observed, depending on the value of kFa1. This is
better understood by observing the QSNR as a function of
the scattering length a0 instead of the interaction parameter
kFa0. As shown in Fig. 7(d), the dependence of the QSNR on
a0 is similar for the two cases and the peak appears around
a0 = −R�. Finally, we note that the time at which each Qmax

occurs [see Fig. 7(c)] is slightly longer than the case of the
single internal state. The latter is not shown, but it does not
exceed 103τF for the values in Fig. 7(a). This difference can be
attributed to the cancellation between the accumulated phases
in the elements of the matrix from which the decoherence
function is calculated [see Eqs. (7) and (B3)]. On the other
hand, the peaks of Qmax are smaller than the single internal
state case, but still larger than the neutral impurity probe. We
attribute this reduction of sensitivity to the previous argument
of the accumulated phases around the density perturbations,
that is, the two states compensate partially each other.

B. Finite ion density distribution

We now investigate the impact of a spatial density distri-
bution of the ion as that obtained when the ion is confined
in a trap of finite width. In particular, we choose a Gaussian
distribution, as it approximates the time-averaged distribu-
tion of the ion subject to micromotion in the ground state
of a Paul trap (secular approximation) or the ground state
in a deep optical dipole trap. The width of the Gaussian
distribution is defined as σ = √

h̄/Mω with M the ion mass
and ω the frequency of the trap. A trap width of σ = 0.3 R�

FIG. 8. Quantum signal-to-noise ratio as a function of the prob-
ing time for T = 0.05 TF. (a) Single state with kFa = −0.5. (b) Two
states with kFa1 = −0.5 and −1. Solid lines represent the localized
impurity case; dotted lines correspond to the impurity with Gaussian
spatial density.

corresponds to a trap frequency ω/(2π ) � 133 kHz for
174Yb+ and ω/(2π ) � 95 kHz for 40Ca+ (see also Table I). In
Fig. 8, we show exemplary the time evolution of the quantum
signal-to-noise ratio for the case of T = 0.05 TF. The thick
solid lines in Fig. 8(a) show the result for one single internal
state with kFa = −0.5 in the static ion approximation with
zero (blue line), one (green line) and two (orange line) bound
states. The latter two are essentially superimposed to each
other (almost indistinguishable in the plot). As it can be seen,
apart from a slight difference between the case of zero bound
states and those with a finite number of bound states, the
QSNR does not exhibit any reliance on the number of bound
states when the ionic probe’s distribution is delta-shaped.
Moreover, Q assumes large values only at long times, where
the impact of detrimental effects such as three-body recom-
bination or reduced trap lifetime, especially for optical-based
trap technology, are more likely. On the other hand, when the
Gaussian distribution of the probe is considered, the convolu-
tion between the latter and the regularized potential results in
an effective potential Veff [see also Eq. (10)]. Such an effective
potential has different characteristics compared to Vreg and it
substantially modifies the dynamics of Q. Indeed, as it is also
visible in Fig. 9, the attractive region becomes more shallow
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FIG. 9. Regularized atom-ion potentials with one (green line)
and two (orange line) bound states together with their corresponding
effective potentials (see also Sec. II). The inset shows the attractive
region of the effective potentials. Note that the case without bound
states is not shown, because both the energy and the atom-ion sepa-
ration are of a rather different scale compared to those shown in the
picture. Specifically, one has to consider much larger separations and
no additional novel feature would have been manifested.

and the repulsive core gets flattened and broadened. Interest-
ingly, a reliance on the number of bound states is manifested
(see dotted lines in Fig. 8), especially for zero and one bound
states, where a maximum at short times is displayed, which
enables to attain higher sensitivities of the ionic temperature
sensor at shorter times and thus to reduce the impact of unde-
sired effects. On the other hand, the situation with two bound
states resembles the case of the static ion limit, albeit attaining
larger Q values at longer times (see orange dotted line). This
shows that the deeply bound states have a marginal impact
on the sensor performance. A similar behavior is shown in
Fig. 8(b) where two internal states are considered. In this
case, the interaction parameters are fixed to kFa0 = −1 and
−0.5, and the regularized potentials support zero and one
bound states for |0〉 and |1〉, respectively. For times shorter
than t � 400 τF, a finite spatial density (dotted line) results in
slightly higher values of the QSNR with respect to the case
with the static ion (solid line). Although the difference is not
remarkable, Fig. 8(b) confirms that, in general, the ion finite
spatial density allows to improve the sensitivity at shorter
times, even though the sensor performance is worse compared
to the single internal state. Hence, our analysis indicates that
the trap frequency ω can be used as a “knob” to enhance
the signal-to-noise ratio at short times, which is particularly
relevant in view of spin relaxation [57].

We finally remark that other strategies to determine the
temperature of an ultracold Fermi gas were proposed. In par-
ticular, Lous et al. showed in Ref. [58] that a temperature
T � 0.06 TF of a 6Li gas can be estimated with a 10% er-
ror by using a Bose-Einstein condensate of 41K atoms as a
probe. The strategy is based on the thermalization between the
two atomic species and on the estimation of the condensate

fraction. Their aim, however, was to propose an experimental
technique to determine the lowest possible temperature of the
fermionic gas specifically for their setup. Here, on the other
hand, we provide a theoretical estimation of the interrogation
time, i.e., when the maximum achievable QSNR is attained,
and the number of measurements that are needed to obtain a
comparable error. For instance, a precision �T/T = 0.1 of a
measured temperature T = 0.05 TF can be obtained with N ≈
625 repetitions on a time of the order of a few milliseconds
(∼1000τF) for an atom-ion pair 6Li–174Yb+, where the num-
ber of repetitions N can be reduced by employing more ions as
sensors at the same time. We underscore again, however, that
the experimental achievement of such a measurement relies on
the capability of performing the protocol outlined in Sec. III.

V. DISCUSSION

The results we exposed in the previous section show that
an impurity ion, whose interaction with the bath is described
by the long-range atom-ion polarization potential, yields a
higher quantum signal-to-noise ratio than a neutral impurity in
an experimentally accessible parameter regime. Nonetheless,
a few remarks on the interferometric protocol as well as on
interparticle collisions are in order.

Interferometric protocol. The protocol outlined in Sec. III
aims at determining the symmetric logarithmic derivative via
the projective measurement of the energy. To this end, one per-
forms a series of independent experimental runs by collecting
data as {ξk}N

k=1 with ξk being the outcome of the measurement
of �̂T , namely, λ±, of the kth run. Being the measurement
projective, one will collect N+ (N−) outcomes for λ+ (λ−)
such that N = N+ + N−. The determination of such an expec-
tation value, however, requires the ability to determine |ν| and
φ together with their derivatives with respect to T with the
aim of choosing θ = φ + ϕ. By tracking ν(t ), one can fix the
“optimal” probing time at which Q is maximal, and there-
fore quantify what is the actual uncertainty on the estimated
gas temperature. Nonetheless, to determine these quantities a
prior knowledge of the temperature of the gas is needed. This
means that, before the actual temperature estimation begins,
one needs first to determine the probability of obtaining ξk

in an experimental run, that is, p(ξk|T ), which is no less that
the conditioned probability on the actual value, yet unknown,
of the gas temperature to be determined. How to estimate the
probability p(λ±|T )? This is accomplished by means of the
expectation value of �̂T (or the energy) as [41]

p(λ±|T ) = 1 ± 〈�̂T 〉
2

= 1 ± f (〈ÊT 〉)

2
, (16)

where

f (〈ÊT 〉) = 2〈ÊT 〉 − Emax − Emin

Emax − Emin
. (17)

Here, we used the fact that the expectation value of �̂T has
support in the interval [−1, 1], while the energy expectation
value has been normalized accordingly. Of course, one needs
first to perform a calibration of the ionic thermometer. This
can be accomplished either with a theoretical model of the
probabilities, as the one based on 〈�̂T 〉 given by Eq. (13), or
by measurements of the energy spectrum as p(λ±|T ) = N±/N
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for some known values of T and N � 1. The latter can be
extracted independently by looking at specific properties of
the gas (e.g., wings of the spatial distribution of the gas in the
time-of-flight measurement). After this calibration stage, the
inference about the value of the unknown gas temperature is
drawn from the data {ξk}N

k=1 by means of a certain function
T of the acquired measurement data, which in the context
of the theory of parameter estimation it is called estimator.
A commonly used one is the maximum likelihood estimator,
which is defined as the value of T that maximizes the joint
probability distribution L(T ) = ∏

k p(ξk|T ) with respect to T .
The sequence of N experimental runs is performed several
times and yields an estimate of the unknown gas temperature
T , namely, it is expected that its statistical mean, E[T ] := Test,
is Test � T . Since the outcomes of the measurements fluctuate
from a data set to another one, i.e., for fixed N the variables
N± are stochastic as well as the likelihood L(T ), the estimator
T of the unknown gas temperature has an uncertainty. Given
the fact that the protocol gives access to the measurements
set by the SLD that maximizes the Fisher information, the
uncertainty is then given by the Cramer-Rao bound, that is, the
right-hand side of Eq. (14). For a more precise mathematical
formalism of the estimation of an unknown parameter, we
refer to Ref. [59]. Albeit it concerns the estimation of the
gradient of a magnetic field, the formalism applies to our
context in the precise same way.

Finally, let us note that the decoherence function ν(t ) can
be determined by means of many-body Ramsey interferom-
etry [2], which has been successfully implemented for the
experimental observation of Fermi [11] and Bose [60,61] po-
larons.

Few-body processes. The times required to attain the high-
est values of Q could lead in experiments to undesired
chemical reactions, which are not only not considered in the
theory presented in this work, but, importantly, they would
affect the state of the bath and thus resulting in a bad tem-
perature sensor. In particular, three-body recombination is the
main process owed to the presence of deeply bound states.
Estimation of the decay rate γ based on classical trajectory
theory [62–64] predicts a rate on the order of a few Hz for
gas densities on the order of 1012 cm−3 up to a few kHz
for 1014 cm−3, therefore from seconds to sub-millisecond
timescales. The numbers quoted in table I for the Fermi time
and the QSNR of Fig. 8 show that we are reasonable good
within the predicted decays. We note, however, that since
the ion interacts with a spin-polarized fermionic bath, the
quantum statistic of the gas helps in this regard, as no more
than one atom can populate a two-body bound state.11 Fur-
thermore, given the fact that very deep bound states are less
likely populated, one can conclude that the fermionic statistic
of the gas does not allow to populate more than the most
loosely bound state of the polarization potential, thus losing
eventually a single atom of the bath per ion. This would be not
the case if the bath would be bosonic for which mesoscopic
molecular ions can be formed [56,65–67].

11We note, however, that when a fermion of the bath is brought to
populate a two-body bound state via a three-body collision, there is a
finite probability that the released energy may lead to a spin flip, i.e.,
a spin impurity in the bath might be created.

Another important collisional process to be taken into
account is spin relaxation. As it has been shown in the exper-
iment of Ref. [57], the ion spin can decohere rather quickly
because of spin-exchange and spin-nonconserving interac-
tions. In particular, the spin-orbit coupling provides a major
role in the relaxation dynamics of the ion internal state [68].
Specifically, it has been observed in a 87Rb bath that after
a few Langevin collision times tL the probability of finding
a Yb+ in the initial spin configuration is close to 15%.12

For a 6Li - 174Yb+ compound system with a gas density of
6.2 × 1012 cm−3 we find tL/τF � 13 for kFR� = −0.5. This
can be indeed a major obstacle to the successful realiza-
tion of the ion thermometer. A solution is discussed in the
next paragraph. In addition to this, we mention that for low-
dimensional atom-ion systems such as quasi-one dimensional
the impact of spin relaxation can be limited, as the spin-orbit
coupling is reduced, while confinement-induced resonances
can provide a tool to control atom-ion interactions [69].

An alternative strategy that can be employed to avoid
undesired few-body processes is given by Rydberg dress-
ing [47,70], where the atomic cloud is slightly coupled to
a Rydberg-state. In such a way, the atomic polarizability is
enhanced and the ion can be placed to some distance (on a
micrometer scale) from the bath, thus without the need to
immerse the ion in the latter [47]. This strategy is not only
suitable to reduce the impact of micromotion when ions are
confined in a Paul trap, but also to reduce the aforementioned
spin relaxation effect. If we want to keep the in situ character
of the protocol, however, we can still immerse the ion in the
Rydberg-dressed atomic bath, but by means of a properly
laser-engineered potential of the form [70]

Vd (r) = A R4
w

r4 + R4
w

− C4

r4
. (18)

Here, A and Rw are laser-controlled parameters. With such
an engineered atom-ion interaction it is possible to create a
repulsive barrier [the first term in Eq. (18)] around the ion
to avoid the atoms to get too close to it. Note that recent
experiments have shown that long-range and laser-controlled
interactions can be realized [71–73] and an ion-induced Ryd-
berg excitation blockade can be realized [46]. The two-photon
scheme utilized in the latter can be exploited also to initial-
ize the thermometer, i.e., to create the ion impurity in the
atomic cloud in the internal state |0〉. Finally, we note that
the aforementioned Rydberg-dressing strategy modifies the
short-range interaction in the scale of a few tens of nanometers
without affecting the potential at micrometer distances. For
this reason, it can also help to suppress the eventuality of
charge-exchange collisions that may occur at long times [74].

VI. CONCLUSIONS

Based on an interferometric protocol for the in situ es-
timation of the temperature of a Fermi gas with immersed
neutral atomic impurities [27], we investigated the perfor-
mance of the scheme when ions are utilized as thermometers.

12The Langevin time is defined as tL = 1/γL with γL =
2πng

√
C4/μred being the energy-independent rate with ng the gas

density.
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We have found that the long-ranged character of the atom-
ion polarization potential substantially modifies the quantum
signal-to-noise ratio and that it enhances the sensor perfor-
mance, especially when a single interacting internal state is
used. We have investigated mainly two scenarios, namely,
a static ion and an ion ground-state cooled in a finite trap,
for various impurity-gas interactions and different number of
bound states of the two-body atom-ion potential. We com-
pared our findings with the case of a static neutral impurity,
as originally proposed in Ref. [27], whose impurity-bath in-
teraction is described by a zero-range pseudopotential. In
Sec. III, we provided an alternative scheme that enables to
use a single internal state, and therefore to reach higher values
of Q in shorter times (<103 τF ). The latter point is important
to limit the impact of ion spin relaxation. In Sec. IV A, we
studied the temperature and time dependence of the QSNR
for kFa = −0.5 [see Fig. 5(a)] and kFa = −1.5 [see Fig. 5(b)]
finding that in order to attain a higher sensor sensitivity the
probing time has to be larger compared to the case of a neutral
impurity [see Figs. 5(c) and 5(d)]. We have shown in Fig. 7(a)
that the dependence of the maximum of the quantum signal-
to-noise ratio Q on kFa (i.e., on the gas density) at fixed T is
strongly modified by the long-range potential and it presents
a peak. The effect of this finding, however, is reduced when
both internal states are used for sensing the gas temperature
[see Fig. 7(b)], since the accumulated phases of the states
compensate each other partially. In Sec. IV B, we analyzed
the impact of a Gaussian spatial density of the ion at low gas
temperatures, i.e., T = 0.05 TF and kFa = −0.5, and found
that a finite width of the ion trap can enhance the sensitivity
of the thermometer as well as reduces the probing time with
respect to the case of a delta-shaped spatial density, i.e., static
ion approximation (see also Fig. 8). Finally, in Sec. V, we
discussed the implementation of the interferometric protocol
based on the most recent experimental observations involving
hybrid atom-ion systems.

In the present study, we have focused our attention on
a single impurity. It is well-known in quantum parameter
estimation theory that entanglement can further enhance the
sensitivity of quantum sensors. Thus, in the future, it would
be interesting to investigate how the estimation bound can
be improved by entangling two ions, a task that is routinely
accomplished in trapped ion experiments, and to devise novel
interferometric protocols to attain the bound in this case.
Furthermore, it would be also interesting to explore the im-
pact of the impurity motion in more detail, for instance, by
studying the properties of the Green’s functions of the system,
as recently undertaken in Ref. [75] as well as via a master
equation approach [34]. Using motional states of the ion for
sensing the gas temperature is preferable in view of reducing
the impact of few-body processes.
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APPENDIX A: DYNAMICS OF THE ION INTERNAL STATE

In Sec. II, we stated that the Bloch vector is given by v =
(Re[ν], Im[ν], 0). To show this, we consider the time evolu-
tion of the density matrix of the composite atom-gas system ρ̂.
This is given by ρ̂(t ) = Û (t )ρ̂(0) Û†(t ), where Û (t ) = e−iĤt/h̄

with Ĥ = ĤB + ĤP + ĤI the total Hamiltonian. Specifically,
we have

ρ̂(t )=1

2

(
e

i
h̄ (ĤB+Ĥ0 )t ρ̂Be− i

h̄ (ĤB+Ĥ0 )t e
i
h̄ (ĤB+Ĥ1 )t ρ̂Be− i

h̄ (ĤB+Ĥ0 )t

e
i
h̄ (ĤB+Ĥ0 )t ρ̂Be− i

h̄ (ĤB+Ĥ1 )t e
i
h̄ (ĤB+Ĥ1 )t ρ̂Be− i

h̄ (ĤB+Ĥ1 )t

)
.

(A1)

The components of the Bloch vector are given by the Hilbert-
Schmidt inner product vi = Tr[ρ̂(t )σ̂i] with σ̂i i = x, y, z
being the Pauli matrices, which yield exactly Eq. (6). Let us
note that the trace is taken over both the ion and gas degrees
of freedom and where we have exploited the cyclic property
of the trace.

We can then use Eq. (A1) to show that the projective
measure of the energy yields the expectation value of the SLD.
To this end, we define the matrix of a π/2-pulse as

R̂π/2(θ ) = 1√
2

(
eiθ 1
1 −e−iθ

)
(A2)

and we calculate R̂π/2(θ )ρ̂(t )R̂†
π/2(θ ). This gives the follow-

ing matrix:

ρ̂θ (t ) = 1

4

(
2 + eiθ ν(t ) + e−iθ ν∗(t ) ν∗(t ) − e2iθ ν(t )
ν(t ) − e−2iθ ν∗(t ) 2 − eiθ ν(t ) − e−iθ ν∗(t )

)
.

(A3)

The projective measure of the energy, that is, on the σ̂z basis,
reads

Tr[ρ̂θ σ̂z] = Re[ν(t )] cos(θ ) − Im[ν(t )] sin(θ ). (A4)

By choosing θ = φ + ϕ we obtain the desired expectation
value of the symmetric logarithmic derivative.

APPENDIX B: REMARKS ON THE NUMERICAL
SIMULATIONS

In this section, we provide some pieces of information
on the employed numerical methods utilized to assess the
quantum signal-to-noise ratio, especially with regard to the
diagonalization of the impurity-bath Hamiltonian and deco-
herence function via the Levitov formula.

1. Finite size system

Let us recall the single-particle Hamiltonians of Eq. (9):

ĥB = − h̄2

2m
∇2 + Vext (r), ĥα = ĥB + V (α)

eff (r). (B1)

Despite treating the gas as homogeneous, we solve the eigen-
values equations for a system confined in a sphere with finite
size R. The value of the latter can be defined by fixing both the
density and the number Nf of fermions in the s-wave state at
T = 0 giving Nf /R = √

2mEF/π h̄. The number of fermions
is chosen large enough to achieve the thermodynamic limit for
the considered timescales. Specifically, Nf = 400 was suffi-
cient.
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The eigenstates and eigenenergies satisfying ĥB|φn〉 =
εn|φn〉 (without Vext) are given by

〈r|φn〉 =
√

1

2πR

sin(knr)

r
, εn = h̄2k2

n

2m
(B2)

with knR = nπ . As far as the eigenstates and eigenenergies
of ĥ1 are concerned, analytical solutions are available only in
the case of the regularized pseudopotential (see Supplemental
Material of Ref. [27] for details). In the case of the ionic
impurity with the regularized two-body potential (2), however,
we need to numerically diagonalize ĥ1. Towards this end, we
used the MATHEMATICA built-in function NDEIGENSOLVE, as it
has been proven to be an efficient and versatile tool for such a
task.

2. Computation of the decoherence function

In order to compute the decoherence function ν(t ), we
need to evaluate the determinant in Eq. (8) at each time.
Towards this aim, we represent the operator M̂ ≡ 1 − n̂ +
n̂eiĥ0t/h̄e−iĥ1t/h̄, of which the determinant has to be assessed, in
the basis of eigenstates |φ j〉 of ĥB. Hence, the corresponding
matrix elements read

〈ψm|M̂|ψn〉 = (1 − nn)δn,m + nm

N0∑
l

N1∑
k

ei(El −E ′
k )t/h̄

× 〈φm||ψl〉〈ψl ||ψ ′
k〉〈ψ ′

k||φn〉, (B3)

where |ψl〉 (|ψ ′
l 〉) are the eigenstates of ĥ0 (ĥ1) with eigenen-

ergy El (E ′
l ), and the fermionic occupation number of the jth

eigenstate is given by

n j =
{

exp

[
TF

T

1

ε̄F
(ε̄n − μ̄)

]
+ 1

}−1

. (B4)

Here, for the sake of numerical convenience, we have
rescaled (indicated by an overbar) the energies with respect to
h̄2/(2ma2) and lengths with respect to the s-wave impurity-
bath scattering length a. Moreover, μ̄ denotes the rescaled
chemical potential of the Fermi gas that has been determined
by solving Tr[n̂] = Nf . In order to determine the right di-
mension of the Hilbert space NB of ĥB such that the desired
numerical accuracy has been reached, we proceeded as fol-
lows: once the number of fermions Nf has been fixed, we
imposed that |Tr[n̂] − Nf | < ε with ε ∈ (0, 1]. Specifically,
we have chosen ε = 10−4, which results in a good tradeoff
between accuracy and computational time. The dimensions
of the Hilbert spaces N0,1 of ĥ0,1 are varied arbitrarily up to
the value at which the result is convergent. We get for them a
number of the same order of NB. Albeit the value of NB and
N0,1 depend on the gas temperature and number of fermions,
that is, the higher the temperature, the large is the Hilbert
space dimension, all of them range typically between 500 and
1300.
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