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Spin-conserving Boltzmann theory for carriers and excitons in organic semiconductors
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The rise of organic electronics calls for versatile modeling tools. In this context, we develop a semiclassical
Boltzmann theory that describes transport and excitonic processes in crystalline organic semiconductors on equal
footing. The generation of singlet and triplet excitons out of the ground state, their formation from free electrons
and holes, the reverse processes, as well as the fusion and fission of excitons are included. The corresponding
scattering integrals respect spin conservation, which requires matrix-valued distribution functions. They also
include fermionic and bosonic many-particle effects such as Pauli blocking. We employ a multipole expansion
of the distribution functions, where quadrupolar terms turn out to be essential for the triplet excitons. This
work provides a basis for the modeling of organic solar cells, in which excitonic processes are crucial for the
performance. Moreover, the theory is of general interest for transport and transitions of multiple (quasi-) particle

species carrying spin in nonequilibrium systems.
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I. INTRODUCTION

Organic semiconductors are promising materials for nano-
electronics and photonics. Their physicochemical properties
are easily adjustable by chemical engineering, the production
process is inexpensive, and they are advantageous in situa-
tions where low weight or mechanical flexibility are desired
[1-6]. Moreover, they are reaching conductivities comparable
to those of metals [7-12].

However, the design of electronic properties requires
a deeper theoretical understanding of the charge-carrier-
transport mechanisms. Several aspects make this a chal-
lenging goal for organic materials: On the one hand, the
lattice is rather soft, i.e., the predominantly intermolecular
phononic modes have low energies. They are also relatively
strongly coupled to the charge carriers. This interaction is
of short range with the largest contribution being the cou-
pling of the electronic occupation of a certain molecular
orbital to vibrations of the same molecule. This diagonal or
Holstein coupling [13] results in the formation of so-called
small polarons [14,15]. There is also a sizable coupling of
intermolecular tunneling amplitudes to vibrations, called non-
diagonal or Peierls coupling [16-20]. For rubrene, Ordejon
et al. [21] have found that the Peierls coupling is indeed
important. These couplings lead to strong polaronic effects
[20,22-26], which limit the carrier mobility.
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On the other hand, creation, decay, and recombination of
excitons as well as the fission of spin-singlet excitons into
triplet excitons and the reverse fusion process are crucial for
organic photovoltaic and light-emitting devices [27-32]: Life-
times of triplet excitons can be six orders of magnitude longer
than the ones of singlet excitons because their transition into
the ground state, i.e., the recombination process, requires a
spin flip [33]. Due to the spin exchange energy, the singlet-
exciton energy can be higher than twice the triplet-exciton
energy [34]. This enables singlet fission into two triplet exci-
tons, which is spin allowed. This fission process can be the key
mechanism to induce transport of excitation energy by triplet
excitons over long distances, which is of major importance for
photovoltaic applications [29,30]. Note that the photogenera-
tion in such devices is dominated by internal interfaces while
the exciton diffusion is a bulk effect. We return to this point in
the conclusions.

We aim at a unified description of transport and the afore-
mentioned local excitonic processes. A relevant property of
organic materials is the typically weak spin-orbit coupling,
which ensures that spin is conserved to a good approxima-
tion. The description of transport thus has to respect spin
rotation symmetry, in particular if singlet and triplet excitons
are involved. We note that any violation of spin conservation,
i.e., any relaxation of spin, can easily be incorporated by an
additional scattering integral.

The excitons in typical devices are far from equilibrium.
The quantum master equation constitutes a powerful tool
for the description of nonequilibrium processes in quantum
systems [35]. It is the equation of motion for the reduced
density matrix or statistical operator p of an open system.
This equation is linear in the density matrix since it is derived
from the Schrodinger equation, which is linear in the state
vector. Linearity is necessary to preserve the unit trace of the
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density matrix. However, one can relax this trace condition
and interpret Trp as a concentration of quasiparticles. The
matrix structure of o then encodes the distribution of spin
orientations, where p is a (2s + 1) x (2s + 1) matrix for spin-
s quasiparticles. Furthermore, the equation of motion can then
be nonlinear, for example describing generation and decay
processes. A generalized quantum master equation in this
sense was applied to local excitonic processes, such as fission
and fusion, in organic crystals as early as 1969 by Johnson and
Merrifield [36]. Essentially the same equation was proposed,
under the name of stochastic Liouville equation, in the context
of quantum optics [37] and for the description of chemical
reactions involving spin [38—40]. More recently, Schellekens
et al. [41] have applied it to excitonic processes in order to
describe organic magnetoresistance.

In case of the stochastic Liouville equation, the nonlinear-
ity is given by a p-independent source term [36,37,41]. The
equation takes the form

%

ar
The first term on the right-hand side describes the unitary
time evolution determined by the Hamiltonian H. The second
term implements decay processes and is naturally linear in the
density. Here W is a decay rate and P is a projection operator
onto the spin state from which a decay is allowed by spin con-
servation. The specific anticommutator structure was shown
by Haberkorn [39] to ensure the positivity of p—since the
eigenvalues of p are interpreted as concentrations they must
not become negative [42]. The third term describes generation
processes and is of order zero in p since the generation rate is
assumed to be independent of the density.

The interpretation of » as a density also permits terms
of higher order. Consider, for example, a pair-annihilation
process of the type A + A — 0. For spinless particles, p just
becomes the number density n and the process is naturally
described by the equation

PN W~ ~
——[H,pl— —{P,p}+T. 1
7 1= = {P. o} + (M

3
B—'Z = —cn?. )

This is of course well known in chemical Kinetics [43,44].
Nonlinear terms also result from quantum statistics, which
show that the rate of a scattering process also depends on the
occupation of the final state, e.g., due to the Pauli principle.

The question arises what the corresponding equation looks
like for particles with spin. The right-hand side then contains
a product of the matrix p with itself and the question is how
this product must be constructed so that spin is conserved.
More complicated processes involving multiple species, e.g.,
A+ B — C, can be described using multiple matrix-valued
densities and we have to construct spin-conserving terms out
of matrices of generally different sizes (2s + 1) x (2s + 1).
This issue is central for the description of excitonic pro-
cesses. For spin-1/2 quasiparticles, i.e., electrons and holes,
the matrix-valued densities are 2 x 2 matrices acting on their
spin Hilbert space. For triplet excitons with spin 1, they are
3 x 3 matrices, whereas for singlet excitons they reduce to
scalars.

We combine the spin-rotation-invariant description of local
excitonic processes with a spin-rotation-invariant description

of carrier and exciton transport. We are interested in ban-
dlike transport in clean organic materials at not very low
temperatures. Characteristic quantum effects such as weak
localization and universal conductance fluctuations are thus
expected to be irrelevant and a semiclassical description is
justified. Our goals thus require the derivation of SU(2) spin-
rotation-invariant Boltzmann-type kinetic equations for the
various quasiparticle species and of scattering integrals de-
scribing transitions between them.

As noted above, polaronic effects are typically strong in
organic materials [20,22-26]. The coupling to the phonons
causes the charge carriers and also excitons to dress as small
polarons [15]. Unlike for inorganic materials, there is no well-
developed semiclassical transport theory for small polarons in
organic semiconductors. This is a promising topic for future
research, where one obstacle will likely be the inclusion of
sizable Peierls coupling. Numerical results by Hutsch et al.
[26] indicate that the phononic modes can be usefully sepa-
rated into fast modes, which lead to polaron formation similar
to inorganic materials, and slow modes, which can be treated
as quasistatic disorder. This suggests that a semiclassical de-
scription should be possible, where the effect of the slow
modes is incorporated by scattering integrals. Since polaronic
effects are not at the focus of the present paper we assume
that the polarons are adiabatically connected to the undressed
quasiparticles, i.e., that polaronic effects only renormalize the
parameters appearing in our description but do not change its
structure.

Spin-rotation invariance requires the Boltzmann theory to
contain the matrix-valued densities [45-53]. We emphasize
that it is not sufficient to use kinetic equations for the densities
in each spin channel, say, spin-up and spin-down electrons,
since this is equivalent to assuming the matrix-valued densi-
ties to be diagonal in the standard spin basis. This precludes
the description of spin polarization in the x and y directions.
It is also clear that the scattering integrals are significantly
more complicated than for spinless particles since they depend
on matrix-valued functions of various dimensions and are
themselves matrices.

Our program is of general interest beyond the field of
organic electronics as the principles developed here are useful
for any system showing scattering of and reactions between
spin-carrying particles, for example in spintronics and spin
chemistry.

This paper is organized as follows. In Sec. II, we set
up the spin-conversing kinetic equations for charge carriers
and excitons in uniform electric and magnetic fields. The
treatment of scattering and transitions between quasiparticle
species (excitonic processes) is then performed in Sec. III.
The theoretical framework is illustrated for a simple model
in Sec. IV. Conclusions are drawn in Sec. V.

II. SPIN-CONSERVING KINETIC EQUATIONS

In this section, we present the Boltzmann transport equa-
tions for electrons, holes, and singlet and triplet excitons
including static, uniform electric and magnetic fields. We
concentrate on the drift terms conventionally appearing on
the left-hand side of the Boltzmann equation and leave the
collision terms for Sec. I11.
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Following Ref. [48], we write the general Boltzmann equa-
tion for the density f(r, k, t) as

%f(r, k,t)+vk) V,fr k1)

+ %(E+v(k) X B) - Vif(r k1)

+ %[H(r,k,n, Fe k0] =T111], 3)
where g € {—e, 0, e} is the charge of the quasiparticles under
consideration and the hat ‘e denotes matrices acting on spin
space. The density f(r,k,t)is a (2s + 1) x (25 + 1) matrix,
where s is the quasiparticle spin. Note that for s > 0, the ma-
trix structure leads to an additional commutator term, which
describes the dynamics in spin space [48]. For example, for
spin-1/2 quasiparticles in a magnetic field B, the Hamiltonian
H contains a Zeeman term proportional to B - &, where o
is the vector of Pauli matrices o, 0, 63. We suppress the
arguments r, k, and ¢ from now on. [ f] contains all scattering
integrals affecting the distribution.

Since we will later ¢ consider nonlinear collision integrals,
the normalization of f is important. We take the eigenvalues
of f to be the occupation numbers per quantum state. For

example, the density
-~ 1 0
i=(p )

for all » and k describes a filled electron band. This convention
will be useful for the description of Fermi and Bose statistics
in the collision integrals. As noted above, Tr f is not restricted
to unity and f is not a density matrix in the sense of a
statistical operator [41].

The velocity in Eq. (3) is given by the derivative of the
Hamiltonian acting on spin space with respect to momentum,

“

1 0H
Tk
and thus, in principle, obtains a matrix structure. This struc-
ture is made nontrivial by those terms in the Hamiltonian
that contain both the momentum and the spin, i.e., by spin-
orbit coupling. Since we are primarily interested in organic
materials, which show weak spin-orbit coupling, we neglect
them. The velocity v then becomes proportional to the identity
matrix and can be treated as a scalar [54]. The dispersion
relation is the only relevant momentum-dependent term in the
Hamiltonian so that we can express v as the group velocity

&)

v = %Vke(k) ©)

in terms of the quasiparticle dispersion € (k).

A. Electrons

The charge carriers in organic semiconductors are electrons
and holes. For simplicity, we restrict ourselves to a model with
one valence band and one conduction band; the generalization
to multiple bands is straightforward. The spin 1/2 of the elec-
trons and holes is essential to understand the related excitonic
processes.

The identity matrix 6y and the three Pauli matrices oy, o,
and &, form a basis of the space of Hermitian 2 x 2 matrices.
Hence, for spin-1/2 quasiparticles, the 2 x 2 matrix f can be
expanded as

f =106, +c-0). (7
Then n = Trfis the concentration of quasiparticles, summed
over spin orientations, and ¢ = Trf & is twice the spin density
(setting i = 1). Note that f must be Hermitian to ensure
real densities. We will call relations of the form of Eq. (7)
multipole expansions.

We start with the description of electrons in the conduction
band with the Hamiltonian

H, = He + % gaitsB - 3, ®)
with the electronic Landé factor g, and the Bohr magneton
ug- Neglecting spin-orbit coupling, the bare electron Hamilto-
nian is H,y = €,(k) 0, with the dispersion €,(k). The Zeeman
term remains the only part with nontrivial matrix structure.
We decompose the electronic distribution function into the
equilibrium distribution f,q and a deviation g, according to

fo=Juo+3 )

We assume the distribution function to be close to equilibrium
because the equilibrium distribution is perturbed only little by
(a) a weak electric field E and (b) decomposition of a low
concentration of excitons. The weak electric field also means
that terms involving the product of E and g, are small of
higher order and can be neglected. This is the assumption
of linear response. It would be straightforward to drop this
approximation.
The multipole expansion of the deviation is
(/g\c = %(ﬁea\() + ¢, - a)» (10)
similar to Eq. (7). In equilibrium, the distribution is spatially
uniform since the external fields and the scattering term are
assumed not to depend on position r, and can thus be written
as

Fao = 21030 + coB - 9). (11)
This yields
fo= o + 7)o + (coB+8) 31 (12)

The equilibrium distribution can be derived starting from
the specific case of B || e3, where e3 is the unit vector in
the z direction. Here the Hamiltonian takes a diagonal form
and so does the equilibrium function. It is thus given by a
linear combination of oy and Bo,. The rotation to an arbi-
trary direction of the magnetic field is then described by the
transformation Bo, — B - @. The induced magnetization is
along B since we assume a magnetically isotropic medium
[55]. The equilibrium term 7, corresponds to the Fermi-Dirac
distribution of electrons with energy €, (k), chemical potential
u, and temperature 7T,

1

neo) = T 1 1

13)
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In the linear-response approximation, the Boltzmann equa-
tion for the electrons reads as

0 1 e 1 ~
_Ae -V e‘VrAe__E Y e B|-V e
o 8t 7 Viee Vg h< + 5 Viee x ) kJfeo

e U RPN i~
— ?(Vkee X B) . nge + E [He, feO] + z [Hes ge]

= 2L Lo for firr iy (14)

where the factor of 2 is due to the factor of 1/2 in Eq. (7) and
drops out when the scattering term is also expanded. We now
analyze the individual expressions in the multipole expansion.
The derivative

2
—~ N>, — e N 1 ~
Vifeo = egk—BTe V€00 + 3 ViceoB -0 (15)
can be used to simplify the expression

(Vace x B) - Vifoo = 5 (Vace < B) - (Veca) B3 (16)

The commutator terms are

I ~ —~
%[Hev feO] == 07 (17)
%[ﬁe,’gg] = —gz’f B xc.)- 5, (18)

where the latter expression describes the precession of the spin
around the direction of the magnetic field.
Inserting these expressions into the Boltzmann equa-
tion (14) gives
a _ . n 0 .
— .00+ —¢C -0
a0 e

1 ~
+ E Vkee : [Vrﬁea\O + Vr(z.e . 0')]

— %E . [aneoa\o + ViceoB - b\’]

e -
- F(Vkée X B) -VicooB -0
- %(Vkee X B) . [kalg/O’\o + Vi (. - 3)]

(Bxc,) 0

_ 8elMB
h

=LLfo for s i) (19)

It is useful to also expand the scattering term into multipole
components, in analogy to Eq. (7),

1

I = 5( "o+ 1% -0)
_ %(lw G +I9G +195,+195).  (20)

From this, we can obtain equations for the coefficients of
the basis matrices. The notation can be shortened using the
differential operator

D=l ity v ® (Vie. x B) -V 1)
, = — + =Vie,- V, — —=(Vye, x B) - V.
ot " hk AN ,

For the coefficient of 6y, we obtain
e ~ ~ ~
Deﬁe - EE . aneo :Ine[fra fev fha ft] (22)

and for the coefficients of o; withi =1, 2, 3,

8elMB
h

= ISy, for Fis Ji). (23)

1
Deui — %(E + 2 Vie, B) VicaoB: — 2B x g,

B. Holes

The description of holes in the valence band is analogous.
Missing electrons close to the band top are described in terms
of holes with positive mass and positive charge. The Hamilto-
nian for the holes reads as

Hy, = €,(k)Y60 — 1 gnortsB - G, (24)

where gp, > 0 is the hole Landé factor. .
The matrix-valued distribution function f;, of the holes is
decomposed into the equilibrium distribution and a deviation,

Fo = Fio + B (25)

The contributions are expanded according to
Fro = 3010 B0 + choB - 3), (26)
8n = 3(fip0o + & - 0). (27)

The kinetic equations for the multipole coefficients 7i;, and ¢,
can then be written down in analogy to the electronic case by
replacing subscripts “e” by “h,” e by —e, and g¢ by —gno.
Defining the differential operator

Dh= 2 4 ViV, + & (Ve xB) - Vi (28)
= —+ -V, -V, + = (Vien, X B) - Vg,
h= o T ke 2 Yk k
we obtain
e o~ o~ o~
,thlh + EE N anho = Inh[f:&‘v fes ﬁlv ﬁ]r (29)
e 1
Dylpi + E(E + 7 Vien x B) - VienoB;
+ ghjaMB B x &) = I5[fs, for fur i) (30)

C. Singlet excitons

Singlet excitons are spin-0 quasiparticles. Consequently,
the density f; and Hamiltonian H; are scalars so that the
commutator term in Eq. (3) vanishes. This simplifies the
Boltzmann equation to

ad 1 ~ o~ o~
gfv + ﬁ Vkex . Vrfs = I.S‘[f&‘v fev fha ft] (31)

Again, we use the group velocity with regard to the disper-
sion relation of the singlet excitons, €,(k). The description of
excitons by a band structure €,(k) and an associated velocity
has a long history [56-58] and has also been applied to or-
ganic semiconductors [59-61]. The excitonic band structure
in pentacene has been studied experimentally by Schuster
etal. [62]. One should note that the band width and velocity of
excitons can be larger than the ones of the charge carriers since
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the motion of excitons can take place through pure energy
(Forster) transfer, without tunneling of electrons.

Similarly to the linear-response theory for electrons, we
decompose the distribution function into an equilibrium dis-
tribution fo and a deviation g,

s = fio + g (32)

However, here the deviation is not related to the electric field
and is not necessarily small since we also consider situa-
tions with optically excited excitons far from equilibrium.
We assume f;o to be uniform. In equilibrium, excitons in
semiconductors follow the Bose-Einstein distribution

1

ele—/ksT 1’ 33)

Jole) =

where € is the exciton energy and u is their chemical potential
[63]. Inserting Eq. (32) into Eq. (31) gives

0 1
_gs+_Vkés'

3¢ 7 Vrgs =]s[f:vvfe9fhvft]~ (34)

The scalar form of the Boltzmann equation for singlet excitons
allows one to obtain the solutions analytically. This requires
specific assumptions for the scattering term. In a simple case,
we can neglect interactions with other particle species and use
the relaxation-time approximation, L[ f;] = —R; (fy — fx0) =
—R; gy, to describe the scattering. R is a possibly momentum-
dependent relaxation rate. This transforms the Boltzmann
equation into a homogeneous partial differential equation for

8s>

0 1

— g+ - Ve, - V,gs +Rygs = 0. 35)
ot i

It is of first order and the coefficients are constant for fixed k.

The analytical solution can be derived using Fourier transfor-

mation with respect to r. The result is

o o Rt _l
g5 /(2 7 exp (zq |:r theX ]) (36)

with the integration constant g°. This equation expresses an
exponential dampening of the deviation that is superimposed
onto a ballistic divergence in position space. This dynamics
agrees with the expected behavior. We can take this as a
confirmation of the form of the Boltzmann equation derived
above.

D. Triplet excitons

Triplet excitons are spin-1 quasiparticles. Hence, their dis-
tribution function f; is a 3 x 3 matrix acting on the spin-1
Hilbert space and their Boltzmann equation takes the form

a ~ 1

§f’ Tz Vi Veofi + Ht: =1 fe i 1. BT
with the triplet-exciton dispersion €,(k). As before, we de-
compose the distribution function into an equilibrium function
and a deviation, f; = f;o + g;, and assume f;q to be uniform.

Inserting this into Eq. (37) yields

0 1
5 & + ﬁ Ve Vrgt [Htv ftO] + = [Hta gt]
=T1for for Fr ), (38)

where the equilibrium commutator [ﬁt, frol again vanishes.
We choose a basis of the space of Hermitian 3 x 3 matrices in
a similar fashion as for the 2 x 2 case. This includes

- 2
So = \/; 13 (39)

as the monopole term and the three-dimensional representa-
tion of SU(2),

{010

Si=—[1 o 1], (40)
V2o 1 o

[0 =i 0

=— i o =i, (41)
V2\o i o

{10 0

S, = o ol (42)

0

as dipole terms The normalization condition for all basis
matrices is TrS = 2. The remaining five matrices can be
interpreted as qua(i_rupole terms and are arranged as a five-

component vector @ We use the Hermitian matrices [64]

A L (0 1 0
01 =1{8%8}=—[1 0 -1], (43)
v2\o -1 o
R L (0 —i 0O
O ={88}=—i 0 i, (44)
V2\o -i o
R 0O 0 —i
Q%—{51,52}= 0 0 0], (45)
i 0 0
_ 0 0 1
0,=8-8=[0 0 o, (46)
1 0 0
Ty L (1 0 0
Os=+V3(55-5)=—=|0 -2 0, ¢
V3lo o 1

which are also normalized such that TrQ = 2. The matrices
Ql, Qg, and Qg transform as t, under the cubic point group
Oy, while Q4 and Q5 correspond to e,.

The multipole expansion of f, is

-

fi=nSo+e¢ -S+3 -0, (48)

with the coefficients n, € R, ¢; € R3, g, € R>. The related
physical quantities are the number density +/6n,, the spin
density ¢;, and the quadrupole density ¢;. This is a good place
to also introduce the Cartesian components of the quadrupole

023068-5



BACKER, THUMMEL, AND TIMM

PHYSICAL REVIEW RESEARCH 4, 023068 (2022)

tensor operator,

4
lj - {Su S } 511]137 (49)
which form the symmetric and traceless matrix
04 — [ 0s 0s Qz
0= 0 ~0:s— 75 0s Ql . (50)
0)) 0 [ 0s

Importantly, this matrix acts on the space of Cartesian spin
components and each component is a 3 x 3 matrix on the
Hilbert space of a spin of length 1. Using the Cartesian form,
the quadrupolar term in the distribution function f; can be
rewritten as

o~

0= Trcw 0, (51)
where the trace is over Cartesian components and
qi4 — \% qis qr3 1 qr2
ar = qr3 —4i4 — 595 g |.  (52)
qr2 qr1 % qis

Next, we motivate the form of the Boltzmann equation for
these physical quantities. The Hamiltonian for the triplet ex-
citons reads as

H = e15 + goupB - S, (53)

where ¢, (k) is the dispersion in the absence of a magnetic field
(see the comments on excitonic band structures in Sec. II C)
and g, is the Landé factor of the triplet excitons, which is as-
sumed to be scalar. A triplet exciton is of course charge neutral
but since it generically consists of an electron and a hole with
different Landé factors its total magnetic moment is nonzero.
Additional terms linear in quadrupole matrices Q; have been
proposed in the literature [65—67]. This magnetocrystalline
anisotropy is due to spin-orbit coupling and is therefore weak
in organic semiconductors. We omit these terms for simplicity
but implementing them in the Hamiltonian is straightforward.

If the external magnetic field is aligned along the z axis,
the Zeeman term simplifies to gtruBBS3 with B = |B|. The
Hamiltonian is diagonal in this case. We use this specific
situation to derive the form of the equilibrium distribution
function f;y. The equilibrium distribution is the Bose-Einstein
distribution and can immediately be evaluated for the diagonal
components. The resulting f;y has a diagonal matrix structure
as well,

fo = oSy + ¢, BSs. (54)

A rotation yields the general description for an arbitrary
direction of B. The matrix S3 generalizes to S projected onto
the direction of B. Thus, the general form of the equilibrium
distribution function is given by

fio = moSo+ coB - S. (55)

The deviation g; is of the most general form of the multipole
expansion,

-

=S +& -S+§-0. (56)

The velocity is given by a derivative of the Hamiltonian of
triplet excitons in analogy to Eq. (5) and thus is a 3 x 3 matrix.
Since we assume spin-orbit coupling to be negligible, we can
approximate it by a scalar, v = (1/h)Vye,.

Kinetic equations for the coefficients can be obtained but
the derivation is made complicated by quadrupolar terms. The
details are relegated to Appendix. Defining the differential
operator

0

1
D, = 5 + - Vk'ft -V, (57

and expanding the scattering 1ntegral into multipoles, we find
the coupled equations

Doty = I"[fs, for Fr i), (58)

Dié X—g”;f’* (B — Bs&) + I 1 for fon fin il (59)
D& = g";B (Bs&X — B\&) + 19 for for f ], (60)
P N
D& g"hB (B\& — Bo&) + I1fs, for f 1, (61)
ey (T2 =235
thtl = 7 B —qr3
gr2
1Sy, for fs i, (62)
qr3
- L . ~
DiGr» = —gth ’B. (—2%4 +24/3Gs
—qn
quzm,ﬁ,fh fil, (63)
. w -~
Didis = g“ sp | g I YA N AN ()
4G4
g PR
Didia = g““ B\ Go | +1%0f fo o £l (65)
_2%3
8B —34n ~ o~ o~
Dt‘itS = __B : 3@!2 +Iq/5[f:§'7 fes fh’ .ﬁ‘] (66)
V3h 0

This complicated system cannot be simplified without further
knowledge about the scattering terms. A detailed investigation
of these integrals is presented in the following section.

III. SPIN-CONSERVING SCATTERING INTEGRALS

In this section, we construct spin-conserving scattering
integrals for the Boltzmann equations for electrons, holes, and
excitons. These scattering integrals should not only describe
collisions between quasiparticles and scattering off disorder
but, importantly, also generation, decay, and transitions be-
tween excitons. An overview of the processes studied here is
given in Table I. The selection and order of these processes as
well as the presentation in this section are partly pedagogical.
We progress from conceptually simpler to more complicated
cases, where essentially every subsection introduces an addi-
tional aspect, usually having to do with conservation of spin
or indistinguishability of quasiparticles. Additional processes
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TABLE 1. Overview of scattering and transition processes treated explicitly in this paper.

Process Description Reference

e—e Disorder scattering of electrons Sec. III (introduction)
s— s Disorder scattering of singlet excitons Sec. III (introduction)
[0) — s Generation of singlet exciton Sec. lIT A

s — |0) Decay of singlet exciton Sec. IIT A

e+h—s Binding of electron and hole in singlet state Sec. III B

s—e+h Unbinding of electron and hole in singlet state Sec. III B

e+h—t Binding of electron and hole in triplet state Sec. IIC

t—>e+h Unbinding of electron and hole in triplet state Sec. IIC

25 —> § Fusion of singlet excitons Sec. lIID

s — 2s Fission of singlet exciton into singlet excitons Sec. IID

t+s—>t Absorption of singlet exciton by triplet exciton Sec. IIE

2t —> Fusion of triplet excitons into singlet exciton Sec. IITF

s — 2t Fission of singlet exciton into triplet excitons Sec. IIIF

e+t —e Absorption of triplet exciton by electron Sec. IIIG

2t >t Fusion of triplet excitons into triplet exciton Sec. IIIH

can be treated in an analogous manner, e.g., the reverse of
some of the processes in Table I and processes for holes
instead of electrons. Which processes are important of course
depends on specific materials. Disorder scattering is expected
to be always present. Bipolar semiconductors in which the
carrier energies are sufficiently high in comparison to the
exciton binding energies will also show electron-hole binding
and unbinding, e+ h <> 5 or e + h < t. For systems with
photogenerated singlet excitons, e.g., photovoltaic devices,
the fission s — 2¢ and the fusion 2¢ — s are crucial, as noted
in Sec. I. Note that the derivations in this section do not require
any quasiparticle species to be close to equilibrium.
Scattering off disorder is described by collision integrals
that are linear in the distribution function [68,69]. Possanner
and Negulescu [52] have studied such terms for both spin-
conserving and spin-flip scattering, from a mathematical point
of view. El Hajj [53] has studied spin-diffusion models derived
from the resulting linear matrix Boltzmann equation in detail.
Our main interest is in the description of transitions be-
tween quasiparticle species. The required collision integrals
are necessarily nonlinear. Quantum statistics imply that the
transition rates depend on the occupation of the final states,
contrary to what is assumed in the stochastic Liouville equa-
tion. For fermions, complete occupation of the final state
prevents a process due to the Pauli principle, whereas for
bosons, a large occupation of the final state enhances the rate.
In the context of excitonic processes, this has been studied by
Bisquert [70], albeit not using an SU(2)-invariant formalism.
It is useful to first outline the principles behind the con-
struction of the collision integrals. Generation, decay, and
transitions between excitons involve quasiparticles on differ-
ent energy levels. This is reminiscent of laser theory, in which
transition rates are derived by considering the occupation of
the initial and final states. However, unlike in laser theory,
these transition rates depend on momentum. Thus, they take a
form similar to the basic scattering term in Boltzmann theory,

Ik—/d3k/Wk/k )1 — fk)]
0= [ G WK B SEO 1~ f )

Gl Wk, k) fk)[1 kK 67
- [ S kI - @ 6

where f is a distribution function. The two integrals describe
in-scattering and out-scattering, respectively. The processes
considered here are more complicated in a number of ways.
First, our Boltzmann equations contain matrix-valued density
functions. The idea is to derive the matrix form from the
special case of z-polarized particles by means of a rotation
into a general direction, like discussed for the kinetic term in
Sec. II.

Second, the initial and final states can consist of more than
one particle. We assume the initial state A to contain particles
of species ay, ay, . . . (some of which may be the same) and the
final state B to contain particles of species by, b,, ... (some
of which may be the same). The integrand of the scattering
integral is then proportional to

NoyNay - - - (L £ Np J(L £ Np,) - -+, (68)

where N,,, etc., are the occupation numbers of states and the
sign in factors 1 &= N, is + (—) if b is bosonic (fermionic).
Considering the limit &, — 0 yields the classical part of the
process. For low concentrations of quasiparticles in the final
state, in particular low exciton densities, this case is relevant
for applications.

In the following, we will progress from simple to more
complicated cases. To fix the notation, we first discuss the
essentially trivial case of elastic scattering of electrons off
nonmagnetic impurities. It will be beneficial to write the
matrix-valued distribution function of the electrons in com-

ponents,
= _ [ Serr feN)
Je= ( for for): (69)

Since nonmagnetic scattering does not flip the spin, the
matrix-valued collision integral appearing in the Boltzmann
equation for f, is diagonal,

~ ]ei)e 0
ale = <eo It ) (70)

e—e
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The collision integral for spin-up electrons can be written as
[68,69]

et d3k, / /
I (k) = / S Wores K0 £ () 11 = oy )

- _3 : “‘ k k/ k 1 - k/
(2 )3 e—>e’( P )feT( ) [ )eT( )]

and analogously for spin-down electrons. Detailed balance for
elastic scattering implies that W,_, .(k’, k) = W,_, . (k, k") and
thus

31/

e = [ 25

2n)?
and analogously for spin down.

In the following, we employ a short-hand notation that
suppresses (a) integrals over momenta k', k”, ... and (b) mo-
mentum arguments. Functions depending on k, k', and k”
are denoted by no, one, and two primes, respectively. Hence,
we write the collision integrals for elastic impurity scattering
as

Weeso (e, &) [for () — fer ()] (72)

I:Lg = We—¢ (fg/T - feT)v (73)

I8 = Weso (fl, — fu)- (74)

From Eq. (20), we then obtain the collision integrals for the
electron number density,

Lo = I+ 1Y = Weeso (n, — 1), (75)
and for the density of the z component of spin,
1, =14, — 1%, =W, (& = &). (76)

The crucial next step is to reconstruct the SU(2)-invariant
form of the collision integral for the spin by rotating all
quantities into an arbitrary direction. In the present case, this
is simple. We recognize that the left-hand side and both sum-
mands on the right-hand side are z components of vectors. The
SU(2)-invariant form is thus

IE;e = We—e (C; - ce)- (77)

We can now use the multipole expansions in Egs. (7) and
(20) to express the collision rate in terms of the matrix
densities as

T, = Weso (. — 0. (78)

e—e

The case of holes is of course analogous.
The result for excitons is also analogous: For example, for
singlet excitons, the collision integral is

&K
@ry
&K
) @ny

where we have used that excitons are bosons. The second-
order terms again cancel and we obtain

Iss—m = Ws—y (fy/ - fv) (80)

I (k) = Wy s (k' k) fi(K) [1 + f5(k)]

Wiy (k, K') () [1 + (KD, (79)

A. Generation and decay of singlet excitons

Singlet excitons are described by the scalar distribution
function f;, so SU(2) invariance is automatically maintained.
The transition rate describing the generation of singlet exci-
tons only depends on the occupation of the final state. Since
singlet excitons are bosons the resulting transition rate reads
as

Loy s = Wioys (1 + f5). (81
Here |0) — s is a short-hand way to denote that the singlet
exciton is excited starting from the ground state with all
single-electron states below (above) the Fermi energy occu-
pied (empty). This is of course not a spontaneously occurring
process but requires coupling to the radiation field, which is
suppressed in this notation. We use the symbol Wjgy_,; with a
tilde for the rate; this is an effective rate with properties of the
radiation field such as occupation numbers of photonic states
absorbed. For the decay of a singlet exciton into the Fermi sea,
we analogously write

I = Wi fo- (82)

These transition rates can be added to the right-hand side
of the Boltzmann equation (31) for the singlet excitons. The
corresponding processes for triplet excitons are of course de-
scribed analogously.

B. Binding and unbinding of electrons and holes
in a singlet state

The transition between unbound electron-hole pairs and
singlet excitons involves three different particle species,
which results in a description from three different perspec-
tives. We discuss these in turn.

1. Point of view of the singlet exciton

In the case of z-polarized particles, there are only two
different orientations of the electron and hole spins. To form
a singlet exciton, a spin-up electron has to be paired with a
spin-down hole or vice versa. Hence, the transition rate takes
the form
Jerdily + Fe ik

I AT > A+ £ (83)

et+h—s —
Here functions depending on the momenta k” = k + k' and
k" =k — k' are described by two and three primes, respec-
tively. Note that the momentum arguments of the electron
and the hole distribution functions could be interchanged as
all possible combinations are covered by integrating over k.
The origin of the factor 1/2 is that the electron-hole states
[14) and || 1) can be written as 1) = (1Y) + 1¥0))/v/2
and | 1) = (= [v) + |¥0))/~/2, respectively, where |,) =
(I14) = [41)/~/2 is the singlet state and [y0) = (1) +
[41))/~/2 is the m = O triplet state. Hence, the probability of,
say, |[1]) being in the singlet state is 1/2.

For a spin along the z axis, only the diagonal elements of
the distribution function f, in Eq. (69) are nonzero and can be
expressed in terms of each other. Rewriting Eq. (83) in terms
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of the coefficients of the multipole expansion in Eq. (7) then
reads as

[N TN 1
nn, —clc

s e-h
I 2 (I + f5)-

e+h—s

= We+h—s (84)
Now it is possible to generalize this transition rate to arbitrary
spin directions as there is a unique SU(2)-invariant expression
that reduces to Eq. (84) for z-polarized spins:

n/ n/// _ C/ . c///
/ h
es+h—>x = Wethos — 4 s (I + ). (85)
This transitionrate I] , == Ief; s Appears in the Boltzmann

equation (31) for the scalar distribution function f; of singlet
excitons and is thus itself a scalar. It can also be expressed in a
basis-independent form in terms of matrix-valued distribution
functions as [71]

] Weinoss I~ i
Ief;‘ﬁ-h—m = +2 Tr{F, fe ® h e +f\')’

(86)

as can be shown by inserting the multipole expansions of
the electron and hole distribution functions. Here {e, o}
is the anticommutator and P; is the projection opera-
tor onto the spin-singlet subspace of the product Hilbert
space of the electron and hole spins. This operator can be
written as

= (G5~ 5.05.~5,85,-5.85). ®)
where §e and 3‘;, are the spin operators of the electron and
the hole, respectively. It expresses the fact that an electron
and a hole can only form a singlet exciton if they are in a
relative spin-singlet state. The structure of the momentum-
dependent transition rate is reminiscent of the Haberkorn
approach [36,38,39]. As mentioned in Sec. I, the anticommu-
tator structure ensures positivity of the density matrix on the
electron-hole product space. The trace in Eq. (86) sums over
all contributions allowed by spin conservation and leads to a
scalar transition term.

It is useful to restore the momentum arguments and in-
tegrals at this point. For the process e¢ + h — s from the
point of view of the exciton, the outer momentum k is the
one of the exciton, the momentum k' of the electron needs
to be integrated over and the momentum k" =k — k' of
the hole is then fixed by momentum conservation. This leads
to

L[ K We (K k— k)
] @r)3 2
X Tr{B,, fo(k') @ fulk — K} [1 + fi(k)]. (88)

)

The breaking of singlet excitons into unbound electrons
and holes can be described in the same way. For this reverse
process only the sign and the occupation numbers have to be
changed. Now the final state is fermionic, which yields

Q-n)2—-n"y—c,-¢c
4

s _
s—e+h —

s (89

_Ws—>e+h

in the multipole form and

If; _ ‘/Vs»eJrh
s—eth — 2

x Tr{By, (1 — f) ® (1a — I} f:

as the basis-independent expression; compare Eqs. (7) and
(20).

(90)

2. Point of view of the electron

We now consider the perspective of the electron (the hole
case is of course analogous). The electron’s momentum is the
momentum argument k of the solution of the Boltzmann equa-
tion. The transition rates for spin-up and spin-down electrons
read as

e feTf]; 17

Il = Wi T* 1+ £, o1
e feif/ /

[y = ~Wernons =30 (L4 S, 92)

respectively. The transition rate for the electron number
density is the sum of these two transition rates, while the
transition rate of the density of the z component of the spin is
their difference. After generalizing to an arbitrary polarization
direction, we obtain

NN, — €, - C)
Py = —Wornong =S ) 93)
and
C, _ Cen;z — c;ln‘-’ 1"
Ie+h~>s - We+h~>s — (1 + f:v ) (94)

4

The transition rate of the electron number density is the nega-
tive of the transition rate from the point of view of the singlet
exciton given in Eq. (85). According to Egs. (7) and (20), the
matrix-valued transition term then reads as
+ _ Ll <~ g ~
Ie+h~>s - 5 (Ie+h~>s00 + Ie+h~>s ’ O')

W, —s 5 7~ - 1
= “2” TenBy, fo ® fi} (1 + f1),

95)

where Tr;, is the trace over the hole sector. To restore the
momenta and integrals, we note that the outer momentum k
is the one of the electron, the hole momentum k' is integrated
over, and the exciton momentum k” = k + k' is then fixed.
The rate reads as

2 kW, (k, k)

TYe et+h—s )

1 k)= —

E+/’L~>S( ) (271,)3 2

x TradPy, foll) @ k) (1 + filk + K],
(96)

These transition rates can be compared to the transition

rates from the point of view of the singlet exciton. This yields

=" 97)

e+h—s’

="

=1 e+h—s

s
e+h—s

as the creation of one singlet exciton results in the annihila-
tion of a free electron and a free hole. Furthermore, the spin
transition rates satisfy

Igj—h—m + Ig-'&-h—m = 0’ (98)
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which shows that spin is conserved, as the singlet exciton does
not posses an overall spin.

The reverse unbinding process can be described analo-
gously. It can also be read off from Eq. (95), essentially
by reversing the sign and interchanging occupied and empty
states. The resulting rate reads as

2 Ws%e =~ e i
= =5 TP (L = f) ® (L = D} fY - (99)

C. Binding and unbinding of electrons and holes in a triplet state

Like for electrons and holes, it is beneficial to write the
matrix-valued distribution function of the triplet excitons in
components,

finn fioo fiad

-~

ft=\fror  Jfioo frot (100)

fin fito Judi
The indices of the matrix elements denote the magnetic quan-
tum number of the triplet exciton, where we use 1 = —1. Fora

spin along the z axis, only the diagonal elements of the matrix
are nonzero so that in the multipole representation it takes the
form

_ffa 0 0 L R
ft=10 fio O |=mnSo+cS3+qs0s; (101)
0 0 f

cf. Eq. (48). This allows us to express the elements of the den-
sity matrix in terms of the diagonal elements of the multipole
expansion and vice versa,

Jia+ fio+ fi1
= 2 TR0 T el 102
n NG (102)
o= I A ;f”i, (103)
o= 2fio+ fid (104)

qis = 2\/5

1. Point of view of the triplet exciton

The transition term for the triplet-exciton distribution func-
tion f; also has to be a 3 x 3 matrix on the spin-1 Hilbert
space. For the spin along the z axis, spin conservation implies
that we only need to consider the transition rates of the diago-
nal components, which read as

Iefi‘rh%l‘ = We+h—t ng.f.]/// (1 + ﬁ 1)1 (105)
fe f/// 1
I, = Wehr % 1+ fr0),  (106)
Ly = Wernsi fo fi (L+ £ 1) (107)
Recall that three primes denote a dependence onk” =k — k'.

The next step is again to construct the SU(2)-invariant tran-
sition rates by rotating the spin into a general direction. In
analogy to the multipole expansion of the distribution function
in Eq. (48), we expand the transition term as

-

S+T1% 0. (108)

n
=1 e+h—t

t
Ie+h—>z e+h—>tSO + I

e+h—t

For the spin along the z direction, this yields

1 To
Vi _ Ie+hﬁt + Ie+h%t + 1 e+h—t

e+h—t — \/6
_ We+h—>t 3\/6 ’ o \/6 zr
- 24 ( n/’l + ¢ Ch
+6n/ Wl’lz +2CZ/CZan +2\/6CZ, " z
+2V6n woer + 4«/56 cZ’”q,s)

(109)
and analogously

.:. W,
T _ Weth—t ’ z/// 7 /// ’ /// z
e+h—t 12 (3 +3C +3n

+ \/an/c;l///nt + \/gcz/ Wnt +3Cz/ z/11 z
+ V30 s + N3¢ q5), (110)

415 _ W€+h—>l (6 71 7

et+h—t — 12\/‘
+3\/§n/n;,//%5 -{-3”/ 7///Cz+301/ " z

+23/6c7¢ n, — V3 ¢ qps).

In these equations, the terms of second order in the coeffi-
cients represent the classical part since they do not depend on
the occupation of the final state. The terms of third order are
the quantum corrections due to the Bose-Einstein statistics of
the excitons.

Unlike for the previous examples, the SU(2)-invariant gen-
eralization of Egs. (109)—(111) is not obvious since these
transition rates contain the quadrupole coefficient ¢,s. The
transformation of the coefficient vector g, under rotations is
not clear. On the other hand, the Cartesian quadrupole density
q, defined in Eq. (52) transforms like a matrix under rota-
tions. To make use of this, we have to identify the factors
multiplying g5 as components of Cartesian matrices and write
Egs. (109)—(111) as components of proper matrix products.

This can be done by considering the two-particle state of
an electron and a hole. As the unbound electron-hole pair can
be of triplet character, it generally has a quadrupole moment.
The projection operator

—~ -~ 31
1’}=14—P=T4+S - Sh

(111)

(112)

projects onto the triplet subspace, in analogy to the singlet pro-
jection operator P defined in Eq. (87). Since this subspace is
three dimensional the projected density matrix B fief £ )P,
can be written as a 3 x 3 matrix with respect to a suitable
basis of this subspace. To be consistent, we choose the canoni-
cal spin-1 basis {| . 14), (ITedn) + [4etn))/v/2, [Ledn)}. The
notation [e]; refers to the corresponding matrix. The density
matrix for an electron-hole pair in a triplet state is thus written
as

Fon=1P ( f ®fm)Pt]3'

The resulting matrix feh is an operator on the Hilbert space
of spin-1 particles and can thus be expressed in terms of
the nine basis matrices of the multipole expansion. For a
spin along the z axis, only three coefficients are nonzero,

(113)
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Jen = nenSo + ¢,83 + qens Os, where

2/ 21 ! I
cdc;” + 3n,ny,

Nep = T6e7 (114)

&, = cemy e e Z G Me. (115)
J3 &l

Gors = Th. (116)

As electron and hole together have the overall momentum k
due to momentum conservation, f,, and the corresponding
multipole coefficients do not carry any primes. By eliminating
the variables 7, n;’, ¢Z, and ¢;"” from Egs. (109)—(111) and
(114)—(116), we obtain

L, = Wetios (3nen + V6ngn + V6, ¢
+ \/EthSQrS)a (117)
I:ihw = % (3c§h + «/Enehcf + «/gqe;ﬁcf
+65,m + V3 q5c,), (118)
e, = Wegh_)l (3Gens + V6 gensny + 6 nengys

+ V36,68 — 3 qasais)- (119)

These relations allow us to construct the SU(2)-invariant
generalizations without ambiguities. For terms containing
quadrupole moments, Eq. (52) should be noted. The transition
rate of the triplet exciton number density is

n, We —>
IeJIrh»t = +6h : (671, + 2“/6nehnt + ZN/ECeh <€y
+ «/ETrgehgf), (120)

where the classical part is proportional to n.,. For the last
term, the identity Trq.,q; = 2., - G; has been used. The spin
transition rate becomes

Ic' _ We+h»t

et+h—st 6 (6 Ceh + 2\/8 Nen€r + 3 gehct

+ 26 can; + 3 gican), (121)

where the classical part is proportional to ¢.,. The transition
rate of the quadrupole part has to be traceless and symmetric
in order to ensure that the full triplet-exciton transition rate is
Hermitian. This requires the subtraction of the diagonal parts
of matrices obtained by a naive restoration of SU(2) symmetry
and yields

, V6 V6
Ly = Wepnss |:C_Ieh + 3 gents + = Nends

1 1
+ E(Cz ®Cep +Con ® ;) — 3 (Cen - €:) 13

1 1
- 5 (Zehzt + gehgt) + 5 (Trgeh(lt) 13], (122)
with the classical part being proportional to g.j.

It is also useful to express the triplet-exciton transition rate
in a basis-independent form. In contrast to the formation of

a singlet exciton, the final state is now also described by a
matrix-valued distribution function. The resulting transition
rate takes the form

We — ~ NS -~
Do = =SB T O FD B 13 + F),

(123)

where ﬁh as defined in Eq. (113) appears. For the reverse
process t — e + h, the matrix

frean=PB A= FH® Ay — [IE

occurs instead, which results in a similar structure. In partic-
ular, the basis-independent transition rate from the point of
view of the triplet excitons reads as

(124)

ﬁ _ VVZ—)e-&-h
t—e+h — 2

x B [(1y— fH® (1 — i1 B s, i}, (125)

from which the rates for the number, spin, and quadrupole
densities can be inferred.

2. Point of view of electron and hole

In the following, we discuss the process e + h — t from
the point of view of the electrons; the results for the holes are
analogous. The transition rates of the different spin orienta-
tions for z-polarized electrons,

I:I—h—n = —Weinot [fe?f;;T a+£"

+ feTTfh,*(l +f,’f0)}, (126)
I:j—h—n = —Wetn: [fwf;ﬁ I+ £

- fwzf'iT (1+ f,’fo)}, (127)

can be combined to obtain the transition rates for the electron
number and spin densities in analogy to Eqs. (75) and (76).
The resulting expressions are not symmetric in the coefficients
of f. and f; for the simple reason that we are writing down
transition rates for the electrons, not for the holes. The rates
are not sufficient to read off the SU(2)-invariant form, as we
will see shortly.

The basis-independent form of the transition rate is partic-
ularly useful for this reason. In analogy to the previous cases,
the transition rate in terms of density matrices can be written
as

izjrh—n

e+h—t

W o~ o~ o~ —~
= —TTrh[(h + ft”)4Pt(fe 02 ffi)

+ (o ® FDP(s + fa).

The notation (e); means that a 3 x 3 matrix on the triplet
subspace is extended to the full two-particle space by adding
a 1 x 1 null matrix on the singlet subspace. The matrix is
then transformed into the product basis of electron and hole

spins, {[1e) [14) . [Te) Nn)» Ne) ITa) s [Ve) [¥n)}. The partial

trace over the hole sector is defined by

Trpe = (1ol @ [14) + ({nl @ [n) -

(128)

(129)
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The resulting SU(2)-invariant transition rates given in the
multipole expansion are thus

I”" _ We+h»t

ot ht o [9n.n, + 3c. - ¢}, + 36 nenyn,

+ 6n.c), - € + 6mc, -] +/6n'c, - )

+ 6¢, - c_][’c;l] (130)
for the electron number density and
Wesn—
I, = ;; L [9¢,.n), + 3n.c),
+3V6¢.mn! + Von.cn! + 6n.nje)
+ 6¢.(c), - ¢) + 6nec_],”c},] (131)

for the spin density. This rate contains a product of three
spin densities. The corresponding term is proportional to
cici'ei” in the limit of z-polarized spins. It is thus clear that
this limit does not allow to infer the full SU(2)-invariant
expression (although one might guess correctly) so that the
basis-independent expression (128) is required.

The results for the holes are analogous. We thus find that

the rates satisfy the consistency relations

_“/glgjrhw =L, =L (132)
=4 , =T I, (133)

Note that the factors /6 and 4 in these two equations stem
from the different normalization conditions concerning elec-
trons and triplet excitons. The reverse process can be treated
similarly.

D. Fusion and fission of singlet excitons

In preparation for the important transitions between a sin-
glet exciton and two triplet excitons, s <> 2¢, we first consider
the simpler process s <> 2s. In contrast to the processes in-
vestigated before, the fusion and fission of singlet excitons
involves the same particle species in the initial and final states.
Furthermore, the two singlet excitons on the same side of the
reaction have to be treated as indistinguishable bosons.

Starting with the fusion, this process can either create or
fuse a singlet exciton with the outer momentum k. This leads
to in-scattering and out-scattering terms in the transition rate,
which can be written as

B =Wyl S A+ ) = 2Waes o fofl(L+ £]). (134)

Here the short-hand notations W = W(k', k) and W =
W',k —k') =Wk, k") are used. The factor 2 in the out-
scattering term results from the two equal contributions of
indistinguishable singlet excitons in the initial state. Con-
versely, the fission of one singlet exciton into two singlet
excitons is described by

5 = W (1 + £+ ) f]
— W/, (L + fA + f)fs.

Note that due to the spin-singlet character of all involved
quasiparticles, SU(2) symmetry is trivially satisfied.

(135)

E. Absorption of a singlet exciton by a triplet exciton

In contrast to the previous process, the particles in the
initial state are distinguishable. In the limit of z polarization,
this yields, from the point of view of the singlet exciton,

Bior = =Worsod 0L+ F10D) + oL+ 1)

—i—ft/j(l +f,/fi)]fs- (136)
In terms of the multipole expansion this becomes
le-‘rs—n = _"Vt-&-s—n (\/6}1;
+2mn; +2¢; - ¢ + 24, - G fs- (137)

The singlet exciton is described by a scalar distribution func-
tion so that the basis-independent transition rate is

Witsort o o 5
L, =— 5 Te{f!, 13 + £} fi- (138)

The transition term from the perspective of the triplet exci-
ton features in-scattering and out-scattering terms as the triplet
exciton is present on both sides of the reaction. The transition
rates for the different spin orientations are

Ittbrsﬁt = ‘/Vt/is»tft/,lfsw(l + fi1)

— Wi i fi(L+ ), (139)
Itt(—)l—s—ﬂ = u/t/jrlsetﬁ/,ofvm(l + fr.0)

- th+s~>tft,0f:;/(1 + f;/,/())s (140)
Itti—x—n = vv/—ls—)t t,jfsm(l + f;j)

Wi A D, (14D

Since the (positive) in-scattering and the (negative) out-
scattering contributions have the same structure it is sufficient
to investigate one type. For the out-scattering contributions
to the SU(2)-invariant transition rates of the multipole coeffi-
cients we obtain

Wits—
I =~ tf/g - (Von,

+2mn) + 2¢, - ¢/ + Trq,q)) ;. (142)
Wit p Y

I, = —% (6¢; + 2«/6n,ct + 2«/50,11[
+3qi¢] + 3q'c) [, (143)

q;,out

V6
Lo = Wi |:6_]t + 3 (g’ + qiny)

1 1 1 1 "
—}—E(ct@c, +c¢, ®¢)— gct -c; 15

1 ! ! 1 /) !
-S> @ +ad)+¢ Trgzgl/lla}fs, (144)

where the quadrupole transition rate is again symmetric and
traceless. In a basis-independent form, these relations can be
summarized as

4

fi W, s—>t [ 77 = e
Iljj-s—n = t+2 : {f} , 13+ ﬁ}fy
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VVt+s—>t

N s+ (145)

The treatment of singlet-exciton emission is analogous.

F. Fusion and fission involving two triplet excitons and one
singlet exciton

The important fusion of two triplet excitons forming a
singlet exciton [40] is similar to the fusion of electron and
hole into a singlet exciton. In contrast to the latter process, the
two particles forming the singlet exciton are indistinguishable
bosons.

1. Point of view of the singlet exciton

Considering the Clebsch-Gordan coefficients, the transi-
tion rate in terms of diagonal elements of the distribution
function is

"

s W —S 4 "
12[_)52 21 (ftlf///_i_ftof// +.f‘flf/ )(l‘i‘fé

(146)

Written in the multipole expansion and generalized to the
SU(2)-invariant form this yields

2W///

s 2t—>s (l’l, " m

= —c, ¢ +qt

2t—s —

—»/// (1+f? (147)
where the relation Trg/q/"= 2g/ - §” has been used. The
only differences compared to the creatlon of singlet excitons
from free charge carriers are the prefactor and the additional
quadrupole term. The basis-independent form is

"

W. ~
By = =5 TP @ 1+ £,

(148)

which is analogous to the basis-independent form in the pro-
cess e + h — s; see Eq. (86). Here P = 105 ) (02| projects the
two-triplet-exciton state onto the singlet sector, where

| -
—(|11) — |00) + |11))

V3
is the singlet state of the two triplet excitons.

The rate for the reverse fission process can be obtained
analogously or be read off from Eq. (148),

[02) = (149)

"

s _ Ws—>2t 2} 7 i
I, = - Te{Py, (I3 + /) ® (L3 + fy )} fs. (150)

2. Point of view of the triplet exciton

For the diagonal elements of the distribution function, we
obtain the three transition rates

W, ,

L =" ff A+ D, (151)
ZW - /

Ly o= =57 fuoflo+ £, (152)
. 2W . /

L = =22 o A D, (153)

where the factor 2 is due to the indistinguishable triplet ex-
citons in the initial state. The transition rate referring to the

triplet-exciton number density is

) 26 Way . ’
L= =g = e+ GG+ )
(154)

Since the actual density is /6 n,, where n, is the expansion
coefficient in Eq. (48), the transition rate for the actual density
is twice the negative transition rate for the singlet-exciton
density in Eq. (147). For the spin transition rate we obtain

o W (_2% . 2V6

nme;, + ——n,c
2t—s 3 3

3

o g{ct>(l + ) (155)

and the traceless and symmetric quadrupole transition rate is

qr _ W2t—>5 ’ 2 2 /
Ly s=— 3 —(@q + 4q:) + §Tr(6_1tgt)]13

2
— (¢, ®c, +c ®c,)+ (¢, -¢;) 13

+ % (gzn; + nzgz/)j|(1 + fs//) (156)

The basis-independent transition rate then assumes the form

B = —Wa Tro (B @ PN+ £, (157)

where Tr, is the partial trace over the sector of the triplet
exciton with momentum k’. The reverse fission process is then
described by

I =W TeodB (s + 7)) ® (I3 + POV, (158)

G. Absorption of a triplet exciton by an electron

The process e + t <> e is more complicated than the previ-
ous cases because both particle species carry spin, in contrast
to, e.g., t + s <> t. For the process e 4+t <> e to be possible,
the total spin of the electron and triplet exciton on the left-
hand side must be 1/2, i.e., they must form a doublet. The

V2 |=5))

two states are
[3)10) -
V3

V2[3)l-1) -
/3

These relations allow us to read off the numerical prefactors
in the rates.

[y = (159)

[—=3)10)

lyi) = (160)

1. Point of view of the triplet excitons

In the limit of z polarization, the three transition rates
describing triplet excitons are

ZWE —>e€ r/ 1/

e = =3 F0 L (L= £, (161)
W — / 1/

Byine = = =57 S0 = f2) + £l fro(l = £2)).(162)
1 2W - / 1/

Ietl-&-t—>e = _% feTf;‘,T(l - fe¢)‘ (163)
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The SU(2)-invariant transition rates in terms of multipole
coefficients are obtained in analogy to the previous cases. For
the triplet-exciton number density we find

In/ _ We+t—>e
e+t—e 18

(6mn, — 2/6¢; - ¢,

"
e

+~6¢, - ein —6¢, - cln, +V6c, - gicl),
(164)

= 3nnn, + nc, - c

for the spin density

Ic, - _ We+t—>e
eti—e 18

[6c,n; — 2v/6n,c, — 3q,c,
+6n, (c,n] —n.c))
+ 3 ( /) v + 3 ( //) /

=(¢; - c)c) + = (¢; - ce

2 t e/ve 2 t e/e

3 3
—3¢mn) + > noqic, — 3 n;g,c;’j|, (165)

and for the symmetric traceless quadrupole density

qr We+t—>e

—E-H—)e - 18

i 2
X <—3 c’e®c,+c,®c;——(cé.ct)]l3:|+6n;gt

L 3
—3nén/e/c_],
[ 2
+6 c;®c’e’+c;’®c;—g(c;-c;’)]l3i|n,
3 / / 2 / "
+§ ce®c,+c,®ce—§(ce~c,)13 n,
3 " /" 2 1 /7
—3 c,®ce+ce®ct—§(c,-ce)13 n,

/ 7 1 / " 1 " /
+3| (e, - €.)q + 76 ® (gic,) + 3 (g:c,) ®c,

1, 1
- Ece/ ® (C_]tC;) 3 (grc;) ®c)

/ 1 Vi / 2 / /7
—(c,®c;)q —qi(c, ®c,) + 36 aie 1| ).
(166)

Like for the process e+ h — f, one might guess at this
SU(2)-invariant form based on the limit of z-polarized spins
but cannot infer it rigorously. The problem lies in the terms
containing three ¢ vectors and in the terms with two ¢ vectors
and the triplet-exciton quadrupole tensor g,. The above ex-
pressions have thus been checked by comparing them with the
basis-independent expression describing this process, which
takes the form

]/",\ _ We+t—>e NN -~
Ie+t—>e - _T Tre[(]l2 - fg )6Pd(fe ®ﬁ)

+ (7@ By — el

where P, is the projection operator onto the doublet subspace.
This is a 6 x 6 matrix. The notation (e)s means that a 2 x 2

(167)

matrix on the doublet subspace is extended to the full two-
particle space by adding a 4 x 4 null matrix on the quartet
subspace. The matrix is then transformed into the product
basis for electron and triplet-exciton spin to be consistent with

Je® fi.

2. Point of view of the electron

The perspective of the electron leads to in-scattering and
out-scattering terms. The resulting transition rates for the two
spin orientations are

e We —e !
[lime = = =572t = £) + Ferfl o = £

We,lt—w / 11! / 11!
+ —5 Uer ool = fer) + 21, fin(1 = fer)],
(168)

e We —e 7
Ieit%e =- Jg [2fe¢fz/,1(1 - fe//T) + feifr/,o(l - féﬂ]

Weﬁt—)e / 11 / 11!
+ L fo) + 24150 = £
(169)

where the Clebsch-Gordan coefficients have been used. As the
in-scattering and out-scattering terms have the same structure
it is sufficient to investigate out-scattering. For the multipole
transition rates this yields

We +

s = —% (6v6n.n, —12¢, -,

—3vV6nnn! —6n.! ¢, +6nc,-c!

+6n)c, - c, + 6c, -c_]{cﬁ_,/), (170)
Werise
M, = —I—é [12nec; —63/6¢.n,
—6nnlc! — 6n.ein! +3v6cnn!
/ v 3 N/
+6c.(c, - ¢,) — 5 MediCe |- 171)

which can be combined to obtain the full transition rate from
the point of view of the electron.

Together with the in-scattering terms the basis-independent
form is then

4

R We e ~ a0~ 4
Ife — +—21 TI‘ZW[(]12 - fe)()Pd(fe/ ® JCI )

et+t—e
+ (7L ® f;)Pa(L2 = fo)s]
We — -~ o~ o~ -~
= = Tl = f)ePa(fe ® £
+ (fe ® [DPa(l2 = f)s)-
The absorption and emission of a triplet exciton by a hole is
analogous.

(172)

H. Fusion of triplet excitons into a triplet exciton

The fusion of two triplet excitons into a triplet exciton [40]
is the most complex process considered here. In the case of
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z polarization, the transition terms of the components of the
density matrix read as

L, =W, = f“) A+ fi1)
ft* 1,1 t,1J¢
—ﬂmﬁ{—%4Hl+ﬁ@ fkf°a+f }
(173)
1 " ‘f; lf///
Ly, =Wy, (I'+ fi0)
_muﬂ{mﬁ a+fp+ff (a+ £ }
(174)
15 " mff 0
I2lt—>z = W2t—>t T 1+ ﬁT)
_ 2W2,_>,[ft lzf’ A+ flo+ 2 ]ft o1+ f,”l)}
(175)

In this process, the in-scattering and out-scattering terms dif-
fer in structure. This makes it necessary to investigate both
terms separately.

1. In-scattering for 2t — t

Combining Eqgs. (173)-(175), we can obtain the transition
rates expressed in the multipole expansion. Their generaliza-
tion to the SU(2)-invariant form is ambiguous at first glance.
However, the SU(2)-invariant form can be obtained in analogy
to the formation of triplet excitons out of free charge carriers.
We construct the density matrix f; ® f; £ on the product space
of the two triplet-exciton spins and project it onto the triplet
subspace. The resulting 3 x 3 matrix, which will be referred
to as fi, can be eeressed in terms of coefficients of the
nine basis matrices S;, i = 1,2, 3, and Q], j=1,2,3,4,5.
For a spin along the z axis, only three coefficients do not
vanish:

2 \/6 ’ /// _

\/6 Ctz/ 1 \/_ th q///

Ny = G (176)
. «/gcf"n;” - 2«/§cf'ql”5’ + «/gc”” ! 2«/§cf”/qt’5
clt - 6
(177)

J

ng,out
IZt -t

W — / /
% |:2x/8n,nl — \/Ec, -C, —

11" / " / ua " /
+4nnn, + 2(nic, - ¢, +n,c, - ¢, +n,¢ - ¢,) —

—V6(ei - gie] +¢, - qe] +e, - gle) —

z/ z/// /o "1
Zﬁc 2mq,s — 2n)"q;5 —
6

Combining these equations and using Eqs. (173)—(175), we
can unambiguously generalize the rates to their SU(2)-
invariant form:

2\/_61,5‘1/”

qus = (178)

n, ln \/6 \/6
L, = Wz/t/;z I:}’l,, + T Ny + T Cr - Cyy

NI
+T‘]r "ht:|, (179)
in " , V6 ,
I?z—n =Wy |u+ — nuc, + —cuny
3 3
1 , 1,
+ 5 qu€; + zztctt ) (180)
3 NG
I%t—l:lz = Wz/t/;z [Zﬁ + 3 Nugr + 3 G

1 1

1
) qieqr — 3 9iq9n + 3 Tr(gttgt)]l3

1 1
- § (crr - )13 + E (Cr ®¢ +¢ ®ctz)i|- (181)

The basis-independent in-scattering term reads as

"

in W_) ~ o~
1 = 2Tl + DB © F)

+(f ® fB(15 + f)ol.

The notation (e)9 is analogous to (e)4 in Sec. IIC2 and to
(®)¢ in Sec. III G 1.

(182)

2. Out-scattering for 2t — t

For out-scattering, the strategy employed for in-scattering
does not work since the rates for the case of z polarization
are not symmetric in the two incoming triplet excitons at the
outer momentum k and the running momentum k’/.\ Hence,
the projected density matrix on the product space, f;;, is not
useful. The situation is analogous to the process e +h — t
from the point of view of the electron or hole; see Sec. III C 2.
Like for e + h — t, the matrix-valued transition rate in terms
of projection operators and density matrices

B = —Wae, Tro[(1s + FeB (@ 1)
+ (i ® [HB 3+ f)o]

can be used to read off the correct SU(2)-invariant multipole
transition rates. For the triplet exciton number density this
yields

(183)

VO
7 e

(nTrqiq’ + mTrq,qi" + n/Trq,q/)

6
5 (Trg:qrq’ + Trqiq'ql )]- (184)

023068-15



BACKER, THUMMEL, AND TIMM

PHYSICAL REVIEW RESEARCH 4, 023068 (2022)

The spin transition rate becomes
W2tet

Ic, out __
2t—t T

26 (—2n.¢) + nle,) —

— «/8 (n,c_], c; —
= 3(ci(er - ¢) ¢/ (e - er)
The quadrupole part reads as

WZtﬁt

q:, out
=2t—t

— d(nmq’ + mengf — 2min' q,)
—V62n(c, ®¢] +¢] ®c))

2\/6 / "
+ T [znt(ct : c[)

— V62 (gq +a'a) —naq +a'a)

3(C_Itc; + gz/ct) -
mqic] +n/gie, +n/q

—2¢,(c; - ¢)))

4(nmn)'c, — nmje;] — 2nync;)

’ r o "’
c, + 2n,c_]tct — Zn@ c)

— 3(glgles + algle: + aidle] — qige). (185)

=——% (2«/5(—n[gt’ +2mq,) = 3le; ® ¢ +¢; ® ¢, — 2(c; - ¢)13] — 3(q:q + giqr) — 2Tr(q:g) 15

—n(c, Q¢ +¢ @c¢;)+n(c, d¢, +¢, Q)]
—mle - ¢)) +n/(e - e)]ls

— /(49 + 419)]

2/\/6 7" ’ 1 u /
+ T [zntTr(é_]té_]t ) — n,Tr(ng_It ) —n, Tr(g,c_],)]]b

3l ® g+ gl D) -
— ¢/ ®@e)qi — qi(c; @ ¢))] — 2(e; - g'c; —

+3(q99 + 4’49 + 49’ + 09'%) — ATr(qqq )13 — 6Tr(g]£g]t”)gz).

The derivation of the rates for the spin and for the
quadrupole moment again require the basis-independent form
in Eq. (183).

The reverse fission process + — 2¢ can be investigated in
the same way. In the out-scattering term, the introduction of
f1 _# leads to the same structure as in the in-scattering term
for 2t — 1.

IV. EXAMPLES

In this section, we illustrate the theoretical framework by
applying it to a simple model. In order to reduce numeri-
cal complications, we consider a one-dimensional toy model
containing fission and fusion processes, disorder scattering of
singlet and triplet excitons, as well as relaxation of singlet
and triplet excitons. All bare rates W are assumed to be
independent of momentum, except as dictated by scattering
being elastic. The temperature is assumed to be sufficiently
low so that the equilibrium thermal population of excitonic
states is negligible. A magnetic field, if present, is taken to
be uniform, constant in time, and oriented along the z direc-
tion.

The dispersion relations of singlet and triplet excitons are
written as

272
€(k) = Ae + ) (187)
2my
272
€(k,m) = — gwipBm, (188)
2m;

(e ®c)g’ — g (c; ®¢r) —

(c; ®@¢)qr — qi(c] ®¢;)

el +¢f - qiep)ls

(186)

(

respectively, where m = 1, 0,
triplet excitons and

—1 specifies the spin state of

nk}

2my

Ae =

(189)

is the energy difference between singlet and triplet excitons,
which defines a momentum scale k.

Choosing our units such that #/m, = 1 and defining the
parameters

m; h
=22 (190)
my
wp = ﬁgtr/'LBBa (191)

the Boltzmann equation for the singlet-exciton distribution
function f(x, k, t) can be written as

dfs dfs
/s +akizlff,
at ax

(192)

and the corresponding equation for the matrix-valued triplet-
exciton distribution function f;(x, k, t) as

0
8]:[ ka—ﬁ—i—le S3,ﬁ]_1'

(193)
Here I and 77 are the full scattering integrals, which contain
the following contributions, where we only make the momen-
tum dependence explicit:
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(a) Decay is discussed in Sec. IIT A. It is described by the

. . ~ dk’ hZ K 2 thZ
scattering integrals ) 7, = / o w,_>,r6[ 2(m) - i|[fz(k/) _ )]
Isf;m (k) = =W 0 fs(k) = —ny0 fo(k), (194) R '
- R —w m fi(—k) = fi(k)
0y ®) = ~Wimjo fi k) = =m0 fi k). (195) SR W
b) Dlsorfier scatFering is discussion in the introduction to s ]/‘,\(—k) — f(k) 197
Sec. III and is described by =1 T (197)
dk’ EORES
Iﬂ = 7 Ws—y s k) — s k
Lo=) 5w [ " 2 ][f( )= )]
W ms  f(—k) — fi(k) Note that the singlet-triplet energy difference Ae and the
T iR |k| magnetic energy of triplet excitons cancel.
- fi(—k) — filk) (c) Fusion is discussion in Sec. IIT F. From the point of view
= o #, (196)  of the singlet excitons, fusion is described by
|
dk' wy_s (F*(K): Rk —K)? 2 k2 ~ )
B (k)= z + — Ae — Te{Py, fi(K) ® fi(k — KD} 1 + fo(k)]
2t 2 2m, 2m, M
my 1 ~[ ~(k ~(k ~[~(k ~(k
= s +fs<k>]<TrPs[fz<5 +x) ®f,(E - K>] +TrPs[fr(5 - x) @f,(5 T K>D
1 ~[ ~ k k ~(k
= Wtusion E [1 + f?(k)] TrPs ft 2 b2y ﬁ‘ 5 K + TI'P ﬁ - —Kk)|® ﬁ 5 +« > (198)
with

KE\/ngran;kz —_\/k0+ K-k (199)

if « is real, otherwise the scattering integral vanishes. Note that the magnetic energy of triplet excitons cancels. Introducing the
unitary part of the antiunitary time-reversal operator,

Ur=é%"=[0 -1 0]|=0U], (200)
1 0 O
we can simplify the expression to
2 k
o (k) = 3 Wiusion [1 + fy(k)]Trf:< + K)UTf, (— - K>UT (201)

The corresponding scattering integral for the triplet excitons reads as

~ dk/ h2k2 hZ k/ 2 h2 k k/ 2 PN R
0., = —/ s (— IR pe TR )Trﬂ{Ps,ﬁ(k)@ﬁ(k’)}[l ik + K]
b1 2my 2my 2my
2'wfusion 1 1 /
= - _< {Ps’ft(k)(@ﬁ( k+K>}|:1+fs( _k+K>i|
-l —a

* k—x’)}[l +fs<Lk—/</>D, (202)
l—« l—«

= (4 L), (203)

if k' is real, otherwise the scattering integral vanishes. With some algebra, the expression can be rewritten as

’f 2 Wrysion + TA 1 ,
Ly =~ gu——([ﬁ(k)Urf, (—k+K>U +Urf, <—k+,<) Tﬁ(k)][1+fg<mk+x>]

[ﬁ(k)UTﬁ ( k— )U +0rf, (%k—x> ;ﬁ(k)}[urﬁ(ﬁk_,a)}), (204)

which only contains 3 x 3 instead of 9 x 9 matrices.

+Tr,f{1%,ﬁ<k)®ﬁ<

with
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(d) Fission is also discussed in Sec. IIT F. From the point of view of the singlet excitons, we have

dk’ o hZ k' 2 hZ k—k 2
- w‘2t|:()+( )—Ae—

=2 = 2T 2 2m, 2m,

—Ws—2t

o o1+ 7
m—fs()[f ([3+ft<§+

27,2

]Tr{i-%, (13 + £,()] ® [13 + f,(k — KD} f(k)

s

Jeln7(G4))

+Tra<[n3+ﬁ(g—K>}®[m+f(’§+x)]>}

= _wﬁssmn fs(k) [TrP <|:]13 +}t\<§ +

el 7(G-1)])

-~ ~(k ~(k
+TrPX<|:]13+ft(§—K>i|®|:]l3 +f;<§ +K>}>i| (205)
with k given by Eq. (199), if « is real and zero otherwise. The expression can be simplified to
5 ! ~(k k o~
Iq_)zt = _§ Wfission ; fs(k)Tr ]13 + ﬁ z UT ]13 + ft - — K UT‘ (206)

Analogously, we find

-~ 2 Wfission
Y—>2[ 3 |1 _ |

[([13 + fi(o)Ur [113 + 1 (

1—

— k+K/)}ﬁ; +UT[113 +ff(1 ——k+x )}ﬁ}'[lb +ﬁ<k>])

xf(;k+lc) <[]ls+f,(k)]UT|:]lq+ft <—k—/c):|l7T

+UT[]13+J§ (%k—x)}UT 15 + £,(0)] )ﬂ(—k—/c)]

with «’ given by Eq. (203), if «” is real and zero otherwise.

One can now expand f; into multipoles using Eq. (48).
This is particularly useful if some of the multipoles vanish by
symmetry. In any case, the equations to be solved are coupled
first-order nonlinear partial differential equations for f; and
f; as functions of time ¢ and position x. The momentum &
acts as a parameter labeling different coupled functions. None
of the coefficients depend on x or z. Nevertheless, due to the
nonlinearity of the equations, an analytical solution seems out
of reach. We therefore use numerical forward propagation of
the initial functions with discrete time steps and also discretize
the x and k dependence.

As an example, we consider a localized distribution of
singlet excitons, photogenerated close to the energy thresh-
old. The distribution is modeled by a Gaussian function
with mean zero and width o, in real space multiplied by
a Gaussian function with mean zero and width o; in mo-
mentum space. To reflect some of the features of real
systems, the singlet excitons are assumed to decay rapidly.
We consider the singlet-excition distribution function in real
space,

pwn = [ 5 fikox, (208)
2
and the distribution function of the occupation of triplet exci-
tons in real space,

dk  ~
pt(x,t)=/—Trft(k,x,t)- (209)
21

(207)

(

For reference, we plot the time evolution of the singlet-exciton
distribution function p, in Fig. 1 for the situation without
fission. In this case, the singlets decay rapidly and triplet
excitons are not generated. Note that the densities py; and p,
in all plots are presented in arbitrary units but on the same
color scale.

If fission (but not fusion) is switched on the singlet excitons
quickly transition into triplet excitatons, as shown in Fig. 2(a).
The triplet excitons show predominant diffusive motion due to
disorder scattering, see Fig. 2(b). The cone from ballistically
moving, i.e., not scattered, excitons is visible as a weaker
feature.

If we now also switch on fusion with a high bare rate
we observe recovery of singlet excitons and loss of triplet
excitons, as expected, see Fig. 3. However, the distribution
of recreated singlet excitons is much narrower than the one of
the triplet excitons. We attribute this to the fact that for our
parameters two triplet excitons must collide head on in order
to fuse, which is more likely in the center of the triplet cloud.
It is an interesting question for the future to what extent such
an effect is also present in real three-dimensional systems.

In the previous examples, the spin of the triplet exci-
tons does not matter. The initial singlet distribution is of
course nonmagnetic and there is no mechanism that generates
any spin polarization. To exhibit a characteristic magnetic
effect, we consider an initial state with a distribution of
triplet excitons with momenta close to +k( and helical spin
polarization: the spin is polarized parallel (antiparallel) to
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FIG. 1. Spatial distribution function p,(x, ¢) for singlet excitons
for the case without fission. There are no triplet excitons in this case.
The parameters are « = 0.8, kg = 4,0, = 1,0, = 1, no = 2, and all
other rates are set to zero. The discretization intervals for momentum,
space, and time are Ak = 0.1, Ax = 0.1, and Ar = 2.5 x 1073,

x for k > 0 (k < 0). Except for the spin polarization, this
distribution is similar to the one obtained by singlet fission in
the previous examples. The occupation number p, of triplet
excitons, shown in Fig. 4(a), is independent of the applied
magnetic field. The x component of the spin polarization given
by

dk 1_ ~ ~

s (x,t) = / — =TrS, f; (k,x, t) (210)

2w 2
and plotted in Fig. 4(b) shows two effects: First, due to the
helical spin polarization of the initial distribution, triplet ex-
citons moving to the right (left) have positive (negative) spin.
Second, their spin precesses about the magnetic field, i.e., the

z direction, with a frequency given by the Larmor frequency
wr, in Eq. (193).

V. SUMMARY AND CONCLUSIONS

The understanding of transport of charge carriers and ex-
citons in organic semiconductors is crucial for applications.
Semiclassical Boltzmann theory is a valuable tool for this
since it is formulated in terms of physically intuitive quantities
and processes, thereby simplifying the interpretation. In this
paper, we have addressed the spin-conserving charge transport
and scattering in a semiclassical framework, including the
creation, decay, recombination, fission, and fusion of excitons,
which are crucial for organic solar cells. However, our results
are of more general interest for any system showing scattering
of and reactions between spin-carrying particles, for example
in spintronics and spin chemistry.

To start with, we have set up kinetic equations for charge
carriers as well as for singlet and triplet excitons in uniform
electric and magnetic fields, taking care to preserve SU(2)
spin-rotation invariance. The case of triplet excitons is the
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FIG. 2. Spatial distribution function for (a) singlet and (b) triplet
excitons as a function of time for the case with fission but without
fusion. The parameters are 7% = 6 and w,_.», = 10, the other pa-

rameters are the same as in Fig. 1.

most interesting in that these spin-1 quasiparticles permit
and require a quadrupolar contribution to their distribution
function. We have obtained coupled equations for the con-
centration, spin-density, and quadrupole-density components.
The generalization to nonuniform systems is conceptually
straightforward.

In the second step, we have constructed SU(2)-invariant
transition terms or scattering integrals describing disorder
scattering, singlet-exciton generation, binding of electrons
and holes into singlet and into triplet excitons, and exciton
fusion, as well as the reverse processes. The occupation of
final states enhances a process for bosons and suppresses it
for fermions. These quantum effects are naturally included
and lead to higher-order terms in the scattering integrals,
which are relevant for large occupation numbers. It proved
useful to employ two different representations of distribution
functions, namely a multipole expansion and a description as
matrix-valued functions acting on the spin Hilbert space. For
the simpler processes, the multipole representation allows one
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FIG. 3. Spatial distribution function for (a) singlet and (b) triplet
excitons as a function of time for the case with fission and strong
fusion. The fusion rate is wo,_.; = 400, the other parameters are the
same as in Fig. 2.

to directly write down the SU(2)-invariant terms based on the
transition terms under the (symmetry-breaking) assumption of
all moments being parallel or antiparallel to the z axis. The
results can be used to describe real materials when realistic
models for the bare transition rates W are available. Moreover,
our work serves as a guide on how to construct scattering inte-
grals for complex transitions involving several quasiparticles
with spin.

Future directions following from this work are quite clear.
First, it will be necessary to derive models for the bare
transition rates W for real materials and link the equations to
observables, in order to obtain quantitative descriptions. For
the application to photovoltaic devices, it is important to
note that the generation of excitons takes place at internal
interfaces in organic blends, while the diffusion of (triplet)
excitons is a bulk effect. Our framework offers two ap-
proaches to this problem: On long length scales relative to
the typical scale of the phases in the blend, coarse graining
leads to an effective-medium description with an effective

(@ 2.0
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0.0
-10

(b)

FIG. 4. Spatial distribution function of (a) the occupation num-
ber of triplet excitons and (b) the x component of their spin
polarization as functions of time in an applied magnetic field in
the z direction. The initial distribution of triplet excitons has helical
spin polarization with the spin parallel (antiparallel) to x for £k > 0
(k < 0). The dimensionsless Larmor frequency is w; = 10, the other
parameters are the same as in Fig. 3.

exciton-generation rate. On the other hand, on shorter length
scales—but still long compared to the single-molecule scale—
the spatial structure of the phases can be modeled. The
semiclassical approach is in principle suitable for this but of
course relies on a good structural model.

Second, additional processes are relevant in certain materi-
als. For example, bound states of two electrons and one hole or
vice versa, i.€., trions, can exist [72,73]. The formation and de-
cay of trions can easily be described in our framework. Third,
we have here assumed that polaronic effects, which are strong
in organic materials, can be treated simply be renormalizing
model parameters for charge carriers and excitons. This is
certainly simplistic, in particular due to the broad distribution
of timescales of phonons in organic materials. The connection
of transport and excitonic processes with polaronic effects in
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a semiclassical framework is thus an important goal for the
future.
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APPENDIX: KINETIC EQUATION FOR TRIPLET
EXCITONS

In this Appendix, we derive kinetic equations for
the concentration, spin, and quadrupolar coefficients of
the nonequilibrium triplet-exciton distribution function in
Eq. (56). We first introduce an alternative way to express
the quadrupole term that simplifies calculations. Using the
Cartesian quadrupole tensor operator defined by Eq. (50), the
distribution function can be written as

ft=nSo+¢,-S+a-Qb. (A1)
The decomposition contains 10 real coefficients but has only
nine degrees of freedom, so we choose |a| = 1 as an addi-
tional condition. We call relations such as Eq. (Al) matrix
expansions. Analogously, the deviation is written as

% =S +¢-S+a-0b, (A2)
with |a| = 1.

Next, we evaluate the Boltzmann equation (38) in the ma-
trix expansion,

0
8t ntSO + = ot cnS + (amb )an
1 P ~ -~
+ ﬁ Vket - [VrﬁtSO + VrEtiSi + Vr(ambn) an]

8ir B

4 SutB = gljkb CtkS +glrMB

(B X @)nb O
gtr/'LB

+ (B x By @O

=HAA&%L

where an denote the components in Eq. (50) and &;j; is
the Levi-Civita symbol. We employ the Einstein summation
convention. Equations for the number, spin, and quadrupole
densities can be obtained using the relations

(A3)

D’ Sb lgubmSm’ (A4’)
213 =87 + 82 + 52, (A5)
[Qabs §c] = igacmémb + igbcm@ma’ (A6)
~ o~ i ~ ~
OupSe = = (Sbcham + €aemQbm)
1
+ (8acSp + 8cbSa) — abSu (A7)

with a, b, c,m € {1, 2, 3}. After the Boltzmann equation has
been solved with regard to Eq. (Al), we can convert the
quadrupole coefficients to the form of the multipole expansion
in Eq. (48) by the transformation

g = azbz + azbs, (A8)
gr2 = azby + a1 b, (A9)
g3 = arby + azby, (A10)
1
Gra = E(albl — axhy), (A11)
V3
qis = _?(albl + arby — 2a3b3). (A12)

Analogously to the density matrix, we expand the scattering

term as
L=1"So+I-S+17.Q. (A13)

Using the differential operator D, defined in Eq. (57), we
obtain Egs. (58)—(66).
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