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Quantum Coulomb glass on the Bethe lattice
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1Department of Physics and Institute for Advanced Study, Technical University of Munich, D-85748 Garching, Germany
2Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany

3Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
4Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics,
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We study the Coulomb glass emerging from the interplay of strong interactions and disorder in a model of
spinless fermions on the Bethe lattice. In the infinite coordination number limit, strong interactions induce a
metallic Coulomb glass phase with a pseudogap structure at the Fermi energy. Quantum and thermal fluctuations
both melt this glass and induce a disordered quantum liquid phase. We combine self-consistent diagrammatic
perturbation theory with continuous time quantum Monte-Carlo simulations to obtain the complete phase
diagram of the electron glass and to characterize its dynamical properties in the quantum liquid, as well as
in the replica symmetry broken glassy phase. Tunneling spectra display an Efros-Shklovskii pseudogap upon
decreasing temperatures, but the density of states remains finite at the Fermi energy due to residual quantum
fluctuations. Our results bear relevance to the metallic glass phase observed in Si inversion layers.
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I. INTRODUCTION

Describing the localization of disordered electrons in
the presence of long-ranged Coulomb interactions and the
melting of the Coulomb glass due to quantum fluctuations
represent some of the most challenging unsolved and elusive
problems in modern condensed-matter physics [1]. In the
absence of interactions, disorder tends to suppress quantum
fluctuations and leads to Anderson localization [2,3].

The presence of interactions, however, changes the struc-
ture of localization transition entirely: unscreened Coulomb
interactions lead to stronger and stronger anomalies on the
metallic side as one approaches the phase transition [4],
amounts in the formation of curious spin fluctuations [5],
and leads to the emergence of the Coulomb gap [6,7] on
the insulating side, accompanied by glassy dynamics and
memory effects [8–11]. A major step toward understanding
this quantum phase transition has been made by Finkel’stein,
who developed a scaling theory in the presence of Coulomb
interactions and weak disorder [12]. Certain implications of
this scaling theory regarding the critical behavior have been
verified experimentally [13], but a perturbative scaling theory
leaves the structure of the localized phase unrevealed and has
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little to say about properties of the localized phase such as the
formation of the pseudogap or the glassy structure of the lo-
calized phase, not to mention the connection with many-body
localization [14,15].

The influence of quantum tunneling on the Coulomb gap
has been addressed initially by means of numerical ap-
proaches. A configuration interaction approximation-based
computation predicted a considerable reduction of the width
of the Coulomb gap [16], while Hartree-Fock calculations
predicted a modification of the structure of the classi-
cal Efros-Shklovskii pseudogap close to the Fermi surface
[17,18].

A major step toward understanding the quantum melting of
the Coulomb glass is the construction of a solvable mean field
theory, similar to the Sherrington-Kirkpatrick (SK) model, the
standard mean-field model of classical and quantum spin glass
transitions [19–22]. Such a mean-field model, accounting for
most essential properties of the Coulomb glass phase except
Anderson localization, has been proposed by Pastor and Do-
brosavljević in their seminal work [23], possibly inspired by
the extended dynamical mean-field approach applied to clean
correlated systems [24–26]. In the spinless version of their
model, electrons move on a Bethe lattice of coordination z →
∞, experience some on-site disorder, εi, and interact with
each other through a repulsive nearest-neighbor interaction,
Vi j = V/

√
z, mimicking the long-ranged Coulomb interaction

(see Fig. 1):

Ĥ = − t√
z

∑
〈i, j〉

(ĉ†
i ĉ j + H.c) + V√

z
δn̂iδn̂ j +

∑
i

εiδn̂i. (1)
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FIG. 1. Sketch of the mean-field electron glass model, Eq. (1).
Electrons move on a disordered Bethe lattice of coordination num-
ber z, can hop between neighboring sites, and interact through a
Coulomb interaction with nearest neighbors.

Here δn̂i = ĉ†
i ĉi − 1/2 denotes deviations from half filling,

and the levels εi are drawn from a Gaussian distribution,
P(ε) ∼ e−ε2/(2W 2 ). In the rest of the paper, we shall refer to
this model as the disordered t − V model.

As shown in Ref. [23], even though the interaction is
uniform, spontaneous density fluctuations lead to the emer-
gence of a glass phase, and the model Eq. (1) maps onto
the Sherrington-Kirkpatrick model in the absence of quantum
tunneling, t = 0. We emphasize that this transition is struc-
tural in the sense that it takes place even in the absence of
disorder, W → 0, and is driven by interactions rather than
disorder. Here, in contrast to the SK model, frustrations do not
originate from a frustrated interaction: rather, a fluctuation in
the occupation of some levels creates a frustration by choice,
leading to the glass transition.

Later works revealed a number of key properties of the
disordered t − V model, Eq. (1). The quantum critical be-
havior has been analyzed for small disorder in terms of a
Landau theory [27,28], following a line similar to the work
of Read et al. [29], and it has been argued that for fi-
nite coordination numbers, z, a glassy metallic phase should
separate the glassy insulating phase from the disordered
Fermi liquid [30], as observed on low-mobility Si inversion
layers [31].

Nevertheless, in spite of all these achievements and efforts,
a complete solution of Eq. (1) is still missing, even in the
mean-field limit, z → ∞. Here we attempt to give such an
accurate and extensive numerical solution of the disordered
t − V model in the z → ∞ mean-field limit. In addition to
determining the complete phase diagram, the distribution of
local levels, the order parameter, the free energy, and the
entropy, we also determine the spectral properties and the
tunneling spectra of the electrons, as well as their scaling
properties away from the critical point.

The solution of Eq. (1) represents a quite challenging
task: To enter the glassy phase and capture the formation
of the pseudogap, we must allow for complete replica sym-
metry breaking (RSB)—accounting for the distribution of
local (renormalized) energy levels—and, at the same time,
we must solve an ensemble of quantum impurity prob-
lems coupled self-consistently back to the spin glass order
parameter [32–34]. This route has been followed in Ref. [35]
to study the glassy phase of the—somewhat simpler—
transverse field SK model. Here we derive the appropriate
equations for the mean-field Coulomb glass model by using

FIG. 2. (a) Boundary separating the Fermi liquid and the electron
glass phases. Cuts along the solid and dashed lines are presented
in Fig. 6. (b) Spectral function computed at the quantum phase
transition point, indicated in panel (a) by the arrow. A correlation
hole preceding the pseudogap structure starts to already form at the
phase boundary.

a path integral formalism, and solve the mean-field theory
numerically.

We apply two different numerical methods: In the Fermi
liquid phase, we use an extended continuous time quantum
Monte Carlo (CTQMC) dynamical mean-field approach. This
method provides us the numerically exact, self-consistent
solution, however, is numerically demanding, and is only
appropriate to give us a solution at a relatively small num-
ber of points in parameter space. We therefore combine this
approach with an iterative perturbation theory (IPT), similar
in spirit to the one used to describe the Mott transition in a
pioneering work by Georges and Kotliar [36]. A combination
of these two approaches allows us to obtain a coherent picture,
summarized in Fig. 2.

For convenience, we measure all energy scales in Fig. 2
in the disorder strength, W . Phase boundaries in Fig. 2(a)
correspond to RSB. The electron glass forms at large interac-
tions and is destroyed both by thermal (∼T ) and by quantum
(∼t) fluctuations. Typical spectral densities are presented in
Fig. 2(b) at a transition point, where T � t , and therefore
quantum fluctuations drive the quantum glass to a quantum
liquid phase transition. A marked correlation hole structure
starts to already form at the critical point. This anomaly
gradually develops into a pseudogap that gets deeper and
deeper as we enter the glass phase, but the density of states
remains finite at the Fermi energy in the glass phase for any
finite quantum tunneling, even in the T = 0 temperature limit.
This is a peculiarity of the exactly solvable mean-field limit
z = ∞, where no Anderson localization takes place. The glass
state we find is therefore identified as a metallic (spinless)
electron glass, observed in several experiments [31,37,38]. A
similar glassy metallic phase has been predicted to emerge in
itinerant fermionic systems with cavity mediated long-range
interactions, based on a replica symmetric effective field the-
ory approach [39].

The rest of the paper is organized as follows. In Sec. II, we
introduce the mean-field equations through an intuitive cavity
approach as well as the more technical replica method, and
then formulate the resulting self-consistency equations for the
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replica symmetric solution and for full RSB. Section III is
devoted to the more technical aspects of the solution. There
we discuss the faster but approximate IPT (Sec. III A) and
the exact but numerically more demanding CTQMC method
(Sec. III B). In the rest of the paper, we present our results.
The spectral function in the replica symmetric Fermi liquid
phase as well as the phase boundary of the electron glass phase
are presented in Sec. IV. Section II D is devoted to the glassy
phase: We discuss there the evolution of the order parameter,
the distribution of Hartree energies, and the properties of the
spectral function deep in the glassy phase. We discuss the
thermodynamics of the mean-field Coulomb glass model in
Sec. VI. Our main findings are summarized in Sec. VII. Tech-
nical details on the CTQMC simulations and on the numerical
solution in the replica symmetry broken phase are relegated to
the appendices.

II. MEAN-FIELD EQUATIONS

The mean-field equations of disordered t − V model
Eq. (1) have been derived for z → ∞ using the replica method
in Ref. [23]. To our knowledge, these equations have, how-
ever, never been solved before in their full power. In fact,
to obtain a full solution and to capture the formation of the
Coulomb gap, one must consider the structure of full RSB,
just as for the SK model [34,40–42].

Before we discuss the quite technical replica method, let
us start with a cavity consideration. This allows one to under-
stand the ultimate structure of the equations to be solved.

A. Cavity approach and effective local action

Let us focus on site i = 0 and write the action correspond-
ing to the Hamiltonian Eq. (1) as follows:

S =
∫

τ

c0 τ (∂τ + ε0)c0 τ + V√
z

∑
i

′ ∫
τ

δn0,τ δni,τ − t√
z

∑
i

′ ∫
τ

(c0 τ ci τ + H.c.) + Si 
=0. (2)

Here we used the shorthand notation,
∫
τ

= ∫ β

0 dτ , with β the inverse temperature, and have separated those pieces, which involve
site 0. Primes indicate summations over nearest neighbors only. We can then formally expand e−S , and integrate out all i 
= 0
sites to obtain an effective action for site 0:

Seff
0 =

∫
τ

c0 τ (∂τ + ε0)c0 τ − t2
∫

τ

∫
τ ′

c0 τ c0 τ ′
1

z

∑
i

′〈ci τ ci τ ′ 〉cav + V√
z

∑
i

′ ∫
τ

δn0,τ 〈δni,τ 〉cav

− V 2

2

∫
τ

∫
τ ′

δn0,τ δn0,τ ′
1

z

∑
i

′〈δni,τ δni,τ ′ 〉cav + · · · . (3)

Here the 〈. . .〉cav denote cavity averages, i.e., averages computed in the absence of site i = 0. Higher order contributions, that
are not displayed, vanish in the z → ∞ limit on the Bethe lattice. The third term in this expansion represents a random chemical
potential, arising from charge fluctuations at neighboring sites. We can rewrite the above action as

Seff
0 =

∫
τ

∫
τ ′

{
c0 τ (δ(τ − τ ′)(∂τ + ε̃0) − t2G(τ − τ ′))c0 τ ′ − V 2

2
χ (τ − τ ′)δn0,τ δn0,τ ′

}
, (4)

with G and χ denoting a nearest-neighbor average over cavity
Green’s functions and dynamical susceptibilities, and the ran-
dom field ε̃0 incorporating charge fluctuations on neighboring
sites into the bare local field, ε0. Since the presence of site 0
induces a perturbation of order ∼1/

√
z on its nearest neigh-

bors, G and χ can be replaced by the lattice average of the
local Green’s function and dynamical charge susceptibility,
respectively. Would we know the distribution of ε̃0, P̃(ε̃), we
could replace these spacial averages by an average over ε̃. We
could thus solve the action Eq. (4) for Gε̃ (τ ) and χε̃ (τ ), and
obtain G(τ ) and χ (τ ) by averaging over P(ε̃), thereby closing
a dynamical mean field theory (DMFT) cycle.

Unfortunately, it is not so simple to obtain P̃(ε̃). The
difficulty is related to spontaneous symmetry breaking. Even
for a given set of the on-site energies, {εi}, each leg attached
to the cavity has, namely, many symmetry-broken states. We
should pick a symmetry-broken charge distribution on each of
these legs. However, we cannot choose these independently
of each other, since the central site i = 0 creates correlations
between the legs. Adding/removing site 0 induces, namely, a
correlated charge shift of order ∼1/

√
z on neighboring charge

distributions. This, in turn, amounts in a change of O(1) in the
value of ε̃0 and, more importantly, correlates the occupation
of neighboring sites through charge fluctuations at site i = 0.
The situation is quite similar to that of the ferromagnetic
phase of an Ising magnet on the Bethe lattice, where the
direction of magnetization on each leg gets correlated through
the central site.

The appropriate distribution P̃(ε̃) follows from stability
criteria, usually formulated in terms of the replica method,
discussed in the next subsection. We shall also follow this—
somewhat formal—route to determine P̃(ε̃).

B. Replica approach

The action Seff
0 in Eq. (4) can also be obtained via the

replica trick, whereby we express the logarithm of the par-
tition function as

ln Z = lim
n→0

Zn − 1

n
. (5)

We therefore take n → 0 copies of the Hamiltonian and inte-
grate out the Gaussian disorder and the fermions at all sites,
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excepting the central one. The latter step becomes simple in
the z → ∞ limit, where a systematic 1/z cumulant expansion

leads to a simple (extended) DMFT structure [43] with the
effective action [44].

Srep =
∫ β

0
dτ

∫ β

0
dτ ′

{
n∑

a=0

(
c a

τ [δ(τ − τ ′)∂τ ′ − t2G(τ − τ ′)]c a
τ ′ − V 2

2
χ (τ − τ ′)δn a

τ δn a
τ ′

)

− 1

2

n∑
a 
=b

V 2Q abδn a
τ δn b

τ ′ − 1

2

n∑
a,b=0

W 2δn a
τ δn b

τ ′

}
. (6)

The action Eq. (6) is supplemented by the self-consistency conditions:

G(τ − τ ′) = 〈
c a
τ c a

τ ′
〉

Srep
, χ (τ − τ ′) = 〈

δna
τ δna

τ ′
〉
Srep

, Qa 
=b = 〈
δna

τ δnb
τ ′
〉
Srep

. (7)

Disorder appears at this point only through the term ∼W 2,
coupling (correlating) different replicas, and the off-diagonal
structure of the glass order parameter, Qa 
=b, capturing density
fluctuation correlations between different replicas subject to
the same disorder. This replica-replica coupling in Srep may
lead to spontaneous RSB, characteristic of the glassy phase,
and signaling that replicas break ergodicity individually and
differently. In the next subsection, we first address the simpler
replica symmetric solution before sketching the procedure in
the regime of full replica symmetric breaking in Sec. II D. For
more technical details, we refer the reader to Appendix B.

C. The replica symmetrical self-consistency equations

In general, the nontrivial replica structure of Qab leads
to difficulties when taking the limit, n → 0. The equa-
tions simplify, however, considerably in the (nonglassy)
replica symmetrical phase, where all replicas behave in the
same way, and Qa 
=b = QRS for all a 
= b. This phase is iden-
tified as a disordered Fermi liquid phase [30].

In this case, we can decouple the off-diagonal part of the
last term of the effective action Eq. (6) with a Hubbard-
Stratonovitch field, ε̃ , leading to the local effective action,

S̃ε = ∫
τ

∫
τ ′

{
cτ [δτ,τ ′[∂τ ′ + ε̃ ] − t2 G(τ − τ ′)] cτ ′

−V 2

2
(χ (τ − τ ′) − QRS) δnτ δnτ ′

}
− β ε̃

2
, (8)

with the Hubbard-Stratonovic field ε̃ a Gaussian variable
of distribution P̃ RS(̃ε ) ∼ exp ( − ε̃ 2/(W 2 + V 2QRS)/2). The
self-consistency Eqs. (7) are now replaced by the conditions,{

G(τ )
χ (τ )

}
=

∫
d ε̃ P̃ RS(̃ε , QRS)

{
Gε̃ (τ )
χ̃ε (τ )

}
, (9)

and QRS is also determined self-consistently by

QRS = 〈δn〉2 =
∫

d ε̃ P̃ RS(̃ε , QRS) 〈δn〉̃ε 2, (10)

with Gε̃ (τ ), χ̃ε (τ ), and 〈δn〉̃ε computed by the effective
(local) action, Eq. (8).

In the replica symmetrical case, we thus converted the
problem into an ensemble of local, self-interacting fermion
levels. The width of the distribution of the level ε̃ as well

as the fermion’s self-energy (∼t2G(τ )) and its self-interaction
(∼V 2[χ (τ ) − QRS]) must all be determined self-consistently.
We defer discussing the numerical solution of this ensemble
of local actions, i.e., the computation of the quantities Gε̃ (τ ),
χ̃ε (τ ), and 〈δn〉̃ε , to Sec. III.

Remarkably, the local action has exactly the same structure
as Eq. (4). However, the replica approach also provides us
the self-consistent distribution function P̃(̃ε ): In the replica
symmetrical Fermi liquid phase, the Hartree field distribution
retains the Gaussian structure of the bare disorder εi, and
interactions only renormalize the variance of the effective
field.

Importantly, in the classical limit, t = 0, we can set G → 0
when we determine the occupancy, and δnτ δnτ ′ = 1/4. Then
we simply obtain 〈δn〉̃ε = − tanh(̃ε /(2T ))/2. Equation (10)
then just becomes essentially the self-consistency equation of
the SK model in the case of replica symmetry [19,34]. The
mean-field Coulomb glass problem is thus equivalent to the
SK model in the classical limit, as pointed out in Ref. [23].
However, contrary to the SK model, where the replica sym-
metrical solution with QRS 
= 0 is intrinsically unstable, here
replica symmetry is stabilized by finite disorder as well as
finite quantum fluctuations, and a valid replica symmetric
phase exists.

D. Full replica symmetry breaking

In the electron glass phase, replica symmetry is fully bro-
ken. Fortunately, the construction of the previous section can
be generalized to incorporate full RSB, thereby yielding a
complete description of the glassy phase as well. Although
derivations may seem cumbersome, the interpretation of the
final results is relatively straightforward.

The local effective action Eq. (8), supplemented by the
self-consistency conditions Eq. (9), remains unaltered, except
for changing QRS → Qaa, expressing that electrons at each
site experience a different Hartree field, εi → ε̃i, due to the
conspiracy of random on-site energies and nearest-neighbor
Coulomb interactions. Only the Hartree field’s distribution
P̃ (̃ε ) acquires a more complicated, non-Gaussian structure
that must be determined self-consistently together with the
average propagators and susceptibilities (see Appendix B).

The solution of the ensemble of effective actions, Eq. (8),
has to be carried out exactly the same way as in the replica
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symmetrical phase. Only the last, least intuitive step of
this derivation, the determination of the distribution of the
renormalized Hartree energies P̃(̃ε ) is much more difficult.
The derivation of this distribution follows similar lines as
the solution of the classical spin-glass problem [19], apart
from the fact that here we need to work with the quantum
action.

We parametrize Qab using Parisi’s variables [21] as a func-
tion Q(x), with the replica variable x ∈ [0, 1] parametrizing
deeper and deeper layers of RSB. In the replica symmetrical
phase, Q(x) remains constant, while in the glassy phase Q(x)
is no longer constant, Q(x) 
= const. This property allows us
to detect the boundary of the glassy phase. Alternatively, we
can determine the boundary by using the stability condition
Eq. (20), discussed later in Sec. IV. For a complete solution,
we need to generate a family of effective actions, parametrized
by x. Physical quantities at different layers are related by
so-called flow equations. The final structure of these latter is
outlined in Appendix B.

Fortunately, the flow equations are decoupled from the
quantum solution in the sense that the quantum problem only
provides boundary conditions for them. In fact, as input one
only needs the (negative) free energy of the embedded level,
	ε̃ (T ) ≡ kBT ln Z̃ε , defined by

eβ	ε̃ (T ) ≡
∫

DcDc e−S̃ε [ c,c ]. (11)

The solution of the flow equations then provides the renormal-
ized distribution, P̃(̃ε ), and the order parameter Q(x).

III. SOLVING THE MEAN-FIELD EQUATIONS

To obtain the full solution of the disordered t − V model,
we have to solve an ensemble of local actions, Eq. (8),
i.e., compute the quantities Gε̃ (τ ), χ̃ε (τ ), and 〈δn〉̃ε . In
the replica symmetric phase, we simply iterate the self-
consistency equations Eqs. (9) and (10), whereas in the
presence of full RSB, Eq. (10) is replaced by more compli-
cated flow equations (see Appendix B). To treat the action in
Eq. (8), we employed two different methods: for a fast but
approximate solution, we used IPT, which allowed us to get a
complete solution in the replica symmetric Fermi liquid phase
as well as to access the glass phase. To complement this ap-
proach, we have also obtained a numerically exact solution by
the CTQMC. Since the CTQMC method is computationally
very demanding, we only applied it in the replica symmetric
phase, where we used it to obtain reference solutions at many
points in the parameter space, and also to verify the phase
boundaries.

A. Iterative perturbation theory

The effective action Eq. (8) describes a fermion propagat-
ing with the unperturbed propagator G̃ε associated with the
first term of Eq. (8),

G−1
ε̃ (τ ) = δτ,τ ′[∂τ ′ + ε̃ ] − t2 G(τ − τ ′), (12)

and interacting through the retarded interaction:

V 2 χ̃ (τ − τ ′) ≡ V 2 ( χ (τ − τ ′) − 〈δn〉2).

(a)

(b)

FIG. 3. (a) Hartree-Fock local free-energy contributions and
(b) corresponding self-energy diagrams. (Counterterm diagrams
are not shown.) Wavy lines represent the effective interaction,
V 2 χ̃ (τ − τ ′), while continuous lines stand for the unperturbed local
propagator, Gε̃ (τ ) = 〈c(τ )c̄(0)〉(0)

loc, computed from the noninteract-
ing part of Eq. (8).

To compute all needed Green’s functions and susceptibil-
ities in a systematic way, it is convenient to formulate the
approximation in terms of the the local (negative) free energy
	ε̃ , Eq. (11). We express 	ε̃ as

	ε̃ = 	
(0)
ε̃ + 
	ε̃ , (13)

with the second term accounting for the interaction-induced
part of 	ε̃ , and 	

(0)
ε̃ being the noninteracting free energy,

	
(0)
ε̃ = ε̃

2
+ 1

β
Tr ln G−1

ε̃ . (14)

The interacting part 
	ε̃ can be considered as a functional
of the dressed propagator. Then its functional differential with
respect to the dressed propagator is just the self-energy.

Within IPT, we simply replace the local free energy
Eq. (13) by the second-order perturbative expression,


	HF
ε̃ (̃ε ) = V 2

2

(
G̃ε (0−) + 1/2

)2
∫ β

0
dτ χ̃ (τ )

− V 2

2

∫ β

0
dτ χ̃ (τ ) G̃ε (τ ) G̃ε (−τ ), (15)

represented by the free-energy diagrams in Fig. 3(a) [45].
Although not constructed in terms of the full Green’s function,
we shall also refer to this approximation as the Hartree-Fock
approximation, as also inferred by the labels, HF. For the
self-energy, we use a similar approximation, represented in
Fig. 3(b):

�HF
ε̃ (τ ) = δ(τ )V 2

(
G ε̃ (0−) + 1/2

)∫ β

0
dτ ′χ̃ ε̃ (τ ′)

−V 2χ̃ ε̃ (τ )G ε̃ (τ ). (16)

These expressions can also be obtained by functional differen-
tiation of Eq. (15) with respect to the unperturbed propagators.
The term 1/2 originates from normal ordering, and is just the
average occupation.

Formally, the occupation 〈δn〉̃ε and for the local compress-
ibility χ̃ε (τ ) can be computed by inserting a time-dependent
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(a)

(b)

FIG. 4. Hartree-Fock diagrams determining (a) the Hartree-Fock
occupation, 〈δn〉HF

loc , and (b) the Hartree-Fock response, χHF
ε̃ (τ ). Cuts

indicate functional derivatives, counterterm diagrams are omitted.

energy in the action, ε̃ → ε̃τ , and taking the functional deriva-
tives of 	ε̃ with respect to ε̃ → ε̃τ . We use this procedure to
obtain the IPT expressions for the occupation 〈δn〉̃ε and for
the local compressibility χ̃ε (τ ), consistent with the approxi-
mations above, by just differentiating 	HF

ε̃ = 	
(0)
ε̃ + 
	HF

ε̃ as

〈δn〉HF
ε̃ = β

δ	HF
ε̃

δ ε̃τ

∣∣∣∣̃
ετ →ε̃

(17)

and

χHF
ε̃ (τ − τ ′) = β

δ2	HF
ε̃

δ ε̃τ δ ε̃τ ′

∣∣∣∣̃
ετ →ε̃

. (18)

The resulting expressions are quite lengthy; we therefore do
not display them here, but the corresponding diagrams, shown
in Fig. 4, have a quite transparent structure, and it is easy
to construct the explicit formulas from them by following
standard diagramatic rules.

In the RS phase, the IPT iteration is then straightforward.
Assuming some ansatz for QRS, χ (τ ), and G(τ ), we use
Eq. (16) to compute G̃ε (τ ), and the diagrams in Fig. 4 to
determine 〈δn〉̃ε and χ̃ε (τ ) for a dense set of energies, ε̃ . We
then determine QRS, χ (τ ), and G(τ ) iteratively by means of
Eqs. (9) and (10). In the presence of full RSB, the function
Q(x) is determined by more complicated flow equations in-
stead of the RS expression Eq. (10), but the rest of the iteration
loop remains unaltered.

B. Continuous time quantum Monte Carlo

An alternative route to compute Gε̃(τ ), 〈δn〉ε̃, and χε̃(τ )
within the DMFT is to perform a CTQMC computation with
the effective local action S̃ε given in Eq. (8). We use an exten-
sion of the hybridization-expansion CTQMC algorithm that
can treat retarded interactions in action formalism [46,47]. In
this approach, we expand the partition function Z̃ε = Tr e−S̃ε

in the hybridization function F (τ − τ ′) = t2 G(τ − τ ′) while
we treat the level energies ε̃ and interaction V exactly.

In general, the hybridization-expansion CTQMC method
[48,49] relies on the expansion of the partition function Z̃ε in
the hybridization into a series of diagrams and sampling these
diagrams stochastically, where Z̃ε can be written as a sum of
configurations zk with weight w(zk ) as Z̃ε = ∑

zk
w(zk ). In the

segment picture, a Monte Carlo configuration zk with expan-
sion order k is represented by k segments with imaginary time
intervals {τ1, τ

′
1}, ..., {τk, τ

′
k} where the particle number is 1

and it is 0 where there is no segment.
In our case, the creation operators cτi at times τi are

connected to annihilation operators cτ ′
j

at times τ ′
j by the

hybridization function F (τi − τ ′
j ), and the collection of these

k! diagrams corresponding to the hybridization lines F is
summed up into a determinant of a matrix F̂ (k) composed of
the hybridization functions. The weight w(zk ) is expressed
as w(zk ) = detF̂ (k) wε̃ wχ̃ , where the contributions wε̃ and
wχ̃ corresponding to the level energy ε̃ and the interaction
term V 2χ̃ are given in Eqs. (A7) and (A10) in Appendix A,
respectively. For further details, please visit Appendix A.

Since the CTQMC method is computationally very de-
manding, we applied it as a reference point in the RS phase.
We used the extended CTQMC impurity solver in the nu-
merical calculations with the combined weight w(zk ) by
means of the Metropolis algorithm to solve the effective local
action given in Eq. (8) for Gε̃(τ ), 〈δn〉ε̃, and χε̃(τ ) self-
consistently in the Fermi-liquid (replica symmetric) phase.
We proceeded to obtain the self-consistent replica symmetric
solution through the following iteration steps: We may start by
an arbitrary ansatz for G[0](τ ), χ̃ [0](τ ), and Q[0]

RS, for example,
with the noninteracting Green’s function and susceptibilities
(for the explicit expressions, please visit Appendix A), at the
zeroth iteration step. We then compute the quantities G[1]

ε̃ (τ ),
χ̃

[1]
ε̃ (τ ), and 〈δn〉ε̃ at the subsequent iteration step with the

effective local action, Eq. (8), using the CTQMC impurity
solver for a wide range of level energies ε̃. The averaged
quantities G[1](τ ), χ̃ [1](τ ), and Q[1]

RS are obtained by (numer-
ical) integration over ε̃ with the distribution P̃(ε̃) as given in
Eqs. (9) and (10). They are used for the next iteration step, and
we repeat this procedure until we reach convergence.

We calculated several points of the phase boundary by
CTQMC using the stability condition given in Eq. (20) below
for various parameter values for t , V , and T , and found ex-
cellent agreement between the IPT and CTQMC calculations.
The spectral functions are also compared and found to show
similar energy dependence between IPT and CTQMC. How-
ever, around zero energy ω ∼ 0 difference arises in the density
of states between the IPT and the numerically exact solution
as we approach the glassy phase by increasing the interaction
V or decreasing the hopping t .

IV. REPLICA SYMMETRIC SPECTRAL FUNCTIONS
AND PHASE BOUNDARY

We used both approaches described in the previous section
to compute the Green’s function G(τ ) and the susceptibility
χ̃ (τ ) in the replica symmetric phase. The average local tun-
neling density of states can then be computed from the Fourier
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FIG. 5. Average low-temperature density of states in the Fermi
liquid phase, as computed by CTQMC and IPT. The density of states
develops a remarkable zero bias anomaly already in the Fermi liquid,
though the distribution of Hartree levels is still featureless. Increasing
quantum fluctuations wash away this correlation hole.

transform G(iω) as

ρ(ω) = 1

π
ImG(iω → ω + i 0+). (19)

In the very last step, we have used a Padé construction to carry
out the analytical continuation.

Figure 5 shows the spectral functions in the Fermi liquid
phase for a moderate interaction, V/W = 0.455, and quite
small temperature, T/W = 0.01, as we drive the system closer
and closer to the Fermi liquid–electron glass quantum phase
transition. For large t , quantum fluctuations destroy the elec-
tron glass and a dirty Fermi liquid is formed. There the density
of states is almost featureless. As we decrease t/W , quan-
tum fluctuations get suppressed and a plasma dip structure
starts to form in the middle of the band, even though the
system still remains in the replica symmetric Fermi liquid
phase. IPT and CTQMC are in very good agreement and
both yield very similar structures. Differences can be at-
tributed to the approximations made within IPT to the limited
CTQMC accuracy and to uncertainties related to the analytical
continuation.

The presence of a plasma dip (or correlation hole) in the
Fermi liquid phase reflects short-range charge correlations
due to the repulsive interactions between neighboring sites.
This correlation hole is a manifestation of Onsager’s back
reaction and is not directly related to the Efros-Shklovskii gap
of the glassy phase [33,34]. Indeed, in the liquid phase, replica
symmetry is maintained, implying that the distribution of the
renormalized Hartree-Fock levels, P̃(ε̃), is still a featureless
Gaussian, in contrast to the tunneling density of states.

The boundary of the electron glass phase is determined
by a stability (marginality) condition against RSB, ensuring

the stability of the solution Qab ≡ QRS. This is essentially
identical to the stability condition appearing in the SK model
[23],

1 = V 2
∫

d ε̃ P̃RS(̃ε ) χ2
stat (̃ε ), (20)

with the static local susceptibility defined as χstat (̃ε ) ≡
∂̃ε 〈δn〉̃ε .

The resulting phase diagram has been presented in Fig. 2
for a finite disorder, W . At any temperature and for any
hopping t , replica symmetry is broken at interactions larger
than some critical value, V � VC (T, t,W ). In the classical
limit, t = 0, in particular, an interaction-driven glass phase
emerges at low temperatures for small disorder. Contrary to
naive expectations, strong disorder destroys the glassy phase
and leads to a trivial strongly disordered phase without RSB:
Fluctuations of the bare levels εi are so large that each level
becomes occupied or unoccupied essentially independently,
leaving no room to interaction-induced frustration. For suf-
ficiently strong interaction, however, a Coulomb glass phase
emerges.

The glass phase can be destroyed not only by extreme dis-
order but also by thermal and quantum fluctuations, induced
by the temperature, T , or the tunneling, t . This is demon-
strated in the cuts shown in Fig. 6 (indicated as dashed lines
in Fig. 2), where we also compare the CTQMC results with
those of IPT. The excellent agreement of these two approaches
validates the latter, approximate method.

The role of thermal and quantum fluctuations is not quite
identical. In the classical (t → 0) limit, V class

C ∼ √
T W , while

in the quantum case (T → 0), the escape rate � ∼ t2/W takes
over the role of the temperature, and V quant

C ∼ t .
At finite temperatures, quantum fluctuations and thermal

fluctuations compete with each other. As demonstrated in
Fig. 6(b), at a finite temperature, small quantum fluctuations
with � � T do not change the critical interaction strength,
VC , and the transition is mostly induced by just thermal fluc-
tuations. For � � T , i.e., t/W �

√
T/W , however, quantum

fluctuations play the dominant role, as evidenced by the al-
most linear shift of VC with increasing t/W .

V. ELECTRON GLASS PHASE: FULL REPLICA
SYMMETRY BREAKING

The exact solution of the self-consistency equations in the
presence of full RSB is a demanding task. One first needs
to solve the nonlocal quantum impurity problem, Eq. (8) for
a relatively large set of ε̃ values, extracting the expectation
values 〈δn〉̃ε as well as the dressed local Green’s functions and
susceptibilities. Then one needs to solve the above-mentioned
flow equations in replica space to update the distribution P̃(̃ε ),
compute the average susceptibilities and Green’s functions
using Eq. (9), and then close the cycle by Eq. (8). Although
this is, in principle, possible at a given point in parameter
space using, e.g., CTQMC methods [50], it appears to be
unavoidable to use an approximate scheme such as IPT if one
aims at determining the complete phase diagram. Below, we
summarize the results of IPT computations. Further CTQMC
results shall be published elsewhere [50].
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FIG. 6. Phase boundary between the electron glass and the Fermi liquid, as computed by continuous time Monte Carlo and IPT along the
lines indicated in Fig. 2. Interactions lead to the formation of the glass. Quantum fluctuations as well as thermal fluctuations melt the electron
gas.

A. Overlap distribution

The differential of the inverse function x(Q) turns out to be
just the distribution of the overlaps between different replicas:

Qab = lim
N→∞

1

N

∑
i

〈δni〉a〈δni〉b,

P(Qab = Q) = dx

dQ
. (21)

The numerically computed function P(Q) is presented in
Fig. 7. In the Fermi liquid phase (not shown), P(Q) is triv-
ial and consists of a delta function, PRS(Q) = δ(Q − QRS).
This distribution indicates a unique, symmetric mean field
solution. In the electron glass phase, the distribution becomes

FIG. 7. Overlap distribution P(Q) in the electron glass phase, as
a function of temperature.

nontrivial, and possible overlaps have a range, Q ∈
[Qmin, Qmax], showing the onset of many symmetry-broken
states. This overlap window becomes broader and broader as
the temperature is lowered, and at the same time, the distri-
bution gets depleted, and has a hight ∼T . This is in line with
the observation, that at T = 0 temperature, replica symmetry
is restored. (It is, however, not so clear if a valid expansion
around this limit exists [29].) Notice that the maximal value,
Qmax(T → 0) remains less than 1/4; this is a consequence of
quantum fluctuations, which tend to reduce the overlaps.

B. Distribution of Hartree-Fock levels and tunneling spectra

As in classical spin glasses [19,33,34], a clear signature of
the glass transition is the emergence of a Coulomb gap struc-
ture in the distribution of Hartree-Fock energies, P̃(̃ε ), shown
in Fig. 8. The Coulomb gap starts to open up gradually after
crossing the phase transition, and a fully developed Coulomb
gap appears only deep in the glassy phase [51]. Although
the pseudogap gets deeper and deeper as the temperature

FIG. 8. Formation of the pseudogap in the distribution P̃ (̃ε )
as a function of temperature. At T > TC , the distribution remains
Gaussian, but as we decrease the temperature below TC a pseudogap
develops gradually. The thick dashed line represents the distribution
at the critical temperature T = TC .
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FIG. 9. Main panel: Evolution of the density of states for various
interaction strengths V . The critical coupling is Vc ≈ 1.31W . When
V > VC , a pseudogap appears in �(ω) that grows with increasing V,
but the density of states at the Fermi level �(0) always remains finite.
Inset: Universal collapse of �(ω). The dashed curve indicates the
scaling curve in the classical limit, t → 0.

decreases, P̃(̃ε = 0) remains finite even at T = 0 temperature
for any finite t . This is a property of the infinite coordination
limit, z → ∞, where Anderson localization is absent, and a
disordered metal state emerges in the absence of interactions
at T = 0 temperature. Nevertheless, interactions larger than a
critical value drive a phase transition to a replica symmetry
broken phase, where the density of states is strongly sup-
pressed but finite even at T = 0 temperature. We can interpret
this phase as a metallic Coulomb glass.

While the distribution of the renormalized energies ε̃ is
conceptually interesting, excepting the classical limit, their
distribution is not directly measurable. What is, however,
measurable is the tunneling density of states at a given site
of renormalized energy, ε̃ ,

ρ̃ε (ω) = 1

π
ImGε̃ (ω+), (22)

and the average density of states, ρ(ω) = ImG(ω+)/π ,

ρ(ω) =
∫

d ε̃ ρ̃ε (ω) P̃(̃ε ) . (23)

Figure 9 shows the formation of the pseudogap in ρ(ω)
at very small temperatures, as interactions are increased. The
density of states at the Fermi energy is finite, and defines a
natural energy scale 
 ≡ �−1(0). This scale becomes smaller
and smaller upon increasing interactions, while ρ(ω) develops
universal scaling as a function of ω · 
/V 2 at low energies,
where it crosses over from a constant to a linear regime,
ρ(ω) ∝ ω/V 2 (see inset in Fig. 9). Notice that the presence
of disorder does not influence this slope, also indicating that
the phase transition we observe is driven by interactions and
not by disorder. The classical scaling function corresponding
to t = 0, also displayed in the inset of Fig. 9, yields the same
slope as the quantum version but the two scaling functions
clearly differ, thereby demonstrating the difference between
the role of thermal and quantum fluctuations. As shown in
Appendix C, the distribution P̃ (̃ε ) exhibits similar universal
scaling structure.

It is instructive to investigate the structure of individual
tunneling spectra, ρ̃ε (ω), shown for a set of levels deep in the

FIG. 10. Unaveraged density of states deep in the glass phase for
various values of ε̃ .

quantum glass regime in Fig. 10. The local density of states
displays peaks at around the renormalized level, ε̃ , which is
broadened by quantum fluctuations. Levels close to the Fermi
level become sharp since surrounding sites have a suppressed
density of states at the pseudogap.

VI. THERMODYNAMICS

To determine the free energy of the glass, we first need to
determine the (negative) free-energy density 	loc(T ) of the
effective replica action Srep, Eq. (6):

	loc(T ) ≡ lim
n→0

1

n
kBT ln

{∫
DcDc e−Srep[ c,c ]

}
. (24)

This is slightly different from the physical free-energy density
of the lattice model, Eq. (1), which we denote by 	phys(T ),
since we must restore some terms that we threw away in
course of the Hubbard-Stratonovic transformation. Restoring
these terms, which depend on the local Green’s function and
susceptibility, we obtain

	latt (T ) = 	loc(T ) + t2

2

∫ β

0
dτ G(τ )G(−τ )

− V 2

4

∫ β

0
dτ χ (τ )2 − βV 2

4

1

n

∑
b
=a

QabQba. (25)

In the replica symmetrical (Fermi liquid) case, Eq. (24)
simplifies and we obtain

	RS
loc (T ) =

∫
d ε̃ P̃ RS(̃ε ) 	ε̃ (T ), (26)

with the free energy 	ε̃ (T ) computed from the local effective
action, Eq. (8), and P̃ RS the Gaussian Hartree level distribu-
tion, displayed below Eq. (8). In this case, the last term of
Eq. (25) also simplifies to

−1

n

βV 2

4

∑
b
=a

QabQba → β
V 2

4
Q2

RS

in the n → 0 limit, yielding a complete expression for the
lattice free energy.

This procedure can be extended to the glassy phase, too,
as outlined in Appendix B, only the computation of 	loc(T )
becomes more complex, since one cannot decouple replicas
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FIG. 11. Temperature dependence of the entropy for the replica
symmetric (RS) and replica symmetry breaking (RSB) solution. The
RSB solution indicates an entropy scaling to zero as T → 0. Since
we can not access the immediate vicinity of the critical temperature
TC with the RSB calculation, S(T ) can not distinguish between a
continuous phase transition and a first order entropy jump at TC .

with a single Hubbard-Stratonovich transformation. One still
has to solve the local effective action S̃ε at the start [with
χ̃ = χ − QRS replaced by χ − Q(1)] and solve the so-called
flow equations in replica space (see Appendix B for details) to
obtain an expression for 	loc(T ) analogous to Eq. (26).

Once 	loc(T ) and the converged Green’s functions and
the order parameter Q(x) are at hand, the thermodynamic
quantities of the lattice model can then be computed from
	latt (T ). In particular, we determined the temperature depen-
dent entropy density S (T ), given by

S = ∂	latt

∂T
. (27)

Our results for S (T ) are displayed by the temperature-
dependent entropy S (T ) in Fig. 11. Although we cannot
decrease the temperature very deep down into the RSB phase,
the numerical data are consistent with the entropy remaining
positive and going quadratically to zero as T → 0, corre-
sponding to a quadratic specific heat.

Calculating the entropy S (T ) numerically in the vicinity
of the phase boundary is very challenging due to the slow
convergence of the iterative solution in the RSB phase, as
well as because of the difficulties in evaluating the numerical
derivative in Eq. (27) with high enough precision. For these
reasons, we were unable to determine S (T ) in the immediate
vicinity of the critical temperature TC , preventing us from an-
swering the extremely difficult question about the order of the
phase transition. The results plotted in Fig. 11 are consistent
either with a continuous phase transition or with a weakly
first-order transition with a latent heat.

We can gain more insight into the properties of the glass
transition by examining the behavior of the overlap function
Q(x) across the phase boundary. We show the RS prediction
QRS, as well as the RSB results QRSB(1) and QRSB(0) as a
function of interaction strength V in Fig. 12. We find that
QRSB(1) − QRSB(0), serving as an order parameter for the
glass transition, changes continuously at the phase boundary.
Similarly, the distribution P̃ is apparently continuous through
the Coulomb glass phase transition. We also note that we do
not see any evidence for a mixed phase between the RS and

FIG. 12. Overlap Q across the glass transition. We plot the RS
solution QRS as well as the RSB results QRSB(1) and QRSB(0) as
a function of interaction strength V . The glass order parameter
QRSB(1) − QRSB(0) remains continuous at the phase boundary, point-
ing toward a continuous phase transition.

RSB regimes in our numerical simulations, which could signal
a first-order phase transition. These findings point toward a
continuous Coulomb glass transition, despite the somewhat
inconclusive results in Fig. 11. We note that various previous
studies have relied on the assumption of a continuous phase
transition by applying Landau theory to examine the glass
transition [27,28].

VII. DISCUSSION

We presented here a detailed study of the mean-field
Coulomb glass (disordered t − V ) model of Ref. [23] in the
quantum regime, in the Fermi liquid (replica symmetrical) as
well as deep in the glassy (replica symmetry) broken phase.
The combination of CTQMC approach with IPT allowed
us to accurately map the phase boundaries separating the
interaction-induced glassy phase from the Fermi liquid phase
in the classical as well as the quantum regime and to deter-
mine spectral functions as well as thermodynamic properties.
Having validated our IPT scheme in the metallic regime, we
used it to enter the electron glass phase, where complete RSB
must be incorporated in the theory.

In the spectral function, we observe the formation of a
plasmonic correlation hole in the average tunneling density
(local density of states) already in the Fermi liquid phase. This
correlation hole smoothly develops into an Efros-Shklovskii
pseudogap when we enter the electron glass phase, where
replica symmetry is broken. The Efros-Shklovskii pseudogap
gap is, however, not fully developed in this mean-field model
even at T = 0 temperature: Similar to thermal fluctuations,
small quantum fluctuations induce a finite density of states
even at the Fermi energy. This is a peculiarity of the infi-
nite coordination limit, where Anderson localization is absent
and a glassy Fermi liquid state emerges rather than a glassy
localized phase. For small tunneling, the average density of
states exhibits universal scaling at low temperatures and low
energies. Similar features have been observed in the transverse
field SK model in Ref. [35].

We have also computed the local density of states. In the
electron glass phase, this typically consists of sharp reso-
nances, located around some renormalized Hartree energies,
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whose distribution also exhibits a pseudogap. These reso-
nances become sharper and sharper as one approaches the
Fermi energy, but retain their finite width, even at the Fermi
surface, indicating again that these states remain extended
even in the glass phase.

We have also constructed the full thermodynamic mean-
field description of the disordered t − V model and analyzed
its thermodynamic properties in both phases. We obtain a con-
tinuous free energy; however, our present results are not yet
accurate enough to distinguish between a continuous phase
transition and a first-order entropy jump. While the entropy
calculation remains inconclusive, the apparent continuous be-
havior of the glass order parameter at the phase boundary, as
well as the lack of numerical evidence for a mixed phase char-
acteristic of first-order transitions, points toward a continuous
glass transition, in accordance with the results of a Landau
functional approach [27,28]. Further, very accurate CTQMC
computations for the entropy within the replica symmetry bro-
ken phase could provide more evidence for this conclusion.

As mentioned above, the absence of the insulating electron
glass phase is an artifact of the infinite coordination limit.
However, the unavoidably metallic glass phase emerging in
this model is relevant for many metallic disordered systems,
which exhibit glassy behavior. Amorphous polycrystaline
solids [11] or granular metals [52] are such examples, but
metallic electron glass phases can be observed in certain two-
dimensional systems [31,53]. Thorough studies of Na+-doped
silicon MOSFETs reveal a metal insulator transition at a car-
rier density, n ≈ nc, and an intermediate metallic glass phase
emerges on the metallic side of the transition at concentrations
ng > n > nc, as evidenced by low-frequency resistance noise
[53] and ageing [8] experiments on low mobility samples. A
metallic glass phase could also be experimentally realized in
ultracold atomic settings by placing fermionic atoms into a
multimode cavity [39].

The understanding and solution of the mean-field Coulomb
glass model, Eq. (1), is just a first step in constructing a
mean-field theory of the real Coulomb glass. In fact, it is quite
unclear how one could incorporate localization and long-
ranged interactions at the same time in a mean-field model. To
have an Anderson-localized phase, one should impose a finite
coordination number, z, and thereby exclude the presence
of an infinite number of nearest neighbors. This challenging
problem can be studied via an extended DMFT approach
[54] and a coherent potential approximation, allowing to use
the present scheme as a local approximation to describe the
glassy phase transition in a finite-dimensional system [34].
Alternatively, Anderson localization can also be captured by
combining DMFT arguments with a typical medium theory
scheme [55].

Another open question is that of glassy dynamics. Global
charge response should reflect the emergence of a glassy
phase through an anomalously slow response and a broad dis-
tribution of scales [9,10]. It remains an open question how the
present approach is able to explain this behavior. Finally, spin
degrees of freedom have been completely neglected in this
paper. The role of Mott-Anderson physics and spontaneous
spin formation should be further explored and elucidated.

Although in this paper we only focused on the descrip-
tion of the Coulomb glass phase, the method and formalism

presented pave the way to study quantum correlations in the
glassy phase of many mean-field quantum glass models, such
as the transverse field SK model and the disordered Dicke
model. All these questions are and should be subject of future
research.
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APPENDIX A: DETAILS OF CONTINUOUS TIME
QUANTUM MONTE CARLO METHOD

In this Appendix, we present the derivation of the com-
bined Monte Carlo weight w(zk ) = detF̂ (k) wε̃ wχ̃ based on
the implementation presented in Ref. [46].

We separate the effective local action given in Eq. (8) as

S̃ε ≡ SF + S1, (A1)

SF = −
∫

τ

∫
τ ′

cτ t2 G(τ − τ ′) cτ ′ , (A2)

S1 =
∫

τ

cτ (∂τ + ε̃)cτ

− V 2

2

∫
τ

∫
τ ′

(χ (τ − τ ′) − QRS) δnτ δnτ ′ , (A3)

and expand the partition function Z̃ε = Tr e−S̃ε in terms of the
hybridization part SF, which gives

Z̃ε = Tr e−(SF+S1 ) (A4)

=
∑

k

∫ β

0
dτ1...dτk

∫ β

0
dτ ′

1...dτ ′
k detF̂ (k)

× Tr
[

e−S1 cτ1 cτ ′
1
...cτk cτ ′

k

] =
∫

D(k)w(zk ), (A5)

where we introduced the notation
∫
D =∑

k

∫ β

0 dτ1...dτk
∫ β

0 dτ ′
1...dτ ′

k , and therefore the weight w(zk )
is expressed as

w(zk ) = detF̂ (k) Tr
[
e−S1 cτ1 cτ ′

1
...cτk cτ ′

k

]
= detF̂ (k)

〈
cτ1 cτ ′

1
...cτk cτ ′

k

〉
. (A6)

By evaluating the first term of S1 in Eq. (A3) in the segment
picture, we obtain the weight wε̃ as

wε̃ = e−ε̃ l , (A7)

where l = ∑k
i=1 li is the total length of the segments li with

li = τi − τ ′
i .
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The weight contribution from the second term in Eq. (A3)
is expressed as

wχ̃ = e
1
2 V 2

∫ β

0 dτ1
∫ β

0 dτ2χ̃ (τ1−τ2 ) δnτ1 δnτ ′
2 . (A8)

Defining a function K (τ ) as K (τ )′′ = V 2χ̃ (τ ) with the condi-
tions K (0) = 0 and K ′(0) = 1/2V 2

∫ β

0 dτ χ̃ (τ ), the integral in
Eq. (A8) is evaluated as

wχ̃ = exp

(
1

2

∑
k1,k2

[−K (τ ′
k1

− τ ′
k2

) + K (τk1 − τ ′
k2

)

+K (τ ′
k1

−τk2 )−K (τk1 −τk2 )]+K ′(0)l (1−2〈n〉)

)
, (A9)

which can be rewritten as

wχ̃ = exp

(
−

∑
i> j

sis j[K (τ̃i − τ̃ j ) − K (0)]

+ K ′(0)l (1 − 2〈n〉)

)

= exp

(
−

∑
i> j

sis jK (τ̃i − τ̃ j )

)
, (A10)

where the times are ordered as 0 < τ̃1 < τ̃2 < · · · < β, and
s is +1 for a creation operator and −1 for annihilation op-
erator. Thus, w(zk ) can finally be expressed in the compact
form w(zk ) = detF̂ (k) wε̃ wχ̃ . We note that quantities can be
measured without additional computation cost compared to
the case of V = 0 with this modified weight.

The Green’s function G(τ ) = 〈Tτ c(0) c(τ )〉 is evaluated in
the same way in our Monte Carlo procedure as in the absence
of the retarded interaction V 2χ̃ (τ − τ ′), namely, for mea-
suring the Green’s function we need a configuration where
operators cτ ′ and cτ are unconnected. In the hybridization
method, this is achieved by removing one of the hybridization
lines, resulting in

G(τ ) =
〈

1

β

k∑
i, j

(F̂ (k) )−1
ji δ̃(τ, τi − τ ′

j )

〉
MC

. (A11)

Here F (k)
i, j = F (τi − τ ′

j ) is the hybridization matrix, and we
have defined

δ̃(τ, τ ′) =
{
δ(τ − τ ′) if τ ′ > 0
−δ(τ − τ ′) if τ ′ < 0.

Both averaged susceptibilities χ (τ ) = 〈δnτ δn0〉 and
χ̃ (τ ) = 〈nτ n0〉 − 〈n〉2 can be sampled in the Monte Carlo
simulation, and therefore the properties χ (τ = 0) = 1/4,
χ̃ (τ = 0) = 1/4 − qRS, and χ̃ (τ ) = χ (τ ) − qRS can be
check-points for the correctness of the CTQMC code.

Our choice for the zeroth order ansatz for G[0](τ ), χ̃ [0](τ ),
and Q[0]

RS in obtaining the self-consistent replica symmetric
solution are the noninteracting ones as

G[0](iωn) = i
1

2t2
(ωn −

√
4t2 + ωn)

FFT−−→ G[0](τ ), (A12)

χ̃ [0](τ ) = G[0](τ )G[0](−τ ), (A13)

Q[0]
RS = 0. (A14)

We note that the choice of the ansatz does not affect the
converged result.

APPENDIX B: REPLICA SYMMETRY BREAKING

In the glassy phase, replica symmetry is broken and Qab

acquires a nontrivial structure in replica space. In the limit
n → 0, we characterize the matrix Qab in terms of a con-
tinuous variable, x ∈ [0, 1], and a corresponding function,
Qab → Q(x). The parameter x in this language characterizes
deeper and deeper levels of RSB as x flows from 0 toward 1.

As stated in the main text, the simple construction leading
to Eqs. (8) and (9) can be generalized to this more complicated
case too. Following steps similar to those in Refs. [34,56], we
can introduce a set of effective one-level models (actions),
parametrized by x, and describing different levels of RSB,
restricted free energy densities, φ̃ε ,x(T ), and corresponding
level distributions, Px (̃ε ), both temperature-dependent quan-
tities.

There is a trade-off between these two quantities: At x = 1,
φ̃ε ,x simplifies to

φ̃ε ,x=1 = 	ε̃ (T ) = 1

β
ln Z̃ε ,

where Z̃ε is computed from the effective action, Eq. (8), with

χ̃ (τ − τ ′) ≡ χ (τ − τ ′) − Q(1). (B1)

At the same time, the distribution P̃ x→1(̃ε ) has a complicated,
renormalized form

P̃ x→1(̃ε ) ≡ P̃ (̃ε ), (B2)

i.e., the distribution, which enters the computation of the av-
erage Green’s function.

In contrast, for x = 0, the distribution P̃ x→0 (̃ε ) becomes
just the bare distribution of levels (without RSB), with QRS

replaced by Q0 ≡ Q(0),

P̃ x→0 (̃ε ) ≡ P0 (̃ε ) = exp {−̃ε 2/(2[W 2 + V 2Q0])}√
2π [W 2 + V 2Q0]

, (B3)

while φ̃ε ,x=0 incorporates all scales of RSB in the range
x ∈ [0, 1] and is directly related to the physical (negative) free
energy density of the local replica action Srep, 	loc(T ), as

	loc(T ) =
∫

d ε̃ P0 (̃ε ) φ̃ε ,x=0. (B4)

The distributions P̃ε ,x and the free energies φ̃ε ,x at different
layers of RSB are related by flow equations, which we can
derive following the lines of Refs. [33,34,56] . This relation is
expressed in terms of simple partial differential equations:

∂xφ̃ε ,x = −V 2

2

dQ

dx

{
∂ 2
ε̃ φ̃ε ,x + βx(∂̃ε φ̃ε ,x )2

}
, (B5)

∂xP = V 2

2

dQ

dx

{
∂ 2
ε̃ P − 2βx ∂̃ε (P∂̃ε φ̃ε ,x )

}
. (B6)

These equations just express the fact that one can determine
φ̃ε ,x and Px (̃ε ) at a deeper RSB level, x − dx, from the knowl-
edge of the energy-dependent free energy at level x and the
corresponding distribution, P(x, ε̃ ).
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Finally, Q(x) is determined from the last equation of
the self-consistency condition Eqs. (7), coinciding with the
marginality condition, which ensures that the free energy is
marginal with respect to all variations of Q(x). This leads to
the self-consistency equation:

Q(x) =
∫

d ε̃ P̃ε (x)[∂̃ε φ̃ε ,x]2. (B7)

Using IPT, the solution thus proceeds as follows: Having
some ansatz for G(τ ), χ̃ (τ ), and Q(x), we first solve the
action S̃ε in Eq. (8) within the Hartree-Fock approximation,
and determine 	ε̃ ,x=1 = 	ε̃ for a dense set of levels ε̃ ’s.
We then solve Eq. (B5) backward from x = 1 to x = 0 to
obtain an estimate for 	ε̃ ,x. Using 	ε̃ ,x, we can now solve
Eq. (B6) to obtain the distributions Px (̃ε ) from Px=0 (̃ε ). We
then use P(̃ε ) together with 	ε̃ ,x to estimate Q(x) by the
marginality condition, Eq. (B7). Finally, having our estimate
for Px=1(̃ε ) = P̃ (̃ε ) and for Q(1), we can use Eq. (9) to obtain
better estimates for χ̃ (τ ) and G(τ ). This procedure is iterated
until convergence is reached.

The most demanding part of this iteration procedure is
the solution of the quantum impurity problem for roughly a
thousand values of ε̃ in each iteration step.

APPENDIX C: UNIVERSAL SCALING OF ˜P (ε̃ )

In the main text, we have shown that the spectral func-
tion ρ(ω) displays universal scaling in the strong interaction

FIG. 13. Main panel: Evolution of the local field distribution
in the RSB phase. The top curve corresponds to the critical cou-
pling, Vc = 1.31W . With increasing the interaction V , a pseudogap
is formed that deepens with a slope independent of the strength of
disorder W . Inset: Scaling of the field distribution deep in the glassy
phase.

limit. The distribution P̃ (̃ε ) displays similar scaling proper-
ties. Similar to the SK model, P̃ (̃ε ) scales linearly over an
extended region in the limit of small quantum-tunneling and
temperatures, P̃ (̃ε ) ≈ 1.13 |̃ε |/V 2, with a slope independent
of the strength of disorder. In the quantum limit, P̃ (0) remains
finite even as T → 0, P̃ (0) = 1/
̃. Similar to ρ(ω), as shown
in the inset of Fig. 13, 
̃P̃ (̃ε ) becomes a universal function
of ε̃ 
̃/V 2 in this quantum limit. Notice, however, that there
seems to be no simple relation between the scales 
̃ and 
.
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