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Quantum teleportation is a primitive in several important applications, including quantum communication,
quantum computation, error correction, and quantum networks. In this paper, we propose an optimal test for
the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel
fidelity between ideal CV teleportation and its experimental implementation. Work prior to ours considered
suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular
states, such as ensembles of coherent states, squeezed states, cat states, etc. Here, we prove that the optimal
state for testing CV teleportation is an entangled superposition of twin Fock states. We establish this result by
reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and
its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an
analytical solution to the energy-constrained diamond distance between a photodetector and its experimental
approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.

DOI: 10.1103/PhysRevResearch.4.023066

I. INTRODUCTION

Quantum teleportation is a fundamental protocol in quan-
tum information theory with no classical analog [1]. It allows
for the simulation of an ideal quantum channel by making
use of entanglement and classical communication. Other than
teleportation of finite-dimensional states [1], quantum states
of fields (e.g., optical modes, the vibrational modes of trapped
ions, etc.) can also be teleported using a protocol called
continuous-variable (CV) quantum teleportation [2].

Ideal CV teleportation of an unknown state is only possible
in the unrealistic limit of noiseless homodyne detection and
infinite squeezing in the two-mode squeezed vacuum (TMSV)
state [2], the latter being the resource state used for the pro-
tocol. In such a theoretical setting, CV teleportation simulates
an ideal quantum channel. A more practical strategy involves
finite squeezing and unideal detection, which simulates an
additive-noise channel on input states, instead of simulating
an identity channel [2]. Due to these limitations, it is natural
to ask the following question: How accurately can ideal CV
teleportation be simulated by its noisy experimental imple-
mentation?

Prior to our work, theoretical and experimental proposals
partially answered this question, by estimating the accuracy
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in teleporting particular quantum states, such as ensembles of
coherent states, squeezed states, etc. [3–13]. Although these
states are relevant for several quantum information processing
applications, they do not represent the performance of CV
teleportation when the goal is to teleport an arbitrary unknown
state. Since teleportation can be used as a gadget in several ap-
plications for either teleporting an unknown state or applying
a gate on an unknown state, it is important to quantify the
worst-case performance of CV teleportation.

In this paper, we solve this open problem by determin-
ing an optimal test for characterizing the performance of
CV teleportation. In particular, by taking the performance
metric to be the energy-constrained channel fidelity [14,15]
between ideal CV teleportation and its experimental imple-
mentation, we determine an optimal input state that can
be used to assess the performance of an experimental im-
plementation. Mathematically, this problem is equivalent to
calculating the energy-constrained channel fidelity between
the identity channel and an additive-noise channel. In this
paper, we develop numerical and analytical techniques to find
exact solutions to the optimization involved in calculating
the energy-constrained channel fidelity. A consequence of our
findings is that there is now an explicit and optimal experi-
mental procedure for characterizing the performance of CV
teleportation. After Eq. (79), we provide details of such an
experimental procedure.

The first main contribution of our paper is the reduction
of the problem of calculating the energy-constrained chan-
nel fidelity between ideal teleportation and its experimental
implementation to a quadratic program over an infinite num-
ber of variables. We then define a truncated version of this
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quadratic program and prove that it is a convex optimization
problem. We numerically solve it using a MATLAB pack-
age, which employs the interior-point method [16]. We also
provide analytical solutions by invoking the Karush-Kuhn-
Tucker (KKT) conditions [17,18]. We then argue that these
solutions to the truncated versions of the quadratic programs
also optimize the energy-constrained channel fidelity defined
over an infinite-dimensional, separable Hilbert space, i.e.,
without any truncation at all.

One of our main findings is that, among all pure bipartite
states, an entangled superposition of a finite number of twin
Fock states is optimal for distinguishing ideal CV teleporta-
tion from its experimental implementation. Our results thus
provide an experimental strategy to verify whether an un-
conditional experimental teleportation with high accuracy is
possible [4]. Here, by unconditional teleportation, we imply
that teleportation of any unknown, energy-constrained state
should be feasible. We also discuss why previous propos-
als based on the teleportation of coherent states or other
commonly used states are not suitable for quantifying the
performance of unconditional teleportation.

As an additional result, we analytically find the energy-
constrained diamond distance between a photodetector and its
experimental approximation. We model the noisy version of
a photodetector as a pure-loss channel followed by an ideal
photodetector. We also find that number-diagonal states opti-
mize the energy-constrained diamond distance and show that
entanglement is not required for the optimal distinguishability
of the ideal photodetector from its experimental implementa-
tion.

The rest of our paper is organized as follows. We first re-
view some definitions and prior results that will be employed
to understand the main results, including quantum states,
channels, and distinguishability measures (Sec. II A), bosonic
Gaussian states and channels (Sec. II B), and the Karush-
Kuhn-Tucker conditions for convex optimization (Sec. II C).
We then present our results on an optimal test for CV telepor-
tation. After that, we present our results on an optimal test for
photodetectors. Finally, we summarize our results and state
some open problems.

In the Appendixes, we provide proofs for the results pre-
sented in the main text of our paper. In Appendix A, we
provide proofs related to our results on an optimal test for the
performance of CV quantum teleportation. Finally, we pro-
vide proofs for our results on photodetectors in Appendix B.

II. PRELIMINARIES

A. Quantum states, channels, and distinguishability measures

In this section, for completeness, we review definitions of
quantum states and channels, as well as some distinguishabil-
ity measures for them. Let H denote an infinite-dimensional,
separable Hilbert space. Let T (H) denote the set of trace-class
operators, i.e., all operators M with finite trace norm:

‖M‖1 ≡ Tr(
√

M†M ) < ∞. (1)

Let D(H) denote the set of density operators acting on H, i.e.,
those that are positive semidefinite with unit trace. The trace
distance between two quantum states ρ, σ ∈ D(H) is given by

‖ρ − σ‖1. The fidelity between ρ and σ is defined as follows
[19]:

F (ρ, σ ) ≡ ‖√ρ
√

σ‖2
1. (2)

The sine distance between ρ and σ is defined as [20–23]

C(ρ, σ ) ≡
√

1 − F (ρ, σ ). (3)

The following inequalities relate the fidelity and the trace
distance [24]:

1 −
√

F (ρ, σ ) � 1
2‖ρ − σ‖1 �

√
1 − F (ρ, σ ). (4)

Let HA denote a Hamiltonian corresponding to the quantum
system A. Let NA→B and MA→B be two quantum channels.
Let R denote a reference system. Then the energy-constrained
diamond distance between NA→B and MA→B is defined for
E ∈ [0,∞) as [25,26]

‖NA→B − MA→B‖�E

≡ sup
ρRA:Tr(HAρA )�E

‖NA→B(ρRA) − MA→B(ρRA)‖1, (5)

where ρRA ∈ D(HR ⊗ HA) and it is implicit that the identity
channel IR acts on system R. Furthermore, the optimization
is over every possible reference system R. The energy-
constrained channel fidelity between two quantum channels
NA→B and MA→B for E ∈ [0,∞) is defined as [14,15]

FE (NA→B,MA→B)

≡ inf
ρRA:Tr(HAρA )�E

F (NA→B(ρRA),MA→B(ρRA)). (6)

The energy-constrained sine distance between two quantum
channels NA→B and MA→B for E ∈ [0,∞) is defined as
[14,15]

CE (NA→B,MA→B)

≡ sup
ρRA:Tr(HAρA )�E

C(NA→B(ρRA),MA→B(ρRA)). (7)

Although each of the above measures is defined with an op-
timization over mixed states and arbitrary reference systems,
it suffices to optimize over pure states such that the reference
system R is isomorphic to the channel input system A, as a
consequence of purification, the Schmidt decomposition, and
data processing.

B. Bosonic Gaussian states and channels

This section provides a brief review of bosonic Gaussian
states and channels. See Refs. [27,28] for further details.

Let ρ ∈ D(H⊗n) denote a density operator corresponding
to n bosonic modes, where H⊗n = ⊗n

i=1Hi and Hi is the
Hilbert space corresponding to the ith mode. Let x̂i and p̂i

denote the respective position- and momentum-quadrature op-
erators of the ith mode. Let

r̂ ≡ (x̂1, p̂1, . . . , x̂n, p̂n)T . (8)

Then the following commutation relation holds:

[r̂, r̂T ] = i�, (9)
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where

� ≡
n⊕

i=1

�0, �0 ≡
[

0 1
−1 0

]
. (10)

Furthermore, we define the annihilation operator for the ith
mode as

âi ≡ (x̂i + i p̂i )/
√

2. (11)

For r ∈ R2n, any quantum state ρ ∈ D(H⊗n) can be repre-
sented as follows:

ρ = 1

(2π )n

∫
d2nr χρ (r)D(r), (12)

where D(r) ≡ exp(irT �r̂) is the unitary displacement op-
erator and χρ (r) ≡ Tr[D(−r)ρ] is the Wigner characteristic
function of the state ρ. Let

μρ ≡ 〈r̂〉ρ, (13)

Vρ ≡ 〈{(r̂ − μρ ), (r̂ − μρ )T }〉ρ (14)

denote the mean vector and covariance matrix of the state ρ,
respectively. Then ρ is Gaussian if its characteristic function
has the following Gaussian form:

χρ (r) = exp
(− 1

4 rT �T Vρ�r + irT �T μρ

)
. (15)

We now review experimentally relevant examples of
bosonic states. A coherent state |α〉 is an eigenvector of
the annihilation operator â with eigenvalue α, i.e., â|α〉 =
α|α〉, which can also be represented as |α〉 = D(α)|0〉, where
D(α) = eαâ†−α∗â. A single-mode thermal state with mean pho-
ton number n̄ = 1/(eβω − 1) has the following representation
in the photon-number basis:

θ (n̄) ≡ 1

1 + n̄

∞∑
n=0

( n̄

n̄ + 1

)n

|n〉〈n|. (16)

In this paper, we employ entangled superpositions of twin
Fock states, which we define as

|ψ〉RA =
∞∑

n=0

√
pn|n〉R|n〉A, (17)

where pn ∈ R+ and
∑∞

n=0 pn = 1. One special example of
such a state is the two-mode squeezed vacuum state with pa-
rameter n̄, which is equivalent to a purification of the thermal
state in (16) and is defined as

|ψTMS(n̄)〉 ≡ 1√
n̄ + 1

∞∑
n=0

√( n̄

n̄ + 1

)n

|n〉R|n〉A. (18)

Quantum channels that take an arbitrary Gaussian input
state to another Gaussian state are called quantum Gaussian
channels. Let N denote a Gaussian channel that takes n modes
to m modes. Then N transforms the Wigner characteristic
function χρ (r) of a state ρ as

χρ (r) → χN (ρ)(r)

= χρ (�T X T �r) exp
(− 1

4 rT �T Y �r + irT �T d
)
, (19)

where X is a real 2m × 2n matrix, Y is a real 2m × 2m positive
semidefinite symmetric matrix, and d ∈ R2m, such that they
satisfy the following condition for N to be a physical channel:

Y + i� − iX�X T � 0. (20)

Furthermore, since a Gaussian state ρ can be completely
characterized by its mean vector μρ and covariance matrix
Vρ , the action of the Gaussian channel N on the state ρ can be
described as follows:

μρ → Xμρ + d,

Vρ → XVρX T + Y. (21)

A quantum pure-loss channel is a Gaussian channel that
can be characterized by a beam splitter of transmissivity η ∈
(0, 1), coupling the signal input state with the vacuum state,
and followed by a partial trace over the environment. In the
Heisenberg picture, the beam-splitter transformation is given
by the following Bogoliubov transformation:

b̂ = √
ηâ −

√
1 − ηê, (22)

ê′ =
√

1 − ηâ + √
ηê, (23)

where â, b̂, ê, and ê′ are the annihilation operators representing
the sender’s input mode, the receiver’s output mode, an en-
vironmental input mode, and an environmental output mode
of the channel, respectively. Let Lη

A→B denote a pure-loss
channel with transmissivity η. Then the action of the pure-loss
channel Lη

A→B on a state ρA is given by

Lη
A→B(ρ) ≡ (

TrE ′ ◦Bη

AE→BE ′
)
(ρA ⊗ |0〉〈0|E ), (24)

where Bη

AE→BE ′ denotes the beam-splitter channel correspond-
ing to (22) and (23). Moreover, the X and Y matrices for
Lη are given by X = √

ηI2 and Y = (1 − η)I2, where I2 is a
two-dimensional identity matrix.

A quantum-limited amplifier channel with parameter G ∈
(1,∞) is characterized by a two-mode squeezer, coupling the
signal input with the vacuum state, followed by a partial trace
over the environment. We denote a quantum-limited amplifier
channel by AG

A→B. Then the mode transformation correspond-
ing to the two-mode squeezing transformation is given by

b̂ =
√

Gâ + √
G − 1ê†, (25)

ê′ = √
G − 1â† +

√
Gê, (26)

where â, b̂, ê, and ê′ are the same as defined above for a pure-
loss channel. Then the action of the quantum-limited amplifier
channel AG

A→B on a state ρA is given by

AG
A→B(ρ) ≡ (

TrE ′ ◦SG
AE→BE ′

)
(ρA ⊗ |0〉〈0|E ), (27)

where SG
AE→BE ′ denotes the two-mode squeezing channel

corresponding to (25) and (26). Furthermore, the X and Y ma-
trices for AG

A→B are given by X = √
GI2 and Y = (G − 1)I2,

where I2 is again a two-dimensional identity matrix.
Let T ξ

A→B denote an additive-noise quantum Gaussian
channel, defined as

T ξ
A→B(ρA) ≡

∫
d2α Gξ (α) D(α)ρAD(−α) , (28)
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where Gξ (α) ≡ (1/πξ ) exp(−|α|2/ξ ) is a zero-mean, circu-
larly symmetric complex Gaussian probability density func-
tion with variance ξ > 0 and D(α) ≡ exp(αâ† − α∗â) denotes
a displacement operator, with α ∈ C. From Refs. [29,30], it
follows that an additive-noise channel T ξ

A→B can be expressed
as a concatenation of a pure-loss channel Lη

A→B′ with trans-
missivity η followed by a quantum-limited amplifier channel
A1/η

B′→B with gain parameter 1/η, where ξ = (1 − η)/η. This
observation is critical to the developments in this paper.

Let N and M be quantum channels that take one input
mode to m output modes. Then N and M are jointly phase
covariant [15] if the following holds:

NA→B(ein̂φρe−in̂φ )

=
(

m⊗
i=1

ein̂i (−1)ai φ

)
NA→B(ρ)

(
m⊗

i=1

e−in̂i (−1)ai φ

)
, (29)

MA→B(ein̂φρe−in̂φ )

=
(

m⊗
i=1

ein̂i (−1)ai φ

)
MA→B(ρ)

(
m⊗

i=1

e−in̂i (−1)ai φ

)
, (30)

where ai ∈ {0, 1} for i ∈ {1, . . . , m} and n̂i is the photon-
number operator for the ith mode.

C. Karush-Kuhn-Tucker conditions for convex optimization

In this section, we review the Karush-Kuhn-Tucker (KKT)
conditions used in solving convex optimization problems with
inequality constraints. This is also critical to the analysis
in this paper. Let x ∈ Rn and let f : Rn → R. Consider the
following primal optimization problem:

min
x∈Rn

f (x)

subject to ui(x) � 0, ∀i ∈ {1, . . . , k},
v j (x) = 0, ∀ j ∈ {1, . . . , l}.

(31)

Let L(x, a, b) denote a Lagrangian with the following form:

L(x, a, b) ≡ f (x) +
k∑

i=1

aiui(x) +
l∑

j=1

b jv j (x), (32)

where a ≡ (a1, . . . , ak ), b ≡ (b1, . . . , bl ), and ai, bi ∈ R.
Using the Lagrange dual function

g(a, b) ≡ min
x∈Rn

L(x, a, b), (33)

the dual problem corresponding to the optimization in (31)
can be defined as follows (see Ref. [31] for a review):

max
a,b

g(a, b)

subject to ai � 0, ∀i ∈ {1, . . . , k},
(34)

where b ∈ Rl .
Let x̃ denote a primal feasible point and let (ã, b̃) denote a

dual feasible point. Then it is easy to show that f (x̃) � g(ã, b̃),
which is the weak duality condition. To see this, consider the

following chain of inequalities:

g(ã, b̃) = min
x∈Rn

f (x) +
k∑

i=1

ãiui(x) +
l∑

j=1

b̃ jv j (x) (35)

� f (x̃) +
k∑

i=1

ãiui(x̃) +
l∑

j=1

b̃ jv j (x̃) (36)

� f (x̃). (37)

The first equality follows from (32) and (33). The first inequal-
ity follows due to the minimization over all x ∈ Rn in (35).
Since x̃ is a primal feasible point, it satisfies v j (x̃) = 0 for all
j and ui(x̃) � 0 for all i. Moreover, since ã is a dual feasible
point, ãi � 0 for all i. Collectively, these conditions imply that∑k

i=1 ãiui(x̃) � 0 and
∑l

j=1 b̃ jv j (x̃) = 0, which leads to the
last inequality.

The duality gap f (x̃) − g(ã, b̃) provides a way to bound
how suboptimal primal and dual feasible points are. Let f ∗
denote the primal optimal value and g∗ denote the dual opti-
mal value. Then the following inequalities hold:

f (x̃) − f ∗ � f (x̃) − g∗ � f (x̃) − g(ã, b̃), (38)

which follow from the weak duality condition in (37) and from
the definitions of the primal and dual optimal values. Thus we
get

f ∗ ∈ [ f (x̃), g(ã, b̃)] and g∗ ∈ [ f (x̃), g(ã, b̃)], (39)

which implies that the optimality of f (x̃) and g(ã, b̃) depends
on the duality gap. In other words, if the duality gap is zero, x̃
is a primal optimal point and (ã, b̃) is a dual optimal point.

We now describe the KKT conditions for the aforemen-
tioned optimization problem, which are necessary conditions,
in the sense that if a primal optimal point x∗ and a dual optimal
point (a∗, b∗) with zero duality gap exist, they satisfy the KKT
conditions. We later will argue when the KKT conditions
are also sufficient for the optimality of a solution. The KKT
conditions are given by

Stationarity condition ∂xL(x, a, b)|x∗ = 0

Complementary slackness a∗
i ui(x

∗) = 0, ∀i ∈ {1, . . . , k}
Primal feasibility ui(x

∗) � 0, ∀i ∈ {1, . . . , k},
v j (x

∗) = 0, ∀ j ∈ {1, . . . , l}
Dual feasibility a∗

i � 0, ∀i ∈ {1, . . . , k}.
(40)

We provide a brief proof justifying why primal and dual
optimal points with zero duality gap satisfy the KKT con-
ditions. First note that if x∗ is a primal optimal solution, it
satisfies the primal feasibility conditions, as a consequence
of (31). Similarly, if (a∗, b∗) is a dual optimal solution, as a
consequence of (34), it satisfies the dual feasibility condition.
Moreover, the zero duality gap implies that the inequalities in
(35)–(37) should be saturated. Therefore the primal optimal
point x∗ minimizes L(x, a∗, b∗), which implies that the partial
derivative of L(x, a∗, b∗) at x = x∗ is equal to zero. In other
words, the stationarity condition is satisfied. Finally, the zero
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duality gap further implies that∑
i

a∗
i ui(x

∗) = 0. (41)

Since a∗
i ui(x∗) � 0 for all i ∈ {1, . . . , k}, from (41), we get

that a∗
i ui(x∗) = 0 for all i. Thus complementary slackness is

satisfied. This completes the proof.
In this paper, we solve an optimization problem in which

f (x) is a convex quadratic function in x, and ui(x) and v j (x)
are linear in x. Thus the Lagrangian in (32) is a convex func-
tion in x. We now argue that for such optimization problems,
the KKT conditions are both necessary and sufficient. Let us
assume that x̄ and (ā, b̄) satisfy the KKT conditions. Then
from the stationarity condition in (40), we get ∂xL(x, ā, b̄)|x̄ =
0. Since L(x, ā, b̄) is convex in x, we get that

min
x

L(x, ā, b̄) = L(x̄, ā, b̄). (42)

Therefore, from (33), it follows that

g(ā, b̄) = f (x̄) +
k∑

i=1

āiui(x̄) +
l∑

j=1

b̄ jv j (x̄) (43)

= f (x̄), (44)

where the last equality follows from the KKT conditions, i.e.,
āiui(x̄) = 0 for all i and v j (x̄) = 0 for all j. Thus the zero
duality gap in (44) implies that x̄ and (ā, b̄) are primal and
dual optimal solutions, respectively, as argued in (39).

III. QUANTIFYING THE PERFORMANCE OF
CONTINUOUS-VARIABLE QUANTUM TELEPORTATION

Note that ideal CV teleportation induces an identity chan-
nel IA→B on input states. On the other hand, an experimental
implementation of CV teleportation realizes an additive-noise
channel T ξ

A→B with the noise parameter ξ , as defined in (28),
which quantifies unideal squeezing and unideal detection in
the teleportation protocol [2].

A. Reduction of energy-constrained channel fidelity to a
quadratic program

In order to quantify the accuracy in implementing CV
teleportation, we evaluate the following energy-constrained
channel fidelity between IA→B and T ξ

A→B:

FE
(
IA→B, T ξ

A→B

)
= inf

ρRA:Tr(HAρA )�E
F

(
IA→B(ρRA), T ξ

A→B(ρRA)
)
, (45)

where E ∈ [0,∞) denotes the energy constraint, HA denotes
a Hamiltonian corresponding to the quantum system A, ρRA ∈
D(HRA) denotes an arbitrary state, and it is implicit that the
identity channel IR acts on system R. Here, F (ρ, σ ) is the
fidelity as defined in (2).

Since the identity channel (ideal teleportation) and an
additive-noise channel are jointly phase covariant (recall the
definition from Sec. II B), it suffices to restrict the optimiza-
tion in the energy-constrained channel fidelity in (45) over

pure states having the following form [15]:

|ψ〉RA =
∞∑

n=0

√
pn|n〉R|n〉A, (46)

for some pn ∈ R+ such that
∑∞

n=0 pnn � E and
∑∞

n=0 pn = 1.
We call the state |ψ〉RA in (46) an entangled superposition of
twin Fock states.

To see the claim above, consider that, as discussed previ-
ously, the optimization in (45) can be conducted over pure
states satisfying the energy constraint, as follows:

FE
(
IA→B, T ξ

A→B

) = inf
φRA:Tr(n̂AφA )�E

F
(
φRA, T ξ

A (φRA)
)
, (47)

where φRA is a pure state. We now argue that the optimization
in (47) can be further restricted to pure states that are entan-
gled superpositions of twin Fock states, satisfying the energy
constraint. Let φRA be an arbitrary state satisfying the energy
constraint, and set φA = TrR(φRA). Consider the following
phase averaging of φA:

ψA ≡ 1

2π

∫ 2π

0
dθ ein̂θφAe−in̂θ (48)

=
∞∑

n=0

|n〉〈n|φA|n〉〈n| (49)

=
∞∑

n=0

pn|n〉〈n|A, (50)

where pn = 〈n|φA|n〉.
Then from isometric invariance and monotonicity of fi-

delity, and from the joint phase covariance of IA→B and T ξ
A→B,

it follows that (see Proposition 54 of Ref. [15], as well as
Ref. [32])

F
(
ψRA,

(
IR ⊗ T ξ

A→B

)
(ψRA)

)
� F

(
φRA,

(
IR ⊗ T ξ

A→B

)
(φRA)

)
, (51)

where ψRA = |ψ〉〈ψ |RA is a purification of ψA in (50).
Since the phase-averaging operation does not change the

mean photon number, we get that (Proposition 54 of Ref. [15])

Tr(n̂ψA) = Tr(n̂φA). (52)

Thus, combining (47) and (51) further reduces the optimiza-
tion in (47) as follows:

FE
(
IA→B, T ξ

A→B

)
= inf

ψRA:Tr(n̂AψA )�E
F

(
ψRA, T ξ

A→B(ψRA)
)
, (53)

where |ψ〉RA is given by (46) with
∑∞

n=0 pnn � E .
We now show that the optimization in (45) can be formu-

lated as a quadratic program (see Ref. [33] for a review of
quadratic programs). Recall that the adjoint of a quantum-
limited amplifier channel A1/η is related to a pure-loss channel
Lη in the following sense [34]: (A1/η )† = ηLη, which leads to

F (ψRA, T ξ
A→B(ψRA)) = η Tr[(L1−η(ψA))2], (54)
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where

ψA =
∞∑

n=0

pn|n〉〈n|A. (55)

To see the claim in (54), recall that the adjoint of a quantum-
limited amplifier channel A1/η is related to a pure-loss channel
Lη as follows [34]:

(A1/η )† = ηLη. (56)

Then we get

F
(
ψRA, T ξ

A→B(ψRA)
) = Tr

[
ψRAT ξ

A→B(ψRA)
]

(57)

= Tr[ψRA(A1/η ◦ Lη )(ψRA)] (58)

= η Tr[(Lη(ψRA))2] (59)

= η Tr[(L1−η(ψA))2]. (60)

Finally, from (60), we get

F
(
ψRA, T ξ

A→B(ψRA)
) = η Tr[(L1−η(ψA))2] (61)

= η

∞∑
n,m=0

pn pm

min{n,m}∑
k=0

(
n

k

)(
m

k

)
× (1 − η)2kηn+m−2k (62)

=
∞∑

n,m=0

pn pm

min{n,m}∑
k=0

(
n

k

)(
m

k

)

× ξ 2k

(1 + ξ )n+m+1
, (63)

where we used

L1−η(ψA) =
∞∑

n=0

pn

n∑
k=0

(
n

k

)
(1 − η)kηn−k|k〉〈k|A, (64)

ξ = 1 − η

η
. (65)

Let p = (p0, p1, . . . ). Then from (63), the desired op-
timization problem in (53) is equivalent to the following
quadratic program in p with inequality constraints:

FE
(
IA, T ξ

A

) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf p f (p)

subject to
∑∞

n=0 npn � E

pn � 0, ∀n ∈ Z�0∑∞
n=0 pn = 1,

(66)

where

f (p) ≡
∞∑

n,m=0

pn pm

min{n,m}∑
k=0

(
n

k

)(
m

k

)
ξ 2k

(1 + ξ )n+m+1
. (67)

Henceforth, we denote F (ψRA, T ξ
A→B(ψRA)) as f (p).

In general, solutions to quadratic programs can be obtained
numerically by using a MATLAB package that employs the
interior-point method [16]. Moreover, analytical solutions can
be calculated by invoking the Karush-Kuhn-Tucker (KKT)
conditions [17,18]. However, these methods are suitable for
solving optimization problems over a finite number of vari-
ables. Therefore we first define a truncated version of the

energy-constrained channel fidelity between two quantum
channels, which is equivalent to a quadratic program over a
finite number of variables for the task of distinguishing the
identity channel from an additive-noise channel.

Let M denote the truncation parameter, and let HM denote
an (M + 1)-dimensional Fock space {|0〉, |1〉, . . . , |M〉}. Let
ωA ∈ D(HM ). We define the energy-constrained channel fi-
delity between IA→B and T ξ

A→B on a truncated Hilbert space
as

FE ,M
(
IA→B, T ξ

A→B

)
≡ inf

ωRA∈D(HR⊗HM ):
Tr(n̂ωA )�E

F (I (ωRA), T ξ (ωRA)), (68)

where ωRA is an extension of ωA. Similar to the previous case,
it suffices to optimize over pure bipartite states of systems
R and A, with system R isomorphic to system A, so that the
dimension of R can be set to M + 1.

We redefine the probability vector as p = (p0, . . . , pM ).
Then from arguments similar to those used in deriving (66),
we find that

FE ,M
(
IA→B, T ξ

A→B

) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf p f (p)

subject to
∑M

n=0 npn � E

pn � 0, ∀n∑M
n=0 pn = 1.

(69)
We now provide the argument of Ref. [35], that the ob-

jective function in (69) is convex in p. Let A(ξ ) denote the
Hessian corresponding to f (p). By inspecting (67), its matrix
elements are given by

[A(ξ )]n,m
∂2

∂ pn∂ pm
f (p) (70)

= 2
min{n,m}∑

k=0

(
n

k

)(
m

k

)
ξ 2k

(1 + ξ )n+m+1
. (71)

We note that A(ξ ) can be expressed as follows:

A(ξ ) =
M∑

k=0

2ξ 2k

1 + ξ
|ϒ〉〈ϒ | � 0, (72)

where

|ϒ〉 =
M∑

n=0

(
n

k

)
1

(1 + ξ )n
|n〉, (73)

which implies that for an arbitrary value of M, the Hes-
sian A(ξ ) is positive semidefinite. As a consequence, the
objective function f (p) is convex in p [see (A15)–(A18) in
Appendix A 1 for more details].

Since the inequality constraints in (66) are linear in p, the
convexity of f (p) ensures that an optimal point obtained from
either numerical or analytical methods is the global optimal
point. In Fig. 1, we plot solutions of the quadratic program in
(69) for different values of the energy-constraint parameter E ,
with the choices indicated in the figure legend. As shown in
Fig. 1, for a fixed value of the noise parameter ξ , the accuracy
in implementing CV teleportation decreases as the energy
constraint on the input states increases.
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FIG. 1. Plot of the energy-constrained channel fidelity
FE (IA→B,T ξ

A→B) between ideal teleportation and its experimental
implementation vs the noise parameter ξ . Here, we denote
FE (IA→B,T ξ

A→B) by FE for simplicity. In the figure, we select certain
values of the mean-photon energy E of the channel input, with
the choices indicated in the figure legend. For a fixed value of
E , we solve the optimization program in (69) for M = 50. The
figure indicates that for a fixed value of the noise parameter ξ ,
the simulation of CV teleportation is more accurate as the energy
constraint on the input states decreases.

Using the KKT conditions, we can obtain analytical solu-
tions to the optimization problem in (66). For arbitrary values
of E � 0 and ξ � 0, the analytical form of the solution can
be obtained by first solving the problem numerically for high
values of the truncation parameter M, which provides infor-
mation about the nonzero elements of the optimal probability
vector p∗. Using that information, the KKT conditions can
then be solved analytically.

B. Examples of evaluating the energy-constrained channel
fidelity

We now discuss some examples (please see Appendix A 2
for more details). Suppose that E = 1.2 and ξ = 2/3. First,
we numerically find that the optimal solution has p∗

n = 0 for
all n, except for n ∈ {0, 1, 2}. Then by invoking the KKT
conditions, we find that

p∗
0 = ξ (5ξ + 3E (1 − ξ ) − 2) − 1

6ξ 2
, (74)

p∗
1 = 1 + ξ (2 − 3E + ξ )

3ξ 2
, (75)

p∗
2 = (1 + ξ )(ξ (3E − 1) − 1)

6ξ 2
, (76)

with the following optimal value of the objective function
f (p) in (69):

f ∗ = f (p∗) (77)

= 5 + 5ξ (2 + ξ ) − 3Eξ (2 + (2 − E )ξ )
6(1 + ξ )3

. (78)

Using the KKT conditions, we find that the same solution
is optimal for the quadratic program over an infinite number of

variables in (66) (please see Appendix A 2 for more details).
Moreover, for this example, the optimal state to distinguish
ideal CV teleportation from its experimental implementation
is given by

|ψ〉RA = √
p∗

0|00〉RA + √
p∗

1|11〉RA + √
p∗

2|22〉RA. (79)

In summary, the energy-constrained channel fidelity be-
tween ideal teleportation and its experimental implementation
can be calculated by employing the following three steps.

(1) Set the truncation parameter value M to be larger than
E . Then the quadratic program in (69) can be solved numeri-
cally, which provides information about the nonzero elements
in the optimal probability vector p∗.

(2) Use information about p∗ obtained in step 1 to analyti-
cally solve the KKT conditions. If all the KKT conditions are
satisfied, the solution obtained in step 1 is also a solution to
the quadratic program in (66). If all the KKT conditions are
not satisfied, repeat step 1 with a larger value of the truncation
parameter M and then again solve the KKT conditions.

(3) Use the solutions from step 2 in (45)–(67) to obtain
analytical expressions for the energy-constrained channel fi-
delity between ideal CV teleportation and its experimental
approximation and for the corresponding optimal state.

C. Experimental scheme for estimating the energy-constrained
channel fidelity

We now outline an experimental scheme to estimate the
energy-constrained channel fidelity between ideal teleporta-
tion and its experimental implementation. We note that the
experimental procedure is particularly important when the
value of the energy-constraint parameter is high.

(1) Alice experimentally prepares the state |ψ〉RA, as de-
fined in (46) with tunable parameters {pn}n. Throughout the
experiment, we assume that

∑
n pnn � E , where E ∈ [0,∞)

is fixed.
(2) Alice and Bob then perform the CV teleportation pro-

tocol [2]. Depending on the squeezing in the shared TMSV
state and the detection efficiency in the teleportation protocol,
the final noisy state at Bob’s end is given by ρRB = (IR ⊗
T ξ

A→B)(ψRA).
(3) Bob estimates the fidelity between |ψ〉RA and ρRB by

using the quantum optical SWAP test [36,37].
(4) Depending on the fidelity value, Alice updates the pa-

rameters {pn}n of the state |ψ〉RA, and the CV teleportation
experiment is repeated. Here, the goal is to update parameters
such that the fidelity between ψRA and ρRB decreases. Since
the objective function is convex [see Eq. (72)], an optimal so-
lution can be obtained after a few iterations of the teleportation
protocol.

D. Comparison with previous results

Let us compare our results with previous proposals based
on the teleportation of coherent states and the two-mode
squeezed vacuum state. Let |α〉 denote a coherent state and
let E = |α|2. Then the fidelity between |α〉 and T ξ

A→B(|α〉〈α|)
is given by

F
(|α〉〈α|, T ξ

A→B(|α〉〈α|)) = 1

1 + ξ
. (80)
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Optimal

TMSV

Coherent

FIG. 2. Plot of the fidelity between the identity channel IA→B and
the additive-noise channel T ξ

A→B vs the additive noise parameter ξ ,
for different input states, with the choices indicated in the figure leg-
end. We set the energy-constraint parameter value to E = 1.9. Red
dots plot the energy-constrained channel fidelity between IA→B and
T ξ

A→B. The black dashed curve and the blue dashed curve represent
the fidelity of teleportation for a coherent state and a two-mode
squeezed vacuum state, respectively.

Let |ψTMS(E )〉 denote a two-mode squeezed vacuum state,
defined as in (46) with pn = En

(E+1)n+1 . Then we find that

F
(
ψTMS(E ), T ξ

A→B[ψTMS(E )]
) = 1

1 + (2E + 1)ξ
. (81)

These expressions can be evaluated using Eq. (4.51) of
Ref. [28]. See Appendix A 3 for further details of these cal-
culations.

In Fig. 2, we plot the fidelity between IA→B and T ξ
A→B for

several input states versus ξ , for E = 1.9. We first numeri-
cally estimate the energy-constrained channel fidelity between
IA→B and T ξ

A→B for E = 1.9, which is plotted using red dots in
Fig. 2. In order to estimate the channel fidelity on a truncated
Hilbert space, we set the truncation parameter M = 50. Black
and blue dashed lines correspond to F (|α〉〈α|, T ξ

A→B(|α〉〈α|))
and F (ψTMS(E ), T ξ

A→B[ψTMS(E )]), respectively.
Figure 2 indicates that for a fixed value of E , coherent

states and two-mode squeezed vacuum states are not optimal
tests for the performance of CV quantum teleportation. Inter-
estingly, however, the TMSV state is pretty close to being an
optimal test for CV teleportation. From the prior results of
Sec. 12 of Ref. [15], it is known that the TMSV state is in fact
optimal among all Gaussian input states, and so it is interest-
ing that a non-Gaussian state achieves better performance.

IV. QUANTIFYING THE PERFORMANCE
OF EXPERIMENTAL PHOTODETECTORS

In this section, we characterize the performance of an ex-
perimental approximation of an ideal photodetector.

Let P denote the channel corresponding to the ideal pho-
todetector, whose action on an input state ρ is defined as

follows:

P (ρ) ≡
∞∑

n=0

〈n|ρ|n〉|n〉〈n|. (82)

The interpretation of this channel is that it measures the input
state in the photon-number basis and then outputs the mea-
sured value in a classical register.

A simple way to model the noise in photodetection is to
account for the loss of photons [38]. In particular, we define
the experimental approximation of P as follows:

P̃η(ρ) ≡ (P ◦ Lη )(ρ). (83)

We now evaluate the energy-constrained diamond distance
between P̃η and P . Employing the joint phase covariance of P
and P̃η, it follows that among all pure states, entangled super-
positions of twin Fock states, as defined in (46), are optimal to
distinguish P from P̃ with respect to the energy-constrained
diamond distance (see Appendix B for more details).

Let {E} ≡ E − �E�. Then from the direct-sum property of
the trace distance on classical-quantum states and convexity
of the function x → ηx, where η ∈ [0, 1), we find that (see
Appendix B for more details)

1
2‖P − P̃η‖�E = 1 − [(1 − {E})η�E� + {E}η�E�]. (84)

Moreover, the state that optimizes the energy-constrained dia-
mond distance in (84) is given by the following mixed number
state:

ψA = (1 − {E})|�E�〉〈�E�|A + {E}|�E�〉〈�E�|A. (85)

From (85) it follows that entanglement is not necessary to
attain the optimal distinguishability of the ideal photodetector
P from its experimental approximation P̃η.

In Appendix B, we also consider a task of distinguishing
two noisy photodetectors P̃η1 and P̃η2 and analytically calcu-
late the energy-constrained sine distance between them. We
find that it is given by

CE (P̃η1, P̃η2 ) =
√

1 − [(1 − {E})μ�E� + {E}μ�E�]2
, (86)

where

μ ≡ √
η1η2 +

√
(1 − η1)(1 − η2). (87)

V. CONCLUSION

In this paper, we proposed an optimal test to characterize
the performance of CV teleportation in terms of the energy-
constrained channel fidelity between ideal CV teleportation
and its experimental approximation. Prior to our work, the
accuracy in implementing CV teleportation was quantified by
considering several input states, such as ensembles of coher-
ent states, squeezed states, cat states, etc. We showed that,
instead, entangled superpositions of twin Fock states are opti-
mal to characterize the performance of CV teleportation. Thus
our result provides a benchmark for teleporting an unknown,
energy-constrained state using CV quantum teleportation. An-
other interesting metric to quantify the accuracy in simulating
ideal CV teleportation is the energy-constrained diamond dis-
tance between ideal CV teleportation and its experimental
approximation. We leave the calculation of this quantity for
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future work, although we note here that it can be estimated by
means of a semidefinite program [26] and truncation.

As an additional result, we analytically calculated the
energy-constrained diamond distance between the ideal pho-
todetector and its experimental approximation. Our main
result here is that entanglement with a reference system is
not required for quantifying the accuracy in implementing
a photodetector and the optimal input state is a mixture of
photon-number states.

There are a number of open questions to consider address-
ing in future work. The Braunstein-Kimble (BK) protocol
for CV teleportation [2] can be generalized by using a non-
Gaussian entangled state shared between Alice and Bob
[13,39–44]. It is an interesting open question to answer
whether experimental realizations of CV teleportation with
non-Gaussian resources can provide better teleportation fi-
delity than the BK protocol. Another interesting direction is
to find applications of the techniques developed in Sec. III
of Ref. [45] to characterize the performance of these alterna-
tive strategies for CV quantum teleportation. We leave this
for future work. Finally, it is an interesting open question
to determine the optimal value of various energy-constrained
distinguishability measures when the noise in a photodetector
is modeled as a thermal noise channel.

Note added. Recently, we became aware of related work of
Lami [46], in which he has established an upper bound on the
energy-constrained diamond distance of the identity channel
and an additive-noise channel by employing the methods of
Ref. [47].

We have provided all source files (MATHEMATICA and MAT-
LAB) needed to generate the plots given in this paper [48].
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APPENDIX A: SOLVING AND EVALUATING
THE QUADRATIC PROGRAM FOR THE FIDELITY

OF CV TELEPORTATION

In this Appendix, we show how to solve the quadratic
program in (66), by invoking the KKT conditions, and then
we show details of the examples discussed in the main text.

1. Solving the quadratic program

For a finite number of variables, solutions to a quadratic
program with inequality constraints can be obtained using a
MATLAB package for quadratic programming, which employs
the interior-point method [16]. Although the optimization
problem in (66) is over an infinite number of variables, we
argue below that for finite E and high values of the truncation
parameter, it is sufficient to find solutions on a truncated
Hilbert space.

Let M denote the truncation parameter, and let HM denote
an (M + 1)-dimensional Fock space. Let ϕA ∈ D(HM ), and
let n̂ denote the truncated number operator:

n̂ =
M∑

n=0

n|n〉〈n|. (A1)

Then from the mean-energy-constraint condition, we get
Tr(n̂ϕA) � E . We define the energy-constrained channel fi-
delity between two quantum channels NA→B and MA→B on
a truncated Hilbert space as

FE ,M (NA→B,MA→B)

≡ inf
ϕRA∈D(H⊗2

M ):Tr(n̂ϕA )�E
F (N (ϕRA),M(ϕRA)), (A2)

where ϕRA is a purification of ϕA. Moreover, it is implicit that
the identity channel acts on the reference system R. We further
note that the following identity holds:

FE ,M (NA→B,MA→B)

≡ inf
ϕRA∈D(H⊗2

M ):Tr(n̂ϕA )�E
F (N (ϕRA),M(ϕRA)), (A3)

where we have replaced n̂ with n̂, which follows from the fact
that the reduced state of ϕRA ∈ D(H⊗2

M ) on A has support only
on the truncated space. Moreover, (A3) leads to the following
identity:

FE (NA→B,MA→B) � FE ,M (NA→B,MA→B), (A4)

which is a consequence of the optimization over a truncated
space in (A3) instead of an infinite-dimensional separable
Hilbert space.

We now establish a lower bound on FE (NA→B,MA→B) in
terms of FE ,M (NA→B,MA→B), which, when combined with
(A4), will imply that solutions to (66) can be obtained by
solving a quadratic program on a truncated Hilbert space. For
completeness we first argue that the set of density operators
acting on a truncated Hilbert space with a finite mean en-
ergy constraint is dense in the set of density operators acting
on an infinite-dimensional Hilbert space and with the same
mean energy constraint [45]. Let ρRA denote a density opera-
tor acting on an infinite-dimensional separable Hilbert space,
such that Tr(n̂AρRA) � E , where E > 0. Let �M

A denote an
(M + 1)-dimensional projector defined as

�M
A =

M∑
n=0

|n〉〈n|. (A5)

Then from Sec. III E of Ref. [45], it follows that

Tr
(
�M

A ρRA
)
� 1 − E

M + 1
. (A6)

Let ρM
RA denote the following truncated state:

ρM
RA = �M

A ρRA�M
A

Tr
(
�M

A ρRA
) . (A7)

Then by invoking the gentle measurement lemma [49,50], we
get

F
(
ρRA, ρM

RA

)
� 1 − E

M + 1
, (A8)
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which implies that the fidelity between the truncated state ρM
RA

and ρRA is close to 1 for low values of E and high values
of the truncation parameter M. For the version of the gentle
measurement lemma that we employ, please see the proof of
Lemma 9.4.1 of Ref. [51].

We define the energy-constrained sine distance between
two channels NA→B and MA→B on a truncated Hilbert space
as follows:

CE ,M (NA→B,MA→B)

≡ sup
ϕRA∈D(H⊗2

M ):Tr(n̂ϕA )�E

√
1 − F (N (ϕRA),M(ϕRA)). (A9)

Then from (A6), (A8), and arguments similar to those
used in Proposition 2 of Ref. [45], we establish the following
inequalities:

CE ,M (NA→B,MA→B) � CE (NA→B,MA→B) (A10)

� 2

√
E

M + 1
+ CE ,M (NA→B,MA→B).

(A11)

Finally, by squaring the inequality on the right side and
from a simple rearrangement, we get

FE (NA→B,MA→B)

� 1 −
(

2

√
E

M + 1
+ √

1 − FE ,M (NA→B,MA→B)

)2

,

(A12)

which leads to the desired result by combining with (A4):

1 −
(

2

√
E

M + 1
+ √

1 − FE ,M (NA→B,MA→B)

)2

� FE (NA→B,MA→B) � FE ,M (NA→B,MA→B). (A13)

In other words, for low values of the mean energy constraint
E , the energy-constrained channel fidelity between two quan-
tum channels N and M can be estimated with arbitrary
accuracy by using the energy-constrained channel fidelity on
a truncated input Hilbert space with sufficiently high values
of the truncation parameter M. Moreover, for low values of
E and high values of M, solutions to the quadratic program
in (66) can be obtained by solving the following quadratic
program:

FE ,M
(
IA, T ξ

A

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf p f (p)

subject to
∑M

n=0 npn � E

−pn � 0, ∀n ∈ {0, 1, . . . , M−1, M}∑M
n=0 pn = 1,

(A14)

where p = (p0, p1, . . . , pM ) and FE ,M (IA, T ξ
A ) is given by

(A3). It is easy to check that (A14) is equivalent to the primal
optimization problem in (31).

We now elaborate the argument of Ref. [35] that the
function f (p) is convex in p (an abbreviated version of this
argument was already presented in the main text). The Hessian

matrix corresponding to the objective function f (p) is given
by

A(ξ ) = 2
M∑

n,m=0

min{n,m}∑
k=0

(
n

k

)(
m

k

)
ξ 2k

1 + ξ

(
1

1 + ξ

)n+m

|n〉〈m|

(A15)

= 2
M∑

k=0

ξ 2k

1 + ξ

[
M∑

n=0

(
n

k

)
1

(1 + ξ )n
|n〉

]

×
[

M∑
m=0

(
m

k

)
1

(1 + ξ )m
〈m|

]
(A16)

= 2
M∑

k=0

ξ 2k

1 + ξ
|ϒ〉〈ϒ |, (A17)

where

|ϒ〉 =
M∑

n=0

(
n

k

)
1

(1 + ξ )n
|n〉. (A18)

Thus we get

〈�|A(ξ )|�〉 = 2
M∑

k=0

ξ 2k

1 + ξ
|〈�|ϒ〉|2 � 0, (A19)

which implies that the objective function f (p) in (A14) is
convex in p. Since the aforementioned proof holds for any
value of the truncation parameter M, it further implies that the
objective function in (66) is also convex.

Finally, note that the inequality constraints in (66) are
linear, which implies that the Lagrangian

L(p, μ, β, γ ) = f (p) + μ

(∑
n

npn − E

)

−
∑

n

βn pn + γ

(∑
n

pn − 1

)
(A20)

is also convex in p, where we introduced the dual variables
μ, γ , and βn, for n ∈ Z�0, similar to those in (32).

2. Solutions of the quadratic program for some examples

We now provide solutions to (66) for several examples.

a. First example: E = 0.6 and ξ = 0.25

Suppose that E = 0.6 and ξ = 0.25. We first numerically
find the optimal solution to (A14) using the MATLAB pack-
age for quadratic programming [48]. Furthermore, we find
numerically that for this case, the optimal value f ∗ of the
objective function and the corresponding optimal solution p∗
do not change for values of the truncation parameter from
M = 1 to M = 50. We provide a reasoning for this result
by analytically solving the quadratic program by invoking
the KKT conditions. We note that if the optimal value of the
objective function does not change with an increment in the
truncation parameter, it implies that the same solution should
be optimal for the infinite-dimensional optimization problem
in (66).
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We now analytically find primal and dual feasible points
that satisfy the KKT conditions and hence the optimal solution
to (66) for E = 0.6 and ξ = 0.25. We begin by presenting the
KKT conditions for the optimization problem in (66).

Stationarity ∂pL(p, μ, β, γ )|p=p∗ = 0

Primal feasibility
∑

n np∗
n − E � 0,

p∗
n � 0, ∀n ∈ Z�0,∑

n p∗
n = 1

Dual feasibility μ � 0,

βn � 0, ∀n ∈ Z�0

Complementary slackness μ(
∑

n np∗
n − E ) = 0,

βn p∗
n = 0, ∀n ∈ Z�0.

(A21)
We find a set ( p̃, μ̃, β̃, γ̃ ) that satisfies the KKT conditions,

which further implies that p̃ = p∗ and f ∗ = f (p∗), where
f (p) is defined in (66). Let p̃n = 0 for all n � 2. Let us assume
that the mean energy constraint is saturated, i.e., p̃1 = E ,
which satisfies one of the complementary slackness condi-
tions. To satisfy βn p̃n = 0, for n = 0, 1, we set β0 = β1 = 0.
From the primal feasibility condition, we get p̃0 = 1 − p̃1 =
1 − E . All we need to show now is that μ � 0 and βn � 0 for
all n � 2. Combining all these facts will imply that the KKT
conditions are satisfied. First, to simplify the calculation, we
define

G(n, m, ξ ) =
min{n,m}∑

k=0

(
n

k

)(
m

k

)
ξ 2k

(1 + ξ )n+m+1
. (A22)

Then from the stationarity condition p̃0 and p̃1, we get the
following linear system of equations:

2G(0, 0, ξ ) p̃0 + 2G(1, 0, ξ ) p̃1 + γ = 0, (A23)

2G(0, 1, ξ ) p̃0 + 2G(1, 1, ξ ) p̃1 + μ + γ = 0. (A24)

By solving for μ and γ , we find [48]

μ = 2ξ (1 − (2E − 1)ξ )
(1 + ξ )3

> 0, (A25)

γ = −2(1 + (1 − E )ξ )
(1 + ξ )2

, (A26)

for E = 0.6 and ξ = 0.25.
Since μ > 0, in order to satisfy all the KKT conditions for

(66), we only need to show that βn � 0 for all n � 2. From
the stationarity condition for p̃n we get

βn = 2G(0, n, ξ ) p̃0 + 2G(1, n, ξ ) p̃1 + nμ + γ . (A27)

The only negative term in (A27) is γ . For this example we get
μ = 0.2432 and γ = −1.408. Since −γ /μ = 5.79, we get
nμ � −γ , ∀n � 6. This further implies that βn � 0, ∀n � 6.
Moreover, we solve for β2, β3, β4, and β5 using (A27) and find
their values of be 0.041, 0.1160, 0.2202, and 0.348, respec-
tively [48]. Thus we get βn � 0 for all n � 2. This completes
the proof.

Since all the KKT conditions are satisfied and since f (p) is
a convex function, we conclude that p̃ is the optimal solution,
i.e., p̃ = p∗ = (1 − E , E , 0, . . . , 0) and the optimal objective

function value is given by

f ∗ = f (p∗) (A28)

= 1 + ξ [2 + ξ − 2E (1 + (1 − E )ξ )]
(1 + ξ )3

(A29)

= 0.6310, (A30)

for E = 0.6 and ξ = 0.25, which is equal to the optimal value
obtained numerically. Furthermore, for this case, the optimal
state corresponding to the channel fidelity between the ideal
teleportation and its experimental approximation is given by

|ψ〉RA = √
1 − E |0〉A|0〉R +

√
E |1〉A|1〉R. (A31)

b. Second example: E = 1.2 and ξ = 2/3

Let us consider the case when E = 1.2 and ξ = 2/3. Nu-
merically, we find that the optimal solution has p̃n = 0 for
all n, except for n ∈ {0, 1, 2}. To satisfy the complementary
slackness condition, we set β0 = β1 = β2 = 0. Similar to
the previous case, we assume that the energy constraint is
satisfied, i.e., p̃1 + 2 p̃2 = E . By invoking the stationarity con-
ditions for p̃0, p̃1, and p̃2 and the primal feasibility condition
and by solving the linear system of equations, we get that [48]

p̃0 = ξ (5ξ + 3E (1 − ξ ) − 2) − 1

6ξ 2
> 0, (A32)

p̃1 = 1 + ξ (2 − 3E + ξ )

3ξ 2
� 0, (A33)

p̃2 = (1 + ξ )(ξ (3E − 1) − 1)
6ξ 2

> 0, (A34)

μ = ξ (1 + (1 − E )ξ )
(1 + ξ )3

> 0, (A35)

γ = −5 + (5 − 3E )ξ

3(1 + ξ )2
, (A36)

for E = 1.2 and ξ = 2/3. Moreover, similar to the previous
case, we find that βn � 0 for all n � 3 [48].

Since all the KKT conditions are satisfied and since f (p) is
a convex function, we conclude that p̃ is the optimal solution,
i.e., p̃ = p∗. Moreover, the optimal objective function is given
by

f ∗ = f (p∗) = 5 + 5ξ (2 + ξ ) − 3Eξ (2 + (2 − E )ξ )
6(1 + ξ )3

,

(A37)

and the corresponding optimal state to distinguish the ideal
teleportation channel from its experimental approximation is

|ψ〉RA = √
p̃0|0〉A|0〉R + √

p̃1|1〉A|1〉R + √
p̃2|2〉A|2〉R.

(A38)

c. Third example: ξ close to zero

We provide an analytical solution for another interesting
example when ξ is close to zero, which corresponds to the
case of the additive-noise channel converging to the ideal
teleportation channel. This example is experimentally rele-
vant, as the goal of an approximate teleportation protocol is to
converge to the ideal teleportation channel. In such a scenario
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we argue that

|ψ〉RA =
√

1 − {E}|�E�〉A|�E�〉R +
√

{E}|�E�〉A|�E�〉R

(A39)

is the optimal state for the optimization problem in (45), where
{E} = E − �E�. Moreover, the minimum fidelity in (45) is
given by

FE
(
IA, T ξ

A

) = (1 − {E})2G(�E�, �E�, ξ )

+ 2{E}(1 − {E})G(�E�, �E�, ξ )

+ ({E})2G(�E�, �E�, ξ ), (A40)

where G(n, m, ξ ) is defined in (A22).

Since the marginal of the state |ψ〉RA in (A39) has energy
Tr(n̂ψA) = E , one of the complementary slackness conditions
is satisfied. We assume that p∗

n = 0 for all n, except for n ∈
{�E�, �E�}. Therefore p∗

�E� = 1 − {E} and p∗
�E� = {E}, which

implies that β�E� = β�E� = 0, to satisfy other complementary
slackness conditions. Similar to the previous examples, we
need to solve the following linear system of equations and
show that μ � 0 when ξ is close to zero:

2p∗
�E�G(�E�, �E�, ξ ) + 2p∗

�E�G(�E�, �E�, ξ ) + �E�μ + γ

= 0, (A41)

2p∗
�E�G(�E�, �E�, ξ ) + 2p∗

�E�G(�E�, �E�, ξ ) + �E�μ + γ

= 0. (A42)

By solving for μ, we get

μ = 2(p∗
�E�(G(�E�, �E�, ξ ) − G(�E�, �E�, ξ )) + p∗

�E�(G(�E�, �E�, ξ ) − G(�E�, �E�, ξ ))), (A43)

≈ 2ξ + O(ξ 2), (A44)

which implies that the leading-order term 2ξ � 0 for any finite
value of the energy constraint E . Similarly, we find that

βn ≈ (�E� − n)(�E� − n)ξ 2 + O(ξ 3), ∀n, (A45)

where again the leading term implies that βn � 0 when ξ is
close to zero. By combining everything, we conclude that all
the KKT conditions are satisfied. Hence, for ξ close to zero,
the state in (A39) is optimal for the task of distinguishing the
ideal teleportation channel from its experimental approxima-
tion when there is a finite energy constraint on the input states
to the channels.

3. Other calculations for experimentally relevant states

Here, we calculate the fidelity of teleportation for several
experimentally relevant quantum states with energy con-
straints, such as coherent states and the two-mode squeezed
vacuum (TMSV) state. Let |α〉 denote a coherent state and let
E = |α|2. We note that the covariance matrix of a coherent
state is a two-dimensional identity matrix, which under an
additive-noise channel T ξ

A→B becomes VT ξ
A→B (|α〉〈α|) = diag(1 +

2ξ ). Therefore we get [28]

F (|α〉〈α|, T ξ
A→B(|α〉〈α|)) = 2√

Det[diag(2(1 + ξ ))]

= 1

1 + ξ
. (A46)

On the other hand, the covariance matrix of a two-mode
squeezed vacuum state is given by

VψTMS(n̄) =
[

(2n̄ + 1)I2 2
√

n̄(n̄ + 1)σz

2
√

n̄(n̄ + 1)σz (2n̄ + 1)I2

]
, (A47)

which transforms as

VT ξ [ψTMS(n̄)] =
[

(2n̄ + 1)I2 2
√

n̄(n̄ + 1)σz

2
√

n̄(n̄ + 1)σz (2n̄ + 2ξ + 1)I2

]
. (A48)

Then the fidelity between ψTMS(n̄) and T ξ [ψTMS(n̄)] is given
by [28]

F (ψTMS(n̄), T ξ [ψTMS(n̄)]) = 4√
Det(VψTMS(n̄) + VT ξ [ψTMS(n̄)] )

(A49)

= 1

1 + (2n̄ + 1)ξ
. (A50)

APPENDIX B: CALCULATIONS FOR THE
APPROXIMATION OF A PHOTODETECTOR

In this Appendix, we provide a proof for the analytical
form of the energy-constrained diamond distance between
the ideal photodetector and its experimental approximation.
Let P and P̃η denote the ideal photodetector and the noisy
photodetector, respectively. Moreover, P and P̃η transform an
input state ρ as follows:

P (ρ) =
∞∑

n=0

〈n|ρ|n〉|n〉〈n|, (B1)

P̃η(ρ) = (P ◦ Lη )(ρ), (B2)

where Lη denotes a pure-loss channel with transmissivity η ∈
[0, 1).

Let

|ψ〉RA =
∑

n

√
pn|n〉R|n〉A, (B3)

where
∑

n pn = 1 and
∑

n npn � E .
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Consider the following chain of equalities:∥∥(IR ⊗ PA)(ψRA) − (
IR ⊗ P̃η

A

)
(ψRA)

∥∥
1 = ∥∥(IR ⊗ PA)(ψRA) − (

IR ⊗ (
PA ◦ Lη

A

))
(ψRA)

∥∥
1 (B4)

=
∥∥∥∥∥

∞∑
n,m=0

√
pm pn|n〉〈m|R

⊗
[
P (|n〉〈m|A) −

min{n,m}∑
k=0

√(
n

k

)(
m

k

)
ηn+m−2k (1 − η)2kP (|n − k〉〈m − k|A)

]∥∥∥∥∥
1

(B5)

=
∥∥∥∥∥

∞∑
n=0

pn|n〉〈n|R ⊗
[
|n〉〈n|A −

n∑
k=0

(
n

k

)
ηk (1 − η)n−k|k〉〈k|A

]∥∥∥∥∥
1

(B6)

=
∞∑

n=0

pn

∥∥∥∥∥|n〉〈n|A −
n∑

k=0

(
n

k

)
ηk (1 − η)n−k|k〉〈k|A

∥∥∥∥∥
1

(B7)

=
∞∑

n=0

pn

[
n−1∑
k=0

(
n

k

)
ηk (1 − η)n−k + 1 − ηn

]
(B8)

= 2

(
1 −

∞∑
n=0

pnη
n

)
. (B9)

The second equality follows from the action of a pure-loss
channel on a number state. The third equality follows from
(B1). The fourth equality is a consequence of the direct-sum
property of the trace distance on classical-quantum states. The
rest of the steps follow from basic algebraic manipulations.

Therefore the energy-constrained diamond distance be-
tween P and P̃η reduces to the following optimization
problem:

1

2
‖P − P̃η‖�E = max

{pn�0}n:
∑

n pn=1,
∑

n npn�E

(
1 −

∞∑
n=0

pnη
n

)
.

(B10)

The optimization in (B10) can be solved by following a
method introduced in Ref. [52]. We provide a proof for com-
pleteness. Suppose that

F =
∑

n

npn, (B11)

Al =
�F�∑
n=0

pn, (B12)

Au =
∞∑

n=�F�
pn, (B13)

Fl =
�F�∑
n=0

(pn/Al )n, (B14)

Fu =
∞∑

n=�E�
(pn/Au)n. (B15)

Then it follows that

Al + Au = 1, (B16)

F = Al Fl + AuFu, (B17)

Fl � �F�, (B18)

Fu � �F�. (B19)

Consider the following chain of inequalities:

∞∑
n=0

pnη
n = Al

�F�∑
n=0

pn

Al
ηn + Au

∞∑
n=�F�

pn

Au
ηn (B20)

� Alη
Fl + Auη

Fu (B21)

� p�F�η�F� + p�F�η�F� (B22)

= (1 − {F })η�F� + {F }η�F�, (B23)

where the first inequality follows from the convexity of the
function x → ηx. The last inequality follows from the fact
that the chord joining (�F�, η�F�) and (�F�, η�F�) is below
the chord joining (Al , η

Fl ) and (Au, η
Fu ) due to the convexity

of the function. Moreover, the energy of the initial state can
be satisfied by taking Fl = �F� and Fu = �F�, and the cor-
responding probability elements are given by p�F� = 1 − {F }
and p�F� = {F }.

Since (B23) monotonically decreases with F , it implies
that the solution to the optimization problem in (B10) is given
by a state that saturates the energy constraint. Therefore the
optimal state is given by

ψA = (1 − {E})|�E�〉〈�E�|A + {E}|�E�〉〈�E�|A, (B24)

which leads to

1
2‖P − P̃η‖�E = 1 − [(1 − {E})η�E� + {E}η�E�]. (B25)

We now provide proof details for the energy-constrained
sine distance between two noisy photodetectors P̃η1 and P̃η2 .
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First note that the output of a noisy photodetector P̃η when
the input state is ψRA in (B3) is given by

P̃η(ψRA) = (P ◦ Lη )(ψRA) (B26)

=
∑

n

n∑
k=0

β(pn, η, k)|n〉〈n|R ⊗ |k〉〈k|A, (B27)

where

β(pn, η, k) = pn

(
n

k

)
ηk

1(1 − η1)n−k (B28)

are the eigenvalues of P̃η(ψRA). Therefore the fidelity between
P̃η1 (ψRA) and P̃η2 (ψRA) is given by

F (P̃η1 (ψRA), P̃η2 (ψRA))

=
[

Tr(

√√
P̃η1 (ψRA)P̃η2 (ψRA)

√
P̃η1 (ψRA))

]2

(B29)

=
[∑

n

n∑
k=0

√
β(pn, η1, k)β(pn, η2, k)

]2

(B30)

=
[∑

n

pn

n∑
k=0

(
n

k

)√
η1η2

k[(1 − η1)(1 − η2)]n−k

]2

(B31)

=
[∑

n

pn(
√

η1η2 +
√

(1 − η1)(1 − η2))n

]2

(B32)

=
[∑

n

pnμ
n

]2

, (B33)

where

μ = √
η1η2 +

√
(1 − η1)(1 − η2). (B34)

Then from Ref. [52], we find that the energy-constrained
sine distance between P̃η1 and P̃η2 is given by

CE (P̃η1, P̃η2 ) =
√

1 − [(1 − {E})μ�E� + {E}μ�E�]2
, (B35)

where {E} = E − �E�. Moreover, the state that optimizes the
energy-constrained sine distance in (B35) is given by (B24),
which proves that entanglement is not necessary for the opti-
mal distinguishability of two noisy photodetectors.
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