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Differences in the critical dynamics underlying the human and fruit-fly connectome
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Previous simulation studies on human connectomes suggested that critical dynamics emerge subcritically in
the so-called Griffiths phases. Now we investigate this on the largest available brain network, the 21662 node
fruit-fly connectome, using the Kuramoto synchronization model. As this graph is less heterogeneous, lacking
modular structure and exhibiting high topological dimension, we expect a difference from the previous results.
Indeed, the synchronization transition is mean-field-like, and the width of the transition region is larger than
in random graphs, but much smaller than as for the KKI-18 human connectome. This demonstrates the effect
of modular structure and dimension on the dynamics, providing a basis for better understanding the complex
critical dynamics of humans.
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I. INTRODUCTION

Power-law (PL)-distributed neuronal avalanches were
shown in neuronal recordings [spiking activity and local
field potentials (LFPs)] of neural cultures in vitro [1–4],
LFP signals in vivo [5], field potentials and functional
magnetic resonance imaging (fMRI) blood-oxygen-level-
dependent (BOLD) signals in vivo [6,7], voltage imaging in
vivo [8], and 10–100 single-unit or multiunit spiking and
calcium-imaging activity in vivo [9–12]. Furthermore, source
reconstructed magneto- and electroencephalographic record-
ings (MEG and EEG), characterizing the dynamics of ongoing
cortical activity, have also shown robust PL scaling in neu-
ronal long-range temporal correlations. These are at time
scales from seconds to hundreds of seconds and describe
behavioral scaling laws consistent with concurrent neuronal
avalanches [13]. However, the measured scaling exponents do
not seem to be universal. Besides the experiments’ theoretical
research provide evidence that the brain operates in a critical
state between sustained activity and an inactive phase [14–25].

Criticality in general occurs at continuous, second-order
phase transitions and a ubiquitous phenomenon in nature
as systems can benefit many ways from it. As correlations
and fluctuations diverge [26] in neural systems working
memory and long-range interactions can be generated sponta-
neously [27] and the sensitivity to external signals is maximal.
Furthermore, it has also been shown that information-
processing capabilities are optimal near the critical point.
Therefore, systems tune themselves close to criticality via
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self-organization (SOC) [28,29], presumably slightly below
to avoid blowing over excitation. However, criticality is not
a necessary condition for power-law statistics to appear, see
Ref. [30], so the presented numerical results do not provide a
full proof for the criticality hypothesis of the whole brain, but
remain within the validity of model assumptions.

Besides, if quenched heterogeneity (that is called disorder
compared to homogeneous system) is present, rare-region
(RR) effects [31] and an extended semicritical region, known
as Griffiths phase (GP) [32] can emerge. RRs are very slowly
relaxing domains, remaining in the opposite phase than the
whole system for a long time, causing slow evolution of the
order parameter. In the entire GP, which is an extended con-
trol parameter region around the critical point, susceptibility
diverges and autocorrelations exhibit fat-tailed, power-law be-
havior, resulting in bursty behavior [33], frequently observed
in nature [34]. Even in infinite-dimensional systems, where
mean-field behavior is expected, Griffiths effects can occur in
finite time windows [35].

Heterogeneity effects are very common in nature and re-
sult in dynamical criticality in extended GPs, in case of
quasistatic quenched disorder approximation [36]. This leads
to avalanche size and time distributions, with nonuniversal
power-law tails. It has been shown within the framework of
modular networks [36–38] and a large human connectome
graph [39,40,41]. The word “connectome” is defined as the
structural network of neural connections in the brain [42].
Recently the hemibrain has been derived from a three-
dimensional (3D) image of roughly half the fruit-fly (FF)
brain. It contains verified connectivity between 25000 neurons
that form more than 20 × 106 connections [43,44]. However,
as this is not a complete central nervous system many of the
connections do not connect to the nodes published.

As individual neurons in vitro emit periodic signals [45], it
is tempting to use oscillator models and to investigate critical-
ity at the synchronization transition point. Note, however that
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according to other experiments they can also show a variety
of spiking behaviors. Recently, a brain model analysis using
Ginzburg-Landau-type equations concluded that empirically
reported scale-invariant avalanches can possibly arise if the
cortex is operated at the edge of a synchronization phase tran-
sition, where neuronal avalanches and incipient oscillations
coexist [46].

One of the most fundamental models showing phase
synchronization is the Kuramoto model of interacting oscilla-
tors [47] and was used to study synchronization transition on
various synthetic and connectome graphs available [48–52].
Note, that the Kuramoto equation, while neglecting the inte-
gration feature of spiking activity of neighboring neurons, still
provides a fundamental, mechanistic model for synchroniza-
tion transition and criticality. It also involves the quasistatic
assumption, according to which the time scale of network
change is much larger than the time scale of reaching the
steady state of the processes running on it. That means it is
permissible to focus on determining the critical dynamics on a
snapshot of the connectome, not taking plasticity and learning
into account. There is also uncertainty in the KKI-18 full
human brain connectome structure as discussed in Ref. [41],
but a recent study claims that diffusion tensor imaging is in
good agreement with ground-truth data from histological tract
tracing [53].

Because of quenched, purely topological heterogeneity
an intermediate phase was found between the standard
synchronous and asynchronous phases, showing frustrated
synchronization, metastability, and chimeralike states [54].
This complex phase was investigated further in the presence
of noise [49] and on a simplicial complex model of manifolds
with finite and tunable spectral dimension [50] as a simple
model for the brain.

In case of a representative of large human white matter con-
nectomes [39] the N = 804 092 node KKI-18 network GPs
have been found via measuring the desynchronization times
of local perturbations [51,52]. Now we extend this kind of in-
vestigation via Kuramoto model (KM) on the FF connectome.
The comparison of the synchronization transition results on
the KKI-18 and FF is valid, because for FF we know the full
topology of the neural network and for KKI-18 the unknown,
microscopic details below its 1 mm3 resolution are not ex-
pected to affect the long-wavelength behavior determining the
critical properties. Our model describes a resting state brain.
External sources, leading to the well-known Widom line phe-
nomena have recently been studied both by experiments and
simulations. Quasicriticality, generated by external excitation,
was suggested to explain the lack of universality observed in
different experiments [55].

II. TOPOLOGY OF THE FRUIT-FLY CONNECTOME

We downloaded the hemibrain data set (v1.0.1) from
Ref. [56]. It has NFF = 21662 nodes and LFF = 3 413 160
edges, out of which the largest single connected compo-
nent contains N = 21615 and L = 3 410 247 directed and
weighted edges, that we used in the simulations. The number
of incoming edges varies between 1 and 2708. The weights
are integer numbers, varying between 1 and 4299. The average
node degree is 〈k〉 = 315129 (for the in-degrees it is: 1576),
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FIG. 1. Weight distribution of the fruit-fly connectome. Right
inset: adjacency matrix plot of the fruit-fly connectome. Left inset:
full adjacency matrix down sampled with a max pooling kernel of
size 10 × 10. Black dots denote connections between presynaptic
and postsynaptic neurons. Right inset: zoom-in to the center of the
matrix without down sampling.

while the average weighted degree is 〈w〉 = 628. The adja-
cency matrix is visualized by the insets of Fig. 1. One can see
a rather homogeneous, almost structureless network, however,
it is not random, as discussed in the graph analysis [57]. For
example, the degree distribution is much wider than that of a
random Erdős-Rényi (ER) graph and exhibits a fat tail.

The weight distribution p(w) we obtained by exponentially
growing bin sizes: wi ∝ 1.12i can can be seen on Fig. 1.
Interestingly, the tail of p(w) shows a nontrivial shape, as
compared to Fig. 5 of Ref. [57], where this fine structure
cannot be seen, due to the linear binning used there. A fitting
for the whole weight distribution data, assuming a PL with
exponential cutoff is published in Ref. [57], which is charac-
terized by the exponent −1.67. The application of growing
bin sizes on the weights of the available traced connections
does not suggest an exponential cutoff, but a PL tail with
an exponent −2.9(2) could be fitted for the w > 100 region.
We think this might be relevant, because in case of KKI-18
connectome a similar PL was found for the tail of link weight
distribution and maybe it is related to an optimal weight dis-
tribution (counting the multiplicity of edges) in real networks
embedded in the 3D space. Of course, due to the partial
FF connectome data, we assume that the additional, omitted
edges result in a tail with a finite exponential size cutoff.

The modularity quotient of the FF network defined by

Q = 1

N〈k〉
∑

i j

(
Ai j − kik j

N〈k〉
)

δ(gi, g j ), (1)

is very low: Q = 0.002264, where Ai j is the adjacency matrix
and δ(i, j) is the Kronecker delta function. The weighted
modularity quotient is even lower: Qw = 0.0001184. In com-
parison, the modularity quotient of the KKI-18 network is
about 40 times greater: Qw = 0.0047.
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The Watts-Strogatz clustering coefficient [58] of a network
of N nodes is

C = 1

N

∑
i

2ni/[ki(ki − 1)], (2)

where ni denotes the number of direct edges interconnecting
the ki nearest neighbors of node i. This is CFF = 0.191, about
12.36 times larger than that of a random network of same size:
Cr = 0.01545, obtained by Cr = 〈k〉/N . In case of KKI-18 we
found: CKKI−18 = 0.5.

The average shortest path length is defined as

L = 1

N (N − 1)

∑
j �=i

d (i, j), (3)

where d (i, j) is the graph distance between vertices i and j.
For FF this is LFF = 2.7531, about 1.3 times larger than that
of the random network of same size: Lr = 2.1162, following
from the formula [59]:

Lr = ln(N ) − 0.5772

ln〈k〉 + 1/2. (4)

So, the FF is a small-world network, according to the defini-
tion of the coefficient [60]:

σ = C/Cr

L/Lr
, (5)

because σFF = 9.5 is much larger than unity.
We estimated the effective graph (topological) dimension,

which is obtained by the breadth-first search algorithm: d =
5.4(5), which is defined by N (r) ∼ rd , where we counted
the number of nodes N (r) with chemical distance r or less
from the seeds and calculated averages over the trials. Note,
however that finite-size cutoff happens already for r > 2. This
dimension renders this model into the mean-field region, be-
cause the upper-critical dimension is dc = 4.

III. NUMERICAL ANALYSIS OF THE
KURAMOTO MODEL

We used the KM of interacting oscillators [47] to study the
synchronization on the human KKI-18, the FF connectome
as well as on ER random graphs for comparison KM was
originally defined on full graphs, corresponding to mean-field
behavior [61]. The critical dynamical behavior has recently
been explored on various random graphs [51,62,63]. Phase
transition in the KM can happen only above the lower critical
dimension d−

c = 4 [64]. In lower dimensions, a true, singular
phase transition in the N → ∞ limit is not possible, but partial
synchronization can emerge with a smooth crossover if the
oscillators are strongly coupled.

The KM describes interacting oscillators with phases θi(t )
located at N nodes of a network, which evolve according to
the dynamical equation

θ̇i(t ) = ωi,0 + K
∑

j

Wi j sin[θ j (t ) − θi(t )]. (6)

Here, Wi j is the weighted adjacency matrix and summation is
performed over neighboring nodes of i. There is a quenched
heterogeneity in Wi j as well as in ωi,0, which is the intrinsic

frequency of the ith oscillator, drawn from a g(ωi,0) distri-
bution. The global coupling K is the control parameter of
the model by which we can tune the system between asyn-
chronous and synchronous states. One usually follows the
synchronization transition through studying the Kuramoto or-
der parameter defined by

R(t ) = 1

N

∣∣∣∣∣
N∑

j=1

eiθ j (t )

∣∣∣∣∣, (7)

which is nonzero above a critical coupling strength K > Kc

or tends to zero for K < Kc as R ∝ √
1/N . At Kc, R exhibits

growth as

R(t, N ) = N−1/2 tη f↑(t/Nz̃ ), (8)

with the dynamical exponents z̃ and η, if the initial state is
incoherent.

Additionally, we have also calculated another order param-
eter, which measures the spread of frequencies

�(t, N ) = 1

N

N∑
j=1

(ω − ω j )
2, (9)

In case of a single peaked self-frequency distribution it is an
appropriate order parameter, besides the more commonly used
measure, which counts the number of oscillators in the largest
cluster having an identical frequency [64].

Generally we used the Runge-Kutta-4 integration algo-
rithm with step sizes δ = 0.01 or δ = 0.1 if it was sufficient,
via a special, parallel algorithm, running on GPUs. We have
averaged over the solutions for thousands of different initial
self-frequencies, chosen randomly from Gaussian distribu-
tions with zero mean and unit variance at each control
parameter value. In a previous paper [52], we have shown
the possibility of rescaling these onto more realistic, narrow-
banded frequencies thanks to the Galilean invariance of the
KM. Some of the runs, especially for larger couplings K � 3,
were tested by the adaptive solver Bulrisch-Stoer [65] of the
boost library. For very large couplings, K > 30 only the adap-
tive solver could provide reasonable results.

First, we have determined the growth behavior of R(t ) of
the Kuramoto equation solution with incoming weight nor-
malization, in order to mimic a local homeostasis, provided
by the unknown balance of inhibition/excitation:

W ′
i j = Wi j/

∑
j ∈ neighb. of i

Wi j . (10)

This renormalization has been used in previous connectome
studies [40,41,51,52,66]. Recently, a comparison of modeling
and experiments arrived at a similar conclusion: equalized net-
work sensitivity improves the predictive power of a model at
criticality in agreement with the fMRI correlations [66]. The
solution of equations was started from incoherent states, but
for larger K values it was better to start from coherent states
in order to reach the steady states without large oscillations.

As Fig. 2 shows there is a transient region up to t < 30
followed by a level off as the correlation length exceeds the
system size, causing a steady-state saturation of the phase
synchronization. In the transient region curves with K > 1.7
exhibit an upward curvature, while those with K < 1.7 exhibit
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FIG. 2. Growth of R(t ) on the weight normalized FF, using in-
coherent initial state for different K global coupling values as shown
by the legends. One can locate a transition by the convex/concave
criterion at Kc = 1.70(2), where an initial PL growth can be ob-
served. The inset shows the local slopes of the same data on 1/t scale
with the same color coding from K = 1.75 (top curve) to K = 1.55
(bottom curve).

a downward curvature. To see the corrections to scaling we
determined the effective exponents of R as the discretized,
logarithmic derivative of Eq. (8) at these discrete time steps
tk , near the transition point

ηeff = ln〈R(tk+3)〉 − ln〈R(tk )〉
ln(tk+3) − ln(tk )

. (11)

Here the brackets denote sample averaging over different ini-
tial conditions. These effective exponent values can be seen
on the local slope inset of the figure. Some fluctuation and
modulation effects, coming from the weak modular graph
structure of the FF, remain. One can estimate a synchroniza-
tion transition at Kc = 1.70(2), characterized by η = 0.70(5).
This is close to the mean-field value, obtained in Refs. [51,62]
ηMF  0.75 and higher than those of the large human white
matter connectomes, where the graph dimension was found to
be d < dc = 4 [39].

Using the steady-state values we also determined the tran-
sition as the function of the control parameter K . Figure 3
displays a comparison of the FF transition with the results
obtained on the KKI-18 human connectome. The transition is
sharp around Kc = 1.70(2) and R changes from 0.02 to 0.97
as K from 1.2 to 6. In comparison, similar change of R for the
KKI-18 spans from 1.6 < K < 103. We also plotted the re-
sults obtained without the application of weight normalization
by running on the raw FF network on Fig. 3. In this case the
transition occurs at a much lower coupling: Kc = 0.00090(5),
so we multiplied them on the plot by the average weight
value K ′ = K × 628. Note that the transition of the raw case
is not smoother than the homeostatic one, just it appears to
be like that, as the consequence of the linear upscaling of K .
It happens in the 0.0005 < K < 0.2 region. The steady-state
results on a random ER graph with N = 22.000 and 〈k〉 = 315
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FIG. 3. Synchronization transition of R(t → ∞, K ) on different
graphs.

are also displayed. Here we used weight normalization condi-
tion (10) as for FF. The synchronization transition occurs in
the 1.4 < K < 5 region, which is slightly narrower than for
the FF.

We can analyze the transition further by determining the
fluctuations of R(t → ∞, K ) near the transition. This is plot-
ted on Fig. 4. As we can see the standard deviation: σ (R(t →
∞, K )) of the FF is very similar to that of an ER graph of
same size and average degree, but somewhat wider. In com-
parison the KKI-18 exhibits a much more smeared transition
region, even though the weighted average degree is smaller:
〈w〉KKI−18 = 448 than that of the fly connectome: 〈w〉FF =
628. As dKKI−18 < d−

c = 4 this is a crossover transition and
no exact finite scaling is applicable to rescale it.

In case of KM on random ER graphs increasing the size
causes small decrease of Kc as well as narrower peaks as
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FIG. 4. Fluctuations of R(t → ∞, K ) for different graphs.
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shown in Ref. [51]. If we increase the average degree from
〈k〉 = 4 to 〈k〉 = 350, the critical point Kc  0.482 moves to
Kc  1.65 close to that of the full graph case Kc  1.6. Thus,
one may expect that the bigger average degree of FF would
cause a peak at larger couplings. In contrast we can see that
the hierarchical modular network (HMN) structure of KKI-18
causes nontrivial effects on the σ (R) peak and on the width of
the phase synchronization transition region.

We have also investigated the frequency synchronization
order parameter, which is defined here as Eq. (9). In case of the
single peaked Gaussian self-frequencies one can follow the
frequency entrainment by this quantity. This has the advantage
of having lower critical dimension: d−

c = 2 as compared to the
phases: d−

c = 4. This was showed on regular lattices [64], but
Ref. [67] obtained similar conclusion on complex network.
Thus in case of graph, like the KKI-18, a real frequency phase
transition can occur, if we found the human brain to exhibit
topological dimension d > 2, even for higher resolutions.

Indeed as the Fig. 5 shows the frequency transitions on the
fly on the ER and on the human KKI-18 are very similar. Now
the finite-size scaling

|K − Kc| ∝ N−1/ν̃ (12)

is applicable as all of these graphs have d > d−
c . By consider-

ing the fluctuations of this order parameter: σ (�(t → ∞, K ))
we find that the peaks are close, but the KKI-18 transition
region is much wider in the high coupling region, than in
case of the ER and the FF (see Fig. 6). The fluctuation region
on the random ER graph is the narrowest and the peak value
decreases as we increase N . We have also plotted the results
obtained on the raw FF graph, upscaled by the average value
of the weights: K ′ = K × 628. The distribution looks wider,
but this is just the consequence of the horizontal rescaling.

Finally, we also performed measurements for the desyn-
chronization times as in Refs. [51,52]. To define desynchro-
nization avalanches in terms of the Kuramoto order parameter,
we can consider processes, starting from fully desynchronized
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initial states by a single phase perturbation (or by an external
phase shift at a node), followed by growth and return to
R(tx ) = 1/

√
N , corresponding to the disordered state of N

oscillators. In the simulations one can measure the first return,
crossing times tx in many random realizations of the system.
In Refs. [51,52], the return or spontaneous desynchronization
time was estimated by tx = (tk + tk−1)/2, where tk was the
first measured crossing time, when R(tk ) fell below 1/

√
N .

Following a histogramming procedure, one can obtain
px(t ) distributions shown on Fig. 7 for the weight normalized,
homeostatic case. For K = 1.65(5) (i.e., near the transition
point estimated before), we can find critical PL decay char-
acterized by τt  1.6(1), close to the mean-field value of
the spontaneous desynchronization of R(t ), as defined in
Ref. [51]. For K > 1.7 the curves decay as px(t ) ∼ 1/t up to
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FIG. 7. Desynchronization time distributions px (t )t1.6 near the
transition point in case of the fly connectome with local homeostasis
for different couplings, as shown by the legends.
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a cutoff, corresponding to the ordered state, while for K < 1.5
the curves break down sharply. It is hard to decide if there is a
narrow GP in the 1.5 � K � 1.7 region due to the strong fluc-
tuations remained even after averaging over tens of thousands
of samples with different ωi,0 initial conditions.

Similar results have been obtained using the raw FF graph,
as shown on Fig. 8. The transition point is at Kc = 0.0008(1),
where we can observe a saturation of the px(t )t1.6 for t > 200,
thus again mean-field scaling occurs. At K = 0.001 we can
also see the px(t ) ∝ 1/t decay, corresponding to the synchro-
nized state, in which arbitrarily large decay times can happen,
but no signs of subcritical PLs, corresponding to a GP have
been found.

For comparison we have done this analysis for full and
for ER graphs with N = 22000 and 〈k〉 = 315. Now we just
show the results for the ER case on Fig. 9. Below Kc  1.59
the px(t )t1.6 curves break down quickly, without any sign
of PL tails. While for K = 1.59 we see a saturation for t >

200, the K = 1.62 curve seems to cross over to the singular
px(t ) ∼ 1/t behavior. Going beyond this the curves break
down very quickly again, suggesting that within the maximum
measurement time t = 104 desynchronization events could
not happen.

We have also tested the effects of the introduction of
negative couplings by flipping the sign of outgoing weight
values: Wi j = −Wi j of 30% of randomly chosen nodes. As
the consequence the transition region broadens considerably
as shown on Fig. 4.

IV. CONCLUSIONS

In conclusion we have investigated KM at the edge of
synchronization by comparing the dynamical behavior on the
FF, ER, and the KKI-18 large human connectome. The FF
network topology is rather similar, almost free of modules,
to the high-dimensional ER graph. Thus we found a mean-
field-like behavior, unlike for the KKI-18, which has d < 4,
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FIG. 9. Desynchronization time distributions px (t )t1.6 near the
transition point in case of ER graphs with different couplings, as
shown by the legends.

a HMN structure, which enhances and broadens the transition
region with the appearance of GP singularity. Although the
link weight distribution of FF exhibits a fat tail, it does not
seem to be enough to introduce visible GP effects, or maybe a
very weak ones. Thus one can think that the fly brain’s simpler
structure does not allow the appearance of the complex sub-
critical dynamical phenomena, which are present in the human
brain. The lack of modules on smaller scales may also explain
that in global human brain measurements nonuniversal scal-
ing [13] are reported, while local electrode studies [1] show
mean-field exponents. Possibly electrode studies [1] measure
local activity and within those small volumes modules and GP
are less relevant than on the whole brain scale.

The range of the synchronization transition region is
slightly broader than in case of the ER, but much narrower
than in case of the KKI-18 when we applied link weight
normalization, to mimic local homeostasis. This is shown
both by the phase and frequency order parameters. Without
link weight normalization the KM transition occurs at very
low coupling values, but shows mean-field scaling. This was
shown by measuring the synchronization growth exponent η

and the desynchronization time exponent τt .
If we allow negative couplings the transition region broad-

ens further, leading to a spin-glass-like phase, where GP
effects may also emerge. But as the details and dynamics
of such negative couplings are unknown in case of the FFs
we have not investigated this further. We have arrived to
similar conclusions as the very recent publication by Buendia
et al. [68] in case of the complex interplay between structure
and dynamics, but we showed the emergence of a critical
transition in terms of desynchronization times as well as the
initial-slip, characterized by the exponent η.

Given the limitations and assumptions we mentioned in
Sec. I, we have provided ample numerical evidence for the
different dynamical critical behavior of the Kuramoto model,
as the result of the different connectome topology of a fly and
of a human brain. Further studies on other animals, preferably
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mammals, should be performed in order to fully justify the
proposition expressed in the title.

ACKNOWLEDGMENTS

We thank Róbert Juhász and Shengfeng Deng for useful
comments and discussions. G.Ó. is supported by the Na-
tional Research, Development and Innovation Office NKFIH

under Grant No. K128989 and the Project HPC-EUROPA3
(INFRAIA-2016-1-730897) from the EC Research Innovation
Action under the H2020 Programme. We thank access to
the Hungarian national supercomputer network NIIF and to
BSC Barcelona. G.D. is supported by the project PID2019-
105772GB-I00/AEI/10.13039/501100011033 financed by the
Ministry of Science, Innovation and Universities (MCIU) and
the State Research Agency (AEI)10.

[1] J. Beggs and D. Plenz, Neuronal avalanches in neocortical cir-
cuits, J. Neuroscience 23, 11167 (2003).

[2] A. Mazzoni, F. D. Broccard, E. Garcia-Perez, P. Bonifazi, M. E.
Ruaro, and V. Torre, On the dynamics of the spontaneous activ-
ity in neuronal networks, PLoS One 2, e439 (2007).

[3] V. Pasquale, P. Massobrio, L. L. Bologna, M. Chiappalone,
and S. Martinoia, Self-organization and neuronal avalanches
in networks of dissociated cortical neurons, Neuroscience 153,
1354 (2008).

[4] N. Friedman, S. Ito, B. A. W. Brinkman, M. Shimono, R. E. L.
DeVille, K. A. Dahmen, J. M. Beggs, and T. C. Butler, Univer-
sal Critical Dynamics in High Resolution Neuronal Avalanche
Data, Phys. Rev. Lett. 108, 208102 (2012).

[5] G. Hahn, T. Petermann, M. N. Havenith, S. Yu, W. Singer,
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