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First-principles derivation and properties of density-functional average-atom models
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Finite-temperature Kohn-Sham density functional theory (KS-DFT) is a widely-used method in warm dense
matter (WDM) simulations and diagnostics. Unfortunately, full KS-DFT-molecular dynamics models scale
unfavourably with temperature and there remains uncertainty regarding the performance of existing approximate
exchange-correlation (XC) functionals under WDM conditions. Of particular concern is the expected explicit
dependence of the XC functional on temperature, which is absent from most approximations. Average-atom
(AA) models, which significantly reduce the computational cost of KS-DFT calculations, have therefore become
an integral part of WDM modeling. In this paper, we present a derivation of a first-principles AA model from
the fully-interacting many-body Hamiltonian, carefully analyzing the assumptions made and terms neglected
in this reduction. We explore the impact of different choices within this model—such as boundary conditions
and XC functionals—on common properties in WDM, for example equation-of-state data, ionization degree and
the behavior of the frontier energy levels. Furthermore, drawing upon insights from ground-state KS-DFT, we
discuss the likely sources of error in KS-AA models and possible strategies for mitigating such errors.
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I. INTRODUCTION

Warm dense matter (WDM) is an energetic phase of matter
exhibiting characteristics of solids, liquids, gases, and plas-
mas [1]. Thus, a better understanding of WDM can solve
crucial problems at the intersection of several disciplines
[2,3]. The most important application of WDM research is
the modeling and design of processes in inertial confinement
fusion [4–9]; additionally, WDM simulations enhance our
understanding of the earth’s core [10,11]; various astrophys-
ical phenomena [12,13] (including properties of exoplanets
[14,15], giant gas planets [16–19], and brown and white
dwarfs [20,21]); and unexplored material properties such
as novel chemistry [22,23], non-equilibrium effects [24,25],
phase transitions [26], and mechanical properties of solids
[27]. Furthermore, accurate theoretical modeling of WDM is
important in processing and understanding data from large
experimental facilities [3,28–32].

The theoretical description of WDM is particularly chal-
lenging: on the one hand, established plasma physics methods
do not sufficiently account for quantum effects and strong
coupling in WDM; on the other hand, the length, time, and
temperature scales of WDM often render popular approaches
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from condensed-matter physics computationally impractical.
More formally, these difficulties can be understood in terms of
several dimensionless parameters; in particular, the Coulomb
coupling parameter �i,e and electron degeneracy parameter
�e, which are defined as

�i,e = 〈Epot〉
〈Ekin〉

WDM∼ 1; (1)

�e = kBτ

EF

WDM∼ 1, (2)

where 〈Ekin〉 and 〈Epot〉 are respectively the average kinetic
and potential energies; τ the temperature; EF the Fermi en-
ergy; and the subscripts i and e respectively refer to nuclei and
electrons. These parameters are of order unity in the WDM
phase, �,� ∼ 1, which corresponds to a phase of matter
lying somewhere between a classically ionized plasma and a
strongly-correlated condensed-matter system.

At typical WDM temperatures and densities, the electron
coupling parameter �e is approximately equal to the density
parameter rs [33], defined as [34]

�e ≈ rs =
(

3

4πne

)1/3

, (3)

where ne is the number density of free electrons. We note that
the Fermi energy for a noninteracting system of electrons can
also be expressed using the above definition of rs [35],

EF = h̄2

2me
(3π2ne)2/3 = h̄2

2me

(
9π

4

)2/3 1

r2
s

. (4)

From the above relationship, and because 〈Ekin〉 ≈ EF at low
temperatures, the approximation �e ≈ rs (3) is valid in WDM
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FIG. 1. A rough schematic of the temperature and density space
spanned by the WDM regime, including some typical phenomena
and the region we shall target (dashed rectangle). Data from Refs.
[2,13,34,36]. ∗Envelope (atmosphere) of white dwarfs †Condensed-
matter physics.

(for rs ∼ 1). Finally, the classical Coulomb coupling parame-
ter of nuclei is defined as

�i = (Ze)2

aikBτ
, (5)

with Ze the nuclear charge, and ai the mean interionic dis-
tance. In Fig. 1, we show a rough schematic of some typical
phenomena in the WDM regime, and the approximate region
of WDM phase space, which we later explore with our model.

Notwithstanding the difficulties mentioned earlier, apply-
ing Kohn-Sham density functional theory (KS-DFT) [37,38]
has recently led to promising results in the simulation
of WDM [39,40]. KS-DFT is a well-established, success-
ful method [41–46] for predicting the electronic structure
of materials, from single atoms and small molecules to
nanoparticles, periodic solids, and large biomolecules. Within
KS-DFT the interacting many-body problem is tackled by
mapping it onto a fictitious, noninteracting system [38], which
yields the same electronic density as the interacting problem.
Usually, the systems are treated at zero temperature. The
formal generalization of KS-DFT to finite temperature was
established by Mermin [47]. In WDM simulations, KS-DFT
is used to calculate forces on nuclei, which are then time-
evolved through molecular dynamics techniques [40,48,49].
The primary target is to calculate the equation of state (EOS),
which relates the atomic density, energy, temperature, and
pressure of a material. The EOS data can be used, for example,
to compute the Hugoniot curve [40], which describes the pos-
sible final state from a given initial state after a shock wave,
relevant to many WDM experiments. Furthermore, the elec-
trical and thermal conductivities of WDM are calculated via
Onsager coefficients [49] from KS orbitals and eigenvalues.

In principle, the KS method is an exact approach, but
in practice, the exchange-correlation (XC) energy functional
must be approximated. There is no systematic approach for
the development of XC functionals, and thus a plethora
of zero-temperature approximations exist; see, for exam-
ple, Refs. [50–54] for discussions on this subject. In the
extension to finite temperatures, functional construction is
further complicated by the fact that, in principle, the XC

functional should depend explicitly on the temperature [55].
However, the nature of this explicit temperature-dependence
remains unclear and, in fact, is usually neglected in stan-
dard calculations [56,57]. Hence, the temperature dependence
is only crudely included through the implicit temperature-
dependence in the density, as the KS orbitals are occupied
according to Fermi-Dirac statistics. The theoretical devel-
opment of temperature-dependent XC approximations has
recently found new momentum [57–65]. Investigations of the
electron liquid [66] and uniform electron gas [67–70] provide
insights into constructing local [56,71–73] and generalized
gradient approximations [74,75] to the temperature-dependent
XC contribution. An exact inclusion of the exchange en-
ergy at finite temperature [76,77] has also been achieved
using the optimized-effective-potential method, however, with
the drawback of higher computational cost than that of the
standard KS method. These are constructive steps towards
developing accurate, reliable and computationally affordable
temperature-dependent XC functionals.

The aforementioned computational cost is a further chal-
lenge for finite-temperature KS-DFT, because a large number
of KS states must be accounted for under WDM conditions
[78]. Despite this limitation, and the above-cited difficulties
with developing suitable XC approximations, KS-DFT is cur-
rently the predominant first-principles method for simulations
of large systems in this thermodynamic regime; alternative
approaches such as orbital-free DFT (OF-DFT) [79–81] or
path-integral Monte Carlo (PIMC) [36,82–85] tend either to
not be sufficiently accurate (OF-DFT [86,87]) or too expen-
sive (PIMC, especially at lower temperatures).

Consequently, the development of methods, which obtain
close to KS-DFT accuracy at reduced computational cost is
an active area of research. Recently, there have been some
promising developments in this area, such as the development
of surrogate models using machine learning [88], stochastic
methods [89–91], and approaches to reduce the cost of core-
electron calculations [92,93].

In this paper, we consider an alternative approach known
as an average-atom (AA) model: The premise of such a
model is that the full system of interacting electrons and
nuclei is partitioned into a set of Voronoi spheres, each con-
taining a central nucleus, and the full electronic calculation
is reduced (under certain approximations, which we discuss
later) to a calculation for a single atom. This concept, which
has clear computational advantages, has a long history in
plasma physics and electronic structure theory. The earli-
est AA models [94–98] were based on the Thomas-Fermi
(TF) approximation [99,100] and modifications thereof; sub-
sequent models built on this premise by adopting a mixed
KS-DFT and TF approach for the bound and continuum
electrons respectively [101], then treating the full spectrum
(discrete and continuous) via KS-DFT [102], and later incor-
porating effects from outside the central atom such as ionic
correlations [103–106]. AA models continue to be extensively
developed and used under a variety of different approaches
and assumptions [107–125]; we also mention here the recent
works in Refs. [126,127], which attempt to bridge the gap
between AA models and full KS-DFT via novel approaches.

AA models are a well established and successful tool in the
plasma physics community as they produce results of useful
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accuracy at a fraction of the cost of full KS-DFT simulations.
However, their evolution from the initial TF based models has
been largely driven by organic developments, and there have
been relatively few attempts to derive an AA model starting
from a fully quantum-mechanical perspective (with some no-
table exceptions, for example Refs. [104,105,108,112,117]).
As a result, AA models do not always follow the same con-
ventions: for example, AA models, which differ in their choice
of boundary condition for solving the KS equations have been
observed to yield quite different results [116]. By contrast,
solid-state KS-DFT codes have differences in their numer-
ical implementation, but generally follow a common set of
theoretical assumptions and thus are expected to yield the
same results for the same set of inputs (atomic configuration,
temperature, etc.) [128]. Establishing a similar framework and
hierarchy for AA models would improve understanding of the
limits under which they might be expected to give reasonable
results in the WDM regime, in particular for τ � EF /kB.

This motivates the main results of this paper, namely a
systematic, first-principles derivation of an AA model starting
from the many-body Hamiltonian of coupled electrons and
nuclei, and the comparison of some fundamental results when
the model is solved using KS-DFT. The paper is structured as
follows: in Sec. II, we start with the full many-body Hamil-
tonian of electrons and nuclei and reduce it to an effective
atomic Hamiltonian for a classical nucleus and surrounding
electron density. We mention explicitly all the approxima-
tions that have to be done during the derivation and discuss
their possible impact. We then introduce finite-temperature
KS theory and apply it to minimize the grand free potential for
this AA model, which requires particular consideration of the
boundary conditions and treatment of unbound (continuum)
electrons. Following a discussion on numerical implementa-
tion in Sec. III, we compute some common properties for a
range of temperatures, densities, boundary conditions and XC
functionals in Sec. IV. Finally, we discuss the implications
of our results for AA models, and finite-temperature KS-DFT
more generally, in Sec. V.

II. THEORY

In this section, we first reduce the many-body Hamiltonian
of interacting electrons and nuclei to an effective single-atom
Hamiltonian (Sec. II A), analyzing the assumptions and ap-
proximations used in this reduction. Then, in Sec. II B, we
briefly review the grand canonical ensemble, which can be
used to describe a quantum system of electrons in thermal
equilibrium with a reservoir (the nuclei); and in Sec. II C we
explain how the problem of minimizing the grand free energy
by solving for all the interacting states is greatly simplified by
finite-temperature KS-DFT. Next, in Sec. II D, we apply KS-
DFT to the reduced average-atom Hamiltonian and deduce
suitable boundary conditions for the electron density within
this model. Finally, in Sec. II E, we discuss our treatment
of the unbound electrons and how the boundary condition

on the density can be realised through a number of different
boundary conditions for the bound KS orbitals, from which
we consider two simple choices.

A. Many-body Hamiltonian of coupled electrons
and nuclei in the dilute gas limit

We begin with the full many-body Hamiltonian of interact-
ing electrons and nuclei,

Ĥ = Ĥnuc + Ĥel + Ĥel,nuc. (6)

The individual components of the Hamiltonian are defined as

Ĥnuc =
Nn∑

I=1

(
− ∇2

I

2M

)
+ 1

2

Nn∑
I=1

Nn∑
J=1
J �=I

Z2

|RI − RJ | , (7)

Ĥel =
Nn·Ne∑
i=1

(
−∇2

i

2

)
+ 1

2

Nn·Ne∑
i=1

Nn·Ne∑
j=1
j �=i

1

|ri − r j | , (8)

Ĥel,nuc = −
Nn∑

I=1

Nn·Ne∑
i=1

Z

|ri − RI | . (9)

In the above, we have assumed that the system is composed
of a single element with nuclear mass M, charge Z , and
electron number Ne. Nn denotes the number of nuclei in the
system,thus Nn · Ne is the total number of electrons. 7ri and
RI are the positions of the ith electron and the Ith nucleus
respectively. We have also assumed that there is no external
field applied to the system. Note that here and below we adopt
Hartree atomic units, h̄ = e = me = a0 = 1.

We work within the Born-Oppenheimer (BO) approxima-
tion [129], which assumes the electrons react instantaneously
to any changes in the positions of the nuclei due to their
relatively small masses, me � M. In fact, though the BO
approximation is used extensively in WDM simulations with
KS-DFT [1], it is likely to be prone to inaccuracies in the
WDM regime, due to strong nonadiabatic effects from excited
states, core electron chemistry, and so forth [130,131]. While
we persist with the BO approximation in our derivation, we
discuss some possibilities for incorporating nonadiabatic cou-
plings between electrons and nuclei in Sec. V.

Having fixed the nuclear coordinates in the Hamiltonian
with the BO approximation, we transform the vectors ri

(which act on the electron wave function) as ri = RI + xiI ,
where xiI is determined by performing a Voronoi decomposi-
tion of space. In other words, each vector ri is now defined
relative to the closest nuclear coordinate RI . We wish to make
clear that this is simply a relabelling of the terms in the
Hamiltonian and the notion of a “closest nucleus” does not
imply any assumptions regarding the electron density distribu-
tion. Following this transformation, and ignoring the nuclear
kinetic energy to the BO approximation, the Hamiltonian can
be rewritten as

Ĥ =
Nn∑

I=1

[
1

2

Nn∑
J �=I

Z2

|RI − RJ | +
Ne(I )∑
i=1

(
− ∇2

iI

2
+

Nn∑
J=1

{
− Z

|RJ − RI − xiI | + 1

2

Ne(J )∑
j=1

( jJ )�=(iI )

1

|RJ − RI + x jJ − xiI |

})]
, (10)
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where Ne(I ) denotes the number of vectors xiI closest to the Ith nucleus. Next, we decompose the electron-nuclear and electron-
electron interactions in the above expression into those parts, which contain interactions between charges in a single Voronoi
cell, and those involving intercell interactions. The Hamiltonian (10) thus becomes

Ĥ =
Nn∑

I=1

{ Ne(I )∑
i=1

[
− ∇2

iI

2
− Z

|xiI | + 1

2

Ne(I )∑
j=1
j �=i

1

|xiI − x jI |

]
+

Nn∑
J �=I

[
1

2

Z2

|RI − RJ | +
Ne(I )∑
i=1

(
− Z

|RJ − RI − xiI |

+ 1

2

Ne(J )∑
j=1

1

|RJ − RI + x jJ − xiI |

)]}
. (11)

Next, we consider the decomposition of the Hamiltonian into two parts: an “average” term Ĥav, and an “inhomogeneous”
term Ĥin, i.e., Ĥ = Ĥav + Ĥin. The average component Ĥav is constructed by considering the expectation value 〈�|Ĥ |�〉 (where
� is an antisymmetric wave function), for the particular case in which the nuclei are distributed exactly evenly in space. In this
case, the electron density is identical in each of the Voronoi partitions, and therefore the expectation value 〈�|Ĥ |�〉 is equal
to the expectation value of the average Hamiltonian 〈�|Ĥav|�〉. We then make two further assumptions regarding the average
Hamiltonian. Firstly, we assume that each nucleus is associated with the same number of vectors ri following the Voronoi
decomposition, which means that N (I )

e = Ne. Secondly, we assume that the vectors xiI are independent of any nuclear positions;
in other words, xiI can be written simply as xi. By further transformation of the coordinate system such that the I th nucleus lies
at the origin, RI = 0, the average Hamiltonian becomes

Ĥav = Nn ×
{

Ne∑
i=1

[
− ∇2

i

2
− Z

|xi| + 1

2

Ne∑
j=1
j �=i

1

|xi − x j |

]
+

Nn∑
J=2

[
Z2

2|RJ | −
Ne∑

i=1

(
Z

|RJ − xi| − 1

2

Ne∑
j=1

1

|RJ + x j − xi|

)]}
. (12)

The inhomogeneous term, Ĥin is the difference between
the full Hamiltonian Ĥ of Eq. (11) and Ĥav of Eq. (12). In
our derivation, we choose to neglect it. This is a reasonable
assumption if the nuclear distribution is relatively uniform
(for the fictitious system considered in the previous para-
graph in which the nuclear distribution is exactly uniform,
〈�|Ĥin|�〉 = 0). The contribution of Ĥin for nonuniform sys-
tems can in principle be taken into account via perturbation
theory. As a conceptual remark, we note that the average
Hamiltonian (12) is akin to the Hamiltonian in a typical
KS-DFT simulation for a periodic system, in which some
electrons in a unit cell (here containing a single nucleus)
interact between themselves and their periodically repeating
images.

We shall now split the reformulated Hamiltonian (12) into
two parts as follows:

Ĥav = Nn ×
{

Ĥ at
el + Z2

2

Nn∑
J=2

ŴJ

|RJ |

}
, with (13)

Ĥ at
el =

Ne∑
i=1

[
−∇2

i

2
− Z

|xi| + 1

2

Ne∑
j=1
j �=i

1

|xi − x j |

]
, (14)

ŴJ = 1 − 1

Z2

Ne∑
i=1

[
2Z

|R̂J − yiJ |
−

Ne∑
j=1

1

|R̂J + y jJ − yiJ |

]
,

(15)

where yiJ = xi/|RJ | and R̂J = RJ/|RJ |.
The first component Ĥ at

el (14) is equivalent to the electronic
Hamiltonian of a single atom and we shall return to it later
in the paper. We first treat the terms ŴJ (15), which make

up the second component of the Hamiltonian (13). We shall
expand perturbatively in powers of |yiJ |, since by the Voronoi
decomposition of space, the inequality |yiJ | � 1

2 holds strictly,
because the distance between an electron and its nearest nu-
cleus cannot exceed half the distance between two nuclei.
Moreover, for electrons located in cells far from the central
cell, and for electrons tightly bound to the central nucleus,
|yiJ | is much lower than 1, which further justifies a power
expansion.

We rewrite ŴJ in the form

ŴJ = 1 − 1

Z2

Ne∑
i=1

[
2Z√

1 − 2R̂J · yiJ + |yiJ |2

−
Ne∑
j=1

1√
1 − 2R̂J · (yiJ − y jJ ) + (yiJ − y jJ )2

]
(16)

and expand both terms in the above expression using the
binomial expansion for 1/

√
1 + ε. A full derivation can be

found in Appendix A. The zeroth-order term in this expansion
is equal to

Ŵ (0)
J =

(
Z − Ne

Z

)2
Z=Ne= 0, (17)

where the final equality holds for systems with neutral charge,
Ne = Z . We now consider the first and second-order terms in
the expansion of ŴJ , which turn out to be generally nonvan-
ishing and equal to

Ŵ (1)
J = − 2

Z
R̂J · YJ ; (18)

Ŵ (2)
J = Z − Ne

Z2

Ne∑
i=1

[|yiJ |2 − 3(R̂J · yiJ )2]

023055-4



FIRST-PRINCIPLES DERIVATION AND PROPERTIES OF … PHYSICAL REVIEW RESEARCH 4, 023055 (2022)

+ 1

Z2
[|YJ |2 − 3(R̂J · YJ )2] (19)

Ŵ (2)
J

Z=Ne= 1

Z2
[|YJ |2 − 3(R̂J · YJ )2], (20)

where we introduced the notation

YJ =
Ne∑

i=1

yiJ . (21)

In principle, one could continue this perturbative expansion to
include even higher-order terms. However, in our AA model,
we neglect all the coupling terms Ŵ (k)

J , with k � 1, leav-
ing only an atomic Hamiltonian. Considering the interaction
terms we neglect in our model already provides insight regard-
ing the limits under which we might expect it to be accurate.
Of course, we would expect high accuracy in the limit of a
dilute gas (|yiJ | � 1). Moreover, for an approximately uni-
form nuclear distribution, which implies a highly symmetric
electronic distribution, we would expect the expectation value
〈YJ〉 to be close to zero. This suggests the model is likely
to even be accurate in the high-density limit, in which the
Voronoi cells and their enclosed electronic distribution will
be spherically symmetric to a large extent. We can also expect
accurate results at high temperatures, when there is signif-
icant ionization and the electron kinetic energy dominates
over interaction effects. In addition, the detailed derivation
performed here shows how the AA model can be made more
accurate in the future, by including higher-order terms of ŴJ

and perturbatively treating the inhomogeneous term, Ĥin.
We have therefore reduced the full many-body Hamilto-

nian of electrons and nuclei, defined by Eqs. (6)–(9), to Nn ×
Ĥ at

el , where Ĥ at
el is the Hamiltonian for a system of electrons

interacting with a single fixed nucleus. We note that, although
we ignore intercell interaction terms in the Hamiltonian, these
interactions will be partially accounted for by the choice of
boundary conditions; this is what distinguishes this model
from a single isolated atom. In the literature, such a reduc-
tion is commonly referred to as an AA model: in neglecting
completely the ŴJ terms, our model falls within a class of
AA models known as ion-sphere models [101,109,114,116];
other so-called ion-correlation models [106,119] attempt to
model to some extent these coupling contributions via the in-
troduction of a uniform background field [102,103,120,121].
Under the umbrella of ion-sphere models there exists an abun-
dance of models, differing for example in how the atomic
Schrödinger equation is solved for the bound and unbound
electrons, choice of boundary conditions and more besides;
we shall draw comparisons with appropriate examples of such
models later in this paper.

B. Finite-temperature quantum systems

We are interested in applying the above model to systems at
finite temperatures; such systems are described by a statistical
ensemble of states. In this subsection, we review some basic
theory regarding quantum statistical ensembles.

We restrict our analysis to systems at some fixed temper-
ature in thermal equilibrium with a reservoir, which (like the
nuclei) is treated classically. In such an ensemble, known as
the grand canonical ensemble, the grand canonical Hamilto-

nian �̂ and associated grand canonical potential (or grand free
energy) � play the role of the Hamiltonian and energy in a
zero-temperature calculation,

�̂ = Ĥ − τ Ŝ − μN̂ ; (22)

� = Tr[�̂�̂] = E − τS − μN, (23)

where Ŝ and N̂ are the entropy and number particle operators;
�̂ is a statistical operator, which can be used to determine
average observable values of operators; and μ is the chemical
potential, defined as the change in energy when a particle is
added or removed from the system [132]. Ŝ and �̂ are defined
by

Ŝ = −kB ln
(
�̂

)
, with (24)

�̂ =
∑
k,N

wk,N |�k,N 〉〈�k,N |, (25)

where |�k,N 〉 are orthonormal eigenstates of the operator �̂,
where k is the principal quantum number and N is the number
of electrons in the system. wk,N are statistical weights, which
satisfy

∑
k,N wk,N = 1.

One example for the use of the operator �̂ is for finding the
ensemble density:

n(r) = Tr[�̂n̂(r)] =
∑
k,N

wk,N nk,N (r), (26)

where n̂(r) = ∑N
i=1 δ(r − ri ) is the density operator and

nk,N (r) = 〈�k,N |n̂(r)|�k,N 〉 is the density of the (k, N )th state.
When the system of electrons and nuclei is in thermal

equilibrium with the reservoir, the grand canonical potential
is minimized with respect to �̂. In this case the equilibrium
weights wk,N are given by

wk,N = 1

Z
e−β(Ek,N −μN ), (27)

with Ek,N = 〈�k,N |Ĥ |�k,N 〉 the equilibrium eigenvalues of the
states |�k,N 〉, β = 1/kBτ , and Z is the partition function,

Z =
∑
k,N

e−β(Ek,N −μN ). (28)

We also note that the grand canonical potential is often ex-
pressed in terms of the partition function,

� = −kB ln(Z ). (29)

C. Finite-temperature KS-DFT

Whilst there are many first-principles techniques to de-
termine ground-state electronic properties, the majority of
these are not computationally feasible at finite temperatures,
even for atomic systems. We shall use KS-DFT as it has
the best balance between accuracy and speed, particularly in
the low-temperature part of the WDM regime. In its origi-
nal formulation [37], DFT establishes a one-to-one mapping
between the ground-state electronic density and external po-
tential vext (r); this means the ground-state density is (in
principle) sufficient to compute all observables. Mermin [47]
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extended the DFT formalism to ensembles at finite tempera-
tures; in this case, there is a mapping between the equilibrium
ensemble density n0(r) and the external potential minus the
chemical potential, vext (r) − μ, and hence n0(r) can be used
to compute observable averages. The grand canonical poten-
tial � = �[n] is thus a functional of the density [58],

�[n] = F τ [n] +
∫

dr n(r)[vext (r) − μ], with (30)

F τ [n] = T τ [n] + V τ
ee[n] − τSτ [n], (31)

where T τ [n] denotes the electronic kinetic energy at temper-
ature τ , V τ

ee[n] the electron-electron interaction energy, and
vext (r) the external potential (which in our case is just the
electron-nuclear attractive field). F τ [n] is denoted the univer-
sal functional because it has no dependence on the external
potential; minimizing �[n] with respect to the density yields
the equilibrium free energy.

Like in the ground-state case, it is convenient to introduce
an auxiliary system of noninteracting electrons, which has the
same density and temperature as the fully-interacting system.
This is known as the KS system [38,55]. The definition of the
grand free energy within KS theory is given by

�[n] = T τ
s [n] − τSτ

s [n] + U [n] + F τ
xc[n]

+
∫

dr n(r)[vext (r) − μ], (32)

where vext (r) is the external potential experienced by the
electrons (in our model, the electron-nuclear potential); and
F τ

xc is the exchange-correlation (XC) free-energy functional,
which is defined as

F τ
xc[n] = F τ [n] − (T τ

s [n] − τSτ
s [n]) − U [n], (33)

and U [n] is the usual Hartree energy, given by

U [n] = 1

2

∫∫
dr dr′ n(r)n(r′)

|r − r′| . (34)

The exact XC free-energy functional contains all the infor-
mation about electron-electron interactions. The KS orbitals,
and hence the density, are obtained by solving the finite-
temperature KS equations,[

−∇2

2
+ vτ,σ

s (r)

]
ψσ

i,ε (r) = ετ
(i)σψσ

i,ε (r), with (35)

vτ,σ
s (r) = vext (r) + vH(r) + δF τ

xc[n↑, n↓]

δnσ (r)
, (36)

where vH(r) is the Hartree potential, given by the functional
derivative of the Hartree energy (34) with respect to the
density. In the above, we have moved from a pure density
functional formalism to a spin-density-functional formalism
[133], which allows for a formal treatment of magnetic sys-
tems, and often yields more accurate results even in the
absence of an external magnetic field [134]. The variable
σ = ↑,↓ represents the spin-channel. Strictly speaking, we
note that the KS potential, and thus by extension the KS eigen-
values, should depend on the chemical potential due to the
aforementioned mapping between the density and the external
potential minus the chemical potential. However, since this
makes no practical difference in the static case aside from a

shifting of the orbital energies, we adopt the more common
convention seen in the equations above in order to better
connect with existing AA and KS-DFT literature. However,
if one wanted to extend the model to compute linear response
quantities (for example), the formally correct definition for the
KS potential and orbital energies should be used.

The notation ψσ
i,ε (r) denotes respectively bound orbitals

ψσ
i (r), with discrete energy levels ετ

iσ , and unbound orbitals
ψσ

ε (r), with continuum energies ετ
σ . The spin-densities are

given by

nσ (r) =
∑

i

fiσ |ψσ
i (r)|2 +

∫
dε gσ (ε) fσ (ε)|ψσ

ε (r)|2, (37)

where fiσ denotes the occupation number of the ith en-
ergy level ετ

iσ , fσ (ε) the continuum distribution function, and
gσ (ε) the density of states. The total density is simply equal
to the sum over the spin densities, n(r) = n↑(r) + n↓(r).
Since the KS system is a noninteracting system of electrons,
the occupation numbers are determined by the Fermi-Dirac
(FD) distribution,

fiσ = 1

1 + eβ(ετ
iσ −μσ ) , (38)

with fσ (ε) defined in a similar way.
As discussed, finite-temperature KS-DFT is formally an

exact method; however, the XC functional F τ
xc[n] has to be

approximated in practice. Formally, F τ
xc[n] should depend ex-

plicitly on the temperature (a dependence, which is absent in
many approximations), and satisfy various exact conditions
[58]. Furthermore, even XC approximations, which satisfy
these requirements can suffer from various errors. We outline
two such errors, particularly relevant in the context of this
paper, below:

(i) Self-interaction error: The classical Hartree energy (34)
in ground-state KS-DFT introduces a spurious self-interaction
(SI)—repulsion of the electron from its own charge den-
sity [135]—which must be compensated by the XC term.
However, for many approximate XC functionals the self-
interaction is not compensated fully, and one is left with
a self-interaction error (SIE). A prototypical example is
the H atom, for which approximate-XC calculations can be
compared against an analytic result, quantifying the SIE. Self-
interaction causes an array of problems, among which is also
the underprediction of ionization potentials [136–139]. Devel-
opment of methods to mitigate the SIE is a very active area
of research [138,140–148]. The SIE is also present in finite-
temperature KS-DFT and also there it must be compensated
by the XC functional; finite temperature makes this task even
more difficult.

(ii) Ghost-interaction error: In finite-temperature KS-DFT,
the density is constructed as a weighted ensemble of densities
of KS determinants [see Eq. (26)]. Formally, the KS states,
which form this ensemble should not interact with each other;
however, the Hartree energy is a functional of the total density
and thus a ghost-interaction error is present due to repulsion
between electrons in different KS states [149]. This error is
less studied than the SIE, but some correction schemes have
been proposed when the ensemble weightings are defined a
priori [150,151].
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D. Reduction to average-atom model
in finite-temperature KS-DFT

We shall now apply the finite-temperature KS scheme de-
tailed above to the reduced Hamiltonian in Eq. (14). Using this
Hamiltonian, the computational cost of solving the KS equa-
tions is significantly reduced, because the finite-temperature
KS equations (35) need only to be solved for a single atom.
In the single-atom picture, the electron-nuclear potential is
spherically symmetric. The same is not necessarily true for
the KS potential defined in Eq. (36); however, we make the
spherical approximation (which is usually made in atomic KS
calculations), in which the KS potential is assumed equal to its
spherically-averaged value. This means the bound KS orbitals
ψσ

i (r) can be decomposed into a product of radial and angular
components,

ψσ
i (r) = X σ

nl (r)Y m
l (θ, φ), (39)

where the angular component Y m
l (θ, φ) is a spherical Har-

monic function. The eigenstates are now characterised by the
quantum numbers n, l, m, and σ , where n denotes the energy
level, l and m characterise the orbital angular momentum, and
σ refers to the spin channel.

The radial component X σ
nl (r) is determined by solving the

one-dimensional differential equation given by[
d2X σ

nl (r)

dr2
+ 2

r

dX σ
nl (r)

dr
− l (l + 1)

r2
X σ

nl (r)

]

+ 2
[
ετ,σ

nl − vτ,σ
s [n](r)

]
X σ

nl (r)

= 0, (40)

where the spherically symmetric KS potential vτ,σ
s [n](r) is

equal to

vτ,σ
s [n](r) = −Z

r
+ 4π

∫ RVS

0
dx

n(x)x2

r>(x)
+ δF τ

xc[n↑, n↓]

δnσ (r)
,

(41)

where r>(x) = max(r, x). All integrals are performed within
the Voronoi sphere, whose radius RVS [152] is determined
from the average density of the nuclei ni,

RVS =
(

3

4πni

)1/3

. (42)

In the WDM regime, i.e., at high pressures and tempera-
tures, the unbound electrons play an important role. Due to
the nature of continuum states [153], it is difficult to compute
the unbound density exactly and thus it is determined (in our
model) in an approximate manner; we discuss this further in
the following section. For now, we note that, without further
approximation, the total (spin) electron density is split into
bound and unbound components,

nσ (r) = nσ
b (r) + nσ

ub(r), (43)

with the bound component given by

nσ
b (r) =

∑
n,l

(2l + 1) f σ
nl

∣∣X σ
nl (r)

∣∣2
, (44)

where f σ
nl are the Fermi-Dirac occupations, as defined by

Eq. (38), and with the KS orbitals normalized within the

Voronoi sphere,

4π

∫ RVS

0
drr2

∣∣X σ
nl (r)

∣∣2 = 1. (45)

Since we adopt the formalism of spin-DFT, the number of
electrons in each spin-channel is fixed to some integer value
Nσ

e , which also fixes the total number of electrons in the
Voronoi sphere equal to its average value Ne = ∑

σ Nσ
e . The

(spin-dependent) chemical potential μσ in the FD distribution
is thus determined from the condition that the number of elec-
trons in each spin channel is fixed. In theory, the values of Nσ

e
should be determined by whichever configuration minimizes
the grand free energy [154].

We make a clarification here regarding the fact that there
are two chemical potentials, μ↑ and μ↓. This is a necessary
consequence of using spin-DFT; however, one could say that
in the absence of a magnetic field, there should be only a
single chemical potential for the electrons. In fact, this is not
a problem, because only one of the chemical potentials is
physically relevant in this scenario: when adding an electron,
the lower chemical potential is relevant, and when remov-
ing an electron, the higher chemical potential is relevant. If
nonspin-dependent DFT were used, as is quite common in
AA models, then only the total electron number is conserved
and a single chemical potential returned. However, it is well
known in DFT literature that using spin-dependent DFT is
advantageous, because it produces more accurate results for
systems whose spin is not zero [134,155,156], so we use the
spin-dependent formulation in our model.

In this KS-AA model, we impose the condition that the
electron density is smooth at the boundary between neighbor-
ing spheres. Physically, this is motivated by the fact that the
real electron density (which is formally equal to the KS den-
sity) should be smooth everywhere. Of course, the true system
cannot be split into identical spheres, so this condition is an
approximation designed to mimic the real electron density.
Mathematically, this means the following boundary condition
should be imposed on the (spin) density,

dnσ (r)

dr

∣∣∣∣
r=RVS

= 0. (46)

The above condition on the density is physically intuitive,
and leads to boundary conditions on the radial KS orbitals
at the Voronoi sphere’s edge that are widely used in AA
models. However, it is not a necessary condition, and alter-
native choices can be made to model the concept of an atom
immersed in a plasma. For example, in Ref. [120], there is no
boundary condition applied to the density or KS orbitals at the
sphere’s edge; instead, the potential is fixed to a constant value
outside the sphere [vτ,σ

s (r > RVS) = vτ,σ
s (RVS)] and the KS

orbitals are solved out to some radius rmax � RVS. A similar
approach (with the KS potential instead modified inside the
Voronoi sphere) is used in the MUZE code [119], and we shall
compare results obtained with that approach with the above
condition on the density in Sec. IV C.

E. Boundary conditions and treatment of unbound electrons

As mentioned in the previous subsection, we do not explic-
itly solve the KS equations for the continuum orbitals in our
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model. Instead, we treat the unbound electrons as being com-
pletely free (the ideal approximation), i.e., having uniform
density, when we compute their contribution to the total den-
sity. For this distinction between bound and continuum states,
we assume the continuous part of the energy spectrum starts
at vτ,σ

s (RVS). This is equivalent to shifting the KS potential
everywhere by the constant vτ,σ

s (RVS), in other words

v̄τ,σ
s (r) = vτ,σ

s (r) − vτ,σ
s (RVS), (47)

where v̄τ,σ
s (r) signifies the shifted potential, and then as-

suming the continuum starts at energies above zero [since
v̄τ,σ

s (RVS) = 0]. We emphasize that shifting the potential by
a constant has no effect on the KS orbitals, only their en-
ergy eigenvalues, which shift by the same constant vτ,σ

s (RVS).
Since it makes the notation easier, we assume the potential
has been shifted in this way for the rest of the paper, unless
specified otherwise.

We note that, in modern AA codes, the unbound electrons
are usually treated in a more sophisticated manner, either
semiclassically (TF) or (more typically) in a fully quantum
manner [102,110,111], for example by expanding the contin-
uum states in a discrete set of normalizable states [157,158].
The TF approximation for the unbound density is known to
have certain limitations, for example systematically overes-
timating the chemical potential [119]; these limitations are
likely to be exacerbated using the even simpler ideal approxi-
mation. Nevertheless, our model will yield important insights
into the comparison of different XC functionals and boundary
conditions. We also compare this ideal treatment with TF
and quantum unbound electrons in Sec. IV. Furthermore, we
clarify that the density used to construct the KS free-energy
functional (32) and potential (36) is the full density (bound
and unbound), with the kinetic energy of the unbound elec-
trons being given by the ideal expression.

The value of the unbound electron (spin)-density nσ
ub is

determined from the number of unbound electrons, Nσ
ub =∫

drnσ
ub, which implies nσ

ub = Nσ
ub/V , where V = 4

3πR3
VS is

the volume of the sphere. The total numbers of bound and
unbound electrons are determined according to the FD distri-
bution,

Nσ
b =

ε
τ,σ
nl �0∑
n,l

(2l + 1) f σ
nl

(
ετ,σ

nσ , μσ , τ
)
; (48)

Nσ
ub = V

21/2π2

∫ ∞

0
dε

ε1/2

1 + eβ(ε−μσ )
. (49)

We recall that the chemical potentials μσ are chosen such that
the sum Nσ

b + Nσ
ub equals a preset value, Nσ

e .
We now proceed to discuss the question of boundary con-

ditions. The boundary condition for the density has been
specified by us in Eq. (46). However, to solve the KS equa-
tions (40), one needs to specify the boundary conditions for
the radial orbitals X σ

nl (r). Notably, Eq. (46) does not determine
the orbital boundary conditions uniquely. For the unbound
density, Eq. (46) is satisfied automatically. For the bound
states, it implies the following equality for the radial orbitals

FIG. 2. Electronic density distribution, with unbound component
(nub) and total (ntot) plotted, for beryllium with mass density ρm =
0.266 g cm−3, at temperature τ = 4 eV. We see the effect of different
boundary conditions (51) and (52) on the density profile.

X σ
nl (r) and their derivatives:

∑
nl

(2l + 1) f σ
nl X

σ
nl (RVS)

dX σ
nl (r)

dr

∣∣∣∣
r=RVS

= 0. (50)

There is no unique way to satisfy the above relation. The
two most simple choices are either to require the radial wave
functions to be zero at the boundary, or their derivatives to be
zero, i.e.,

0 = X σ
nl (RVS), or (51)

0 = dX σ
nl (r)

dr

∣∣∣∣
r=RVS

. (52)

Mathematically, many other choices are also possible. Both
of the above boundary conditions have been used in AA
models (see, for example, Ref. [114] for an example of the
former or Ref. [116] for an example of the latter), and it has
been observed [116] that using the former choice (51) yields
markedly different results than the latter (52) for the average
ionization in Aluminum. We also observe that the choice of
boundary conditions has a major impact on results in Sec. IV
of this paper. We additionally note that we will sometimes
refer to the boundary conditions in Eqs. (51) and (52) as b.c.
(i) and b.c. (ii) respectively, in order to simplify notation.

In spite of this, there has been limited analysis of the
impact of choosing one of the above conditions over the
other (perhaps because many models, instead or addition-
ally, enforce boundary conditions on the potential as earlier
discussed). However, Rozsnyai has conceptually identified
[101,106] these boundary conditions as corresponding to up-
per (51) and lower (52) limits of a band-structure, due to their
association with bonding (52) and antibonding (51) molecular
orbitals (MOs); Massacrier and coworkers have explored this
band-structure interpretation further, interpolating between
the band-structure limits via a Hubbard functional form for
the density of states [125,159,160].

In Fig. 2, we compare the density distribution resulting
from the two different boundary conditions for beryllium with
density 0.266 g cm−3 and temperature 4 eV. We find that near
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the origin (r < 1 a0) the densities are the same, whereas close
to the boundary, they differ significantly. Notably, using con-
dition (51) leads to a higher unbound density: The requirement
of the wave function vanishing at RVS “pushes” the electrons
to the unbound states.

This completes our first-principles reduction from the in-
tractable minimization of the grand canonical potential (23)
for a fully-interacting system of electrons and nuclei (6) into a
finite-temperature KS model for a single atom. In the remain-
der of this paper, we briefly discuss some numerical aspects
and present some results to explore the behavior of this AA
model under different approximations.

III. NUMERICAL ASPECTS

The majority of calculations were performed with the
ORCHID code, an atomic DFT code, which has been ex-
tended to include temperature and the boundary conditions
described in Sec. II E; ORCHID has been used previously
in Refs. [161–165]. An open-source successor to ORCHID,
named atoMEC, is under development and can be used to
reproduce many of the results in this paper [166]. For the
bound KS orbitals, the second-order differential equation (40)
is solved on a grid using the Numerov method in combination
with a two-side shooting method [167–169]. The grid uses
a logarithmic scale for the radial coordinate r, x = ln(Zr),
where Z is the atomic number, to ensure a higher density of
grid points near the nucleus. To solve for the radial wave func-
tions X σ

nl (r), a transformation Pσ
nl (x) = X σ

nl (x)ex/2 is made, so
that the differential equation (40) becomes

d2Pσ
nl (x)

dx2
− 2e2x

[
W (x) − ε̄τ ,σ

nl

Z2

]
Pσ

nl (x) = 0, (53)

W (x) = v̄τ,σ
s [n](x)

Z2
+ 1

2

(
l + 1

2

)2

e−2x, (54)

where the notation ε̄τ ,σ
nl denotes the KS eigenvalues corre-

sponding to the shifted KS potential v̄τ,σ
s (47).

Additionally, some calculations (involving different treat-
ments of unbound electrons, to be later discussed) were
performed using the MUZE code [119,170,171]. Below, we dis-
cuss details of the implementation of our model in ORCHID,
and refer readers to the aforementioned references for further
details of the MUZE code.

The KS orbitals and their eigenvalues from the differen-
tial equation (40) are used to determine the total density via
Eqs. (44), (48), and (49). The whole process proceeds self-
consistently until the total energy is converged to within 10−6

Hartree, the spatially-averaged bound spin densities are con-
verged enough to satisfy | ∫ dr(nσ (r) − n f

σ (r))| < 10−6 a.u.
(the superscript f distinguishes the density of the previous
iteration from the density of the last iteration) and the KS
potentials (for both spin channels) satisfy | ∫ dr(vS,σ (r) −
v

f
S,σ (r))| < 10−6 a.u. Different guesses were trialled for ini-

tializing the KS potential in the self-consistent cycle; it was
found the bare Coulomb potential is always a suitable initial
choice for the KS potential.

For each atom, XC functional, density and temperature
range [172], convergence was checked with respect to the

TABLE I. The values of mass density ρm, WS radius rs, and cou-
pling parameters �M

i and �M
e (measured at the midpoint temperature

of τ = 13.1 eV) with the corresponding Voronoi sphere radii RVS on
which we test our model.

Atom RVS
a ρm

b rs
a �M

i �M
e

H 2.0 0.337 2.0 0.50 1.09
H 4.0 0.042 4.0 0.25 4.34
H 10.0 0.0027 10.0 0.10 27.2
Be 2.0 3.04 1.59 8.0 0.68
Be 4.0 0.379 3.18 4.0 2.74
Be 4.7 0.232 3.73 3.40 3.78

aAtomic units.
bg cm−3.

number of grid points Ngrid, the leftmost grid-point x0 =
ln(Zr0), and which bound states (characterised by the quan-
tum numbers n, l) to account for. The required grid size
depends strongly on the specific calculation, ranging between
1 000 to 40 000 points. The number of bound states is also
highly dependent on the particular calculation. However, a
lower grid bound of r0 = e−13/Z a0 was found to be sufficient
in almost all cases.

IV. RESULTS

In the following, we use our KS-DFT AA model as a
surrogate of AA models to probe their sensitivity to various
choices of approximation. We focus mostly on the impact
of XC functional and boundary conditions, but also briefly
explore the influence of more advanced treatments of unbound
electrons in Sec. IV C.

We probe a range of temperatures from 0 to ∼25 eV, and
densities from roughly 10−3 to 20 g cm−3, corresponding to
to Voronoi sphere radii in the range 2 a0 � RVS � 10 a0;
this roughly covers the lower-density and temperature region
of the WDM phase space, as denoted in Fig. 1. For the
temperature-dependent plots, which are shown at fixed values
of RVS, we connect these Voronoi sphere radii with their mass
densities ρm, and the corresponding dimensionless parameters
rs, �i, and �e (the latter two computed at the midpoint of the
temperature range we consider, τ = 13.1 eV) in Table I.

We note that the definitions of rs, �i, and �e in Eqs. (2)–(5)
use as input the free-electron density, and furthermore that the
definition for the Fermi energy is strictly valid for an ideal
Fermi gas only. However, we of course deal with interacting
electrons, some fraction of which are bound by the nuclei.
For the numbers quoted in Table I, we assume for simplicity
that the free-electron density is a fixed quantity for a given
ionic density (independent of temperature) and equal to the
valence electron density; we also use the definition in Eq. (4)
for the Fermi energy regardless. These numbers should there-
fore be seen as rough indicators only rather than well-defined
parameters. Based on these values, we note that the lowest-
density hydrogen example (RVS = 10.0 a0) is at the limit of
what is typically considered WDM conditions; however, it
is a useful test case for functional comparison as the AA
approximation (meaning the neglect of intercell interactions)
should be very accurate in this case.
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From our KS-DFT AA model, we directly obtain the free
energy, KS orbitals and their energies, occupation numbers,
and the number of unbound electrons. To access the electronic
pressure Pe, we use the following relationship between the
electronic free energy F and the volume V for a fixed tem-
perature τ ,

Pe(V, τ ) = −∂F

∂V

∣∣∣∣
τ

, (55)

which we compute numerically via finite differences. The free
energy F is defined from the grand free potential � of Eq. (32)
via the relationship

�[n] = F [n] −
∑

σ

μσ Nσ
e . (56)

Please see Appendix B for details of the construction of the
free energy F [n] in our AA model. We focus on the electronic
pressure because KS-DFT does not give access to the ionic
pressure. We have explored adding an approximate ionic pres-
sure using the ideal gas law, pV = nRT , and observed this
results in a noticeable increase in pressure. However, since we
want to explore the impact of approximations, which have no
effect on the value of the ionic pressure at a given temperature
and density, we only present results for the electronic pressure.

Furthermore, the number of unbound electrons, or equiv-
alently (in our model) the mean ionization state (MIS), is
an important property in dense plasmas [119], as are the KS
orbital energies, which are used (for example) in the computa-
tion of thermal and electrical conductivities (Sec. I, Ref. [49]).
We therefore focus on the aforementioned quantities.

We compare results for three XC functionals: Firstly, the
zero-temperature local spin-density approximation (LSDA)
[38,173], which is widely used in finite-temperature KS-
DFT and AA models; secondly, the Perdew–Burke–Ernzerhof
(PBE) generalized gradient approximation [174], which is
used extensively in ground-state DFT calculations [175].
Thirdly, we consider the temperature-parameterized LDA by
Groth et al. (GDSMFB) [73]; this functional retains the com-
putational advantages of the ground-state LDA, and can easily
be integrated into other AA or KS-DFT codes via the LIBXC
package [176], as has been done here in ORCHID. We also
investigated the temperature-parameterized LDA by Karasiev
et al. [56], and found that results were always in very close
agreement with the GDSMFB functional (echoing similar
observations in Refs. [177,178]), and therefore we present
results for LSDA, PBE, and GDSMFB only.

In the following sections, we explore results for hydrogen
(Sec. IV A) and beryllium (Sec. IV B); although the model
we have derived is valid for systems with a macroscopic net
charge, we consider only charge neutral examples (Ne = Z).
We drop the spin-dependent notation for all spin-dependent
quantities such as the KS orbitals and their eigenvalues. Beryl-
lium has an even number of electrons and thus the different
spin channels give the same results. For hydrogen, one of the
spin channels is completely devoid of electrons (amounting
to a constraint of Nσ

e = 0): since this spin channel does not
contribute to many physically meaningful quantities, where
we present results for spin-dependent quantities, these are for
the occupied spin channel only.

A. Hydrogen

We first apply our AA model to hydrogen. Besides being
an element of high interest in the WDM regime in its own
right [178], for hydrogen we can solve our AA model exactly.
Since we consider interactions only within the Voronoi sphere,
which itself contains only one electron, there are no interelec-
tron interactions and thus the KS potential is given exactly by
the electron-nuclear attraction,

vτ,σ
s (r) = ven(r) = −1

r
. (57)

The XC functional also cancels the Hartree energy,

Fxc[n] = −U [n], (58)

which is the exact XC functional in this case. We stress
here that this is the exact result within the limits of the
model we define, in which various approximations have al-
ready been made, such as the neglect of explicit intra-cell
interactions; it therefore does not represent the truly exact
limit for the hydrogen plasma in general. Another assump-
tion that was mentioned but not discussed at length is that
we take N↑

e = 1, N↓
e = 0. We fix this for convenience, but

in principle one could search over all fractional N↑,↓
e , with

N↑
e + N↓

e = 1, and choose the configuration, which minimizes
the grand free energy. However, the exact XC functional is
a reference from which we can isolate the errors that result
from approximations for the XC functional (as opposed to
other approximations in the model). Henceforth, we use the
term “exact” when referring to this choice given the fact that
we mean only to the exactness of the XC functional and
potential.

In Fig. 3, we plot the Pe-τ curve for hydrogen at dif-
ferent values of RVS. The most notable observation in this
series of the plots is that the choice of boundary condition
has a significant impact, particularly at lower temperatures
and higher densities. Indeed, for RVS = 2.0 a0, the EOS
data is qualitatively different, with the boundary condition
X ′

nl (RVS) = 0 showing large negative pressures for all the
functionals (including the exact one) at lower temperatures.
The approximate functionals show good agreement with the
exact result, rarely differing by more than 10% and tending
towards <1% for higher temperatures. An additional obser-
vation is that the LDA and PBE functionals yield almost
identical results throughout, with the temperature-dependent
GDSMFB functional tending to deviate slightly more from
the exact result.

Next, in Fig. 4, we compare the number of unbound elec-
trons Nub as a function of temperature for two choices of
density. For these (relatively low) densities, the two bound-
ary conditions seem to be in quite good agreement. What is
more interesting is that the approximate functionals tend to
systematically overpredict the mean ionization state relative to
the exact functional; furthermore, the approximate function-
als differ minimally relative to each other. This is indicative
of some kind of common error pertaining to semi-local XC
functionals in general.

In Fig. 5, we consider the 1s energy level ε̄τ
1s as a func-

tion of temperature for RVS = 4.0 a0. It is apparent that the
approximate XC functionals systematically over-predict the
1s energy level (for both b.c.s), with once again minimal
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FIG. 3. EOS (Pe vs τ ) for hydrogen for (i) RVS = 2.0a0 (top row) and (ii) RVS = 4.0a0 (third from top row); results on the left are for the
b.c. Xnl (RVS) = 0 (51) and on the right are for the b.c. X ′

nl (RVS) = 0. Insets: Percentage difference in pressure (using a log scale for the y axis)
between the approximate functionals and the exact functional. The x axes of the inset plots are identical to the (temperature) x axes of the main
plots. Smaller plots below main ones: Actual difference in pressure between approximate and exact XC functionals, �Pe = Papp

e − Pexact
e .

differences between the functionals themselves. The energy
levels for the exact (bare Coulomb) XC functional are of
course independent of temperature since ven(r) has no tem-
perature dependence; interestingly, the energy levels from
the approximate functionals also do not vary significantly
across this temperature range (with an exception for very low
temperatures for the b.c. Xnl (RVS) = 0). An important obser-
vation from these curves is that the temperature-dependent
GDSMFB functional does not seem to improve much the pre-
diction of the ε̄τ

1s level: therefore, new XC functionals (most
likely going beyond semi-local approximations) are required
for finite-temperature KS-DFT.

Having explored the behavior of various quantities as a
function of temperature for fixed mass density, we now in-
vestigate the dependence of the same quantities on the mass
density, for a fixed temperature 10 eV. We only compare
results from the LSDA and exact XC functionals, since we al-
ready observed that all the approximate functionals gave very
similar results; we also compare the two boundary conditions
directly in the same plots.

In Fig. 6, we see the striking impact of the boundary con-
dition on the electronic pressure as the density increases. As
would be expected, for lower densities, when there are fewer
interactions between neighboring atoms, the two boundary
conditions agree relatively well, with the difference between
them (shown in the middle panel of Fig. 6) rarely exceeding
10% up to around 0.04 g cm−3. However, at higher densities,
the two boundary conditions diverge strongly; the boundary
condition X ′

nl (RVS) = 0 actually has a turning point at which
the pressure starts to decrease with increasing density and
becomes strongly negative. The bottom panel of Fig. 6 shows
the difference between the functionals as a function of density
(for both boundary conditions); we cannot draw any clear
conclusions regarding systematic deficiencies of the LSDA
functional from this plot.

The main message from this figure is the huge impact of the
boundary condition, and the limitations of choosing a single
boundary condition as is frequently done in AA models. As
discussed earlier, one possible solution is to consider a band-
structure picture, either via some sensible approximation such
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FIG. 4. The number of unbound electrons Nub for hydrogen as a function of temperature for (i) RVS = 4.0 a0 (top row) and (ii) RVS =
10.0 a0 (bottom row); results on the left are for the b.c. Xnl (RVS) = 0 (51) and on the right are for the b.c. X ′

nl (RVS) = 0. Inset plots show
difference in the number of unbound electrons as a function of temperature between the approximate functionals and the exact functional.
Discontinuities in Nub occur when energy levels transition from the continuum to the discrete part of the spectrum.

as that employed by Massacrier and coworkers [125,159,160],
or even better using a first-principles approach, which pre-
serves the smoothness of the density at the sphere’s edge
(46). Another quite striking feature of Fig. 6 (also seen in
Figs. 4 and 7) are sharp discontinuities, which appear due to
the ionization of the 2s energy level at around 10−2 g cm−3 for
the b.c. X ′

nl (RVS) = 0, and the ionization of the 1s energy level
at around 10−1 g cm−3 for the b.c. X RVS

nl (r) = 0. We shall later
see similar discontinuities for beryllium in Sec. IV B, when
we will discuss them in greater detail.

The divergence of the pressure towards negative infinity
for the X ′

nl (RVS) = 0 boundary condition is related to the
ionization degree. In Fig. 7, we plot the number of unbound
electrons (top) and the 1s energy level ε̄τ

1s as a function of the
mass density, again for τ = 10 eV. As was observed for the
electronic pressure, results from the two boundary conditions
diverge with increasing density. In particular, the ε̄τ

1s level for
the boundary condition X ′

nl (RVS) = 0, for both LSDA and the
exact XC functionals, has a turning point and starts to decrease
for densities above about 0.1 g cm−3. This effect was also

FIG. 5. The energy level ε̄τ
1s for hydrogen as a function of temperature RVS = 4.0 a0; results on the left are for the b.c. Xnl (RVS) = 0 (51)

and on the right are for the b.c. X ′
nl (RVS) = 0. Changing the b.c. for RVS = 4.0 a0 causes a shift in the energy level for both the approximate

and exact functionals.
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FIG. 6. Top: Comparison of EOS (Pe vs ρm) curves for hydrogen
as a function of density, at fixed temperature τ = 10 eV, for both
boundary conditions and LSDA and exact XC functionals. Middle:
Percentage difference (logarithmic scale for y axis) in pressure be-
tween the two boundary conditions, �Pbc

e = (Pbc(i)
e − Pbc(ii)

e )/Pbc(i)
e .

Bottom: Absolute percentage difference in pressure between LSDA
and exact XC results, |�Pfunc

e | = |PLSDA
e − Pexact

e |/|Pexact
e |.

observed in Ref. [125] for aluminium and carbon. As a result,
the number of unbound electrons with this boundary condition
actually decreases (and seems to be approaching a value of
zero) with increasing density. This results in decreasing pres-
sure, because (for example) the kinetic energy decreases with
a lower ionization degree, and thus the free energy decreases
as the mass density increases. It should therefore be noted that
the extreme divergences in pressure between the two boundary
conditions would likely be suppressed to some degree if a
different definition of pressure is used, which is not so directly
influenced by the ionization degree. Regardless, decreasing
pressures and ionization degrees with increasing densities is
a counterintuitive and seemingly unphysical result, since we
expect greater ionization and pressures at higher densities.
Furthermore, the behavior of the 1s energy level raises im-
portant questions related to the concept of ionization potential
depression (continuum lowering), a critical effect in materials
under WDM conditions [179].

It is well documented in both experiments [180–182]
and theoretical models [183–185] that ionization potentials—
defined as the energy required to excite a given bound electron
into the continuum—are lower for atoms immersed in a
plasma relative to the isolated atom case, though there re-
mains uncertainty regarding the precise nature of this effect

FIG. 7. Comparisons of (i) number of unbound electrons Nub

(top) and (ii) energy level ε̄τ
1s (bottom) for hydrogen as a function of

density, at fixed temperature τ = 10 eV. Both boundary conditions
and LSDA and exact XC results are shown for comparison.

[179,186]. In KS-AA models, it is typical to associate the
KS orbital energies with the actual electronic energy levels,
and by extension (as the continuum levels are usually defined
as those with positive energy, ε > 0) the orbital energies
define the ionization potentials. As an aside, we note that
there is in fact no formal relationship between the KS orbital
energies, which belong to a fictitious system of noninteract-
ing electrons, and the actual electronic energy levels, with
the exception of the HOMO level whose (negative) value is
equal to the ionization potential in ground-state KS-DFT only
[187–190]. Nevertheless, it has been postulated that the KS
orbitals are a reasonable surrogate for the molecular orbitals of
the real interacting system [191,192], which justifies to some
extent the association of the KS orbital energies with the real
electronic energy levels.

In light of the above, the density dependence of the ε1s

energy for the boundary condition X ′
nl (RVS) = 0 seems to be

a strange result. This, and likewise the behavior of the number
of unbound electrons, points to the limitations of models such
as our own, which only take into account screening effects
from the surrounding plasma in a coarse manner through
boundary conditions on the density or potential, neglecting all
explicit interactions between charge densities in the central
sphere and its neighbours. In this sense, it is possible that the
approximate XC functionals actually benefit from error can-
cellation within the model we define, as their errors relative to
the exact XC functional may be partially compensated for by
the opposing error induced by the neglect of intercell interac-
tions. However, this error cancellation is not omnipresent (it
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FIG. 8. The ratio of XC energy to Hartree energy for hydrogen,
as a function of temperature (top) and as a function of density
(bottom). The ratio is exactly equal to unity if the exact exchange
functional is used, −Fxc/U = 1 (shown in gray dashed line in the
figure); when this value deviates from one it is a consequence of the
SI error.

will not occur in the low-density limit for example); moreover,
when more advanced models are constructed, which include
to a greater extent the effects of intercell interactions, the
approximate XC functionals will no longer benefit from this
error cancellation.

Although it is clear that the choice of boundary condition
typically far outweighs any error than the choice of XC func-
tional, especially at higher densities, it is worth analyzing in
more detail the functional errors. The systematic underbinding
of the electron density and overprediction of the 1s energy
level are both related to the SIE discussed in Sec. II C. We
further analyze the SIE in Fig. 8. Since there is only one
electron in hydrogen, the exact XC energy should exactly
cancel the Hartree energy and therefore the ratio −Fxc/UH

should equal 1. Interestingly, it appears that the GDSMFB
functional is contaminated by a larger SI error (which in-
creases with temperature and decreases with density) than
the zero-temperature LSDA functional. This may explain why
the GDSMFB functional seems to yield slightly larger errors,
relative to the exact XC result, for the electron pressure in
Fig. 3. Of course, the SI error is particularly important for
hydrogen in the AA model, and may be overwhelmed by other
factors in different examples. Nevertheless, this figure does

FIG. 9. KS potentials for the exact XC [vτ,σ
s (r) = ven(r)],

LSDA, and GDSMFB functionals, for hydrogen with density
ρm = 0.042 g cm−3 and temperature τ = 8.16 eV, under the b.c.
Xnl (RVS) = 0. Inset: Potentials plotted against 1/r to emphasize dif-
ferent asymptotic behaviours (1/r → 1/RVS).

not explain the failings of the LSDA functional relative to the
exact result for smaller values of RVS, since the ratio −Fxc/Exc

does not significantly deviate from unity.
One of the ramifications of the SI error is the incor-

rect asymptotic behavior of the KS potential, which (among
other factors) contributes to the electron density being too
delocalized; this error, known as the delocalization error, is
ubiquitous to (semi)-local XC functionals in DFT [193,194].
In Fig. 9 we show an example of how both the LSDA and
GDSMFB potentials differ from the exact result,with most
notable differences in the asymptotic region in which they
decay incorrectly. In Sec.V, we consider some possibilities to
mitigate against SI and delocalization errors.

B. Beryllium

We now apply our AA model to the beryllium atom. Beryl-
lium is used in ICF capsules [4] and relevant to astrophysical
processes [195], and thus accurate simulations of beryllium
under WDM conditions are of high interest [196,197]. Al-
though there is no benchmark for the XC functional as in
the case of hydrogen, it is interesting nevertheless to compare
choices of boundary conditions and XC functionals.

In Fig. 10, we plot the pressure Pe as a func-
tion of temperature τ , for two values of the Voronoi
sphere radius, which correspond to mass densities of 3.04
and 0.379 g cm−3 respectively (for reference, the ambi-
ent solid density of beryllium is 1.85 g cm−3). Under
these conditions, it seems the pressure for the two differ-
ent boundary conditions is in relatively good agreement,
though more significant for the lower density with RVS =
4.0 a0; furthermore, the LDA and GDSMFB functionals also
agree very closely for both boundary conditions, with no
observable differences between the functionals for the lower
density.

Next, in Fig. 11, we plot the mean ionization state Nub

for beryllium with density 0.379 g cm−3 as a function of
temperature, again showing both boundary conditions and the
LSDA and GDSMFB functionals in the same plot for compar-
ison. Here, particularly at low temperatures, we see significant
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FIG. 10. EOS data (Pe vs τ ) for beryllium for (i) RVS = 2.0 a0

(top) and (ii) RVS = 4.0 a0 (bottom). Both boundary conditions and
the LDA and GDSMFB functionals are shown for comparison.

differences due to the boundary conditions, but the choice of
functional has very little impact. The large deviation in the
mean ionization state due to the choice of boundary conditions
is explained by the eigenvalue spectrum. In Table II, we see
that the 2s energy level for the X ′

nl (RVS) = 0 boundary condi-
tion is consistently in the discrete part of the energy spectrum;
by contrast, it is unbound up to around τ = 25 eV for the
Xnl (RVS) = 0 boundary condition. The eigenvalues in Table II
also explain the discontinuities in the Pe vs τ and Nub vs τ

FIG. 11. Number of unbound electrons for beryllium for RVS =
4.0 a0, as a function of temperature. Both boundary conditions and
the LDA and GDSMFB functionals are shown for comparison.

TABLE II. Comparison of KS orbital energies for beryllium,
with RVS = 4.0 a0.

LDA GDSMFB

τ (eV) b.c. (i) b.c. (ii) b.c. (i) b.c. (ii)

ε̄τ
1s (eV)

13.6 −104.6 −104.2 −106.0 −105.5
20.4 −108.3 −108.6 −109.8 −110.0
27.2 −117.3 −118.3 −118.8 −119.7

ε̄τ
2s (eV)

13.6 >0 −3.36 >0 −3.31
20.4 >0 −3.72 >0 −3.65
27.2 −0.74 −4.65 −0.57 −4.55

ε̄τ
2p (eV)

13.6 —————–>0—————–
20.4 >0 −0.14 >0 −0.18
27.2 >0 −1.00 >0 −1.00

curves, since they arise when the 2s or 2p level (depending on
the boundary condition) transitions from the continuum to the
discrete part of the energy spectrum.

The discontinuities observed in the pressure and number
of unbound electrons relate to two limitations of the model.
Firstly, the fact that we treat the unbound electron density as
a constant means the physical problem being solved changes
significantly when a new bound level emerges. In Sec. IV C,
we shall explore the impact of treating the unbound electron
density in a quantum manner, which should alleviate this
problem. Secondly, our definition of “unbound” orbitals—
namely those orbitals with energies above the value of the KS
potential at the sphere boundary—is an oversimplification. In
partially ionized plasmas like the ones we study, there may
be some core states, which are clearly bound to the nuclei,
and likewise some clearly free-electron density, but states with
energies ετ,σ

nl ∼ vτ,σ
s (RVS) probably exhibit both bound and

free characteristics and therefore cannot be neatly categorised
as one or the other. More meaningful definitions for the mean
ionization state than a simple energy threshold (which is com-
monly used in AA models) could make use of quantities such
as the electron localization function [198,199], the inverse
participation ratio [200,201], or electrical conductivity data
[202], but such an analysis is beyond the scope of this paper.

Next, we analyze the electronic pressure as a function of
the mass density for fixed temperature τ = 20 eV in Fig. 12.
The densities considered range from about 0.01 to 10 times
the ambient solid density of beryllium (indicated by ρsol in
the figure). The results in this plot are strongly reminiscent
of what we observed for hydrogen: namely, the two boundary
conditions usually yield pressures within <20% of each other
up to around twice the ambient density (at this temperature);
after that, they diverge significantly, with very large negative
pressures again observed for the X ′

nl (RVS) = 0 condition. The
reasons for this unphysical behavior were discussed already
for hydrogen. Comparison between the LSDA and GDSMFB
functionals (shown in the lower panel of Fig. 12) indicate
that the inclusion of temperature in the XC approximation is
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FIG. 12. Top: Comparison of EOS (Pe vs ρm) curves for beryl-
lium as a function of density, at fixed temperature τ = 20 eV, for
both boundary conditions and LSDA and GDSMFB functionals
(ambient density ρsol indicated for reference). Middle: Percentage
difference (logarithmic scale for y axis) in pressure between the two
boundary conditions, �Pbc

e = (Pbc(i)
e − Pbc(ii)

e )/Pbc(i)
e . Bottom: Abso-

lute percentage difference in pressure between LSDA and GDSMFB
results, |�Pfunc

e | = |PLSDA
e − PGDSMFB

e |/|PLSDA
e |.

most important for beryllium compressed to around 5 times its
ambient density, with this being consistent for both boundary
conditions. However, the functional effects are still dwarfed
by the impact of the boundary condition.

Interestingly, almost the opposite effect is observed for the
eigenvalues, shown in Fig. 13. Here, we observe the functional
has a small but nontrivial impact on the ε̄τ

1s level at densities
lower than and including the ambient density. The boundary
condition has very little impact on the ε̄τ

1s level up to that
point, indicating these orbitals do not feel any effect from
neighboring spheres up to that density. The valence energy
levels ε̄τ

2s and ε̄τ
2p separate at much lower densities, demon-

strating that the choice of boundary condition is important for
predicting ionization energies even for quite diffuse plasmas.
The choice of functional has essentially no effect on these
energy eigenvalues.

C. Connection with other average-atom models

In this section we make a connection to other existing
AA models, by analyzing how more sophisticated treatments
of unbound electrons and an alternative boundary condition
affect properties we discussed so far. We therefore hope to

FIG. 13. Bound energy levels ε̄τ
1s (top), ε̄τ

2s (bottom left) and
ε̄τ

2p (bottom right) for beryllium as function of density, for fixed
temperature τ = 20 eV (ambient density ρs shown for reference).
Both boundary conditions and functionals are shown for comparison.
Note the different scales on the x axis, since the orbitals move into
the continuum at different densities.

gain an understanding of how our analysis in previous sec-
tions might affect the development and usage of AA models
more broadly. We use the MUZE code for this comparison.

For the analysis of different treatments of unbound elec-
trons, we consider the transition

ideal (id) −→ Thomas–Fermi (TF) −→ quantum (qu),

where ideal refers to the uniform approximation to unbound
electrons we used so far, the TF unbound electron density
[203] is given by [101,204]

nub(r) =
√

2

π2

∫ ∞

−vτ
s (r)

dε
ε1/2

1 + eβ(ε−[μ−vτ
s (r)])

, (59)

and the quantum unbound density is constructed in a similar
way to the bound density (37), by solving explicitly the radial
KS equations (40) for continuum states Xεl (r) discretized on
the energy scale [102,205].

The alternative boundary condition with which we com-
pare does not impose any constraints on the bound KS orbitals
at the edge of the Voronoi sphere. Instead, the KS potential is
modified as follows:

vτ,M
s (r) =

{
(1 − r/RVS)vτ

s (r), r � RVS

0, r > RVS
, (60)
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where vτ,M
s (r) denotes that the KS potential is modified from

its pure form vτ
s (r) as defined by Eq. (36). Using the above

form for the KS potential, the radial KS orbitals are allowed
to “leak out” of the Voronoi sphere and are thus computed
up to an infinite radius, since they rapidly decay naturally to
zero outside of the sphere. They are still normalized within the
sphere according to (45). In MUZE, the unbound orbitals in
the quantum treatment satisfy different boundary conditions,
which amount to continuity of the orbitals at the sphere’s edge.
Although the above modification to the potential is not strictly
a boundary condition in the mathematical solution of the
KS differential equations, we henceforth call it the “potential
condition” because its role is essentially that of a boundary
condition.

For simplicity, we compare using only the LDA functional.
Additionally, to make direct comparisons between the MUZE
and ORCHID codes more straightforward, we switch from
computing pressure with finite differences and instead use the
following definition [206]:

P̃e(V, τ ) = 23/2

3π2

∫ ∞

0
dε

ε3/2

1 + eβ(ε−μ)
. (61)

In Fig. 14, we compare the effect of both the boundary
condition used and the treatment of unbound electrons for
hydrogen, on the pressure and MIS. Qualitatively, all results
are in quite good agreement for this example, so we also plot
the differences relative to the result obtained with ideal un-
bound electrons and the b.c. Xnl (RVS) = 0, which we call the
reference result. Specifically, �P̃e = P̃ref

e − P̃e, and �Nub =
N ref

ub − Nub, where the superscript ref denotes the reference
result. We observe a few common trends from these plots.
Firstly, the reference result is largely an upper bound for both
the pressure and MIS. Additionally, the MIS results obtained
via the potential condition seem to mostly lie in between the
two orbital boundary conditions (regardless of the treatment
of unbound electrons). Secondly, particularly with increas-
ing temperature, the TF and quantum treatment of unbound
electrons yields lower pressures than the ideal results, when
compared with the same boundary condition on the poten-
tial or the orbital boundary conditions. Finally, especially at
higher temperatures (>10 eV), all approximations yield very
similar predictions for the MIS.

Next, in Fig. 15, we plot an analogous set of results for
beryllium, this time with RVS = 4.7 a0 (ρm = 0.232 g cm−3).
In this example, the differences between the various approx-
imations are clearer. It is again the case that the boundary
condition Xnl (RVS) = 0 seems to consistently predict the high-
est pressures; also as was observed in hydrogen, using the
ideal approximation for the unbound electron density seems
to yield higher pressures than the more advanced TF and
quantum models. Of note here is that the choice of bound-
ary condition, particularly for the MIS, seems to have more
impact than the choice of treatment of the unbound electrons.
Furthermore, it appears to be the case in this example that
the MUZE solutions (using the potential boundary condition)
jump from being roughly equal to solutions from our model
using the b.c. Xnl (RVS) = 0 to the b.c. X ′

nl (RVS) = 0 at a tem-
perature around 10∼15 eV.

FIG. 14. Comparison of pressure P̃e (top) and number of un-
bound electrons Nub (second from bottom) for hydrogen with RVS =
4.0 a0, for different boundary conditions and treatments of unbound
electrons. The second from top panel shows the differences in P̃e

relative to the result obtained from the b.c. Xnl (RVS) = 0, and the
bottom panel the equivalent difference for Nub (with differences
between data points obtained via linear interpolation).

The comparison of the ε2s and ε2p energy levels [207] for
beryllium with RVS = 4.7 a0 in Table III helps explain the
MIS results seen in Fig. 15 and also (less directly) Fig. 14.
In this table we observe that the eigenvalues given by the po-
tential boundary condition always lie in between those given
by the two orbital boundary conditions. This fits with the
observation that the Xnl (RVS) = 0 and X ′

nl (RVS) = 0 bound-
ary conditions are respectively approximate upper and lower
bounds for the MIS compared to the results obtained via the
potential condition. Also in this table, it appears that changing
the treatment of unbound electrons from ideal to quantum has
only a small effect on the bound energy eigenvalues.

Based on the above results, the main conclusions that can
be drawn are (i) that the ideal approximation has a tendency
to overestimate pressure, particularly as the ionization degree
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FIG. 15. Comparison of pressure Pe (top) and number of un-
bound electrons Nub (second from bottom) for beryllium with RVS =
4.7 a0, for different boundary conditions and treatments of unbound
electrons. Gaps in plots are shown where there are discontinuities in
the data.

increases, and (ii) that the potential boundary condition (60)
seems to yield results somewhere between the two orbital con-
ditions (51) and (52). In future works, it would be interesting
to explore the nature of this relationship at higher densities,
when the two orbital conditions yield significantly diverging

TABLE III. Comparison of KS orbital energies for beryllium,
with RVS = 4.7 a0, for different boundary conditions and treatments
of unbound electrons.

Ideal Quantum
τ (eV) b.c. (i) b.c. (ii) vτ,M

s vτ,M
s

ε2s (eV)

4.2 −1.27 −3.77 −2.6 −2.17
8.6 −1.70 −3.91 −2.76 −2.27
12.2 −1.86 −3.99 −3.16 −2.41
17.5 −2.31 −4.31 −3.3 −3.10
25.0 −4.01 −5.64 −4.73 −4.60

ε2p (eV)

4.2 >0 −0.53 >0 >0
8.6 >0 −0.65 >0 >0
12.2 >0 −0.73 −0.00 >0
17.5 >0 −1.00 −0.11 −0.025
25.0 −0.162 −2.18 −1.18 −1.05

results. It would also be insightful to compare the poten-
tial conditions with models, such as that developed in Ref.
[125], which use both orbital boundary conditions together.
Eventually, evaluating the accuracy of different boundary con-
ditions should be guided by comparisons with more advanced
theoretical models, such as KS-DFT-MD models, neutral
pseudo-atom AA models that constrain the potential within
a correlation rather than Voronoi sphere [122,124], and exper-
imental results.

V. DISCUSSION AND SUMMARY

In this paper, we presented a fully first-principles derivation
of a KS-AA model—starting with the fully-interacting, many-
body Hamiltonian of electrons and nuclei—and ending with
finite-temperature radial KS equations. We methodically con-
sidered the underlying assumptions and the interactions that
are neglected in this model, yielding insight into the density
and temperature limits under which the AA approximation is
expected to be accurate. This analysis already yields some
ideas regarding future directions for improving AA models:
for example, one could go beyond the Born-Oppenheimer ap-
proximation and include nonadiabatic effects using the exact
factorization method [130,208,209]. Furthermore, through the
inclusion (exact or approximate) of higher-order terms in the
perturbative expansion of the coupling terms ŴJ (15), there
are possibilities to systematically improve AA models.

In our model, we impose the intuitive criterion that the KS
density (which is formally equal to the real electronic density)
must be smooth at the Voronoi sphere boundary, Eq. (46).
Imposing this criterion leads to the relation (50) for the KS
orbitals, which has no unique solution. We considered two
options for satisfying this criterion—Eqs. (51) and (52)—in
our model, because they are the most simple options and are
frequently imposed in AA models.

We observed that these different boundary conditions had a
significant impact on results, particularly for higher densities
and lower temperatures (as expected), echoing the observation
in Ref. [116]. This implies that AA models should carefully
consider the choice of boundary condition under these lim-
its; even better, further developing the analysis by Rozsynai
[101,106] (that these conditions represent band-structure lim-
its) might remove the need to choose one particular condition,
and instead one could envisage a scheme (such as the one
applied in Refs. [125,159,160]) that interpolates between the
two. The ultimate goal is to deduce a more accurate boundary
condition (or set of boundary conditions) from first-principles,
perhaps by considering the effect of the terms neglected dur-
ing the reduction of the Hamiltonian in Sec. II A, such as the
inhomogenous component Ĥin, or the higher-order terms in
the perturbative expansion of the average component Ĥav.

We also compared results given by these boundary condi-
tions (51) with an alternative condition on the potential (60),
which is used in the MUZE code; there were also significant
differences between these results, further emphasizing the
importance of boundary conditions in AA models and hence
the benefit of further investigation on this subject.

Furthermore, we also investigated the impact of using dif-
ferent approximations for the XC functional. In the case of
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hydrogen, we compared with an “exact” benchmark (Fxc[n] =
−U [n]). These comparisons indicated that some well-known
errors of ground-state DFT, namely the self-interaction and
delocalization errors, also affect the prediction of properties
in our finite-temperature AA model, particularly the frontier
energy levels. To mitigate the impact of these errors, one can
borrow from the abundance of solutions suggested in ground-
state KS-DFT, such as using hybrid functionals [194,210].
Whilst recognizing that the functional choice is generally
much less significant than the choice of boundary condition
in our AA model, existing temperature-dependent functionals
(such as the GDSMFB functional [73], which we have tested)
do not offer serious improvement compared to the standard
LSDA and PBE functionals. This motivates the development
and use of more advanced temperature-dependent function-
als in finite-temperature KS-DFT. Furthermore, the results
in this paper offer some support for the observation in Ref.
[57], namely that going beyond semilocal approximations
may be more important than including explicit temperature-
dependence in XC functionals.

To conclude, AA models are a crucial tool in the simulation
of materials under WDM conditions. Their computational
efficiency not only facilitates calculations over large tem-
perature and density ranges, but also offers an avenue to
incorporate advanced features such as nonadiabatic or non-
equilibrium effects; such effects are likely to be important
in the WDM regime but are too complex to be included
in full KS-DFT codes. The first-principles derivation and
results presented in this paper yield insights regarding po-
tential limitations of KS-DFT AA models: by understanding
these limitations, and systematically improving the underlying
approximations, there is scope to even further increase the
usefulness of AA models.

The data for all the figures in the paper can be downloaded
from Ref. [211].
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APPENDIX A: DERIVATION OF INTER–CELL COUPLING
TERMS ŴJ IN MANY–BODY HAMILTONIAN

We wish to expand the terms composing ŴJ ,

ŴJ = 1 − 1

Z2

Ne∑
i=1

[
W a

iJ +
Ne∑
j=1

W b
i jJ

]
, with (A1)

Ŵ a
iJ = 2Z√

1 − 2R̂J · yiJ + |yiJ |2
(A2)

Ŵ b
i jJ = − 1√

1 − 2R̂J · (yiJ − y jJ ) + (yiJ − y jJ )2
(A3)

in powers of |yiJ |. We recall first the binomial expansion for
1/

√
1 + ε,

1√
1 + ε

= 1 − 1

2
ε + 3

8
ε2 − 5

16
ε3 + O(ε4); (A4)

we shall expand ŴJ up to second order only in |yiJ |. We hence-
forth use the notation yi = yiJ for simplicity. The expansions
(ignoring higher-order terms) for ŴJ are thus

Ŵ a
iJ = Z

{
2 − [|yi|2 − 2R̂J · yi] + 3

4
[|yi|2 − 2R̂J · yi]

2

}
(A5)

= Z{2 + 2R̂J · yi + [3(R̂J · yi )
2 − |yi|2]} (A6)

=
{

(Z − Ne ) +
Ne∑
j=1

}{
2 + 2R̂J · yi

+ [3(R̂J · yi )
2 − |yi|2]

}
, (A7)

where we have adopted a form that will be more convenient
for expansions in going from Eq. (A6) to Eq. (A7), using the
fact that

∑Ne
j=1 = Ne. We can expand Ŵ b

i jJ in a very similar
manner,

Ŵ b
i jJ = −

{
1 + R̂J · (yi − y j ) (A8)

+ 1

2
[3(R̂J · [yi − y j])

2 − (yi − y j )
2]

}
. (A9)

We now group terms of the same order in |yiJ | together. We
start with the zeroth-order term Ŵ (0)

J ,

Ŵ (0)
J = − 1

Z2

Ne∑
i=1

{
2(Z − Ne ) + 2

Ne∑
j=1

−
Ne∑
j=1

}
(A10)

= 1 − Ne(2Z − Ne )

Z2
(A11)

=
(Z − Ne

Z

)2

. (A12)
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This term vanishes for charge neutral systems, Z = Ne. Next, we consider the first-order term Ŵ (1)
J ,

Ŵ (1)
J = − 1

Z2

Ne∑
i=1

{
2(Z − Ne )R̂J · yi + 2

Ne∑
j=1

R̂J · yi −
Ne∑
j=1

R̂J · (yi − y j )

}
(A13)

= − 1

Z2
R̂J ·

{
Ne∑

i=1

2(Z−Ne )yi+
Ne∑

i, j=1

(yi+y j )

}
(A14)

= − 1

Z2
R̂J ·

Ne∑
i=1

{
2(Z − Ne ) yi + 2

Ne∑
j=1

yi

}
(A15)

= − 2

Z2
R̂J · Z

Ne∑
i=1

yi (A16)

= − 2

Z
R̂J · ŶJ , (A17)

where we used the notation ŶJ = ∑Ne
i=1 yiJ .

Finally, we consider the second-order term Ŵ (2)
J ,

Ŵ (2)
J = − 1

Z2

Ne∑
i=1

{
(Z − Ne )[3(R̂J · yi )

2 − |yi|2] +
Ne∑
j=1

(
[3(R̂J · yi )

2 − |yi|2] − 1

2
[3(R̂J · [yi − y j])

2 − (yi − y j )
2]

)}
(A18)

= − 1

Z2

{
(Z − Ne )

Ne∑
i=1

[3(R̂J · yi )
2 − |yi|2] +

Ne∑
i, j=1

(
3(R̂J · yi )

2 + 1

2
[|yi|2 + |y j |2 − 2yi · y j] − 3

2
[R̂J · (yiJ − y jJ )]2

)}

(A19)

= − 1

Z2

{
(Z − Ne )

Ne∑
i=1

[3(R̂J · yi )
2 − |yi|2] +

Ne∑
i, j=1

[ |y j |2
2

− |yi|2
2

+ 3

2
(R̂J · yi )

2

− 3

2
(R̂J · y j )

2 − yi · y j + 3(R̂J · yi )(R̂J · y j )

]}
(A20)

= Z − Ne

Z2

Ne∑
i=1

[|yi|2 − 3(R̂J · yi )
2] + 1

Z2

Ne∑
i, j=1

y jJ · [yi − 3R̂J (R̂J · yi )] (A21)

= Z − Ne

Z2

Ne∑
i=1

[|yi|2 − 3(R̂J · yi )
2] + 1

Z2
[|YJ |2 − 3(R̂J · YJ )2]. (A22)

The first term in square brackets vanishes for Z = Ne. This
completes our derivation of the coupling terms up to second
order in ŴJ .

APPENDIX B: CONSTRUCTION OF FREE
ENERGY IN OUR AA MODEL

In finite-temperature KS-DFT, the free energy is equal to

F [n] = E [n] − τS[n], (B1)

where S[n] is the (noninteracting) entropy and E [n] is the
internal energy functional,

E [n] = Ts[n] + Een[n] + U [n] + Exc[n]. (B2)

In the above, Ts[n] denotes the KS kinetic energy, Een[n] the
electron-nuclear attraction energy, U [n] the Hartree energy
and Exc[n] the XC energy.

In our AA model, the unbound electron density is given
by the ideal approximation and thus the usual orbital-based

expressions for the KS kinetic energy and entropy cannot be
applied. The kinetic energy and entropy are therefore split into
bound and unbound components as follows:

Ts[n] = T b
s [{φi}] + T ub

s (B3)

S[n] = Sb[{φi}] + Sub, (B4)

where the superscripts b and ub denote bound and unbound
terms respectively. In our AA model, these components are
computed as

T b
s [{φi}] = − 2π

∑
σ

∑
l,n

(2l + 1) f σ
nl

×
∫ RVS

0
drr2X σ

nl (r)
d2X σ

nl (r)

dr2
, (B5)

T ub
s =

∑
σ

Nσ
e V

21/2π2

∫ ∞

0
dε

ε3/2

1 + eβ(ε−μσ )
, (B6)
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Sb[{φi}] = −
∑

σ

∑
l,n

(2l + 1)
[

f σ
nl log

(
f σ
nl

)
+ (

1 − f σ
nl

)(
log(1 − f σ

nl

)]
, (B7)

Sub =
∑

σ

Nσ
e V

21/2π2

∫ ∞

0
dεε1/2

[
f σ
ε log

(
f σ
ε

)
+ (

1 − f σ
ε

)
log

(
1 − f σ

ε

)]
. (B8)

The remaining terms in the internal energy E [n] take as
input the full density (i.e. the sum of the bound and unbound

components). In the AA model, these are given by

Een[n] = −4πZ
∫ RVS

0
drrn(r), (B9)

U [n] = 1

2
(4π )2

∫ RVS

0
drr2n(r)

∫ RVS

0
dx

n(x)x2

r>(x)
, (B10)

Exc[n] = 4π

∫ RVS

0
drr2exc[n↑, n↓](r)n(r), (B11)

where exc[n↑, n↓](r) is the XC energy density.
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