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Time-resolved physical spectrum in cavity quantum electrodynamics
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The time-resolved physical spectrum of luminescence is theoretically studied for a standard cavity quantum
electrodynamics system. In contrast to the power spectrum for the steady state, the correlation functions up to
the present time are crucial for the construction of the time-resolved spectrum, while the correlations with future
quantities are inaccessible because of the causality, i.e., the future quantities cannot be measured until the future
comes. We find that this causality plays a key role in understanding the time-resolved spectrum, in which the
Rabi doublet can never be seen during the time of the first peak of the Rabi oscillation. Furthermore, the causality
can influence the transient magnitude of the Rabi doublet in some situations. We also study the dynamics of the
Fano antiresonance, where the difference from the Rabi doublet can be highlighted.
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I. INTRODUCTION

The luminescence spectrum is one of the key subjects
in quantum optics to study the fundamental characteristics
of quantum emitters [1–4]. The accessibility to the spec-
trum is experimentally straightforward, the techniques of
its calculation are theoretically well established, and the
consistency between experiment and theory is sufficient, es-
pecially when the system of interest is in a steady state. As
a result, in the regime of cavity quantum electrodynamics
(cQED), a number of quantum optical effects, such as the
off-resonant cavity feeding [5–13], the incoherent pumping
effects [14–16], the resonance fluorescence [17–19], and the
Fano resonance [20,21], have been revealed in the last decades
by the steady-state power spectrum, formally described as

Sss(ν) = lim
t→∞

∫ ∞

0
dτRe

∑
μ,μ′

χμ,μ′ 〈Ŏ†
μ(t )Ŏμ′ (t + τ )〉0eiντ .

(1)

Here, Ŏμ(t ) is the system operator linked to the radia-
tion field in the Heisenberg picture, 〈Ŏ†

μ(t )Ŏμ′ (t + τ )〉0 =
TrS[Ŏ†

μ(t )Ŏμ′ (t + τ )ρ̂0] is the correlation function with ρ̂0

being the initial density operator, and χμ′,μ denotes a coef-
ficient relevant to each emission channel. In such a treatment,
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one advantage to consider the steady state is the equiv-
alence between the correlation functions, 〈Ŏ†

μ(t )Ŏμ′ (t +
τ )〉0 = 〈Ŏ†

μ(t − τ )Ŏμ′ (t )〉0, which means that the correlation
from the future toward the present is statistically equivalent to
that from the present toward the past by assuming τ > 0 with
the present time t . This nature allows us to conveniently forget
the causality that the correlations with future quantities cannot
be measured until the future comes, and the power spectrum
can readily be evaluated through the quantum regression the-
orem (QRT) [1–3].

In principle, however, the most fundamental is the time-
resolved spectrum because it can naturally resolve dynamical
effects [22,23], while extra care is needed for its description,
called the physical spectrum [24–27], to avoid artifactual re-
sults. Earlier studies indeed pointed out that the time-resolved
spectrum can exhibit distinctive features, e.g., in the fluo-
rescence of a coherently driven atom [28–32]. Pump-probe
ultrafast spectroscopy has also shown the importance of time-
resolved measurements [33–40]. Nevertheless, the inherent
nature of the time-resolved spectrum has not been studied
in the context of the causality. In fact, to our knowledge,
no attention has been paid thus far to the impact of the
causality. Moreover, theoretical predictions have increasing
importance especially in recent experiments of cQED [10,35–
42] with the Fano interference effect [20,21,43–45] although
there remain few theoretical studies to directly investigate the
time-resolved physical spectrum (TRPS) for such systems.

In this paper, we theoretically study the TRPS of lu-
minescence for an initially excited two-level system (TLS)
interacting with a single-mode cavity. In its construction, the
correlation functions up to the present time are crucial, while
the correlations with future quantities are unavailable because
of the causality. We find that this causality gives a key insight
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to understand the TRPS in the strong-coupling regime, where
the Rabi doublet can never be seen during the time of the first
peak of the Rabi oscillation. Furthermore, we demonstrate
that the magnitude of the Rabi doublet can vary with time in
some situations. These features are in contrast to the common
view in the steady-state power spectrum and significant, e.g.,
for the shaping of the temporal waveform of single photons
and the switching of the Rabi oscillations [46–49], because
the spectral nature of single photons is essential for quantum
information applications. We also study the dynamics of the
Fano antiresonance, where the difference from the Rabi dou-
blet can be highlighted.

II. FORMULATIONS

Based on the quantum master equation (QME) approach,
in the Schrödinger picture with h̄ = 1, the system density
operator, ρ̂t , is evolved by

d

dt
ρ̂t = Lρ̂t ≡ −i[ĤS, ρ̂t ] + Dρ̂t , (2)

where t is the present time and D is given by

D = γ

2
Dσ̂+,σ̂− + κ

2
Dâ†

c ,âc
+ γphDσ̂+σ̂−,σ̂+σ̂−

+ γF

2
Dâc,σ̂+ + γ ∗

F

2
Dσ̂−,â†

c
, (3)

with DX̂ ,Ŷ ρ̂t = 2Ŷ ρ̂t X̂ − X̂Ŷ ρ̂t − ρ̂t X̂Ŷ . The system Hamil-
tonian, ĤS = 1

2ω21σ̂z + ωcâ†
c âc + (gσ̂+âc + g∗â†

c σ̂−), models
the coupling between the TLS and the cavity by a coupling
constant g = |g|eiπ/2, where â†

c and âc are the creation and
annihilation operators of the cavity photons, σ̂± are the raising
and lowering operators of the TLS, and σ̂z = σ̂+σ̂− − σ̂−σ̂+.
In Eq. (3), γ and κ denote the emission rates of the TLS
and the cavity, respectively, while γph is the pure dephasing
rate of the TLS. The last two terms in Eq. (3) describe the
Fano interference between the two emission processes, where
γF = eiθ√ηγ κ [45]. η (0 � η � 1) is the degree of overlap
between the two radiation patterns, while θ is the phase dif-
ference between the two processes.

For the construction of the TRPS, it is essential to re-
member that the QME is originally derived from the total
Hamiltonian including the environment although the QME is
a convenient starting point in our analysis. By considering the
Heisenberg equations for the radiation modes [2,45], then, one
can arrive at the following expression of the TRPS [24]:

S(ν, t, δs )

=
∫ ∞

0
dt ′δse

−δst ′
∫ ∞

0
dτ

×Re
∑
μ,μ′

χμ,μ′ 〈Ŏ†
μ(t − t ′ − τ )Ŏμ′ (t − t ′)〉0e(iν− δs

2 )τ , (4)

where δs is the spectral resolution of the spectrometer and
μ,μ′ ∈ {σ, a} with Ŏσ (t ) = σ̆−(t ) and Ŏa(t ) = ăc(t ). In the
derivation, we have integrated the spectrum over all direc-
tions, and as a result, the coefficients χμ′,μ can be determined
as {χσ,σ , χa,a, χσ,a, χa,σ } = {γ /π, κ/π, γF/π, γ ∗

F /π}. Here,
S(ν, t, δs ) can recover Sss(ν) in the limit of t → ∞, apart
from the spectral resolution. However, in comparison with
Eq. (1), we can explicitly find the causality in Eq. (4), where

the correlations are inherently with the past quantities, in-
stead of the future quantities. For transient dynamics, 〈Ŏ†

μ(s −
τ )Ŏμ′ (s)〉0 cannot be replaced by 〈Ŏ†

μ(s)Ŏμ′ (s + τ )〉0 because
〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 depends not only on the time difference
τ but also on the absolute time s [= t − t ′ in Eq. (4)]. This
indicates that the causality can have significant impact on
the spectrum in general; this is one of the major differences,
e.g., from Ref. [22], where the time-resolved spectrum was
also discussed. It is further worth noting that the spectral
resolution δs is inevitably included in Eq. (4) and its influence
cannot be separated from the TRPS in general. This is another
important point although the effect of the resolution is often
underestimated.

To calculate the TRPS, however, one difficulty lies in its
numerical cost due to the double convolution integral, which
must be calculated repeatedly for different ν and t . In our
view, this is one reason for the scarcity of theoretical research
of the TRPS in cQED systems. For the reduction of the nu-
merical cost, based on the QRT, we write the correlation as

〈Ŏ†
μ(s − τ )Ŏμ′ (s)〉0 = TrS[(eL

†τ Ô†
μ′ )†ρ̂s−τ Ô†

μ]

=
∑

i

Cμ′,i(τ )〈Ô†
μÂi〉s−τ , (5)

for s � τ � 0, where L† is the adjoint superoperator of L,
〈X̂ 〉t ≡ TrS[X̂ ρ̂t ], Cμ′,i(τ ) ≡ TrS[(eL

†τ Ô†
μ′ )†Â†

i ], and {Âi} is a
complete set of system operators in the Liouville space. The
first equality is helpful in general because eL

†τ Ô†
μ′ can be

computed separately from the evolution of the density oper-
ator, ρ̂s−τ . The second equality is additionally advantageous
when Cμ′,i(τ ) can be obtained analytically. By employing the
latter approach, we have performed one of the integrals in
Eq. (4) analytically. We also note that 〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 = 0
either for s − τ < 0 or for s < 0 by definition [50]. As a result,
we can successfully analyze the TRPS; see also Appendix A
for further details.

III. NUMERICAL RESULTS

Figure 1 shows typical numerical results for different spec-
tral resolutions with γph = 0 and η = 0. The TLS is initially
excited, and other parameters are assumed: κ = 50 μeV, γ =
0.05 μeV, and |g| = 100 μeV under the resonant condition.
Since our setting, |g| � κ + γ , indicates the strong-coupling
regime, the Rabi doublets should be well resolved when δs �
|g| = 100 μeV. As a result, for δs = 5 μeV, we can see the
typical Rabi doublets in the time-integrated spectra for the
cavity and the TLS [Figs. 1(a) and 1(b)]. However, a single-
peak structure can be found in the early stage of the TRPS
for the cavity [Fig. 1(c)]. A similar structure can also be seen
for the TLS [Fig. 1(d) and the inset] although its appearance
is earlier than for the cavity. These features are in contrast to
the ordinary understanding of the Rabi doublets. We also note
that the dynamics in the TRPS are largely different from the
Rabi oscillations of 〈â†

c âc〉t and 〈σ̂+σ̂−〉t , as seen in Fig. 1(e).
By increasing δs to 150 μeV (comparable to |g|), how-

ever, oscillatory behaviors come out in Fig. 1(j), while the
Rabi doublets become blurred in Figs. 1(f) and 1(g). This is
due to the uncertainty between energy and time. Hence, by
further increasing δs up to 500 μeV, the energy-integrated
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FIG. 1. Calculations for γph = 0 and η = 0 with |g| = 100 μeV. The spectral resolutions are δs = 5 μeV [left; (a)–(e)], δs = 150 μeV
[middle; (f)–(j)], and δs = 500 μeV [right; (k)–(o)]. In the left panels, the time-integrated spectra are shown for the cavity (a) and the TLS
(b). The spectra are then time resolved in (c) and (d), which are in turn integrated over energy in (e). The intensities are normalized to 1 in
(a)–(d) for comparison. In (e), the results for the cavity (blue solid curve) and the TLS (red solid curve) are normalized by κ and γ , respectively,
to compare with 〈â†

c âc〉t and 〈σ̂+σ̂−〉t (dashed curves). The middle and right panels are arranged in the same way. The intensity of the area
surrounded by the dashed line in (d) is four times increased in the inset. κ = 50 μeV and γ = 0.05 μeV.

intensities recover the Rabi oscillations almost completely in
Fig. 1(o), while the Rabi doublets cannot be resolved any more
in Figs. 1(k) and 1(l). In fact, in Eq. (4), δse−δst ′

gives the
time uncertainty as a response function of the spectrometer,
while e−δsτ/2 results in the energy uncertainty as a resolution
of the spectrometer. It is thus obvious that δs plays an essential
role for the consistent description of the physical spectrum.
As a result, we note that the initial rising time of the TRPS
intensities cannot be faster than δ−1

s in Fig. 1.
Beyond such complementarity, we can notice that the sin-

gle peaks observed in Figs. 1(c) and 1(d) are more highlighted
in Figs. 1(h) and 1(i) and finally form the first peaks of the
Rabi oscillations in Figs. 1(m) and 1(n). This indicates that
the mechanism of the single peaks is particularly related to
the first peaks of the Rabi oscillations. This is consistent with
the earlier appearance of the single peak for the TLS than for
the cavity. However, it is still unclear why such a peculiar
role is given only for the first peak. For a detailed discussion,
the cavity spectra for δs = 5 μeV are separately plotted at
different times in Figs. 2(a)–2(d), corresponding to the white
dashed lines in Fig. 1(c). As a result, we can further find that
there are weak satellite series around the main peaks, which
are absent in the time-integrated spectrum.

To clarify the underlying physics, it is essential to di-
rectly analyze the correlation functions. For this purpose,
in Figs. 2(e)–2(h), we plot the cavity correlations 〈ă†

c (s +
τ ′)ăc(s)〉0e−iωcτ

′
with τ ′ ≡ −τ , at absolute times s coincident

with the individual times t of Figs. 2(a)–2(d). These corre-
lations at s = t (t ′ = 0) give the major contributions in the t ′
integral of Eq. (4) when Figs. 2(a)–2(d) are calculated, respec-
tively. In Figs. 2(e)–2(h), we can see that the correlations show
oscillatory dynamics at half the Rabi frequency both for τ ′ <

0 and for τ ′ > 0. However, we note that the causality is sat-
isfied only for τ ′ < 0 when calculating the individual spectra
[Figs. 2(a)–2(d)]. Hence the correlations become relevant only
within the time windows of −s < τ ′ < 0 (the gray shaded
areas), as they vanish for τ ′ < −s [50]. In fact, this is the
reason for the appearances of the satellite series in Figs. 2(a)–
2(d). Based on the Fourier analysis, such a time window

yields the satellite peaks separated by 2π/t , as indicated by
the dashed lines in Figs. 2(c) and 2(d). This understanding is
consistent with our results that such a phenomenon can be still
observed even without the cavity (Appendix B). Furthermore,

FIG. 2. The cavity transient spectra for δs = 5 μeV (left panels)
and the cavity correlations (right panels). In the left panels, the
arrows are guides for the eye pointing to the satellite peaks. In (c) and
(d), the black (red) dashed lines indicate the energy separations from
the left (right) main peak by 2πn/t for several values of the integer
n. In the right panels, the blue (green) solid curves indicate the real
(imaginary) parts of the correlations. The dashed curves are 〈â†

c âc〉t

for comparison. The correlations vanish for τ ′ < −s, and therefore
the τ ′ axes are drawn from τ ′ = −s. The gray shaded areas indicate
the time windows of the causality, −s < τ ′ < 0.
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we can also notice that the Rabi doublets can be observed
in Figs. 2(a)–2(d) only when the correlations can show their
oscillations at least for one period during the time windows
in Figs. 2(e)–2(h). In Figs. 2(g) and 2(h), the correlations
oscillate more than one period during the time windows,
and therefore we can see the Rabi doublets in Figs. 2(c)
and 2(d). In contrast, in Figs. 2(e) and 2(f), the correlations
cannot show their oscillations within the time windows of the
causality. This means that the spectrometer cannot know the
oscillating behaviors of the correlations in advance, before it
really detects the oscillations at least over one period. As a
result, the single peaks are obtained in Figs. 2(a) and 2(b).
This is the very reason why the single peaks appear in
Figs. 1(c), 1(d), 1(h), and 1(i). Since the correlations oscillate
at half the Rabi frequency, we can conclude that the Rabi
doublets can never be seen during the times of the first peaks
of the Rabi oscillations, either for the cavity or for the TLS.
Such a unique impact of the causality is not present in the
steady-state spectrum. These results are important consider-
ing that spectral features are, in general, essential for single
photons to elicit their fundamental performance in quantum
information applications.

We note, however, that the importance of the causality is
not limited to the appearances of the satellite series and/or
the disappearances of the Rabi doublets. To illustrate this, we
here find that the separations of the Rabi doublets are changed
with time, especially for δs = 150 μeV [Figs. 1(h) and 1(i)],
where the separations are gradually decreased during the
individual Rabi cycles. This is in contrast to the intuition
that the separations are determined only by the magnitude
of the coupling constant |g|. In fact, however, this charac-
teristic can be understood simply from a one-sided Fourier
transform, Fφ (ν) ≡ ∫ ∞

0 dτ cos(|g|τ + φ)eiντ− δs
2 τ . For δs com-

parable to |g|, sin(|g|τ )e− δs
2 τ is close to a single pulse, while

cos(|g|τ )e− δs
2 τ remains more likely to be oscillatory. Hence

the separation of the doublet in |Fφ (ν)|2 can be changed by its
phase φ as well as its frequency |g| (see also Appendix C). The
transient Rabi doublets can then be understood essentially in
the same manner. The important points here are that the corre-
sponding phase is determined by 〈Ŏ†

μ(s + τ ′)Ŏμ′ (s)〉0 not for
τ ′ > 0 but for τ ′ < 0 due to the causality, and that these two
phases are different, as seen in Figs. 2(e)–2(h), for example.
These facts mean that the transient Rabi doublets are also
strongly influenced by the causality, even if the frequencies
of the correlations are the same between τ ′ > 0 and τ ′ < 0.
For example, the dynamics of the cavity Rabi doublet could
become very different from Fig. 1(h) if 〈ă†

c (s − τ )ăc(s)〉0 were
replaced by 〈ă†

c (s)ăc(s + τ )〉0 in Eq. (4) by neglecting the
causality.

We have thus clarified the fundamental aspects of the TRPS
beyond the conventional view of the Rabi doublet and os-
cillation. However, we finally remark that the dynamics of
the spectra can largely depend on the inherent mechanism of
the doublet in general. To see this, in Fig. 3, the Fano inter-
ference is studied by setting η = 1 with γph = 30 μeV and
|g| = 1 μeV. In this situation, the Fano antiresonance yields a
doublet in the time-integrated (total) spectrum for δs = 5 μeV
in Fig. 3(a), while it becomes unclear by increasing δs in
Figs. 3(b) and 3(c), as expected. In contrast to Fig. 1, however,

FIG. 3. Calculations for γph = 30 μeV and η = 1 with |g| =
1 μeV, where ω21 − ωc = −70 μeV. The time-integrated spectra
are shown in the upper panels [(a)–(c)], while the time-resolved
spectra are shown in the lower panels [(d)–(f)], respectively. In
(g), the time-resolved spectra are integrated over energy for δs =
5 μeV (blue), 50 μeV (purple), and 500 μeV (red), where the black
dashed curve shows κ〈â†

c âc〉t + γ 〈σ̂+σ̂−〉t + 2Re[γF〈σ̂+âc〉t ]. TR =
2π/�R � 59 ps with �R = √

(ω21 − ωc )2 + 4|g|2. κ = 50 μeV,
γ = 0.05 μeV, and θ = π/2.

there is no oscillation relevant to the doublet in Figs. 3(d)–3(g)
because the doublet is caused by the destructive interference.
Hence the presence of the doublet does not necessarily in-
dicate the oscillation. On the other hand, the single peaks
can again be found in the early stages of the TRPS. This
is essentially due to the broadening by the time windows of
the causality, but cannot be related to oscillatory behaviors in
the time domain. It follows that the separation of the doublet
does not depend on time, even when the doublet is partly
blurred by the resolution [Figs. 3(b) and 3(e)]. In this context,
the time-resolved spectrum is indeed helpful to resolve the
dynamical effects.

IV. CONCLUSIONS AND OUTLOOK

To summarize, we have demonstrated that the TRPS can
exhibit distinctive features beyond the steady-state spectrum,
where key viewpoints are given by the causality. Furthermore,
the TRPS can also highlight the difference between the Fano
antiresonance and the Rabi doublet. The approach presented
here would have a wide range of applications, such as the
shaping of the temporal waveform of single photons and the
real-time switching of Rabi oscillations toward quantum in-
formation processing [46–49]. Especially, it provides a useful
framework in analyzing the Fano interference from quantum
optical systems [51–54]. In addition, despite our focus on the
TRPS, we stress that because of the conceptual generality of
this approach the significance of the causality is not limited
to such a case. Our results suggest that the pump-probe ab-
sorption spectrum [33,34] and out-of-time-order correlations
in photodetection [55], for example, might be nontrivial. Our
findings provide fundamental insight into the time-domain
spectroscopy in cQED systems.
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APPENDIX A: THE CORRELATION FUNCTIONS
AND THE PHYSICAL SPECTRUM

We here explain our approach to calculate the correlation
functions [Eq. (5)] and the physical spectrum [Eq. (4)]. For
this purpose, we consider other correlation functions in the
form 〈Ŏ†

μ(s)Ŏμ′ (s + τ )〉0 for τ � 0 and s � 0. In the same
manner as 〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 in Eq. (5), 〈Ŏ†
μ(s)Ŏμ′ (s + τ )〉0

can be written as

〈Ŏ†
μ(s)Ŏμ′ (s + τ )〉0 = TrS[(eL

†τ Ô†
μ′ )†ρ̂sÔ

†
μ]

=
∑

i

Cμ′,i(τ )〈Ô†
μÂi〉s, (A1)

where {Âi} is a complete set of system operators in the
Liouville space. The adjoint superoperator A† for any super-
operator A is defined in such a way that TrS[(A†X̂ )†Ŷ ] =
TrS[X̂ †AŶ ] for arbitrary system operators X̂ and Ŷ . As illus-
trated in the main text, however, we note that 〈Ŏ†

μ(s)Ŏμ′ (s +
τ )〉0 = 〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 for transient dynamics. Neverthe-
less, the advantage of this type of correlation function is that
the quantum regression theorem (QRT) [1–3] can directly be
applied to analyze d

dτ
〈Ŏ†

μ(s)Ŏμ′ (s + τ )〉0 for τ � 0. In con-
trast, d

dτ
〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 for τ � 0 is outside the range of
its direct application. Hence, in this paper, we use the fact that
Cμ′,i(τ ) in Eq. (A1) is the same as in Eq. (5). Specifically, we
can calculate 〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 in the following two steps.
(1) We first consider 〈Ŏ†

μ(s)Ŏμ′ (s + τ )〉0 and analytically
derive Cμ′,i(τ ) by applying the QRT.

(2) We calculate 〈Ŏ†
μ(s − τ )Ŏμ′ (s)〉0 by using the obtained

Cμ′,i(τ ) in Eq. (5).
As a result of the first step, for μ,μ′ ∈ {σ, a} with Ŏσ (t ) =

σ̆−(t ) and Ŏa(t ) = ăc(t ), we obtain

Cσ,1(τ ) = 1

γ+ − γ−

{(
γ+ + iωc + κ

2

)
eγ+τ

−
(
γ− + iωc + κ

2

)
eγ−τ

}
, (A2)

Ca,2(τ ) = 1

γ+ − γ−

{(
γ+ + iω21 + γ

2
+ γph

)
eγ+τ

−
(
γ− + iω21 + γ

2
+ γph

)
eγ−τ

}
, (A3)

Cσ,2(τ ) = −ig−
γ+ − γ−

(eγ+τ − eγ−τ ), (A4)

Ca,1(τ ) = −ig∗
+

γ+ − γ−
(eγ+τ − eγ−τ ), (A5)

by assuming Â1 = σ̂− and Â2 = âc, where γ± is defined by

γ± ≡ −1

2
(�tot + i(ω21 + ωc))

± 1

2

√(κ − γ

2
− γph + iωc,21

)2

− 4g∗+g− (A6)

with ωc,21 ≡ ωc − ω21, g± ≡ g ± i γF

2 , and �tot ≡ γ+κ

2 + γph.
In the derivation, we have used the fact that the bases required

to describe the density operator are limited because, in our
situation, the TLS is always in the ground state when a photon
is inside the cavity. For the same reason, only Â1 = σ̂− and
Â2 = âc are considered in Eqs. (5) and (A1). The second
step is then straightforward to perform. In Figs. 2(e)–2(h), the
correlations for τ ′ < 0 are obtained by Eq. (5), for example.

For the time-resolved physical spectrum (TRPS) [Eq. (4)],
these analytic results [Eqs. (A2)–(A5)] are advantageous to
reduce the numerical cost. By inserting Eq. (5) into Eq. (4),
we can rewrite S(ν, t, δs ) as

S(ν, t, δs ) = Re
∑
μ,μ′,i

χμ,μ′

∫ t

0
ds′〈Ô†

μÂi〉s′Cμ′,i(ν, δs, t − s′),

(A7)

Cμ′,i(ν, s′′, δs ) ≡ δs

∫ s′′

0
dτCμ′,i(τ )e(iν+ δs

2 )τ−δss′′
, (A8)

where we have changed the integral variables with us-
ing 〈Ŏ†

μ(s − τ )Ŏμ′ (s)〉0 = 0 either for s − τ < 0 or for s <

0. Therefore, by using Eqs. (A2)–(A5), the integration of
Eq. (A8) can be performed as

Cσ,1(ν, s′′, δs ) = 1

γ+ − γ−

{(
γ+ + iωc + κ

2

)
C+(ν, s′′, δs)

−
(
γ− + iωc + κ

2

)
C−(ν, s′′, δs )

}
, (A9)

Ca,2(ν, s′′, δs )

= 1

γ+ − γ−

{(
γ+ + iω21 + γ

2
+ γph

)
C+(ν, s′′, δs)

−
(
γ− + iω21 + γ

2
+ γph

)
C−(ν, s′′, δs )

}
, (A10)

Cσ,2(ν, s′′, δs) = −ig−
γ+ − γ−

(C+(ν, s′′, δs ) − C−(ν, s′′, δs )),

(A11)

Ca,1(ν, s′′, δs ) = −ig∗
+

γ+ − γ−
(C+(ν, s′′, δs ) − C−(ν, s′′, δs)),

(A12)

with

C±(ν, s′′, δs) ≡ δs
e(iν+γ±− δs

2 )s′′ − e−δss′′

iν + γ± + δs
2

. (A13)

We can thus calculate the TRPS by Eq. (A7) with
Eqs. (A9)–(A13). We note that these results can exactly re-
cover the previous results for the time-integrated spectrum,∫ ∞
−∞ dtS(ν, t, δs ) [45]. On the other hand, the energy-

integrated intensity,
∫ ∞
−∞ dνS(ν, t, δs ), can also be obtained as∫ ∞

−∞
dνS(ν, t, δs ) =

∫ t

0
ds′′(κ〈â†

c âc〉s′′ + γ 〈σ̂+σ̂−〉s′′

+ 2Re[γF〈σ̂+âc〉s′′ ]) · δse
−δs (t−s′′ ),

(A14)

which is the convolution of the relevant quantities with the
response function of the spectrometer, δse−δst . As a result of
the response function of the spectrometer, we note that the
initial rising times of the TRPS intensities cannot be faster
than δ−1

s in Fig. 1.
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APPENDIX B: RESULTS FOR THE INITIALLY EXCITED TWO-LEVEL SYSTEM WITHOUT THE CAVITY

In the case of the initially excited TLS without the cavity, the TRPS defined for the TLS,

S21(ν, t, δs ) ≡
∫ ∞

0
dt ′δse

−δst ′
∫ ∞

0
dτRe

γ

π
〈σ̆+(t − t ′ − τ )σ̆−(t − t ′)〉0e(iν− δs

2 )τ , (B1)

can be obtained analytically, based on the same strategy as used in Appendix A. In the derivation, the TLS correlation, 〈σ̆+(s +
τ ′)σ̆−(s)〉0, is given by

〈σ̆+(s + τ ′)σ̆−(s)〉0 =
⎧⎨
⎩

e−γ se(iω21− γ

2 −γph )τ ′
(τ ′ � 0)

e−γ se(iω21− γ

2 +γph )τ ′
(−s � τ ′ < 0)

0 (τ ′ < −s),
(B2)

with s � 0. As a result, S21(ν, t, δs ) for t � 0 is obtained as

S21(ν, t, δs ) = γ

π
Re

[
δse−γ t

i(ν − ω21) − γ

2 − γph + δs
2

{
1 − e(i(ν−ω21 )+ γ

2 −γph− δs
2 )t

−i(ν − ω21) − γ

2 + γph + δs
2

+ 1 − e(γ−δs )t

γ − δs

}]
. (B3)

Here, the expression of the TRPS [Eq. (B3)] is somewhat
complicated despite the simple situation. We note, however,
that the time-integrated spectrum has a simple Lorentzian line
shape∫ ∞

0
dtS21(ν, t, δs ) = 1

π

γ+δs

2 + γph

(ν − ω21)2 + (
γ+δs

2 + γph
)2 . (B4)

On the other hand, the energy-integrated intensity results in
a convolution between γ 〈σ̂+σ̂−〉t = γ e−γ t (t � 0) and the
response function of the spectrometer, δse−δst ,∫ ∞

−∞
dνS21(ν, t, δs ) =

∫ t

0
ds′′γ 〈σ̂+σ̂−〉s′′ · δse

−δs (t−s′′ ), (B5)

which does not depend on the pure dephasing rate γph.
Figure 4 shows typical numerical results for γ = 50 μeV

and γph = 0. By increasing δs, we can see that the time-
integrated spectra are broadened in Figs. 4(a)–4(c), while the
energy-integrated intensities (normalized by γ ) get closer to
the population of the excited state, 〈σ̂+σ̂−〉t , in Fig. 4(g). This

is due to the energy-time uncertainty. Furthermore, we can
notice that there are satellite series around the main peaks
in Fig. 4(d) and 4(e), which are absent in the time-integrated
spectra of Figs. 4(a) and 4(b). The separation of each satellite
peak is well captured by 2π/t , as indicated by the white
dashed curves. This is consistent with the explanation in the
main text, due to the time window of the causality. In contrast,
the satellite series cannot be seen in Fig. 4(f). This is because
the separation of each satellite peak, 2π/t , is much smaller
than the broadening effect by δs. In this context, we can notice
that t � δ−1

s should at least be satisfied for the appearance of
the satellite peaks. For the same reason, we note that there
is no satellite series in Figs. 1(m) and 1(n), although not
described in the main text.

APPENDIX C: INFLUENCE OF THE PHASE ON THE
DOUBLET

In this Appendix, finally, the influence of the phase on
the doublet is discussed by using the one-sided Fourier

[p
s]

FIG. 4. Numerical results for the TLS with γ = 50 μeV and γph = 0. For δs = 5, 50, and 500 μeV, the time-integrated spectra,∫ ∞
0 dtS21(ν, t, δs ) [Eq. (B4)], are shown in the upper panels [(a)–(c)], while the time-resolved spectra, S21(ν, t, δs ) [Eq. (B3)], are in the

lower panels [(d)–(f)], respectively. The intensities are normalized to 1 in (a)–(f). In (g), the time-resolved spectra are integrated over energy,∫ ∞
−∞ dνS21(ν, t, δs ) [Eq. (B5)], for δs = 5 μeV (blue), 50 μeV (purple), and 500 μeV (red), where the intensities are normalized by γ to be

compared with 〈σ̂+σ̂−〉t (black dashed curve). The white dashed curves in (d)–(f) indicate ν − ω21 = 2πn/t for n = 1, 2, . . . , 6. Results for
other values of the integer n are not shown for the sake of visibility.
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FIG. 5. The phase dependence of |Fφ (ν )|2 for |g| = 100 μeV. The spectral resolution δs is assumed, δs = 5 μeV (a), 150 μeV (b), and
500 μeV (c), where the intensities are normalized to 1 for comparison. In (b), the white dashed lines are guides for the eye, indicating the
phase dependence of the doublet.

transform, Fφ (ν) = ∫ ∞
0 dτ cos(|g|τ + φ)eiντ− δs

2 τ . As shown
in Figs. 5(a)–5(c), we can see that the intensities of |Fφ (ν)|2
have some similarities to the time-resolved spectra in Fig. 1.
In particular, we can find that the separation of the dou-
blet depends on the phase φ when δs is comparable to |g|
[Fig. 5(b)], as indicated by the white dashed lines. Here,
the separation of the doublet is small for φ = −π/2 be-
cause cos(|g|τ + φ)e− δs

2 τ = sin(|g|τ )e− δs
2 τ is close to a single

pulse. In contrast, the separation is large for φ = 0 because
cos(|g|τ + φ)e− δs

2 τ = cos(|g|τ )e− δs
2 τ remains more likely to

be oscillatory. We can thus intuitively understand that |Fφ (ν)|2

can depend on the phase φ from the time-domain behaviors.
In contrast, in the frequency domain, we can notice that the
two doublet peaks are influenced by each other when the
broadening by δs is comparable to |g| because Fφ (ν) can be
written as

Fφ (ν) = eiφ δs

(ν + |g|)2 + δ2
s

+ e−iφ δs

(ν − |g|)2 + δ2
s

. (C1)

Hence it can again be found that the phase φ plays an impor-
tant role in the profile of |Fφ (ν)|2.
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