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Photonic Dirac nodal-line semimetals realized by a hypercrystal
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Recently, the gapless Dirac/Weyl nodal semimetals with linear dispersion and topologically protected modes
degeneracy have been rapidly growing frontiers of topological physics. Especially, type-I, type-II, and critical
type-III nodal semimetals are discovered according to the tilt angles of the Dirac/Weyl cones. Here, by introduc-
ing hyperbolic metamaterials into one-dimensional photonic crystals, we design the “hypercrystal” and study the
photonic fourfold degenerate Dirac nodal-line semimetals (DNLSs) with two types of perpendicularly polarized
waves. Moreover, the flexibly controlled photonic DNLSs using the phase compensation effect of hyperbolic
dispersion are studied. Our results not only demonstrate a platform to realize the various photonic DNLSs,
where the optical polarization plays the role of electron spin in electronic DNLSs, but also may pave a way to
explore the abundant Dirac/Weyl physics in the simple classical wave systems.
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I. INTRODUCTION

According to the electronic band theory, materials can be
classified mainly into metals, semiconductors, and insulators.
Since the 1980s, based on the incisive study of quantum
Hall effect, people have put forward a new view, that is,
topological order to describe the properties of matter [1–3].
By introducing the theory of topology, new band-gap phases,
topological insulators, and topological superconductors have
attracted extensive attention [4], and led to special research
on gapless topological phases such as topological semimetals
in recent years [5,6]. In the momentum k space, topological
semimetals possess robust nodal areas between conduction
and valence bands. In particular, the codimension of nodal
points [7–11], nodal lines [12–41], and nodal surfaces [42–44]
is 3, 2, and 1, respectively, corresponding to the degrees of
freedom of parameters that tuned to encounter a band degen-
eracy [45]. Interestingly, nodal lines in topological semimetals
can even form some complicated configurations, including
helices [12], rings [13–19], links [20,21], chains [22–24],
gyroscopes [18,25–27], nexus [28–32], knots [33–36], nets
[37–40], etc.

So far, more and more topological semimetals have been
proposed theoretically and verified experimentally in the
electronic [7,8], optical [11,19,24,32], and acoustic systems
[23,39–41]. As a result, a finer classification of topological
phases is supported by band structure of semimetals. A rapidly
growing frontier in this field is to emulate relativistic quasipar-
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ticles like twofold Weyl fermions [8,41] and fourfold Dirac
fermions [10,19], which have linear dispersion with novel
transport properties like delocalization [46], Zitterbewegung
[11,47,48], and Klein tunneling [11,49,50]. In addition, topo-
logical semimetal phases can be further divided into type I
[51,52], type II [53,54], and type III [55–57] based on the
tilt angles of the Dirac/Weyl cones. Especially, type I and
type II have pointlike and conical-like Fermi surfaces, respec-
tively. Type III belongs to a critical transition phase, which is
generally obtained by the topological phase transition (TPT)
from type I to type II. Currently, several creative studies have
realized this TPT in twofold Weyl semimetals [55–61]. For
the two-dimensional (2D) layered lattices, the tilt angle of
the conical bands can be controlled by the compressive strain
[55,57,59], lattice constant [56,58,61], and temperature [60].
All above-mentioned modulations for the TPT resort to the
change of coupling coefficient between neighbor unit cells,
while the unit cells themselves remain unchanged, thus lead-
ing to the displacement of Weyl nodes in the process of TPT.
This uncontrollable displacement will affect the observation
of ideal TPT in photonic fourfold Dirac semimetals.

Photonic crystals (PCs) provide a powerful platform for
manipulating the light-matter interactions [62–66]. In 2021,
Hu et al. uncovered that double-bowl state in photonic Dirac
nodal-line semimetal in the one-dimensional (1D) PCs [19].
This pioneering work provided a new mechanism to realize
a photonic type-II Dirac nodal-line semimetal (DNLS). How-
ever, for the conventional 1D PCs composed of two types of
dielectrics, the photonic bands will blueshift with the increase
of the incident angle, thus the type-I, type-III DNLSs, and
even the TPT remain elusive in the 1D PCs. The recently
emergent hyperbolic metamaterials (HMMs) have attracted
great attention for their extraordinary optical properties, such
as enhanced photonic density of states [67], abnormal cou-
pling effect [68–70], unidirectional propagation [71–74], and
so on. As one kind of anisotropic artificial media, HMMs
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can compensate the propagating phases to an unprecedented
extent that usual dielectrics cannot attain [64], which provides
the possibility to overcome the general angle-dependent lim-
itation of bands and further explore the various DNLSs and
TPT in 1D PCs [75–80].

This work is organized as follows: Sec. II covers the design
of hypercrystal composed of electric-magnetic (EM) HMM
and dielectric, which satisfies the compensation condition
m1 = m2. Especially, the photonic type-I DNLS is realized
based on two type-I Weyl nodal-line semimetals (WNLSs)
of perpendicularly polarized waves. In addition, the TPT and
type-III DNLS are demonstrated by tunning the thickness
ratio of EM HMMs and dielectric layers; in Sec. III, hyper-
crystal constructed by simple electric HMM and dielectric
(m1 �= m2) is carried out to study a hybrid photonic DNLS
with a type-I WNLS and a type-II WNLS. Finally, Sec. IV
summarizes the conclusions of this work.

II. TPT AND VARIOUS PHOTONIC DNLSs REALIZED
BY THE HYPERCRYSTAL

DNLSs can be described by a four-band Hamiltonian,
which is expanded in Dirac gamma matrices. Considering
the form of tensor product of two Pauli matrices τi and
σi (i = x, y, z) acting on two isospin degrees of freedom, the
effective Hamiltonian of photonic DNLSs can be written as
[19]

HI = τ0 ⊗ [(qa − q1)σz + (qb − q2)σx], (1)

where τi and σi represent the band index and pseudospin
index, respectively. τ0 is the identity matrix. For the nodal-line
semimetals of codimension 2, qa and qb are the two compound
variables of momentum, while q1 and q2 are constants. The
effective Hamiltonian in Eq. (1) can be decoupled into two
identical blocks, which provide twofold Weyl nodal lines with
different pseudospins α and β, respectively. The correspond-
ing eigenvalues are given by

Eα
I (k) = ±

√
(qa − q1)2 + (qb − q2)2,

Eβ
I (k) = ±

√
(qa − q1)2 + (qb − q2)2. (2)

In order to understand the band structure, Fig. 1 shows the
space of energy-momentum in a projection space E − kx − ky.
We can see that the fourfold degenerate nodal line is a 2D
manifold S2 : {qa = q1

qb = q2
, which can be regarded as the path

of Dirac cone running across the Brillouin zone. Moreover,
constant q1 and q2 describe the size of shapes of closed
manifolds or the location for open manifolds. Especially,
there are some types of DNLSs that can be easily obtained.
(1) qa = kx together with qb = kz support a straight nodal

line. (2) qa = kρ =
√

k2
x + k2

y together with qb = kz support a

nodal ring in the kx-ky plane. (3) qa = kρ =
√

k2
x /C1 + k2

y /C2

(constant C1,C2 ∈ R+) together with qb = kz support a nodal
elliptical ring in the kx-ky plane. (4) qa = 2coskx + 2cosky

together with qa = sinkxcoskz − sinkxsinkz support a double-
helix nodal line [12]. Other configurations of DNLSs can
be further obtained by deformation or combination with the

FIG. 1. The energy eigenvalues of DNLSs with effective Hamil-
tonian HI . The zero-energy plane is represented by the green surface.
In the space of E − kx − ky, the fourfold nodal line can be described
by 2D manifold S2 (red solid line). Nodal ring is realized based on
the pointlike Fermi surface running across the Brillouin zone.

above four situations, which means the potential correlation
between various DNLSs.

We know that the effective Hamiltonian HI in Eq. (1) cor-
responds to a typical type-I DNLSs. After HI rotates around
the Dirac point, the effective Hamiltonian becomes

HII = τ0 ⊗
{

(qa − q1)[tan (2φ)σ0 + sec (2φ)σz]

+ (qb − q2)√
cos (2φ)

σx

}
, (3)

where φ denotes the rotation angle around the axis of qa. The
corresponding energy eigenvalues turn into

Eα
II (k) = (qa − q1) tan (2φ) ±

√
(qa − q1)2

cos2(2φ)
+ (qb − q2)2

cos (2φ)
,

Eβ
II (k) = (qa − q1) tan (2φ) ±

√
(qa − q1)2

cos2(2φ)
+ (qb − q2)2

cos (2φ)
.

(4)

According to Eq. (4), type-I and type-II DNLSs
are realized for φ ∈ (nπ−π/4, nπ + π/4) and φ ∈
(nπ + π/4, nπ + 3π/4), which are shown in Fig. 2(a)
and Fig. 2(d), respectively. In particular, type-III DNLSs
correspond to the critical rotation angle = nπ ± π/4 (n ∈ Z),
as shown in Figs. 2(b) and 2(c). With the TPT from type-I
to type-III and then to type-II DNLSs, the doubly degenerate
Dirac cones gradually pass through the Fermi energy. In
this process, the corresponding Fermi surface (FS) evolves
from a point (q1, q2) to a single line qb = q2 and then to
two crossed lines, qb − q2 = ±√− cos(2φ)(qa − q1). This
TPT of DNLSs has been proposed to support some exotic
physical phenomena and applications, such as the black hole
evaporation with high Hawking temperature [55].
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FIG. 2. Three types of DNLSs and the associated TPT. (a) The
rotation angle of Dirac cone around axis qa is φ = 0◦, which cor-
responds to type-I DNLSs with a pointlike FS. (b)–(d) Similar to
(a), but the rotation angles are φ = 45◦, φ = 60◦, and φ = 315◦,
respectively. (b) and (c) correspond to type-III DNLSs with a linelike
FS. (d) corresponds to type-II DNLSs with a conical-like FS. The
arrows show the TPTs between three types of DNLSs. The zero-
energy planes are represented by the mesh surfaces.

Then we study the above-mentioned various DNLSs and
the associated TPT in 1D PCs. We consider a 1D PC: (AB)N

composed of an EM HMM layer A and an isotropic mate-
rial layer B, and the incident light propagates along the z
axis, as is shown in Fig. 3(a). The thickness of layers A and
B is denoted by dA and dB, respectively. Therefore, thick-
ness of the unit cell is 	 = dA + dB. The permittivity and
permeability tensors of two component layers are denoted
by diag(εix, εiy, εiz ) and diag(μix, μiy, μiz ) (i = A or B), re-
spectively. The band degeneration of transverse-electric (TE,
Hx, Ey, Hz) and transverse-magnetic (TM, Ex, Hy, Ez) polar-
ized waves can be realized when the ratio of optical path
between two component layers meets the conditions [19]

αT E = ñT E
A dA

ñT E
B dB

= m1

n1
∈ Q, αT M = ñT M

A dA

ñT M
B dB

= m2

n1
∈ Q,

(5)

where {m1, m2, n1} ∈ N+. In addition, the effective refrac-
tive index of two types of perpendicularly polarized waves
can be expressed by ñT E

i =
√

εiyμix − μixk2
ρ/μizk2

0 , and

ñT M
i =

√
εixμiy − εixk2

ρ/εizk2
0 , respectively. Especially, kρ =√

k2
x + k2

y = k0sinθ is the wave vector along the radial direc-
tion, where θ is the incident angle, and k0 = ω/c is the wave
vector in a vacuum. ω and c are the angular frequency and
speed of light in a vacuum, respectively. For the TE waves,
the (m1 + n1)th band and the (m1 + n1 + 1)th band intersect

at the frequency ( f = ω/2π ):

f T E
m1+n1

= f0 = 2
c(m1 + n1)

ñT E
A dA + ñT E

B dB
. (6)

Similarly, for the TM waves, the (m2 + n1)th band and the
(m2 + n1 + 1)th band intersect at the frequency

f T M
m2+n1

= f0 = 2
c(m2 + n1)

ñT M
A dA + ñT M

B dB
. (7)

The ideal degeneration condition m1 = m2 corresponds to
the photonic DNLS with φ1 = φ2 in the effective Hamiltonian
HII in Eq. (3). According to Eq. (5), this ideal degeneration
condition is equal to ñT E

A ( f0) = ñT M
A ( f0) because ñT E

B = ñT M
B

is always satisfied for the isotropic material. Therefore, the
EM HMMs will be considered as layer A to realize the various
photonic DNLSs. Especially, the EM HMM is mimicked by
subwavelength ε-negative (ENG) media/μ-negative (MNG)
media/dielectric stacks as (CDE )S in Fig. 3(a). N = 50 and
S = 8 denote the period numbers of the PC and HMM,
respectively. Both the permittivity of ENG media and the per-
meability of MNG media are described by the Drude model
[66]. The electromagnetic parameters and the thickness of
different layers are shown in Table I. Although this paper
is a theoretical research work, two kinds of single-negative
media have been widely studied by periodic arrays composed
of meta-atoms [63,81]. Therefore, the results studied in this
work are feasible in experimental observation in the future.

Based on the effective-medium theory (EMT) in the
long-wavelength limitation, the effective electromagnetic pa-
rameters of layer A as (CDE )S are given by [64]

ε‖ = εAx = εAy =
∑

j

f jε j, ε⊥ = εAz = 1/
∑

j

( f j/ε j ),

μ‖ = μAx = μAy =
∑

j

f jμ j, μ⊥ = μAz = 1/
∑

j

( f j/μ j ),

(8)

where f j = d j/
∑

j d j ( j = C, D, E ) is the filling factor of the
j layer. Since the working wavelength is between 1363 and
1763 nm, which is much larger than the thickness of layer A:
dA = dC + dD + dE = 156 nm, it is effective to use the EMT
of Eq. (8). From the calculated effective parameters of layer
A in Fig. 3(b), it can be seen that the structure (CDE )S can be
equivalent to an EM HMM (ε‖ε⊥ < 0 and μ‖μ⊥ < 0) when
the frequency range is from 187 to 195 THz. ε‖ (μ‖) and ε⊥
(μ⊥) are represented by the red (blue) solid line and red (blue)
dotted line, respectively. Combining Eq. (5) with Eq. (8), we
can deduce that the ideal degeneration condition m1 = m2 of
photonic DNLS is also equivalent to

ε‖/ε⊥ = μ‖/μ⊥. (9)

In order to intuitively determine the frequency of DNLS,
ε‖/ε⊥ − μ‖/μ⊥ is shown by the green dashed line in Fig. 3(b).
Especially, the ε‖/ε⊥ = μ‖/μ⊥ is marked by the green star
at 190.4 THz. At this frequency, the effective refractive in-
dex of the TE (green solid line) mode nEeff and TM (red
triangles) mode nMeff are degenerate for different incident an-
gles, as shown in Fig. 3(c). Therefore, the ideal degeneration
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FIG. 3. (a) Scheme of a 1D hypercrystal: (AB)N composed of an EM HMM layer A and an isotropic dielectric layer B. EM HMM is
mimicked by subwavelength ENG/MNG/dielectric stacks as (CDE )S . (b) Effective electromagnetic parameters of the structure (CDE )S . ε//

(μ//) and ε⊥ (μ⊥) are represented by the red (blue) solid line and red (blue) dotted line, respectively. ε///ε⊥ − μ///μ⊥ is denoted by the green
dashed line and the ideal degeneration condition m1 = m2 is satisfied near the frequency of f0 = 190 THz, which is marked by the green
star. (c) At f0 = 190.4 THz, the effective refractive index of structure (CDE )S as a function of kρ/k0 for TE (green solid line) and TM (red
triangles) waves. (d) The transmittance spectra of 1D hypercrystal (AB)N with EMT: as a function of kρ/k0 and the frequency for TE wave. The
band edges with kz = 0 are marked by white dotted lines. (e) Similar to (d), but for the TM wave. (f) Band structure of the 1D hypercrystal
in the normalized parameter space of E − kz − kp. The photonic type-I DNLS corresponds to f0 = 190.4 THz and kρ/k0 = 0.66. The linear
dispersion is marked by the green and pink lines along directions of kρ and kz, respectively.

condition of photonic DNLS in the 1D hypercrystal is in good
agreement with theoretical design at f0 = 190.4 THz.

The phase variation compensation effect of HMM provides
an effective manner to study the various photonic DNLSs [64].
Take the type-I DNLS for example; it can be obtained by

dA

dB
= −

√
ε‖εB/μ‖

ε⊥
(|ε⊥| 	 1 and εB 	 1). (10)

Using the transfer-matrix method, we calculate the trans-
mittance spectra of the 1D hypercrystal (AB)N with EMT for
different normalized wave vector kp/kz. The results of the TE
and TM modes are illustrated in Figs. 3(d) and 3(e), respec-
tively. It can be clearly seen that the adjacent bands cross
each other at f0 = 190.4 THz and kρ/k0 = 0.66 (θ = 40◦),

TABLE I. Electromagnetic parameters and thicknesses of differ-
ent layers in the 1D hypercrystal.

Permittivity ε Permeability μ Thickness (nm)

Layer B 5.45 1 704
Layer C 3–5 × 1030/ω2 1 16
Layer D 4 2–3 × 1030/ω2 23
Layer E 9 1 117

which is shown by the yellow star. In addition, the band edges
with kz = 0 are marked by white dotted lines. Band structure
of the 1D hypercrystal in the normalized parameter space
of E − kz − kp is shown in Fig. 3(f). The linear dispersions
of the type-I DNLS along kp and kz directions are further
demonstrated by the green and pink lines, respectively.

In the last part of this section, we introduce the TPT of
photonic DNLSs in 1D hypercrystal. From Eq. (5) we know
that once the parameter group of thickness (dA, dA) can realize
the DNLS at a degeneracy point ( f , θ ) with m1 = m2, all
groups (P1dA/m1, P2dB/n1) will also degenerate at the same
point. Here, the thickness factor P1, P2 ∈ Z+ and the ratio of
optical path in Eq. (5) becomes P1/P2. Especially, considering
the effectiveness of Eq. (8), P1 is modulated by changing the
period number S of HMM layer A as P1 = S/2. In addition,
P2 is controlled by changing the thickness dB of dielectric
layer B as P2 = dB/d0, where d0 = 352 nm. Combining the
redshift property of HMM layer A and the blueshift property
of dielectric B, the tilt angle of the degeneracy Dirac point
of photonic DNLS can be flexibly tuned and even reversed.
For the 1D hypercrystal with m1 = 2 and n1 = 1 (see more
details in Appendix C), the various photonic DNLSs can be
realized in the process of TPT, as shown in Figs. 4 and 5.
Figures 4 and 5 show the calculated transmittance spectra of
1D hypercrystal with different thickness factors under TE and
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FIG. 4. For the TE waves, the transmittance spectra of 1D hy-
percrystal [(CDE )SB]N with different thickness factors: (a) P1 = 4
and P2 = 2 (type-I DNLS); (b) P1 = 6 and P2 = 2 (type-III DNLS);
(c) P1 = 6 and P2 = 4 (type-III DNLS); and (d) P1 = 4 and P2 = 4
(type-II DNLS). The various photonic DNLSs are marked by the
yellow stars. The arrows show the TPTs between three types of
DNLSs. The band edges correspond to kz = 0, which are marked by
the white dotted lines .

TM waves, respectively. First, the thickness factors are fixed
at P1 = 4 and P2 = 2. The upright linear dispersions around
the degenerate point ( f0 = 190.4 THz, kρ/k0 = 0.66) for the
TE and TM waves are shown in Figs. 4(a) and 5(a), respec-
tively, which represent the type-I DNLS. The most obvious
advantage of hypercrystal over traditional PCs is that the type
of DNLS, that is, the rotation angle of linear dispersion, can be
flexibly changed by adjusting the ratio of P1 to P2. Next, when
the thickness factors are fixed at P1 = 6 and P2 = 2, the linear
dispersion rotates clockwise by an angle φ and becomes the
type-III DNLS, as shown in Figs. 4(b) and 5(b). Furthermore,
another type-III DNLS can also be realized at P1 = 6 and

FIG. 5. Similar to Fig. 4, but for the transmittance spectra of the
1D hypercrystal with different thickness factors under TM waves.

P2 = 4, which is shown in Figs. 4(c) and 5(c). Last, when
P1 = 4 and P2 = 4, the rotation angle φ of linear dispersion
for the TE and TM waves will further change, which cor-
responds to the type-II DNLS, as shown in Figs. 4(d) and
5(d), respectively. The TPTs between three types of DNLSs
are shown by the arrows. It should be noted that the various
DNLSs realized in this section are based on the EM HMM
with anisotropic electric and magnetic response. Based on the
same study method, the optical WNLSs and the associated
TPT can be easily realized in the 1D hypercrystal with simple
electric HMM or magnetic HMM [64,78]. Nevertheless, this
simple 1D hypercrystal can also be used to study other novel
physical properties. In the next section, we will systematically
introduce the interesting hybrid photonic DNLS in the simple
1D hypercrystal composed of electric HMM and dielectric.

III. HYBRID PHOTONIC DNLS REALIZED
BY THE HYPERCRYSTAL

In the above section, the various photonic DNLSs have
been demonstrated by the 1D hypercrystal satisfying the ideal
degeneration condition, which indicates the identical rotation
angle for TE and TM waves. In fact, the rotation angle of
linear dispersion for different pseudospins can also be tuned
differently as φ1 �= φ2 In this case, the effective Hermitian
model in Eq. (3) can be expressed as

HIII = τ0 ⊗ {X + Y } + τz ⊗ {M + N}, (11)

where X = (qa − q1)(a+σ0 + b+σz ), Y = (qb − q2)c+σx,
M = (qa − q1)(a−σ0 + b−σz ), and N = (qb − q2)c−σx.
In addition, a± = [tan(2φ1) ± tan(2φ2)]/2, b± =
[sec(2φ1) ± sec(2φ2)]/2, and c± = 1

2
√

cos(21 )
± 1

2
√

cos(22 )
.

The eigenvalues of Eq. (11) are given by

Eα
III (k) = (qa − q1) tan (2φ1) ±

√
(qa − q1)2

cos2(2φ1)
+ (qb − q2)2

cos (2φ1)
,

Eβ
III (k) = (qa − q1) tan (2φ2) ±

√
(qa − q1)2

cos2(2φ2)
+ (qb − q2)2

cos (2φ2)
.

(12)

According to Eq. (12), the hybrid DNLS composed of two
WNLSs with different semimetal phases can be obtained, as
shown in Fig. 6(a).

The 1D hypercrystal (AB)N composed of electric HMM
layer A and dielectric layer B can be used to realize the
hybrid photonic DNLS. The corresponding scheme is shown
in Fig. 6(b). Here the electric HMM is mimicked by the widely
used subwavelength metal/dielectric stacks as (CD)S [75–78].
The indium tin oxide is selected as the metal layer D and the
corresponding permittivity is described by the Drude model
[82]:

εD(ω) = ε∞ − ω2
pD

ω2 + jωγD
, (13)

where ε∞ = 3.9 is the high-frequency permittivity. In ad-
dition, h̄ωpD = 2.48 eV and h̄γD = 0.016 eV. ωpC and γD

denote the plasma frequency and damping frequency, respec-
tively. Potassium titanyl phosphate (KTiOPO4) [83] and zinc
silicon arsenide (ZnSiAs2) [84,85] are selected for dielectric
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FIG. 6. (a) The energy eigenvalues of hybrid DNLS with effec-
tive Hamiltonian HIII . In the space of E − qa − qb, two Dirac cones
for different pseudospins degenerate at one point, which means the
hybrid DNLS. (b) Scheme of a 1D hypercrystal: (AB)N composed of
an electric HMM layer A and an isotropic dielectric layer B. Elec-
tric HMM is mimicked by subwavelength metal/dielectric stacks as
(CD)S. (c) The corresponding effective electromagnetic parameters
of the structure (CD)S. Real part and imaginary part of ε‖ (ε⊥) are
represented by the red (blue) solid line and dashed line, respectively.
(d) The effective refractive index of the TE wave: nEeff (blue line
consisting of circle dots), TM wave: nMeff (blue line consisting of
triangles), and the ratio of nEeff and nMeff (orange line consisting of
squares) on kρ/k0.

layers B and C, respectively. The refractive indexes of layer
B and layer C are close to 1.47 and 3.3, and there is slight
dispersion at the working frequency (see Appendix C for
details). Because all of the materials are nonmagnetic, the
permeability of each layer in Fig. 6(b) is μB = μC = μD = 1.
In addition, N = 10 and S = 15 denote the period numbers
of the PC and electric HMM, respectively. The thicknesses
of B, C, and D layers are dB = 2352 nm, dC = 17 nm, and
dD = 68 nm, respectively. According to EMT, the effective
anisotropic permittivity of the structure (CD)S is shown in
Fig. 6(c). The real part and imaginary part of ε‖ (ε⊥) are
represented by the red (blue) solid line and dashed line, re-
spectively. When the frequency ranges from 233 to 300 THz,
ε‖ε⊥ < 0, which indicates that layer A is an effective electrical
HMM [75–78]. Similar to Fig. 3(c), the effective refractive
indexes of layer A for TE and TM waves on kρ/k0 are shown
by blue circle dotted line and blue triangles line in Fig. 6(d).
In order to see the polarization-dependent properties of the 1D
hypercrystal, the ratio of nEeff and nMeff is also given by the
orange squares line in Fig. 6(d).

For the 1D hypercrystal which does not satisfy the ideal
degenerate condition, that is m1 �= m2, PT E

1 /m1 = PT M
1 /m2

should be taken into account for realizing the hybrid DNLS.
As a result, the parameter groups meeting the degenera-
tion become (PT E

1 dA/m1, P2dB/n1) = (PT M
1 dA/m2, P2dB/n1).

Here, m1 = n1 = 7 and m2 = 8. Based on the transfer-matrix
method, the calculated transmittance spectra of the 1D hy-
percrystal [(CD)15B]10 for different normalized wave vector

FIG. 7. (a), (b) The transmission spectra of 1D hypercrystal
[(CD)15B]10 for TE wave (a) and TM wave (b) when the loss of
metal is ignored. At the position of f0 = 285 THz and kρ/k0 = 0.76,
the type-II WNLS for TE wave and type-I WNLS for TM wave are
marked by W1 and W

′
1 , respectively. The band edges for TE and TM

waves correspond to kz = 0 and kz = π/	, which are marked by the
white dotted lines. (c), (d) Similar to (a), (b), but for the reflectance
spectra of the 1D hypercrystal [(CD)15B]10 for TE wave (c) and TM
wave (d) considering the loss of metal. kρ = 0.76k0 is marked by the
vertical dashed lines.

kρ/k0 are shown in Figs. 7(a) and 7(b) for TE and TM waves,
respectively. It should be noted that in order to show the
transmission spectra clearly, we ignore the loss of metal in
Figs. 7(a) and 7(b). Although WNLS appears at the same
position, f0 = 285 THz and kρ/k0 = 0.76 (θ = 50◦) under
different polarizations, the types of WNLS of TE and TM
polarization waves are different. Especially, the type-II WNLS
for TE wave and type-I WNLS for TM wave are marked
by W1 and W

′
1, respectively. Therefore, these two WNLSs

are significantly different from the cases with ideal degener-
ate conditions shown in Figs. 4 and 5. In fact, in the lossy
case considering the loss of metal, the transmission spectra
are no longer clear due to the absorption, but similar re-
sults are illustrated from the reflectance spectra in Figs. 7(c)
and 7(d), where PT E

1 = 7, PT M
1 = 8, and P2 = 7. Recently,

the non-Hermitian property associated with Dirac point by
considering the loss of the system has also attracted great
attention [86]. Here, the real parts of ε‖ and ε⊥ are about
ten times larger than their imaginary parts, so the loss can be
nearly ignored.

Moreover, after considering the period of HMM layer A
and thickness of dielectric layer B are doubled, the hybrid
DNLS of the 1D hypercrystal [(CD)30B2]10 also maintained
as PT E

1 = 14, PT M
1 = 16, and P2 = 14. In this structure, the

transmittance spectra of the lossless case and the reflectance
spectra of the lossy case are shown in Fig. 8. It can be seen
that the degenerate points for TE and TM waves are main-
tained, and the type-II WNLS for TE waves and type-I WNLS
for TM waves forming the hybrid DNLS [ f0 = 285 THz and
kρ/k0 = 0.76 (θ = 50◦)]. Interestingly, at the frequency of
f0 = 285 THz, additional WNLSs for the TM waves can
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FIG. 8. Similar to Fig. 7, but for the transmittance spectra
(lossless structure) and reflectance spectra (lossy structure) of 1D
hypercrystal [(CD)30B2]10. The band edges for TE and TM waves
correspond to kz = 0, which are marked by the white dotted lines.
For TE wave with kρ/k0 = 0.76, the WNLS at W1 is marked at the
frequency of f0 = 285 THz. At f0 = 285 THz, three WNLS corre-
spond to kρ/k0 = 0.46, 0.76, and 0.96 and are marked by W1, W2, and
W3, respectively. kρ = 0.76k0 is marked by the vertical dashed lines.

be found, which are marked by W2 and W3 at kρ/k0 = 0.46
(θ = 27◦) and kρ/k0 = 0.96 (θ = 74◦), respectively. Here, W2

(W3) corresponds to PT M
1 = 15 (17) and P2 = 15 (13). As a

result, multiple concentric Weyl nodal rings can be realized
for the TM wave in the 1D hypercrystal.

At last, we distinguish the above-introduced two hyper-
crystals from the band structures in Fig. 9. The wave vector in
the xoy plane is kρ =

√
k2

x + k2
y = 0.76k0. The band structure

of the 1D hypercrystal [(CD)15B]10 is shown in Fig. 9(a). The
results of TE and TM waves are marked by blue and red lines,
respectively. We can see that two WNDLs are not coincident
on the same kz. The degenerate points for TE and TM cor-

FIG. 9. Band structures of the 1D hypercrystals [(CD)15B]10 (a)
and [(CD)30B2]10 (b) for two kinds of polarized waves. The results
of TE and TM waves are marked by blue and red lines, respectively.
The hybrid DNLSs are formed at f0 = 285 THz. The wave vector in

the xoy plane is kρ =
√

k2
x + k2

y = 0.76k0

respond to kz = 0 and kz = π/	, respectively. However, two
WNDLs are totally overlapped on the same kz = 0 for the 1D
hypercrystal [(CD)30B2]10, as shown in Fig. 9(b). As a result,
the photonic hybrid DNLS is demonstrated for the structure
[(CD)30B2]10 in Fig. 9(b).

IV. DISCUSSION

In summary, we reveal the various photonic DNLSs
and the associated TPT in 1D hypercrystal, in which the
HMM is composed of two types of single-negative me-
dia. Moreover, considering the widely used electric HMM
composed of metal/dielectric stacks, we observe the hybrid
DNLS in the 1D hypercrystal. Our results not only demon-
strate various DNLSs in optical regime, but also provide
a powerful platform for study of relevant Dirac and Weyl
physics. Additionally, the photonic DNLS realized by two
types of perpendicularly polarized waves may be used to the
polarization-independent angle filters.
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APPENDIX A: DEGENERATE CONDITIONS
OF 1D HYPERCRYSTAL

In the main text, the effective electromagnetic parame-
ters of anisotropic HMM layer A are εAx = εAy = εAρ �= εAz

and μAx = μAy = μAρ �= μAz, where subscripts ρ and z indi-
cate components parallel and perpendicular to the anisotropy
axis, respectively. Therefore, in order to show clearly, εAρ

and εAz are expressed by ε⊥ and ε‖, respectively. The wave
vector along the direction of radial is indicated as kAρ =√

k2
Ax + k2

Ay = k0sinθ , where θ is the incident angle, and k0 =
ω/c is the wave vector in vacuum. The band structure of the
1D PC is given by

cos (kz	) = cos (kAzdA) cos (kBzdB) − 1

2

(
ηAz

ηBz
+ ηBz

ηAz

)

× sin (kAzdA) sin (kBzdB), (A1)

where kz denotes the Bloch wave vector. 	 = dA + dB

is length of the unit cell of 1D PC. ηiz, kiz, and di

are the impedance, the wave vector in z direction, and
the thickness of the layer i (i = A, B), respectively.
Worth mentioning, the polarization of the incident waves
should be taken into account. Especially, ηT E

iz = μix

niz
,

kT E
iz = k0ñT E

i , and ñT E
i =

√
εiyμix − μixk2

iρ/μizk2
0 (ηT M

iz = niz

εix
,

kT M
iz = k0ñT M

i , ñT M
i =

√
εixμiy − εixk2

iρ/εizk2
0 ) for the

TE (TM) wave. In addition, for dielectric layer B,
εBρ = εBz, μBρ = μBz; thus, kT E

Bz = kT M
Bz . For the 1D

hypercrystal, the band degeneracy will occur at the
special point ( f , θ ) in the conditions of kT E

Az = m1π ,
kT M

Az = m2π, and kT E
Bz = kT M

Bz = n1π , where {m1, m2, n1} ∈
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FIG. 10. The phase diagram of the effective electromagnetic pa-
rameters as the functions of fC and fD. The colormap represents
the value of ε‖/ε⊥ − μ‖/μ⊥. ε‖/ε⊥ − μ‖/μ⊥ = 0 is shown by the
black dotted line. ε‖ = 0 (μ‖ = 0) and ε⊥ = 0 (μ⊥ = 0) are rep-
resented by the red (blue) solid line and dashed line, respectively.
Eight subspaces are divided by the zero points of the anisotropic
electromagnetic parameters.

N+ [19]. For the TE wave, (m1 + n1) mod 2 = 0
corresponds to the band edges of kz = 0, while
(m1 + n1) mod 2 = 1 corresponds to kz = π/	. Similarly, for
the TM wave, (m2 + n1) mod 2 = 0 and (m2 + n1) mod 2 = 1
correspond to the band edges of kz = 0 and kz = π/	,
respectively. The degenerate conditions of 1D hypercrystal
can be expressed by the ratio of optical path in layers A and
B:

αT E= ñT E
A dA

ñT E
B dB

=m1

n1
∈ Q, and αT M= ñT M

A dA

ñT M
B dB

= m2

n1
∈ Q.

(A2)
Especially, for the TE waves, the (m1 + n1)th band and the

(m1 + n1 + 1)th band degenerate at

f T E
m1+n1

= c(m1 + n1)

2
(
ñT E

A dA + ñT E
B dB

) . (A3)

TABLE II. The ranges of effective parameters and dispersions of
the subspaces shown in Fig. 10.

Effective parameters Dispersion

Subspace ε⊥ ε‖ μ⊥ μ‖ TM TE

1© + + − − None None
2© + − − − Type II None
3© + + + − Elliptic Type I
4© + − + − Type I Type I
5© − − + − None Type II
6© + + + + Elliptic Elliptic
7© + − + + Type I Elliptic
8© − − + + None None

Similarly, for the TM waves, the (m2 + n1)th band and the
(m2 + n1 + 1)th band degenerate at

f T M
m2+n1

= c(m2 + n1)

2
(
ñT M

A dA + ñT M
B dB

) , (A4)

where f T E
m1+n1

= f T M
m2+n1

= f0.

APPENDIX B: EM HMM MEETING THE IDEAL
DEGENERATION CONDITION m1 = m2

For the EM HMM with ñT E
A ( f0) = ñT M

A ( f0), the relation of
effective permittivity and permeability can be expressed as

μ⊥/μ‖ = ε⊥/ε‖. (B1)

First, we consider that the EM HMM is mimicked by sub-
wavelength stacks as (CD)S. Based on the EMT, the effective
electromagnetic parameters are given by [78]

ε⊥ = εAx = εAy =
∑

j

f jε j, ε‖ = 1/
∑

j

( f j/ε j ),

μ⊥ = μAx = μAy =
∑

j

f jμ j, μ‖ = 1/
∑

j

( f j/μ j ),

(B2)

where f j = d j/
∑

j d j ( j = C, D) is the filling factor. Then
we can obtain the simultaneous equations

( fCεC + fDεD)

(
fC
εC

+ fD

εD

)
= ( fCμC + fDμD)

(
fC
μC

+ fD

μD

)
,

s.t. fC + fD = 1 (B3)

FIG. 11. Isofrequency contours of the layer A in the subspaces 3©,
4©, 6©, and 7©, where the blue (red) solid lines represent the TE (TM)

wave. The blue (red) dashed line implies the process of magnetic
(electrical) Lifshitz transition.
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FIG. 12. (a), (b) Under EMT, the transmission spectra of 1D
hypercrystal [AB]100 with EM HMM for the TE wave (a) and
TM wave (b). (c), (d) The transmission spectra of 1D hypercrystal
[(CDE )4B]100 with EM HMM for the TE wave (c) and TM wave (d).
The band edges with kz = π/	 are marked by white dotted lines.

where s.t. is subject to text. According to Eq. (B3), εC
εD

= μC

μ2

or εC
εD

= μD

μC
should be satisfied, which is not impractical for

realizing the photonic DNLSs. This limitation can be solved
by considering the three-layered unit cell in the 1D hypercrys-
tal as (CDE )S . Especially, layers C, D, and E correspond,
respectively, to ENG media, MNG media, and dielectric. In

this case, Eq. (B3) becomes

( fCεC + fDεD + fEεE )ξ = ( fCμC + fDμD + fEμE )ζ ,

s.t. fC + fD + fE = 1, (B4)

where ξ = fC
εC

+ fD

εD
+ fE

εE
, and ζ = fC

μC
+ fD

μD
+ fE

μE
. Compared

with Eq. (B3) and Eq. (B4), a variable fE is introduced, which
provides a degree of freedom to realize the EM HMM. For the
fixed frequency f0 = 190 THz, ε‖/ε⊥ − μ‖/μ⊥ as the func-
tions of the filling factor of layer C and layer D are shown by
the colormap in Fig. 10. The unit cell of the (CDE ) becomes
single dielectric layer E , single ENG layer C, and single MNG
layer D at O, Q, and P point in this triangle phase diagram of
the effective electromagnetic parameters. Two axes OP and
OQ represent the hypercrystal with the unit cell of (CE ) and
(DE ), respectively. Especially, ε‖/ε⊥ − μ‖/μ⊥ = 0 meeting
Eq. (B1) is marked by the black dotted line. From Fig. 10, the
condition of ε‖/ε⊥ − μ‖/μ⊥ = 0 can be obtained in the unit
cell with three layers with Eq. (B4), instead of the hypercrystal
(CD)S with Eq. (B3) owing to the black dotted line does not
fall on two axes OP and OQ other than the origin point.
Therefore, the unit cell of the (CDE ) is needed for designing
the EM HMM.

Moreover, ε‖ = 0 (μ‖ = 0) and ε⊥ = 0 (μ⊥ = 0) are
represented by the red (blue) solid line and dashed line, re-
spectively. These lines divide the triangle phase diagram into
eight subspaces. The details of electromagnetic parameters in
different subspaces are summarized in Table II. Especially,
“none” denotes the effective media without real wave vectors,
“type I” and “type II” mean two types of HMMs, and the
“elliptic” corresponds to the anisotropic dielectric with elliptic
dispersion.

FIG. 13. (a), (b) The transmission spectra of 1D hypercrystal [AB]10 with electric HMM for the lossless and lossy cases under TE wave.
(c) The reflectance spectra of 1D hypercrystal [AB]10 for the lossy case. (d)–(f) Similar to (a)–(c), but for the TM wave. The band edges for TE
and TM waves correspond to kz = 0 and kz = π/	, which are marked by the white dotted lines.
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More attention is paid to the phases supporting both TE
and TM polarized waves. Figure 11 indicates isofrequency
contour in the subspace 3©, 4©, 6©, and 7©, where the blue (red)
solid lines represent the TE (TM) waves. Importantly, the blue
(red) dashed line implies the process of magnetic (electrical)
Lifshitz transition [78]. The EM HMM studied in this work
belongs to the subspace 4©. In this work, the filling factor of
layer C, D, and E layers is selected as fc = 0.1, fD = 0.15,
and fE = 0.75, respectively, which is marked by the star near
the black dotted line. Figure 3(c) in the main text proves the
effectiveness of condition given in Eq. (B1). The effective
refractive indexes of the TE (the blue solid line) and TM
(the red triangles) waves in Fig. 3(c) are almost completely
coincident independent of the incident angle at the degenerate
frequency f0 = 190.4 THz.

APPENDIX C: THE EFFECTIVENESS OF EMT FOR HMM

In this section, the effectiveness of the EMT for EM HMM
and electric HMM in the main text is demonstrated. First,
for the EM HMM with effective parameters under ideal de-
generation condition m1 = m2, the transmission spectra of 1D
hypercrystal [AB]100 for the TE and TM waves are shown in
Figs. 12(a) and 12(b), respectively. Here, the thicknesses of
layer A and B are dA = 624 nm (S = 4) and dB = 352 nm,
respectively. The other parameters are the same as that in
Fig. 3. It can be clearly seen that the adjacent bands cross
each other at f0 = 190 THz and kρ/k0 = 0.66 (θ = 40◦),
which is shown by the yellow star. In addition, the band
edges with kz = π/	 are marked by white dotted lines. This
degenerate point corresponds to m1 = m2 = 2 and n1 = 1.
From Figs. 12(a) and 12(b), we can see the 1D hypercrystal
belongs to a type-I DNLS, which is the same as the results
shown in Figs. 3(d) and 3(e). For comparison, based on the
transfer-matrix method, Figs. 12(c) and 12(d) directly give
the transmission spectra of 1D hypercrystal [(CDE )4B]100 for
the TE and TM waves, which meet well with the results of
EMT in Figs. 12(a) and 12(b). Therefore, the EMT for the
EM HMM in the 1D hypercrystal is reasonable. On the other

FIG. 14. The refractive indexes (n) of the layer B: KTiOPO4 and
the layer C: ZnSiAs2.

hand, in Fig. 12, P1 = 2 and P2 = 1 which are half of the
corresponding parameters in Fig. 3. As a result, the band edges
represented by kz = 0 in Figs. 3(d) and 3(e) are changed to
kz = π/	 in Fig. 12.

Considering the 1D hypercrystal with electric HMM under
the condition m1 �= m2, we also study the effectiveness of the
EMT for the photonic DNLS. Based on the EMT, the trans-
mission and reflectance spectra of 1D hypercrystal [AB]10

for TE and TM waves are shown in Fig. 13. Compared the
lossless case in Fig. 13(a) and lossy case in Fig. 13(b) for
TE wave, we can clearly see that the loss of the system will
blur the transmission spectra. However, the photonic WNLS
also can be clearly observed in the reflectance spectra, as
shown in Fig. 13(c). Similar results are found for TM wave
in Figs. 13(d)–13(f). Especially, the calculated results under
EMT in Fig. 13 meet well with the results directly based on the
transfer-matrix method for [(CD)15B]10 in Fig. 7. Therefore,
the effectiveness of the EMT for EM HMM and electric HMM
in the main text is demonstrated in Figs. 12 and 13.

At last, the refractive indexes (n) of the layer B: KTiOPO4

and the layer C: ZnSiAs2 in Sec. III are shown, respectively,
by the cyan and orange lines in Fig. 14. It can be seen that the
refractive indexes of layer B and layer C are close to 1.47 and
3.3, and there is slight dispersion near the working frequency
f0 = 285 THz.
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