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Estimation of correlations and nonseparability in quantum channels via unitarity benchmarking
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The ability to transfer quantum information between systems is a fundamental component of quantum
technologies and leads to correlations within the global quantum process. However, correlation structures in
quantum channels are less studied than those in quantum states. Motivated by recent techniques in randomized
benchmarking, we develop a range of results for efficient estimation of correlations within a bipartite quantum
channel. We introduce subunitarity measures that are invariant under local changes of basis, generalize the
unitarity of a channel, and allow for the analysis of quantum information exchange within channels. Using
these, we show that unitarity is monogamous, and we provide an information-disturbance relation. We then
define a notion of correlated unitarity that quantifies the correlations within a given channel. Crucially, we
show that this measure is strictly bounded on the set of separable channels and therefore provides a witness of
nonseparability. Finally, we describe how such measures for effective noise channels can be efficiently estimated
within different randomized benchmarking protocols. We find that the correlated unitarity can be estimated in
a SPAM-robust manner for any separable quantum channel, and we show that a benchmarking/tomography
protocol with mid-circuit resets can reliably witness nonseparability for sufficiently small reset errors. The tools
we develop provide information beyond that obtained via simultaneous randomized benchmarking and so could
find application in the analysis of cross-talk errors in quantum devices.
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I. INTRODUCTION

Efficiently certifying and benchmarking nonclassical fea-
tures in quantum theory is central to the development of
quantum technologies [1–7], which requires precise control
and manipulation of quantum systems. High-fidelity quantum
gates and circuits are essential for scalable quantum comput-
ing, so it is important to benchmark the effects of physical
noise on how accurately a target unitary is realized on the
quantum device. For example, noise due to unwanted correla-
tions or leakage can detrimentally affect error rate thresholds
required for fault-tolerant quantum computing [8–10]. There-
fore, detection and quantification of noise correlations such as
cross-talk in quantum devices not only impacts NISQ era de-
vices [11] by improving circuit fidelities and error mitigation
methods, but it goes beyond it in providing necessary tools to
test physical assumptions of quantum error correction.

Direct process tomography [12,13] of noisy gates and cir-
cuits faces two nontrivial obstacles: first, the complexity of
full tomography is known to scale exponentially, and second,
there is the problem of characterizing errors in the presence
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of other types of errors, such as those arising from state-
preparation and measurement (SPAM). To circumvent these
obstacles, techniques have been developed such as gate-set
tomography and randomized benchmarking (RB), which al-
low for efficient estimation of measures that are robust against
SPAM errors.

The simplest instance of an RB protocol returns an estimate
of the average gate infidelity r(E ) of the noisy computational
gate-set (e.g., Clifford gates) for the effective noise channel E .
The average gate infidelity of this quantum channel [14–17]
can be used to bound the worst-case error rate, defined in
terms of the diamond norm [18], which is the relevant quantity
in the context of fault-tolerant computation [19,20]:

d

d + 1
r(E ) � 1

2
||id − E ||� �

√
d (d + 1)r(E ), (1)

where ||id − E ||� is the diamond norm distance of the channel
E to the identity channel [14].

Recent work has extended the core benchmarking toolkit,
for example through higher-order moment analysis [21],
character benchmarking techniques [22], the extension to
benchmarking of logical qubits [23], and analog regimes [24].
Simultaneous randomized benchmarking [25] has also been
developed as a means to quantify the addressability of a sub-
system in a device and thus to provide a basic assessment of
the presence of cross-talk and correlation errors.

Beyond noise analysis in quantum technologies, there
are other motivations for why one would like to be able
to efficiently assess correlative structures within quantum
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channels—for example, consider a bipartite quantum channel
EAB : B(HA ⊗ HB) → B(HA ⊗ HB) from a bipartite quantum
system AB to itself, with A and B having equal dimension.
Correlations within the channel are required for the transfer
of a quantum state prepared on the first subsystem A to the
second subsystem B, for example to transform the input pure
states |ψ〉A ⊗ |φ〉B to |φ〉A ⊗ |ψ〉B via the SWAP unitary. This
transformation is impossible under product channels of the
form EAB = EA ⊗ EB, with EA a channel from A to A and EB

a channel from B to B, and so nonproduct channels are clearly
required. However, quantifying these channel correlations is
a distinct problem to measuring the correlation-generating
abilities of a quantum channel. The SWAP unitary perfectly
transfers a quantum state on A to B, however it has zero
correlation-generating abilities as it sends the set of prod-
uct states ρA ⊗ σB to itself. In contrast, the channel that
sends all quantum states on AB to a Bell state is maximal
in generating correlations, however it clearly transmits zero
information from A to B. Intermediate between these two
extremal channels are separable channels that are defined as
a convex mixture of product channels, EAB = ∑

i piE i
A ⊗ E i

B.
These channels can only create classical correlations between
A and B, but it is clear they do not transfer any quantum
information from A to B.

Connections between nonclassical channel correlations
and correlations within quantum states do exist. Specifically,
the set of separable channels play a central role in the resource
theory of local operations and shared randomness (LOSR)
[26–35] for the study of nonclassicality in quantum theory. It
has recently been argued that this framework is the appropriate
setting in which to properly analyze Bell nonlocality and the
self-testing of quantum states [32,33]. Therefore, a nonsep-
arable quantum channel requires the consumption of state
correlations, and an ability to efficiently and robustly certify
nonseparability in a general quantum channel EAB implies the
use of nonlocal quantum resources.

More broadly, since process tomography is exponentially
hard, one can ask what nonclassical features of quantum chan-
nels [36,37] can be accessed in practice. We know that actual
physical systems only probe a very small region of the set of
all possible quantum states, dubbed the “physical corner of
Hilbert space” [38,39], and so a similar question for quantum
channels can be addressed by drawing on recent developments
in randomized benchmarking theory.

A. Aims and outline of the paper

Motivated by (a) benchmarking the performance of quan-
tum computers at the level of subsystems, and (b) certifying
nonclassicality in quantum physics, we have the following two
aims in this work:

(i) To quantify the degree to which a quantum channel
deviates from being separable in a form that can be estimated
efficiently and robustly.

(ii) To demonstrate an application of this approach by
deriving an information-disturbance relation that can be ef-
ficiently and robustly verified.

Our work exploits recent techniques from randomized
benchmarking theory [40–43] that were originally introduced
to provide additional information on the average gate infi-

delity r(E ) for noise channels. The central quantity of interest
is the unitarity u(E ) of a quantum channel E . This is defined
as

u(E ) := d

d − 1

∫
dψ tr

[
E

(
ψ − 1

d

)2]
, (2)

where the integration is with respect to the Haar measure
over pure states of the d-dimensional input system [40]. The
unitarity provides a measure of how far a quantum channel is
from being a unitary channel and crucially can be estimated
in an efficient and SPAM-robust protocol. It attains its ex-
tremal values of u(E ) = 0 if and only if E is a completely
depolarizing channel, and u(E ) = 1 if and only if E is an
isometry channel, and it can also be shown to provide a tighter
bound on diamond norm measures for quantum channels.
While measures like the diamond norm have clear operational
significance, such as for single-shot channel discrimination,
they are in general neither efficiently estimable nor robust to
SPAM-errors, in contrast to the unitarity.

We shall show that the unitarity of a quantum channel is
well-suited to aims (i) and (ii) above, and suggests a route to
analyzing similar structural questions about bipartite quantum
channels in a form that is amenable to efficient and SPAM-
robust experiments.

We will show that for a bipartite quantum system AB the
concept of unitarity naturally extends to a collection of nine
subunitarities uX→Y (E ) of a quantum channel E on AB. Each
of these subunitarities gives finer information about how the
channel acts on the quantum systems A and B, and they allow
us to address both (i) and (ii) above. However, we find that
only nontrivial combinations of subunitarities are estimable
in a SPAM-robust protocol, and so this forces us to develop
methods to estimate channel correlations for aim (i).

Objective (i) turns out to be substantially more challenging
than (ii), and we begin in Sec. II with the problem of quanti-
fying channel correlations. We first note that the unitarity of
a channel can be reformulated as a variance estimate, which
then motivates a correlation measure uc(EAB) that parallels
the covariance between two classical random variables. The
construction of this correlation measure leads to the definition
of the nine subunitarities in Secs. II A and II D.

Then in Sec. II B we show that the simplest subunitarities
lead to an alternative form of the information-disturbance
relation given by

u(EX→A) + u(EX→B) � 1 (3)

for any quantum channel EX→A from an input system X to
an output system A and an associated complementary channel
EX→B. In contrast to prior formulations, the unitarity-based
relation provides the ability to efficiently and robustly verify
this fundamental relation. In Sec. II E we prove that the
measure uc(EAB) certifies nonclassical features of a channel.
More precisely, we prove that over the set of separable quan-
tum channels (i.e., convex mixtures of product channels) it
is strictly bounded away from the global maximum, and thus
provides a witness of nonseparability for quantum channels.
Finally, in Sec. III we address the problem of efficiently esti-
mating the correlated unitarity of effective noise channels in a
benchmarking scenario. For this we follow a similar approach
to simultaneous randomized benchmarking in which one
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employs local 2-designs on each subsystem. This is of rel-
evance for quantifying cross-talk errors in quantum devices.
We show that for bipartite separable channels, the correlated
unitarity can be obtained efficiently in a SPAM-robust proto-
col. For more general nonseparable channels, we show that
for weak reset errors this can still be estimated, and within
a natural model we demonstrate explicitly that the protocols
can witness nonseparability over a substantial range of reset
errors. We end by discussing the relation between our work
and simultaneous randomized benchmarking, and we show
that our protocols provide additional, independent information
on cross-talk and correlative errors.

II. SUBUNITARITIES FOR BIPARTITE
QUANTUM CHANNELS

We wish to formulate an experimentally accessible mea-
sure of correlations in a general bipartite quantum channel.
Paralleling the situation with quantum states, we say that a
quantum channel EAB : B(HA ⊗ HB) → B(HA ⊗ HB) from a
bipartite system AB to itself is uncorrelated or alternatively
a product channel if EAB = EA ⊗ EB for a channel EA from A
to itself and EB from B to itself. Otherwise it is said to be a
correlated channel. We shall also consider the set of separable
channels, which take the form of a convex mixture of product
channels EAB = ∑

i piE i
A ⊗ E i

B. A quantum channel is said to
be nonseparable if it lies outside the convex set of separable
channels. The extension to channels from input systems AB
to potentially different output systems A′B′ is obvious, but
to avoid overcomplicating the notation we primarily focus on
identical input and output systems and only discuss the more
general case in Sec. II B, where it is required. The general
definition is provided in Appendix A 1.

A. Elementary subunitarities of a channel

Given two classical random variables X and Y , a simple
and direct method of measuring correlations is to compute
the covariance of X and Y . This is given as cov(X,Y ) :=
〈XY 〉 − 〈X 〉〈Y 〉, where the angular brackets denote taking the
expectation value of the random variable. Moreover, we have
that cov(X, X ) = var(X ), the variance of the random variable
X , which in turn quantifies the noisiness of X . The relevance
here is that in [44] it was noted that the unitarity of a channel
can be expressed as

u(E ) = tr[var(E )], (4)

where var(E ) := 〈E (ψ )2〉 − 〈E (ψ )〉2 and the angular brackets
denote taking the expectation of an operator-valued random
variable with respect to the Haar measure.

As the unitarity can be viewed as the “variance” of a
quantum channel, we can ask if a form of covariance for
a quantum channel exists similar to the covariance of two
random variables in classical statistics. However, while there
is a clear notion of a marginal distribution for a joint probabil-
ity distribution, the situation is more complex for a bipartite
quantum channel where the reduction to “marginal channels”
depends on the structure of the initial state considered [45].
Instead, here we take the basic form of covariance of two
random variables as a guide and construct a unitarity-based

correlation measure uc(EAB) for a bipartite quantum channel
with certain desirable features.

As we want the measure uc(EAB) for quantum channels
to function like cov(X,Y ) for classical random variables, we
must define sensible channel equivalents to 〈X 〉, 〈Y 〉, and
〈XY 〉. In the context of RB protocols on bipartite quantum
channels, we shall show in Sec. III that a natural marginal
channel measure uA→A emerges that parallels the classical
marginal expectation 〈X 〉. This is given by the following sub-
unitarity uA→A of a bipartite quantum channel.

Definition II.1. The subunitarity uA→A of a bipartite channel
EAB is defined as

uA→A(EAB) := u(EA), (5)

where EA(ρ) := trB[EAB(ρ ⊗ 1B
dB

)] for any state ρ of A.
The same construction applies for the B subsystem

with the associated channel EB(ρ) := trA[E (1A
dA

⊗ ρ)] giving
uB→B(EAB) := u(EB). It is also clear that we can define two
further subunitarities uA→B and uB→A that are obtained simply
as

uA→B(EAB) = uA→A(SWAP ◦ EAB), (6)

and similarly for uB→A, where SWAP is the unitary that swaps
the two subsystems A and B.

From these definitions it is clear that the subunitarity
uX→Y (EAB), with X,Y being subsystems, is based on the
situation in which a quantum state ρ is prepared on X with
the maximally mixed state on the other subsystem and then
evolved under the channel EAB. The quantity uX→Y (EAB) in-
herits the properties of unitarity and therefore measures how
close this global evolution is to being an isometric mapping of
the state ρ on X into the output system Y .

Moreover, the subunitarities uA→A and uB→B for the bipar-
tite quantum channel have the property that when applied to
product channels gives

uA→A(EA ⊗ EB) = u(EA),

uB→B(EA ⊗ EB) = u(EB). (7)

These relations can therefore imply that we can define a cor-
related unitarity uc(EAB) measure as

uc(EAB) := uAB→AB(EAB) − uA→A(EAB)uB→B(EAB) (8)

provided we can also construct a subunitarity uAB→AB such
that

uAB→AB(EA ⊗ EB) = u(EA)u(EB). (9)

The definition of uAB→AB is most easily expressed in the Li-
ouville representation, and is provided in Sec. II D, and the
justification for the naturalness of these terms is provided in
Sec. III, where we will show that these arise naturally from
randomized benchmarking theory. The technical reason for
this is that they are the quantities that arise if one considers
quadratic order expectations over Haar random states where
one includes the bipartite structure explicitly.

However, before addressing benchmarking theory, in the
next subsection we show how the above subunitarities lead
to a statement of the information-disturbance relation that is
amenable to experimental verification.
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B. Unitarity formulation of information-disturbance

The information-disturbance relation [46] is a fundamental
result in quantum theory, and it can be summarized by saying
that if a quantum channel is close to being a unitary, or more
generally an isometry, then the leakage of quantum informa-
tion into the environment must be “small.” This tradeoff can
be expressed in terms of the diamond norm distance of the
channel from a unitary channel for the output system, and
the diamond norm distance of the complementary channel
from a completely depolarizing channel for the environment.
However, such quantities cannot be estimated efficiently or in
a SPAM-robust form. In this section, we provide an alternative
formulation of information disturbance that does not suffer
from these weaknesses.

In the definition of subunitarities, we assumed that the in-
put and output systems are identical, but the above definitions
can be extended to a channel from arbitrary input and output
systems. Of particular interest is when one has a channel from
a single input system X into a bipartite system AB. In this
setting, the subunitarities of the channel coincide with the
unitarities of the marginal channels into A and B separately.
For this setting, we now show the following result on subuni-
tarities that provides a statement of quantum incompatibility
[46,47]. To our knowledge, the question of efficiently and
SPAM-robustly testing such foundational results has not been
previously considered, and so such a result opens up this
possibility by formulating in terms of quantities native to
randomized benchmarking protocols.

For clarity in this section we shall put subscripts on the
channels to denote their input and output systems explicitly,
and we will write EX→Y to denote a channel from X into Y . In
the context of a single input system, we have that

uX→A(EX→AB) = u(EX→A), (10)

with a similar expression for uX→B. Given the ability to
estimate unitarity in randomized benchmarking protocols,
we therefore expect that our relation could also be verified
efficiently and robustly using existing hardware. We now
state and prove the unitarity-based information-disturbance
relation.

Theorem II.1 (Information-disturbance relation). Let EX→A

be a quantum channel from an input system X to an output
system A, and let EX→AB(ρ) = V ρV † be any isometry, with
V †V = 1, that provides a Stinespring dilation of EX→A via
EX→A = trB ◦ EX→AB. Then

u(EX→A) + u(EX→B) � 1, (11)

where EX→B = trA ◦ EX→AB is the associated complementary
channel to EX→A in the dilation.

Proof. Let d be the dimension of the system X . It can be
shown [48] that the unitarity of a channel can be expressed as

u(EX→A) = d

d2 − 1
{d tr[ẼX→A(1/d )2] − tr[EX→A(1/d )2]},

(12)

where ẼX→A is any complementary channel to EX→A, which
we can choose to be EX→B. Applying the above expression to

the complementary pair (EX→A, EX→B), we then have that

u(EX→A) + u(EX→B) = d

d + 1
[γ (ρA) + γ (ρB)], (13)

where γ (ρ) := tr[ρ2] is the purity of a quantum state, ρA =
EX→A(1/d ), and ρB = EX→B(1/d ).

We can also consider ρAB = EX→AB(1/d ), for which ρA

and ρB are the marginals. For a general bipartite quantum state
ρAB it can be shown [49] that

γ (ρA) + γ (ρB) � 1 + γ (ρAB), (14)

and so we have that

u(EX→A) + u(EX→B) � d

d + 1
[1 + γ (ρAB)]. (15)

However, we can now use that the channel EX→AB is an isom-
etry and so

γ (ρAB) = tr[(V (1/d )V †)2] = 1

d
. (16)

Substituting this into the previous inequality, we obtain

u(EX→A) + u(EX→B) � 1, (17)

which completes the proof. �
The result provides a compact form of information-

disturbance [46], which in turn implies no-cloning and
no-broadcasting [50–53]. More precisely, we can consider
leakage of quantum information from a system into its en-
vironment, which is of relevance to, for example, quantum
computing in a noisy environment when one wishes to ap-
proximate a unitary channel as accurately as possible. We can
consider a quantum channel EX→AB from a system X to a
composite system AB such that EX→A ≈ UX→A for some target
isometry UX→A. As the unitarity is a continuous function of
the channel, we can quantify this as u(EX→A) = u(UX→A) − ε

for some ε � 0 quantifying the approximation. However, the
unitarity of a channel equals 1 if and only if it is an isometry
[40,48] and so the above monogamy relation implies that
u(EX→B) � ε. However, it is easily shown (see Lemma B.1
in the Appendixes) that the unitarity vanishes if and only
if the channel is a completely depolarizing channel. This in
turn implies that the channel EX→B must be ε-close in terms
of unitarity to a completely depolarizing channel. In other
words, the relation implies that the information leaking into
the environment necessarily decreases to zero as the channel
EX→A approaches an isometry channel.

C. The Liouville representation of quantum channels

Consider quantum channels E : B(HA) → B(HA), where
B(HA) denotes the space of linear operators on the Hilbert
space HA for a d-dimensional quantum system A. We
choose an orthonormal basis of operators X0, X1, . . . , Xd2−1

for B(HA) with X0 = 1/
√

d and with respect to the Hilbert
Schmidt inner product 〈Xμ, Xν〉 := tr[X †

μXν] = δμ,ν . In partic-
ular, this means that X1, . . . , Xd2−1 are all traceless operators.

We define vectorization of operators via |vec(|a〉〈b|)〉 :=
|a〉 ⊗ |b〉 for any computational basis states [14]. This defi-
nition can be extended by linearity to get the mapping M →
|vec(M )〉 for any operator M ∈ B(HA). Then for any quantum
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channel E : B(HA) → B(HA) we define its Liouville repre-
sentation L(E ) through the relation

L(E )|vec(M )〉 = |vec(E (M ))〉 (18)

for all M. To simplify things going forward, we shall adopt the
notation that we denote all vectorized quantities in boldface
(this is similar to how a vector is sometimes represented in
boldface as v = (v1, v2, . . . , vn)), and so we write |M〉 :=
|vec(M )〉 and E := L(E ). Using this boldface notation, we can
reexpress Eq. (18) in the more compact form

E|ρ〉 = |E (ρ)〉 (19)

for any state ρ, and any channel E . Using Eq. (19), we can
therefore decompose any channel in the orthonormal basis
{Xμ} as

E =
d2−1∑
μ=0

|E (Xμ)〉〈Xμ|. (20)

More explicitly, in terms of matrix components, we have
that

E =
( |X0〉 |Xj〉

〈X0| 1 0

〈Xi| x T

)
, (21)

where E00 = 1 and E0 j = 0 follow from the fact that the
channel is a completely positive trace-preserving operation.
The d2 − 1 component vector x corresponds to the general-
ized Bloch vector of E (1/d ), which characterizes the degree
to which the channel breaks unitality. The matrix block T
encodes the remaining features of the channel. In this notation,
the unitarity of a channel is then given by the simple relation
[40]

u(E ) = 1

d2 − 1
tr[T †T ]. (22)

This core form is the one we use to define subunitarities in
the next subsection.

D. Liouville decomposition of bipartite quantum channels
and general subunitarities

We can also compute Liouville representations of bipar-
tite channels, EAB: B(HA ⊗ HB) → B(HA ⊗ HB), where we
assume for simplicity that the input and output systems are
identical.

For subsystem A, we choose an orthonormal basis of op-
erators Xμ = (X0 = 1√

dA
1A, Xi ), where dA is the dimension

of the subsystem A, and similarly for B a basis Yμ = (Y0 =
1√
dB
1B,Yi ). Together these provide a basis for the full system

which is given in the Liouville representation as [54]

|Xa ⊗ Yb〉 := |Xa〉 ⊗ |Yb〉. (23)

This in turn provides the following matrix decomposition of
EAB:

EAB =

⎛
⎜⎜⎜⎜⎜⎝

|X0 ⊗ Y0〉 |Xj1 ⊗ Y0〉 |Xj1 ⊗ Yj2〉 |X0 ⊗ Yj2〉
〈X0 ⊗ Y0| 1 0 0 0

〈Xi1 ⊗ Y0| xA→A TA→A TAB→A TB→A

〈Xi1 ⊗ Yi2 | xAB→AB TA→AB TAB→AB TB→AB

〈X0 ⊗ Yi2 | xB→B TA→B TAB→B TB→B

⎞
⎟⎟⎟⎟⎟⎠,

where i1 = {1, 2, . . . , (d2
A − 1)}, i2 = {1, 2, . . . , (d2

B − 1)},
and similarly for j. Here we break the entire T matrix of the
channel up according to the subsystem contributions where,
for example, the term TAB→B denotes the mapping of joint
degrees of freedom of the input system AB into the B output
subsystem.

With this notation in place, we can now define the general
subunitarities of the bipartite channel.

Definition II.2. For any quantum channel EAB on a bipartite
quantum system AB, the subunitarity uX→Y of the channel is
defined as

uX→Y (EAB) := αX tr[T †
X→Y TX→Y ] (24)

for any X,Y ∈ {A, B, AB} and with αA = 1/(d2
A − 1), αB =

1/(d2
B − 1), and αAB = αAαB.

This coincides with our previous definitions for the single
subsystem subunitarities, and it also provides the form for the
remaining other choices. Also note that under a local change

of bases on the input and output subsystems, we have

EAB → (VA ⊗ VB) ◦ EAB ◦ (U†
A ⊗ U†

B ) (25)

for local unitary channels denoted with V and U . These
changes of bases transform the submatrices TX→Y under mul-
tiplication by orthogonal matrices. For example,

TA→A → O1TA→AOT
2 (26)

for orthogonal matrices O1, O2, with, e.g., O2 arising from the

UA(Xi ) = ∑d2
A−1

m=1 O2;i,mXm (see Appendix C). This implies that
all the subunitarity terms are invariant under local changes of
bases.

It is straightforward to show (see Appendix B 1) that these
subunitarities relate to the total unitarity of the quantum chan-
nel EAB as follows:
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FIG. 1. Distribution of uc for two-qubit unitaries. We plot the his-
togram of values of uc(Usim ) for 20 000 random two-qubit unitaries,
Usim. These correlated unitarities lie between 0 and 1, and they take
the value uc(EA ⊗ EB ) = 0 for product channels and uc(SWAP) = 1
for the SWAP channel. The value of uc is invariant under local unitary
changes of basis. The upper bound for two-qubit separable channels
is usep

c � 7/12, and it is also shown on the plot. We sampled using
the methods of [55] and simulated using QUTIP [56].

Theorem II.2. The unitarity of a bipartite channel EAB is
obtained from the weighted sum of its subunitarities:

u(EAB) = 1

d2 − 1

∑
X,Y ∈{A,B,AB}

uX→Y (EAB)

αX
, (27)

where d = dAdB is the dimension of the total system.
We shall make use of this decomposition of unitarity for

our benchmarking protocol to estimate the correlated uni-
tarity. But before discussing the protocol, we first give core
properties of this measure that demonstrate its usefulness for
assessing the correlation structure of a given channel.

E. Properties of the correlated unitarity
for a bipartite quantum channel

The correlated unitarity uc is given in terms of subunitari-
ties as uc(E ) = uAB→AB(E ) − uA→A(E )uB→B(E ), and we now
address the core properties of this measure (see Fig. 1). The
following result shows that it obeys natural conditions:

Theorem II.3. For any bipartite quantum channel EAB, we
have uc(EAB) � 1, and it is invariant under local unitary trans-
formations on either the input or output systems. Moreover,
uc(EAB) = 0 for product channels and uc(EAB) = 1 when EAB

is the SWAP channel modulo local unitary changes of bases.
A proof of this can be found in Appendixes B 2 and C 4.

Therefore, under this measure the SWAP channel is the far-
thest from being a product channel, which is consistent with
the fact that it perfectly transfers quantum information from
one subsystem to the other. However, we can also consider
intermediate regimes in which the bipartite channel is separa-
ble, i.e., it can be written as

EAB =
∑

k

pkEk ⊗ Fk (28)

for some probability distribution (pk ), and local channels Ek

and Fk on A and B, respectively. This class of channels is also
known as local operations with shared randomness (LOSR)
[34,35]. The above definition generalizes that of separable

states, and it defines a convex subset of channels. A bipartite
channel that is not separable is called nonseparable. It turns
out that the correlated unitarity is strictly bounded over sepa-
rable channels, as the following establishes:

Theorem II.4 (Correlated unitarity is a witness of non-
separability). Given a bipartite quantum system AB with
subsystems A and B of dimensions dA and dB, respectively,
for a separable quantum channel EAB, we have that

uc(EAB) � C(dA, dB) � 17
24 < 1, (29)

where

C(dA, dB) = βA(1 + βB)(1 − 1

min
(
d2

A, d2
B

) ) + 1

4
, (30)

where βi = 1
d2

i −1
for di = 2 and βi = di

d2
i −1

otherwise.
The proof of this bound is nontrivial, and we provide it

in Appendix C 5. This bound is not tight in general, and we
provide sharper bounds in terms of the subsystem dimen-
sions. The dA = dB = 3 qutrit case provides the upper bound
in C(dA, dB) and could be improved, albeit via a nontrivial
analysis of qutrit channels.

The consequence of the result is that if the correlated uni-
tarity can be efficiently estimated, then obtaining values above
the upper bound witnesses nonseparability in the channel and
so provides a practical way to certify quantum information
transfer between A and B.

The bound also relates to recent work on entanglement
theory. Due to the limitations of the typical LOCC set of
free channels when it comes to analyzing Bell nonlocality
[32], it has been argued that LOSR channels provide a more
sensible set. However, as LOSR channels are precisely the
set of separable channels, then any violation of the bound in
Theorem II.4 implies the consumption of a resource state with
respect to LOSR.

It is straightforward to compute uc for a range of channels.
For example, consider the channel

EAB =
∑

k

pkUk ⊗ Vk, (31)

where {Ui}d2
A

i=1 and {V j}d2
B

j=1 are local unitary error bases [57] on
A and B, respectively, namely unitaries on each subsystem that
also form an orthonormal basis with respect to the Hilbert-
Schmidt inner product. For this channel, uc(EAB) then takes
the form

uc(EAB) =
∑

k

p2
k −

(∑
k

p2
k

)2

. (32)

Further insight into uc(E ) can be obtained by formulating it
in terms of two-point correlation measures. Suppose we have
local observables OA and OB for systems A and B, respec-
tively. We define the following correlation function:

FOA,OB (E, ψAB) := |〈OA ⊗ OB〉EAB (ψAB )|2

− |〈OA〉EA(ψA )|2|〈OB〉EA(ψB )|2, (33)

where the channels EA and EB are local channels on A and B,
respectively, defined in Definition II.1, and the input states ψA

and ψB are marginals of ψAB.
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The correlation function above becomes related to the
covariance of classical random variables when considering
classical states embedded in a quantum system,

FOA,OB (id, ρAB) = cov(OA, OB)[〈OA ⊗ OB〉ρAB

+ 〈OA〉ρA〈OB〉ρB ], (34)

where ρAB = ∑
x,y p(x, y)|x〉|y〉〈x|〈y| for |x〉, |y〉 computa-

tional basis states that diagonalize the Hermitian operators
OA and OB, and p(x, y) is a joint probability distribution
with marginals p(x) and p(y). In this case, cov(OA, OB) =
〈OA ⊗ OB〉ρAB − 〈OA〉ρA〈OB〉ρB and it matches the covariance
of classical random variables X,Y .

Then the correlated unitarity can be expressed as

uc(E ) = αAB d2
AB

∑
i, j,k,k′

FPi,Pj (E, ψk,k′ ), (35)

where Pi are the traceless Pauli operators on each subsystem,
and ψk,k′ = 1AB+Pk⊗Pk′

dAB
.

Overall, the correlated unitarity amounts to a working no-
tion of correlation in a bipartite quantum channel, and we
do not delve any further into its theoretical properties. In
Appendix C 1 we also compare uc(EAB) to a norm measure of
correlation. While norm-based measures are mathematically
more natural, our aim is to connect to benchmarking proto-
cols, and so ultimately the utility of this measure should be
judged by how useful it is in practice. We find that subunitari-
ties arise very naturally in benchmarking protocols.

III. ESTIMATION OF CORRELATED UNITARITY VIA
BENCHMARKING PROTOCOLS

In the preceding section, we developed a collection of
tools, based around unitarity, to address subsystem features
of a quantum channel. The introduction of subunitarities and
the correlated unitarity allow us to quantify structures specific
to bipartite quantum channels in a simple and direct manner.
We now turn to the question of how such quantities may be
estimated in practice in a protocol that is both efficient in
the number of operations required and robust against SPAM
errors.

These quantities are generalizations of the unitarity, which
can be efficiently estimated in benchmarking protocols, and it
turns out that similar methods work for subunitarities, how-
ever some complications do arise, as we shall discuss.

A. Randomized benchmarking protocols

The certification of quantum devices is a fundamental
problem of quantum technologies, so as to verify that a phys-
ical device is actually performing with a sufficiently high
fidelity. In the context of quantum computing, it is desirable
to provide a greater abstraction from the underlying physical
implementation and talk of benchmarking a logical gate-set
� = {U1,U2, . . . ,Un} of target unitary gates.

The worst-case error rate is given by the diamond norm
[14] distances ||Ũi − Ui||�, which is the relevant physical pa-
rameter for the fault tolerance theorem [58]. However, the
diamond norm is a difficult quantity to measure, and so one
must instead consider weaker measures, such as the average

gate infidelity, given by

r(E ) := 1 −
∫

dψ〈ψ |E (|ψ〉〈ψ |)|ψ〉, (36)

measuring the Haar-average deviation from the identity chan-
nel of a given channel E . The average gate infidelity then
provides bounds on the diamond distance of the form shown
in Eq. (1). The problem with this route is that the bounds
cannot be tightened, and for E corresponding to a non-Pauli
error there is a weak link between r(E ) and the diamond norm
[18,59,60].

Randomized benchmarking techniques can be used to es-
timate r(E ) and circumvent the exponential complexity of
tomography, and the unavoidable SPAM errors. The core com-
ponents of a randomized benchmarking protocol generally
involve the noisy preparation of some initial quantum state
ρ, which is then subject to a number k of physical gates Ũi

that approximate target unitaries Ui ∈ �, before a final im-
perfect measurement is performed for some binary outcome
measurement {M,1 − M}. If the gates applied correspond to
a (noisy) 2-design, such as � being the Clifford group, then it
can be shown that [1] the resulting statistics are exponentially
decreasing in k, namely E[m(k)] = c1 + c2λ

k , for constants
c1 and c2 that contain the state preparation and measurement
details. The decay constant λ is then a measure of the noisi-
ness of the physical gate-set �̃ := {Ũi} employed.

In the simplified model of gate-independent noise, in
which each channel can be decomposed as Ũi = E ◦ Ui for
some E that is independent of i, then it can be shown that
λ ∝ 1 − r(E ), where r(E ) is the average gate infidelity of the
noise channel E . In the more realistic case of gate-dependent
noise, the relationship between the decay parameter λ and the
physics of the set �̃ is subtle, due to gauge degrees of free-
dom in the representation of the physical components [61].
However, despite these details the decay parameter can still
be related to the physical gate-set and essentially corresponds
to the average gate-set infidelity [62].

At a more abstract level, a randomized benchmarking
scheme admits a compact description in terms of convolutions
of channels Ũi with respect to the Clifford group [63]. The
decay law is then viewed in a Fourier-transformed basis where
the channel compositions become matrix multiplication over
different irreps [2]. The resultant protocol then provides a
benchmark for the degree to which the physically realized
channels {Ũi} form an approximate representation of the Clif-
ford group [64,65].

In the next section, we expand on the components of the
benchmarking scheme for the case of unitarity benchmarking.

B. Unitary 2-designs and unitarity benchmarking protocols

We now provide an outline of how the unitarity of a quan-
tum channel can be estimated in a benchmarking protocol.

Recall that by U we denote the Liouville representation of
a unitary channel U (X ) = UXU †, and therefore it takes the
explicit form U = U ⊗ U ∗. A probability measure μ over the
set of unitaries U (d ) is called a unitary 2-design if we have
that ∫

dμ(U )U⊗2 =
∫

dμHaar(U )U⊗2, (37)
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where μHaar is the Haar measure over the group U (d ). In prac-
tice, we are interested in unitary 2-designs which are finite,
discrete distributions of unitaries. In particular, the uniform
distribution over the Clifford group C of unitaries is a 2-design
(in fact it is a 3-design [66]), and therefore

1

|C|
∑
U∈C

U⊗2 =
∫

dμHaar(U )U⊗2 =: P, (38)

where |C| is the number of elements in the Clifford group,
and we denote the resultant operator by P. This operator acts
on the vectorized form of B(H) ⊗ B(H), and using Schur-
Weyl duality, it can be shown that P is the projector onto the
subspace

S := span{|1⊗2〉, |F〉}, (39)

where F is the unitary that transposes vectors in the two
subsystems, |φ1〉 ⊗ |φ2〉 → |φ2〉 ⊗ |φ1〉.

We can define an effective noise channel E via E := U† ◦
Ũ , and moreover in what follows we shall assume for simplic-
ity that each gate U ∈ � is subject to the same effective noise
channel (but again this assumption can be weakened, and
gate-dependent noise can be assessed via interleaved bench-
marking [67]).

The unitarity of this noise channel can then be estimated
in the following way. We prepare a quantum state ρ of the
system and choose the Clifford group as the gate-set. We now
define

Us := U(s1,s2,...,sk ) := Us1 ◦ Us2 ◦ · · · ◦ Usk , (40)

where Usi ∈ � for all i, and si labels the particular choice
of unitary in the gate-set. We also denote by Ũs the corre-
sponding noisy implementation of the above sequence s =
(s1, s2, . . . , sk ) of unitaries. For any sequence s and some
Hermitian observable M we estimate the quantity

m(s) := tr[MŨs(ρ)], (41)

and then by randomly sampling over the Clifford group
for each step in the sequence estimate Es[m(s)2] :=

1
|�|k

∑
s m(s)2. By exploiting the fact that the Clifford group is

a 2-design, and specifically Eqs. (38) and (39), it was shown
in [40] that

Es[m(s)2] = c1 + c2u(E )k−1 (42)

for constants c1 and c2 that contain any errors due to state-
preparation or measurement. Therefore, by repeating this
estimation for sequences of varying length, we may extract
an estimation of u(E ) as a decay constant for the quantity in
an efficient and SPAM-robust manner.

C. Estimation of channel subunitarities via
local and global twirls

The unitarity arose from considering a global twirl using a
2-design. It turns out that the subunitarities arise in a similar
fashion, but now by considering local twirls for a bipartite
quantum system. Specifically, we now have a bipartite quan-
tum system AB with local gate-sets �A and �B, which we
assume are 2-designs, and a global gate-set �AB. Then, we

may consider the independent twirls

1

|�A||�B|
∑

UA∈�A,UB∈�B

U⊗2
A ⊗ U⊗2

B = PA ⊗ PB, (43)

where we now have local projections of channels at A and B
onto subspaces SA and SB, where

SA = span{|1A ⊗ 1A′〉, |FAA′〉}, (44)

where A′ is isomorphic to A, and we have a similar expression
for SB.

In the context of benchmarking, we have the problem of
determining the addressability of qubits and the existence of
cross-talk between qubits. For example, we want to implement
some target unitary Ui ⊗ id on one qubit while leaving all
others unaffected. However, in reality the physical channel
performed Ũi will involve an effective noise channel E that
does not factorize neatly with noise only on the target qubit.
Instead, the noise channel will act nontrivially on each sub-
system of the bipartite split and could involve correlations that
include the leakage of quantum information.

In what follows, we again consider the averaged noise
channel over the gate-set, and so at the simplest level of
analysis we assume that we have gate-independent noise. A
more general analysis involving gate-dependent noise should
be possible by following perturbative approaches such as in
[62] and by making use of interleaved benchmarking [67]. We
also note that the channel under consideration need not be a
noise channel in such a scheme, but could be a target channel
on which we wish to do robust tomography. For this context
it would be possible to exploit recent methods that make use
of randomized benchmarking to do tomography of quantum
channels such as in [68]. We leave this kind of analysis for
later investigation.

Under this average noise model assumption, we now per-
form a unitarity benchmarking scheme by randomly sampling
from �A ⊗ �B and obtain a circuit of depth k, with sequence
indexed via s = (sA, sB) with sA = (a1, a2, . . . , ak ) and sB =
(b1, b2, . . . , bk ) specifying the particular target unitary in the
local gate-sets (see Protocol 1). As before, we estimate the
quantity m(s) := tr[MŨs(ρ)] and also Es[m(s)2] for circuits
of depth k. However, for these local twirls, this quantity now
has a different decay profile. As we show in Appendix D, this
quantity behaves as

Es[m(s)2] = c00 + c01λ
k−1
1 + c10λ

k−1
2 + c11λ

k−1
3 , (45)

where (λ1, λ2, λ3) are the singular values [69] of the matrix of
subunitarities,

S =

⎛
⎜⎜⎝

uA→A(E ) 1√
αB

uAB→A(E )
√

αA
αB

uB→A(E )√
αBuA→AB(E ) uAB→AB(E )

√
αAuB→AB(E )√

αB
αA

uA→B(E ) 1√
αA

uAB→B(E ) uB→B(E )

⎞
⎟⎟⎠,

(46)

with αX = 1
d2

X −1
, and the constants c00, . . . , c11 contain the

SPAM-errors. Therefore, the subunitarities arise in the context
of this benchmarking, albeit in a more nontrivial form to the
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global protocol. For example, we have that

tr(S ) =
∑

i

λi = uA→A(E ) + uAB→AB(E ) + uB→B(E ), (47)

with similar relations existing for the other coefficients of the
characteristic polynomial of S [70]. Note that

∑
i λi = 3 if

and only if E is a product of unitaries, and so this sum of
eigenvalues gives a blunt handle on how much E deviates from
this regime.

By estimating the decay constants in Eq. (45), it is possible
to obtain an estimate of channel correlations that coincides
with the correlated unitarity for a family of channels. It is
easily checked that for a product noise channel E = EA ⊗ EB

we have the matrix of subunitarities given by

S =
⎛
⎝ u(EA) 0 0√

αBu(EA)xB u(EA)u(EB)
√

αAu(EB)xA

0 0 u(EB)

⎞
⎠, (48)

where xA and xB are constants related to deviations from
unitality (see Appendix D 3). This implies that eigenvalues of
S are given by

{λi} = {u(EA), u(EB), u(EA)u(EB)}. (49)

It can be checked that this simple link with subunitarities
extends to arbitrary separable channels, for which λ1, λ2, λ3

are exactly equal to the subunitarities uA→A, uB→B, uAB→AB.
This provides a way to compute the correlated unitarity. More
precisely, given λ1 � λ2 � λ3, we may compute the quantity

C = |λ3 − λ1λ2|, (50)

where we use the fact that subunitarities are upper-bounded
by one to distinguish λ3 from the other two.

For nonseparable channels, the deviation of the eigenval-
ues from each of the subunitarities can be bounded by using
the Girshgorin circle theorem or Brauer’s theorem [70]. For
example, we obtain the bounds

|λ1 − uA→A(E )| � 1√
αB

uAB→A(E ) +
√

αA

αB
uB→A(E ). (51)

Using identities for subunitarities, we can further show that

|λ1 − uA→A(E )| � 1√
αB

[1 − uA→A(E )]. (52)

These two inequalities are generally weak, due to the factors
of αB and αA, but they do imply that the approximation is
very good when either the off-diagonal elements are small
or when the local unitarities are large. In such regimes, this
protocol will return a good estimate of the correlated unitarity,
as shown in Fig. 2.

Estimation of the three decay constants requires fitting
noisy multiexponential data, which is nontrivial, but a range
of methods have been developed to tackle this problem [2].
To assist with fitting, and moreover identify the subunitarity
uAB→AB, we may supplement the local twirling with a global
estimate of unitarity, and then make use of the decomposition
of unitarity into subunitarities. Specifically, for the case of
unital separable channels, with dA = dB = d , we have that

u(E ) = uA→A(E ) + uB→B(E ) + (d2 − 1)uAB→AB(E )

d2 + 1
, (53)

FIG. 2. SPAM error robust estimation of uc for generic quantum
channels. The convergence of the values of correlated unitarity and
C as gate noise takes a product form, for a two-qubit simulation.
We show |uc − C| over p, where F = pEA ⊗ EB + (1 − p)G. The
channels EA, EB, and G are sampled using the methods of [55] and
simulated using QUTIP [56].

and therefore we have the relation

uAB→AB(E ) = (d2 + 1)u(E ) − ∑
i λi

d2 − 2
. (54)

This means that separate estimations of u(E ) and the decay
constants (λi) provide an estimate of uAB→AB(E ), and so they
provide additional independent information on the terms en-
tering the correlated unitarity. In practice, this will require
careful consideration as the average noise channel associated
with �AB (employed in the estimation of unitarity) might be
different from that associated with �A ⊗ �B.

We note that by using randomized compiling [71,72] for
the implementation of a quantum circuit, we may reduce
the noise channel to being a Pauli channel. Since a general
noise channel will not have λi coinciding precisely with the
subunitarities, by running the local twirling protocol with and
without randomized compiling one could witness the presence
of non-Pauli noise.

Protocol 1. SPAM error robust, C × C.

1. Prepare the system in a state ρ.
2. Select a sequence of length k of simultaneous random noisy

Clifford gates locally on subsystems A and B, starting with k = 1.
For example, for each gate UAB,i = UA,i1 ⊗ UB,i2 .

3. Estimate the square (m)2 of an expectation value of an
observable M for this particular sequence of gates.

4. Repeat 1, 2, and 3 for many random sequences of the same
length, finding the average estimation E[(m)2] of (m)2.

5. Repeat 1, 2, 3, and 4 increasing the length of the sequence k by
1. 6. Fit the data E[(m)2] against k and obtain decay parameters
as in Eq. (52).
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D. Estimation of subunitarities for nonseparable channels
with low resetting errors

While the local twirling protocol provides a means to es-
timate the correlated unitarity in the case of any separable
channel, we would like to be able to estimate such correlations
for general nonseparable channels. The obstacle here is to
determine subunitarities such as uA→A(EAB). However, this
requires preparing the maximally mixed state on subsystem B
and benchmarking the unitarity of the effective channel output
on A. This presents a problem of how accurately such a reset
can be performed. Current devices, including ion-traps [73]
and IBM’s superconducting qubits [74], allow for midcircuit
measurements and resets. These dynamical circuit capabilities
can be accessed through hardware-agnostic SDKs [75,76].

This is challenging to do in a fully SPAM-robust way, how-
ever from the form of Eq. (5) we see that if it is possible to do a
resetting of the subsystem close to the maximally mixed state,
then one can obtain an estimate of the subunitarity uA→A(EAB),
and similarly for other single-subsystem cases, by estimating
the unitarity of the marginal channel EA = trB ◦ EAB ◦ RB,
where RB(ρ) = 1

d 1B (see Protocol 2). Within the benchmark-
ing circuit this would mean performing a noisy reset R̃B on B
after each Ũi on A, with the aim of having R̃B ≈ RB. This is a
nontrivial assumption, and so in general the protocol will not
be fully robust against reset errors. However, if these errors are
substantially smaller than the addressability errors one wishes
to estimate, then the protocol returns an approximate estimate.

We can summarize this subunitarity protocol as follows:
Given approximate estimates of uA→A(EAB) and

uB→B(EAB), we may then exploit the fact that
∑

i λi =
uA→A(EAB) + uB→B(EAB) + uAB→AB(EAB) to infer the value
of uAB→AB(EAB) and thus compute the correlated unitarity
for the channel EAB. Therefore, under the assumption of
sufficiently small resetting errors, we may estimate the
correlated unitarity for an arbitrary channel. Note that in the
context of the local Clifford gate-sets, the effective channel
need not be the same in each protocol since Protocol 2 uses a
different gate-set. However, we can use the same gate-set in
Protocol 2 as in 1, since the application of nontrivial Clifford
gates on B does not change matters if R̃B ≈ RB.

It is straightforward to numerically test how sensitive the
above protocol is to re-setting errors. For example, one can
model such reset errors as depolarizing,

R̃B = idA ⊗ [pRB + (1 − p)idB], (55)

Protocol 2. SPAM error robust, C × C.

1. Prepare the system in a state ρ.
2. Select a sequence of length k of simultaneous random noisy

Clifford gates locally on subsystems A and B, starting with k = 1.
For example, for each gate UAB,i = UA,i1 ⊗ UB,i2 .

3. Estimate the square (m)2 of an expectation value of an
observable M for this particular sequence of gates.

4. Repeat 1, 2, and 3 for many random sequences of the same
length, finding the average estimation E[(m)2] of (m)2.

5. Repeat 1, 2, 3, and 4 increasing the length of the sequence k by
1. 6. Fit the data E[(m)2] against k and obtain decay parameters
as in Eq. (52).

FIG. 3. Subunitarity estimation with reset error. Shown is a sim-
ulation of Protocol 2 to estimate the subunitarity uA ≡ uA→A(EAB ),
modeling the reset error associated B as in Eq. (55). This reset
error is shown for different levels of depolarization p, including
p = 0, i.e., no reset. The channel EAB in this case has a theoretical
value of uA→A(EAB ) = 0.261. The protocol returns an estimate of the
subunitarity accurate to ∼90% for reset errors up to ∼20%.

where p ∈ [0, 1]. In Fig. 3 we plot the benchmarking decay
curves and find that for re-setting errors up to ∼20% the pro-
tocol returns an estimate of the subunitarity uA→A(E ) accurate
to ∼90%. Note that such a channel will not in general destroy
correlations between A and B, in contrast to a stronger, more
simplistic error model of

R̃B(ρAB) = ρA ⊗ [
1
2 (1 + b · σ)

]
, (56)

where one assumes a reset to a local qubit state with nonzero
Bloch vector b. Under this stronger model assumption, a sim-
ulation shows that such a scenario returns a good estimate for
the subunitarity for |b| � 0.2.

There are further variants around the above protocol. For
example, if resetting to nonmaximally mixed states has very
low errors, then this provides another means to estimate
uA→A(EAB). For example, if a low-error reset to the pair of
states 1

2 (1 ± b · σ) is possible for some b, then it can be shown
that the average unitarity of the output on A over the pair
is always an upper bound on uA→A(EAB) (see Appendix E
for details), and so it would provide a lower bound on the
correlated unitarity. Therefore, this would allow witnessing of
nonseparability under the preceding assumptions (see Fig. 4).

In theory, another source of information that could be ex-
ploited is the unitarity of the channel from AB to A, given by

EAB→A(ρ) = trB ◦ EAB(ρ). (57)

In terms of subunitarities, this quantity can be decomposed as

u(EAB→A) = 1

(dAdB)2 − 1

(
1

αA
uA→A(EAB)

+ 1

αB
uB→A(EAB) + 1

αAαB
uAB→A(EAB)

)
. (58)
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FIG. 4. Witnessing channel nonseparability. Given a quantum
channel EAB, we consider the ability to efficiently witness its non-
separability via correlated unitarity in the presence of resetting
noise. This could be realized, for example, in the context of robust
tomography using randomized benchmarking [68]. We consider a
one-parameter family of two-qubit channels obtained from a con-
vex mixture of the maximally nonseparable SWAP channel and the
identity channel (a product channel). The contour plot compares the
true value of correlated unitarity uc(EAB ) with the correlation measure
Csim ≈ C estimating Eq. (50) in the presence of reset errors. For two
qubits, nonseparability occurs if uc(EAB) > 7/12. We simulate both
Protocols 1 and 2, and we find that for a wide range of reset errors
we may witness nonseparability for p, q � 0.5. The region of green
where p, q � 1/2 is an artifact of our particular method, and with a
more refined algorithm we expect detection of nonseparability also
in this region.

However, while this provides an expression in terms of
subunitarities without requiring resetting, the standard
benchmarking protocol will not work here due to the input
and output systems being of different dimensions, and
therefore a more involved protocol would be required.

E. Addressability of qubits and subunitarities

Several methods have recently been developed for de-
tection [77], characterization [25,78], and mitigation [79]
of unwanted correlations between subsystems (specifically
cross-talk) in a quantum device from a hardware-agnostic and
model-independent perspective. Our work adds to this toolkit
new methods to characterize nonseparable correlations, and it
provides information about noise channels that is independent
from features captured by previous works.

Simultaneous randomized benchmarking (SimRB) [25]
compares the increase in error rates when both subsystems

are simultaneously and independently driven versus when one
subsystem is driven and the other is kept idle. This quantifies
the amount of new errors experienced by a subsystem as a
result of simultaneously applying Clifford gates on the other.
As is the case for Protocol 2, due to the local independent
Clifford twirl on one subsystem, SimRB is also affected by
SPAM, and strong errors may be detected by deviations from
exponential decay [25].

To compare with the information obtained from subuni-
tarities, a quantity to detect correlations can be determined
from the simultaneous Clifford twirl as in [25]. We denote
this quantity by

a(EAB) := eAB − eAeB, (59)

where EAB is an effective noise channel associated with the
Clifford gate-set acting locally on each subsystem A and B.
The three decay parameters eAB, eA, and eB are extracted from
the randomized benchmarking protocol that applies simulta-
neous local Clifford gates to subsystems A and B, and they are
given in terms of the Liouville data for the channel as

eA = αAtr[TA→A],

eB = αBtr[TB→B], (60)

eAB = αAαBtr[TAB→AB],

with the coefficients αX as defined earlier. For a product chan-
nel, TAB→AB = TA→A ⊗ TB→B and therefore a(EA ⊗ EB) = 0.
In this manner, any deviation of a(E ) from zero is taken
as detection of correlated behavior. Note that in contrast to
subunitarities, these measures are not invariant under local
basis changes, which makes it more problematic to interpret
as a strict correlation measure.

It is easy to verify that the correlated unitarity provides
independent information to a SimRB protocol, for example
the CNOT gate is undetected by the addressability correlation
measure; however, it is detected by correlated unitarity. Fig-
ure 5 shows that this is generic for bipartite channels, and we
find that there are regions where the addressability correlation
measure is zero or close to it, but the correlated unitarity varies
greatly.

IV. OUTLOOK

Our starting point in this work was to develop simple yet
effective measures of correlations in quantum channels and
the means to assess substructures of such channels. The ap-
proach was motivated and guided by the idea of introducing
measures that can be both efficiently estimated through RB-
type techniques and interpreted operationally so as to quantify
nonseparable correlations.

Certain subunitarities of a general bipartite channel can be
interpreted as unitarities of locally acting channels induced
by state preparation and discarding on one subsystem. Fur-
thermore, we showed that they satisfy a set of inequalities
that express an information-disturbance relation. This opens
up new directions to analyze nonclassical features of quantum
channels directly from their robust tomographic description
[68].

In the context of benchmarking of quantum devices, it will
be of interest to develop hardware implementations of the
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FIG. 5. Correlated unitarity vs addressability. Correlated unitar-
ity is largely independent from existing addressability measures,
while Kraus rank is a better indicator of the value of uc, which
is consistent with it capturing the nonseparable correlations be-
tween subsystems. This suggests the measure might be suitable for
benchmarking two-qubit gates where the unitary transfer of quantum
information between subsystems is required. The above plot is for
random channels of different ranks from the distributions of Bruzda
et al. and simulated using QUTIP [55,56].

protocols here and determine how effective and useful they are
in practice. Such analysis will closely investigate the effects of
reset errors for the subsystem unaddressed by target gates. Our
simulations show that our second protocol, while not fully ro-
bust, can still allow small reset errors to estimate magnitudes
of correlated noise, but ultimately whether this is a reasonable
assumption must be assessed for the system at hand.

Throughout this work, we consider the induced error to be
time-independent and gate-independent and averaged for the
gate-set considered. As such, relaxing these constraints would
be a natural line to develop [62,80,81].

Our primary protocol relies on fitting a multiexponential
decay to noisy data. In general this is a hard problem, and
there will be many fits that will approximate the decay curve.
The protocol could be substantially improved by exploiting
recent statistical techniques [82], algorithms for multiexpo-
nential fitting [2,83], and other approaches such as spectral
tomography [84].
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APPENDIX A: QUANTUM OPERATIONS AND A REVIEW
OF NOTATION

1. Review of notation

Throughout these Appendixes, we consistently use the
same notation as the main text, which we review here.

We consider an open bipartite quantum system with an
associated Hilbert space HA ⊗ HB and dimension d = dAdB.
Quantum channels act on the system such that EAB: B(HA ⊗
HB) → B(HA ⊗ HB), and unless otherwise stated we assume
for simplicity that the input and output systems are identi-
cal. We denote all vectorized quantities in boldface, |M〉 :=
|vec(M )〉 for any operator M ∈ B(HA ⊗ HB), and similarly
we denote the Liouville representation EAB := L(EAB) for any
channel EAB, as detailed in the main text.

For subsystem A, we choose an orthonormal basis of op-
erators Xμ = (X0 = 1√

dA
1A, Xi ), where dA is the dimension

of the subsystem A, and tr[X †
μXν] = δμν . Similarly for B an

orthonormal basis Yμ = (Y0 = 1√
dB
1B,Yi ). Together these pro-

vide a basis for the full system, which is given in the Liouville
representation as

|Xν ⊗ Yμ〉 := |Xν〉 ⊗ |Yμ〉. (A1)

Furthermore, {|Xν ⊗ Yμ〉}ν,μ forms a complete orthonormal
basis for HA ⊗ HA ⊗ HB ⊗ HB, and with respect to this basis
the Liouville representation of EAB corresponds to a matrix
EAB whose entries satisfy

〈Xν ⊗ Yμ|EAB|Xν′ ⊗ Yμ′〉 = tr(X †
ν ⊗ Y †

μ EAB(Xν ′ ⊗ Yμ′ )).
(A2)

For simplicity, where there is no ambiguity on the local
labels μ and ν, we will sometimes use a single-label nota-
tion |Zω〉 = |Xν ⊗ Yμ〉. In particular, we denote |Z0〉 = |X0〉 ⊗
|Y0〉.

We highlight that we shall use Greek labels (μ, ν, . . . )
for sums that run over all basis operators, and Latin labels
(i, j, . . . ) to run over just the traceless basis operators.

Consider a quantum channel EAB→A′B′ : B(HA ⊗ HB) →
B(HA′ ⊗ HB′ ). We define a product channel as one that takes
the form

EAB→A′B′ = EA→A′ ⊗ EB→B′ (A3)

for channels EA→A′ : B(HA) → B(HA′ ) and EB→B′ :
B(HB) → B(HB′ ). The choice of labeling of the output
subsystems is for convenience, as a joint channel of the
form EA→B′ ⊗ EB→A′ can be cast in the above form simply
by relabeling A′ ↔ B′. A separable channel is defined as a
convex mixture of product channels, namely

EAB→A′B′ =
∑

k

pkEk
A→A′ ⊗ Ek

B→B′ (A4)

for some distribution pk and local channels between (A, A′)
and (B, B′). A channel that is not separable is defined to be
nonseparable.
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2. Quantum operations in the vectorized operator basis

Using this notation, we now give some useful quantum op-
erations in the Liouville representation that we use throughout
this work with proofs following. First, we give the channel to
trace out (tr) the system, and a channel we define to prepare
[prep : prep(1) = 1/d] a new system in the maximally mixed
state,

tr =
√

d 〈Z0| and prep = |Z0〉/
√

d. (A5)

A direct consequence of this is that the completely depolariz-
ing channel D(ρ) := 1/d is given by

D = prep · tr = |Z0〉〈Z0|. (A6)

The identity channel [id (ρ) = ρ] also allows a very simple
form in the Liouville representation: id = 1⊗2. From these
definitions, we can build bipartite channels, such as the partial
trace of subsystem B,

idA ⊗ trB =
√

dB idA ⊗ 〈Y0|, (A7)

where idA is the Liouville representation of the identity chan-
nel on subsystem A. Similarly, a combination of this with the
preparation channel on B leads to the complete depolarization
channel for the B subsystem,

idA ⊗ DB = idA ⊗ (prepB · trB) = idA ⊗ |Y0〉〈Y0|. (A8)

Finally, for dA = dB we can express the unitary operation,
SWAP, that swaps the states of both subsystems compactly
in the Liouville representation as

SWAP =
d2

A−1,d2
B−1∑

ν=0,μ=0

|Xν ⊗ Yμ〉〈Xμ ⊗ Yν|. (A9)

Proofs for the preceding Liouville operators are now given:
Proof [of Eq. (A5)]. For the first part, we have tr[ρAB] =

tr[1ρAB] = √
d〈Z0|ρAB〉 as Z0 = Z†

0 . We can then vectorize
both sides and apply the definition of the Liouville repre-
sentation of a channel |tr[ρAB]〉 = √

d〈Z0|ρAB〉 and tr|ρAB〉 =√
d〈Z0|ρAB〉. Therefore, tr = √

d〈Z0|. For the second part,
definitionally, 1/d = Z0/

√
d , prep(1) = Z0/

√
d , and the vec-

torization of 1 leaves it unchanged, |1〉 = 1. Therefore,
|prep(1)〉 = |Z0〉/

√
d and prep|1〉 = |Z0〉/

√
d|1〉. As 1 is the

only valid state of the trivial system, we read off prep =
|Z0〉/

√
d completing the proof. �

Proof [of Eq. (A6)]. We have D|ρ〉 = |1/d〉 = |Z0〉/
√

d .
As 〈Z0|ρ〉 = 1/

√
d for any quantum state ρ, we can write

D = |Z0〉〈Z0|. �
Proof [of Eq. (A7)]. This follows from Eq. (A5), with the

identity channel on subsystem A. �
Proof (of prepB = idA ⊗ |Y0〉/

√
dB). This follows from

Eq. (A5), with the identity channel on subsystem A. �
Proof [of Eq. (A9)]. From the definition, we can write

any bipartite state in the form ρ := ∑
ν,μ λνμ Xν ⊗ Yμ.

The SWAP channel then acts on this state such that
SWAP(ρ) := ∑

ν,μ λμνXν ⊗ Yμ. Therefore, from inspection,
the Liouville superoperator of the channel is SWAP =∑

ν,μ |Xμ ⊗ Yν〉〈Xν ⊗ Yμ|. �

APPENDIX B: PROPERTIES OF SUBUNITARITY

1. Elementary properties of subunitarity

Lemma B.1. Given a quantum channel E , we have that
u(E ) = 0 if and only if E is a completely depolarizing channel.

Proof. We have that u(E ) = 0 if and only if tr[T †T ] =
||T ||22 = 0 but this occurs if and only if T = 0. Therefore, the
only possible nonzero data in the channel’s Liouville repre-
sentation is the x vector. This is a completely depolarizing
channel to a fixed quantum state as required. �

Theorem B.1. For EA(ρ) := trB[EAB(ρ ⊗ 1B
dB

)] we have
u(EA) = uA→A(EAB), the unitarity u of the local channel equal
to the subunitarity uA→A of the full channel.

Proof. From the definition the subunital block TA→A =
〈Xi ⊗ Y0|EAB|Xj ⊗ Y0〉 = tr[X †

i ⊗ 1B√
dB
EAB(Xj ⊗ 1B√

dB
)] =

trA[X †
i trB[EAB(Xj ⊗ 1B

dB
)] = trA[X †

i EA(Xj )], which gives the
unital block T of EA. As TA→A,EAB = TEA from the defini-
tion uA→A(EAB) = u(EA), similarly u(EB) = uB→B(EAB) for
EB(ρ) := trA[EAB(1A

dA
⊗ ρ)]. �

Theorem B.2. The unitarity of a channel E can be written
as the weighted sum of its subunitarities,

u(E ) = 1

d2 − 1

∑
i, j=(A,B,AB)

ui→ j (E )

αi
, (B1)

where d = dA.dB, αA = 1/(d2
A − 1), αB = 1/(d2

B − 1), and
αAB = αAαB.

Proof. This simply follows from block-matrix multi-
plication, giving tr[T †T ] = ∑

n,m=(A,B,AB) tr[T †
n→mTn→m].

Therefore [see Eq. (22)], the unitarity is u(E ) =
1

d2−1

∑
n,m=(A,B,AB) tr[T †

n→mTn→m]. Rearranging the dimen-
sional constants [see Eq. (24)] completes the proof. �

2. Properties of subunitarity for product channels

Lemma B.2. For a product channel, EA ⊗ EB, the
subunital block TA→A = TA ⊗ |Y0〉〈Y0|, where TA :=∑

i, j |EA(Xj )〉〈Xi|. Similarly, TB→B = |X0〉〈X0| ⊗ TB, where
TB := ∑

i, j |EB(Yj )〉〈Yi|.
Proof. From the definition, TA→A,i j = 〈Xi| ⊗ 〈Y0|EA ⊗

EB|Xj〉 ⊗ |Y0〉 = 〈Xi|EA|Xj〉tr[EB(1/dA)]. For any
trace-preserving channel tr[E (1/d )] = 1 so TA→A =∑

i, j〈Xi|EA|Xj〉|Xi〉〈Xj | ⊗ |Y0〉〈Y0|. The proof for TB→B

follows similarly. �
Lemma B.3. For a product channel, EA ⊗ EB, we have

TAB→AB = TA ⊗ TB.
Proof. From the definition, TAB→AB = ∑d2

A−1
i j

∑d2
B−1

nm 〈Xi| ⊗
〈Yn|EA ⊗ EB|Xj〉 ⊗ |Ym〉|Xi〉〈Xj | ⊗ |Yn〉〈Ym| = ∑d2

A−1
i j

∑d2
B−1

nm|EA(Xj )〉〈Xi| ⊗ |EB(Ym)〉〈Yn| = TA ⊗ TB. �
Theorem B.3. For a product channel, E = EA ⊗ EB,

uAB→AB(E ) = uA→A(E ) · uB→B(E ).
Proof. From Lemma B.3 we can write uAB→AB(E ) =

αAαBtr[T †
A ⊗ T †

B TA ⊗ TB] = αAαBtr[T †
A TA]tr[T †

B TB] = u(EA)
u(EB). As u(EA) = uA→A(E ) and u(EB) = uB→B(E ) for any
channel, this completes the proof. �

Corollary B.1. The correlated unitarity uc of a product
channel EA ⊗ EB is uc(EA ⊗ EB) = 0.

Proof. This follows directly from Theorem B.3. �
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Lemma B.4. The subunitarity uA→AB(EA ⊗ EB) for a bipartite product channel EA ⊗ EB decomposes as

uA→AB(EA ⊗ EB) = uA→A(EA ⊗ EB)xB, (B2)

where xB := x†
B→BxB→B for the nonunital vector of the subsystem B of the channel EB.

Proof. From the definition of uA→AB, we have

uA→AB(EA ⊗ EB) = αA

(d2
A−1)(d2

B−1)∑
k, j,n=1

〈Xj ⊗ Yn|E|Xk ⊗ Y0〉〈Xk ⊗ Y0|E†|Xj ⊗ Yn〉

= αA

(d2
A−1)(d2

B−1)∑
k, j,n=1

〈Xk|E†
A|Xj〉〈Xj |EA|Xk〉〈Y0|E†

B|Yn〉〈Yn|EB|Y0〉

= uA→A(EA ⊗ EB)
d2

B−1∑
n=1

〈Y0|E†
B|Yn〉〈Yn|EB|Y0〉

= uA→A(EA ⊗ EB)xB, (B3)

which completes the proof. �
Swapping the subsystem labels we also have uB→AB(EA ⊗ EB) = uB→B(EA ⊗ EB)xA, where xA := x†

A→AxA→A for the nonunital
vector of the subsystem A of the channel.

3. Properties of subunitarity for separable channels

Lemma B.5. The subunitarity uAB→A(E ) for a bipartite separable channel E := ∑r
i piEA,i ⊗ EB,i is zero.

Proof. From the definition of uAB→A, we have

uAB→A(E ) = αAαBtr[T †
AB→ATAB→A]

= αAαB

(d2
A−1)(d2

B−1)∑
k, j,n=1

〈Xj ⊗ Yn|E†|Xk ⊗ Y0〉〈Xk ⊗ Y0|E|Xj ⊗ Yn〉

= αAαB

(d2
A−1)(d2

B−1)∑
k, j,n=1

r∑
i, j

pi p j〈Xj |E†
A,i|Xk〉〈Xk|EA, j |Xj〉〈Yn|E†

B,i|Y0〉〈Y0|EB, j |Yn〉. (B4)

For the channel to be trace-preserving, we must have 〈Y0|EB, j |Yn〉 = 0 for all n and j. Therefore, uAB→A(E ) = 0. �
Additionally, swapping the subsystem labels, uAB→B(E ) = 0 for any separable bipartite channel E .
Lemma B.6. The subunitarity uA→B(E ) for a bipartite separable channel E := ∑r

i piEA,i ⊗ EB,i is zero.
Proof. From the definition,

uA→B(E ) = αAtr[T †
A→BTA→B]

= αA

(d2
A−1)(d2

B−1)∑
k, j=1

〈Xj ⊗ Y0|E†|X0 ⊗ Yk〉〈X0 ⊗ Yk|E|Xj ⊗ Y0〉

= αA

(d2
A−1)(d2

B−1)∑
k, j=1

r∑
i, j

pi p j〈Xj |E†
A,i|X0〉〈X0|EA, j |Xj〉〈Y0|E†

B,i|Yk〉〈Yk|EB, j |Y0〉. (B5)

For the channel to be trace-preserving, we must have 〈X0|EA, j |Xj〉 = 0 for all j. Therefore, uA→B(E ) = 0. �
Additionally, swapping the subsystem labels, uB→A(E ) = 0 for any separable bipartite channel E .
Lemma B.7. For a unital bipartite separable channel E := ∑r

i piEA,i ⊗ EB,i, where EX,i are local unital channels, the subuni-
tarity uA→AB(E ) is zero.
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Proof. From the definition of uA→AB, we have

uA→AB(E ) = αAtr[T †
A→ABTA→AB] = αA

(d2
A−1)(d2

B−1)∑
k, j,n=1

〈Xk ⊗ Y0|E†|Xj ⊗ Yn〉〈Xj ⊗ Yn|E|Xk ⊗ Y0〉

= αA

(d2
A−1)(d2

B−1)∑
k, j,n=1

r∑
i, j

pi p j〈Xk|E†
A, j |Xj〉〈Xj |EA,i|Xk〉〈Y0|E†

B, j |Yn〉〈Yn|EB,i|Y0〉. (B6)

For the channel to be unital, we must have 〈Yn|EB,i|Y0〉 = 0 for all n. Therefore, uA→AB(E ) = 0. �
Additionally, swapping the subsystem labels, uB→AB(E ) = 0 for any unital separable bipartite channel E .

4. Properties of subunitarity for Pauli channels

Consider the Pauli operators Pα acting on n qubits. These
will form a complete orthonormal basis (so that normalization
will be included in the definition of Pα) so that tr(PαPβ ) = δα,β

and P†
α = Pα . We will also label P0 := 1/

√
2n, the identity op-

erator. Moreover, for simplicity we consider bipartite systems
formed of A and B each of n qubits, so they have dimensions
dA = dB = 2n.

Lemma B.8. Let E (ρ) = ∑
i piPiρPi be a Pauli channel

with
∑

i pi = d , where the Pauli operators are normalized so
that tr(PiPj ) = δi j with E acting on a system of dimension d .
Then it follows that E , its Liouville matrix, has entries

〈Pj |E|Pk〉 = δ jk

∑
i

(−1)η(Pi,Pk ) pi, (B7)

where η(Pi, Pk ) is 0 if Pi and Pk commute and 1 if they
anticommute. The unitarity of E is given by [85]

u(E ) = 1

(d2 − 1)

[(∑
i

p2
i

)
− 1

]
. (B8)

Proof. Check directly 〈Pj |E|Pk〉 = 〈Pj |E (Pk)〉 = tr(PjE
(Pk )) = ∑

i pitr(PjPiPkPi ) = 1
d

∑
i pi(−1)η(Pi,Pk )tr(PjPk ) =

1
d δ jk

∑
i pi(−1)η(Pi,Pk ). This is a diagonal Liouville matrix, and

the unitarity is determined in terms of its nonunital block TE
as

u(E ) = 1

d2 − 1
tr(T †

E TE ) (B9)

= 1

d2 − 1

∑
j �=0

〈Pj |E|Pj〉2. (B10)

Note that 〈P0|E|P0〉 = 1
d

∑
i pi = 1. Notice the orthogonality

relation
∑

j (−1)η(Pi,Pj )(−1)η(Pi′ Pj ) = d2δii′ so that

∑
j

〈Pj |E|Pj〉2 = 1

d2

∑
j,i,i′

pi pi′ (−1)η(Pi,Pj )(−1)η(Pi′ ,Pj ) (B11)

=
∑

i

p2
i . (B12)

Therefore, we have

u(E ) = 1

d2 − 1

∑
j �=0

|〈Pj |E|Pj〉|2 (B13)

= 1

(d2 − 1)

[(∑
i

p2
i

)
− 1

]
. (B14)

�

A bipartite Pauli channel on two n-qubit systems will take
the following form:

E (ρAB) =
∑
α,β

pα,βPα ⊗ Pβ ρAB Pα ⊗ Pβ (B15)

and the trace-preserving condition requires
∑

α,β pα,β = 4n.
We denote d = dA = dB = 2n. The Liouville representation
with respect to a Pauli basis will be a diagonal matrix. The
local channel at A,

EA(ρA) : = trBE (ρA ⊗ 1/d ) (B16)

=
∑

α

qα,0PαρAPα, (B17)

where the qα,0 := 1
d

∑
β pα,β . Similarly at B,

EB(ρB) : = trBE (1/d ⊗ ρB) (B18)

=
∑

α

q0,βPβρBPβ, (B19)

where the q0,β := 1
d

∑
α pα,β . The subunitarities at A and B

are given by uA→A = u(EA) and uB→B = u(EB). Therefore, we
get the following result:

Lemma B.9. Let d = 2n, the dimension of systems A and
B, respectively. Then we have that

uA→A = 1

d2 − 1

(∑
α

q2
α,0 − 1

)
, (B20)

uB→B = 1

d2 − 1

(∑
β

q2
0,β − 1

)
, (B21)

uAB→AB = d2 + 1

d2 − 1
u(E ) − 1

d2 − 1
(uA→A + uB→B). (B22)

Proof. The relations for uA→A and uB→B follow directly
from Lemma B.8. The relation for uAB→AB follows from the
fact that the Liouville representation of E is diagonal so that
TE = TA→A ⊕ TAB→AB ⊕ TB→B and thus

tr(T †
E TE ) =tr(T †

A→ATA→A) + tr(T †
B→BTB→B)

+ tr(T †
AB→ABTAB→AB).

In terms of the unitarities, u(E ) = 1
42n−1 tr(T †

E TE ) and

uAB→AB = 1
(22n−1)2 tr(T †

AB→ABTAB→AB), then the above is equiv-
alent to

uAB→AB = 42n − 1

(2(2n) − 1)2
u(E ) − 1

22n − 1
(uA→A + uB→B).

(B23)
�

023041-15



GIRLING, CÎRSTOIU, AND JENNINGS PHYSICAL REVIEW RESEARCH 4, 023041 (2022)

Lemma B.10. The correlated unitarity for Pauli noise chan-
nel on a bipartite system AB with dim(A) = dim(B) = d = 2n

is given by

uc = 1

(d2 − 1)2

(∑
α,β

p2
α,β −

( ∑
α

q2
α,0

) ∑
β

q2
0,β

)
. (B24)

Proof. Directly from above. �

APPENDIX C: PROPERTIES OF CORRELATED
UNITARITY

1. Comparison of correlated unitarity with norm measures

We can compare the choice of definition for correlated
unitarity with a norm, which sheds light on its structure and
limitations. Consider the Hilbert-Schmidt norm expression

�2 := ||TAB − TA ⊗ TB||2, (C1)

where TAB ≡ TAB→AB and similarly for TA and TB. As this is a
norm, we have � = 0 if and only if TAB = TA ⊗ TB, namely if
and only if the channel is a product channel. We can expand
this expression in terms of the Hilbert-Schmidt inner product
to obtain

�2 = 〈TAB − TA ⊗ TB, TAB − TA ⊗ TB〉
= 〈TAB, TAB〉 + 〈TA ⊗ TB, TA ⊗ TB〉

− 〈TAB, TA ⊗ TB〉 − 〈TA ⊗ TB, TAB〉
= ||TAB||2 + ||TA||2||TB||2 − 2 Re[〈TAB, TA ⊗ TB〉]

= ||TAB||2 + ||TA||2||TB||2 − 2||TAB|| ||TA|| ||TB|| cos θ,

�2 = t2
AB + t2

At2
B − 2tABtAtB cos θ,

where we have defined an angular variable θ via the inner
product between TAB and TA ⊗ TB and replaced the norm val-
ues with tAB, tA, tB in the obvious way. Now the correlated
unitarity is given by uc = αAB(t2

AB − t2
At2

B ), with the dimen-
sional prefactor αAB = 1

(d2
A−1)(d2

B−1)
. Substituting for tAB into

�2, we have that

�2 = uc

αAB
+ 2(tAtB)2 − 2

√
uc

αAB
+ (tAtB)2(tAtB) cos θ. (C2)

This implies a few things. First, for uc = 0 we have

�2 = 2(tAtB)2(1 − cos θ ), (C3)

and so we see that uc vanishing does not imply a product
channel unless one of the tA, tB vanishes or if θ = 0. The
expression also implies that θ is an independent parameter
that will in general vary the norm distance. Note that the
benchmarking protocol gives us both (tAtB) and uc but does
not give us θ . Therefore, our existing benchmarking does not
return enough to determine norm distance measure.

The above highlights relevant data at quadratic order that
our approach is not sensitive to, but note that the cos θ term
is bounded and so it still is the case that uc is acting as
a “distance” from being a product channel. Specifically, we
have

uc

αAB
+ 2(tAtB)2 − 2

√
uc

αAB
+ (tAtB)2(tAtB) � �2 and �2 � uc

αAB
+ 2(tAtB)2 + 2

√
uc

αAB
+ (tAtB)2(tAtB). (C4)

This implies that estimating uc and tAtB allows us to estimate the norm distance �.

2. Operational interpretation of uc

Proof [of Eq. (35)]. Using the definition of correlated unitarity,

uc(EAB) = αAαB
(
tr(T †

AB→ABTAB→AB) − tr(T †
A→ATA→A)tr(T †

B→BTB→B)
)

(C5)

= αAαB

( ∑
n,m,a,b�=0

|〈Xn ⊗ Ym|TAB→AB|Xa ⊗ Yb〉|2 − |〈Xn|TA→A|Xa〉|2|〈Ym|TB→B|Yb〉|2

)
(C6)

= αAαB

( ∑
n,m,a,b�=0

|tr(Xn ⊗ YmEAB(Xa ⊗ Yb))|2 − |tr(XnEA(Xa))|2|tr(YmEB(Yb))|2
)

. (C7)

�

3. uc is invariant under local unitaries

Corollary C.1. The local subunitarities of any chan-
nel uA→A(E ) and uB→B(E ) are invariant under local
unitaries.

Proof. From the definition uc := uAB→AB − uA→AuB→B. It
is easy to show that each term is invariant under local uni-
taries.

First, the local subunitarities of any channel uA→A(E ) and
uB→B(E ) are invariant under local unitaries. This is because
from Theorem B.1 we have that uA→A(E ) = u(EA), there-

fore sandwiching with any product unitaries E ′ = U1,A ⊗
U1,B ◦ E ◦ U2,A ⊗ U2,B we have uA→A(E ′) = u(U1,A ◦ EA ◦
U2,A). From the invariance of unitarity under unitaries [40],
uA→A(E ′) = u(EA).

It remains to prove that uAB is invariant. We can write the
Liouville representation of any product unitary in the our ba-
sis as Ui,A ⊗ Ui,B = (1 ⊕ Oi,A) ⊗ (1 ⊕ Oi,B), where Oi,X are
unitary matrices of dimension (d2

X − 1) × (d2
X − 1) obeying

Oi,X O†
i,X = 1TX . Product channels have the additional prop-

erty that TAB,Ui = TA,Ui ⊗ TB,Ui = Oi,A ⊗ Oi,B.
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We define a channel E ′ = U1,A ⊗ U1,B ◦ E ◦ U2,A ⊗ U2,B,
namely the channel with product unitaries before and after.
The product unitaries will have block diagonal unital blocks,
which can be seen when considering that their only nonzero
subunitarities are uA→A, uB→B, and uAB→AB. Because of this
simple structure, the subunital block TAB of E ′ is

TAB,E ′ = TAB,U1 TAB,ETAB,U2 = O1,A ⊗ O1,BTAB,EO2,A ⊗ O2,B.

(C8)
We can now calculate the required subunitarity uAB(E ′) =
αABtr[T †

AB,E ′TAB,E ′ ], and from the cyclical properties of the
trace,

uAB(E ′) = αABtr[T †
AB,ETAB,EO†

2,A ⊗ O†
2,BO2,A ⊗ O2,B]

= αABtr[T †
AB,ETAB,E ] = uAB(E ). (C9)

This implies uc is invariant under local unitarities. �

4. Maximal value of correlated unitarity

It is readily seen that the SWAP channel has correlated
unitarity,

uc(SWAP) = 1. (C10)

This follows since, from Eq. (A9), we have SWAP =∑
ν,μ |Xμ ⊗ Yν〉〈Xν ⊗ Yμ|. In our basis, this makes the unital

block T a matrix with 1 along the minor diagonal and zero
everywhere else. We can then simply read off that uAB→AB =
uA→B = uB→A = 1 and all other subunitarities are zero. Cor-
related unitarity is then uc = uAB→AB − uA→AuB→B = 1. The
following shows the converse, i.e., that if the subunitarities
for AB → AB, A ↔ B are maximized, then the channel must
be a SWAP channel, modulo local changes of basis.

Lemma C.1. Any channel E with uAB→AB(E ) = uA→B(E ) =
uB→A(E ) = 1 is equivalent to the SWAP channel up to local
unitaries.

Proof. From Theorem II.2 under the given conditions the
channel is unitary, and all other subunitarities are zero. We
can use that uA→B(E ) = uA→A(SWAP ◦ E ) = 1 and similarly
uB→B(SWAP ◦ E ) = 1. Since the unitarity equals 1 only for a
unitary, we deduce that SWAP ◦ E must be a product chan-
nel UA ⊗ UB of local unitaries on each subsystem. Since
SWAP2 = id , this implies that E = SWAP ◦ UA ⊗ UB. �

5. Proof of uc as a witness of nonseparability

The proof of the upper bound on separable channels turns
out to be nontrivial, and relies on bounds on the inner product
of T -matrices for quantum channels. We first establish basic
ingredients we need for the analysis.

Lemma C.2. For a channel E : B(H) → B(H′) the Choi-
Jamiołkowski state can be expressed in the Xν basis as

J (E ) = 1

d

d2∑
ν=0

E (Xν ) ⊗ X ∗
ν , (C11)

with the complete orthonormal basis of both H and H′ as
Xμ = (X0 = 1/

√
d, Xi ) with dim(H) = dim(H′) = d .

Proof. J (E ) := E ⊗ id ( 1
d |1d〉〈1d |), but one can directly

show |1d〉〈1d | = ∑
ν Xν ⊗ X ∗

ν . This follows from the
fact that tr(X †

ν ⊗ X †
μ|1d〉〈1d |) = 〈1|X †

ν X∗
μ〉 = trX †

ν X ∗
μ and

therefore |1d〉〈1d | = ∑
μ,ν tr(X †

ν X ∗
μ )Xν ⊗ Xμ. However,∑

μ tr(X †
ν X ∗

μ )Xμ = ∑
μ tr(X †

μX ∗
ν )Xμ = X ∗

ν since tr(AT ) =
tr(A), and the result follows. �

We now have the following estimates.
Lemma C.3. Given two channels E1 and E2 with unital

blocks in the Liouville representation T1 and T2, we have

−d � 〈T1, T2〉 � d2 − 1, (C12)

where d is the dimension of the Hilbert space.
We shall use this lemma to establish the upper bound

on correlated unitarity for separable channels. However, we
conjecture a stronger result that for any two quantum chan-
nels E1, E2, that 〈T1, T2〉 � −1. This, for example, implies
the bound for optimal inversion of the coherence vector of
a quantum state [86,87] as a special case. The analysis to
establish this sharper bound appears to be nontrivial. Since
it is not essential to our work, we leave it as an open problem.
We do, however, establish this lower beyond for a subset of
channels (see Lemma C.4 below).

Proof. In the Choi representation, we have

J (E1) = 1

d

d2∑
μ

E1(Xμ) ⊗ X ∗
μ

and J (E2) = 1

d

d2∑
μ

E2(Xμ) ⊗ X ∗
μ (C13)

with Xμ = (X0 = 1/
√

d, Xi ). Therefore, we have that

tr(J (E1)†J (E2)) = 1

d2

d2∑
μ,ν

tr(E1(Xμ)†E2(Xν ))tr
(
X T

μ X ∗
ν

)
.

(C14)
Since Choi matrices are positive-semidefinite, then so is the
above quantity. Furthermore, tr(X T

μ X ∗
ν ) = δμν and so

tr(J (E1)†J (E2)) = 1

d2

d2∑
μ

tr(E1(Xμ)†E2(Xμ)) � 0, (C15)

and therefore we have
d2∑
μ

〈E1(Xμ)|E2(Xμ)〉 =
d2∑
μ

tr(E1(Xμ)†E2(Xμ)) � 0. (C16)

Now we look at 〈T1, T2〉 = tr(T †
1 T2) and expand with respect

to the same basis,

〈T1, T2〉 =
d2−1∑
i=1

〈Xi|T †
1 T2|Xi〉 =

d2−1∑
i=1

〈E1(Xi )|E2(Xi )〉

=
d2∑
μ

〈E1(Xμ)|E2(Xμ)〉 − 〈E1(X0)|E2(X0)〉. (C17)

Then it follows that

〈T1, T2〉 � −〈E1(X0)|E2(X0)〉. (C18)

However,

|〈E1(X0)|E2(X0)〉|2 � 〈E1(X0)|E1(X0)〉〈E2(X0)|E2(X0)〉,
(C19)
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and since 〈Ei(1d )|Ei(1d )〉 � 1, we deduce that∣∣∣∣∣
〈
E1

(
1√
d

)
|E2

(
1√
d

)〉∣∣∣∣∣ � d, (C20)

and so we obtain the lower bound of

−d � 〈T1, T2〉. (C21)

The upper bound follows directly from Holder’s inequality,

〈T1, T2〉 � ||T1||∞||T2||1 � (d2 − 1), (C22)

where we have used in the above that the eigenvalues of T1

and T2 have modulus at most 1, and their rank is at most
d2 − 1. �

We also have the following lower bound on the inner prod-
uct of two T -matrices for subsets of quantum channels.

Lemma C.4. Let E1 and E2 be two quantum channels. If
we have that either (i) one of the channels is unital, or (ii) the
channels are arbitrary d = 2 qubit channels, then it follows
that −1 � 〈T1, T2〉 � d2 − 1.

The proof of this is as follows.
Proof. If one of the channels, E1 say, is unital, then

〈T1, T2〉 � −〈E1(X0)|E2(X0)〉 = −〈X0|E2(X0)〉 − 〈X0|X0〉
= −1, (C23)

where we use the orthonormality 〈X0|Xi〉 for all i =
1, . . . , d2 − 1 and the fact that if E1 is unital, then E1(X0) =
X0.

Now suppose that both E1 and E2 are qubit channels. Given
any qubit channel E , the corresponding Choi state takes the
form

J (E ) = 1

4

(
1 + x · σ ⊗ 1 +

∑
i, j

Ti jσi ⊗ σ j

)
, (C24)

where {σi} are the Pauli matrices. As shown in [88], it is
possible to perform local unitary changes UA ⊗ UB of basis
so that

UA ⊗ UB[J (E )] = 1

4

(
1 + x · σ ⊗ 1 +

∑
i

tiσi ⊗ σi

)
,

(C25)

and so the channel is described, modulo local choices of basis,
by the two vectors x and t = (t1, t2, t3). The link between Ti j

and t is that T = OAdiag(t1, t2, t3)OT
B for orthogonal matrices

OA, OB corresponding to the local unitary rotations. It can be
shown that if J (E ) is a valid quantum state (and so E is a valid
quantum channel), the vector x lies in the Bloch sphere, and
t lies in a particular tetrahedron T in R3. Moreover, if x = 0,
then every t ∈ T corresponds to a valid quantum state. Since x

corresponds to the nonunitality of the quantum channel E , this
implies that if E is a quantum channel with nonunitality vector
x and T -matrix T , then there exists another quantum channel
Eu with the same T -matrix, but which is unital. This implies
that for the inner product 〈T1, T2〉 we can assume without loss
of generality that one channel is unital, and thus from the
previous part of our proof we obtain −1 � 〈T1, T2〉. The upper
bound for 〈T1, T2〉 is unchanged from the previous lemma. �

Lemma C.5. For a bipartite separable channel E :=∑r
i piEA,i ⊗ EB,i, the correlated unitarity uc(E ) can be decom-

posed as

uc(E ) = αAαB

(
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉〈
T i

B, T j
B

〉

−
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉 r,r∑
m,n

pm pn
〈
T m

B , T n
B

〉)
, (C26)

where T i
A is the unital block in the Liouville representation of

EA,i, and T i
B is the unital block of EB,i.

Proof. From the definition, the correlated unitarity is

uc(E ) = αAαB(〈TAB→AB, TAB→AB〉
− 〈TA→A, TA→A〉〈TB→B, TB→B〉). (C27)

Since E is separable, in the Liouville representation linearity
implies

|E (ρ)〉 =
∣∣∣∣∣

r∑
i

piEA,i ⊗ EB,i(ρ)

〉

=
r∑
i

piEA,i ⊗ EB,i|ρ〉 = E|ρ〉, (C28)

therefore it follows that the relevant subunital blocks of the
channel are simply the weighted sum of the subunital blocks
of each product channel:

TAB→AB =
r∑
i

piT
i

A ⊗ T i
B,

TA→A =
r∑
i

piT
i

A, (C29)

TB→B =
r∑
i

piT
i

B,

where T i
A is the unital block in the Liouville representation of

EA,i, and T i
B is the unital block in the Liouville representation

of EB,i. Thus the correlated unitarity is

uc(EAB) = αAαB

(
r,r∑
i, j

pi p j
〈
T i

A ⊗ T i
B, T j

A ⊗ T j
B

〉 −
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉 r,r∑
m,n

pm pn
〈
T m

B , T n
B

〉)

= αAαB

(
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉〈
T i

B, T j
B

〉 −
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉 r,r∑
m,n

pm pn
〈
T m

B , T n
B

〉)
. (C30)

This completes the proof. �
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Theorem C.1 (Correlated unitarity is a witness of nonseparability). Given a bipartite quantum system AB with subsystems A
and B of dimensions dA and dB, respectively, for a separable quantum channel EAB, we have that

uc(EAB) � C(dA, dB) � 17
24 < 1, (C31)

where

C(dA, dB) = βA(1 + βB)

(
1 − 1

min
(
d2

A, d2
B

))
+ 1

4
, (C32)

where βi = 1
d2

i −1
for di = 2 or βi = di

d2
i −1

otherwise.
Proof. From Lemma C.5,

uc(EAB) = αAαB

(
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉〈
T i

B, T j
B

〉 −
r,r∑
i, j

pi p j
〈
T i

A, T j
A

〉 r,r∑
m,n

pm pn
〈
T m

B , T n
B

〉)
, (C33)

where T i
A is the unital block in the Liouville representation of EA,i, and T i

B is the unital block of EB,i. To simplify the notation, we
label the normalized inner products

ti j := αA
〈
T i

A, T j
A

〉
and si j := αB

〈
T i

B, T j
B

〉
, (C34)

and we define A := ∑r,r
i j pi p jti j and B := ∑r,r

i j pi p jsi j . In this notation, the correlated unitarity of the separable channel is just

uc(EAB) =
r,r∑
i j

pi p jti jsi j − AB. (C35)

From Lemma C.3, the range of any particular ti j is

−βA � ti j � 1, (C36)

where βA = dAαA applies to all channels, and βA = αA holds for the case of qubit channels or if one of the channels is unital.
Additionally from the non-negativity of the Hilbert Schmidt inner product, ti ≡ tii � 0. Similarly for the B subsystem, −βB �
si j � 1 and si ≡ sii � 0.

We now bound the first term in Eq. (C35) in relation to the second. Out of the r2 possible terms in the first term, there are r
terms that are equal to p2

i tisi (namely, when i = j). Now suppose that out of the r2 − r remaining terms there are k terms where
ti j is negative: t−,m (m = {0, 1, . . . , k − 1, k}), and r2 − (r + k) other terms where ti j is positive: t+,n (n = {0, 1, . . . , r2 − (r +
k) − 1, r2 − (r + k)}). We can then write the correlated unitarity as

uc(EAB) =
r∑
i

p2
i tisi +

r2−r∑
i �= j

pi p jti jsi j − AB =
r∑
i

p2
i tisi +

k∑
m=(i j),i �= j

pi p jt−,msm +
r2−r−k∑

n=(i j),i �= j

pi p jt+,nsn − AB

=
r∑
i

p2
i tisi −

k∑
m=(i j),i �= j

pi p j |t−,m|sm +
r2−r−k∑

n=(i j),i �= j

pi p jt+,nsn − AB. (C37)

We now bound the summation of positive and negative ti �= j terms. As all t−,m � 0, then since |t−m| � βA we can bound the
summation of negative terms as

k∑
m=(i j),i �= j

pi p j |t−,m| �
k∑

m=(i j),i �= j

βA pi p j �
r2−r∑
i �= j

βA pi p j = βA

(
1 −

r∑
i

p2
i

)
, (C38)

where we have maximized k to include all r2 − r possible terms, and we used the simple relation that
∑r

i p2
i + ∑r2−r

i j pi p j = 1.

From the definition, A = ∑r
i p2

i ti + ∑r2−r
i �= j pi p jti j , therefore the whole summation of cross terms can be written as

r2−r∑
i �= j

pi p jti j =
r2−r−k∑

n=(i j),i �= j

pi p jt+,n −
k∑

m=(i j),i �= j

pi p j |t−,m| = A −
r∑
i

p2
i ti. (C39)
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From this we can bound the summation of the positive terms using the previous bound in Eq. (C38):

r2−r−k∑
n=(i j),i �= j

pi p jt+,n = A −
r∑
i

p2
i ti +

k∑
m=(i j),i �= j

pi p j |t−,m|,

r2−r∑
n=(i j),i �= j

pi p jt+,n � A −
r∑
i

p2
i ti + βA

(
1 −

r∑
i

p2
i

)
. (C40)

Since both t+,n � 0 and |t−,m| � 0 and all elements − min(βB,
√

sis j ) � si �= j � √
sis j � 1, then we can bound the summation

containing t+,nsn elements as

r2−r−k∑
n=(i j),i �= j

pi p jt+,nsn �
r2−r−k∑

n=(i j),i �= j

pi p jt+,n � A −
r∑
i

p2
i ti + βA

(
1 −

r∑
i

p2
i

)
(C41)

and the summation containing t−,msm elements (assuming
√

sis j � βB) as

−
k∑

m=(i j),i �= j

pi p j |t−,m|sm � βB

k∑
m=(i j),i �= j

pi p j |t−,m| � βB

[
βA

(
1 −

r∑
i

p2
i

)]
. (C42)

Putting all of this together, we get a bound on the correlated unitarity of

uc(EAB) �
r∑
i

p2
i tisi + βB

[
βA

(
1 −

r∑
i

p2
i

)]
+ A −

r∑
i

p2
i ti + βA

(
1 −

r∑
i

p2
i

)
− AB

�
r∑
i

p2
i ti(si − 1) + βA(1 + βB)

(
1 −

r∑
i

p2
i

)
+ A(1 − B). (C43)

With no loss of generality, we can set A � B as A and B are in-
terchangeable. Therefore, we have that A(1 − B) � B(1 − B).
As 0 � B � 1, this is maximized when B = 1/2. Additionally
as si � 1, then si − 1 � 0 and the whole first term is negative.
Therefore,

uc(EAB) � βA(1 + βB)

(
1 −

r∑
i

p2
i

)
+ 1

4
. (C44)

Further from the Cauchy-Schwartz inequality,
∑r

i p2
i � 1

r �
1

min(d2
A,d2

B )
. Putting this together, we have

uc(EAB) � βA(1 + βB)

(
1 − 1

min(d2
A, d2

B)

)
+ 1

4
, (C45)

where we have βi = di

d2
i −1

for di > 2 and βi = 1
d2

i −1
for di = 2.

First, for dA = dB = 2 we find that

uc(EAB) � d2
B(

d2
A − 1

)(
d2

B − 1
)(

1 − 1

d2
B

)
+ 1

4

= 1

3
+ 1

4
= 7

12
. (C46)

We now eliminate the two other cases with a qubit subsystem.
First, (dA = 2, dB > 2) yields

uc(EAB) � 1

d2
A − 1

(
1 + dB

d2
B − 1

)(
1 − 1

d2
A

)
+ 1

4

� 1

3

(
1 + dB

d2
B − 1

)(
3

4

)
+ 1

4
, (C47)

which is maximized for dB = 3 giving uc(EAB) � 17/32 ≈
0.53. Second, (dA > 2, dB = 2) yields

uc(EAB) � dA

d2
A − 1

(
1 + 1

d2
B − 1

)(
1 − 1

d2
B

)
+ 1

4

� dA

d2
A − 1

(
1 + 1

3

)(
3

4

)
+ 1

4

� dA

d2
A − 1

(
4

3

)(
3

4

)
+ 1

4

� dA

d2
A − 1

+ 1

4
, (C48)

which is maximized for dA = 3 giving uc(EAB) � 5/8 ≈ 0.63.
Now we consider the two broader cases. First, (dA, dB > 2

with dB � dA), which yields

uc(EAB) � dA

d2
A − 1

(
1 + dB

d2
B − 1

)(
1 − 1

d2
A

)
+ 1

4

� 1

dA

(
1 + dB

d2
B − 1

)
+ 1

4
, (C49)

which is maximized for dA = dB = 3 giving uc(EAB) �
17/24(≈ 0.71). Second, (dA, dB > 2 with dA > dB), which
yields

uc(EAB) � dA

d2
A − 1

(
1 + dB

d2
B − 1

)(
1 − 1

d2
B

)
+ 1

4
, (C50)

which is minimized for dA = 4, dB = 3 giving uc(EAB) �
311/540 ≈ 0.58. This completes the proof. �
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APPENDIX D: ANALYSIS OF LOCAL INDEPENDENT
TWIRLS ON A AND B

1. Definition of subspace projectors

Lemma D.1. The operator

P :=
∫

dμHaar(U ) U⊗2 =
∫

dμHaar(U ) (U ⊗ U ∗)⊗2 (D1)

on H⊗4 = V ⊕ V ⊥ is a projector into the subspace V =
span(|1⊗2〉, |F〉), where F is the Flip operator on the subsys-
tems, and therefore P = 0 on V ⊥.

Proof (of Lemma D.1). For any group G with an invariant
measure (i.e., finite or compact) and a representation V , the
averaging over all elements of the group gives a projector,

P =
∫

V (g) dg, (D2)

onto the invariant subspace {|ψ〉 : V (g)|ψ〉 = |ψ〉∀ g ∈ G}.
To find the invariant subspace for V (U ) = (U ⊗ U ∗)⊗2 it is
easier to look at V ′(U ) = U ⊗ U ⊗ U ∗ ⊗ U ∗. According to
the definition of the invariant subspace, we must find X such
that

V ′(U )|X〉 = |X〉, (D3)

or equivalently [X,U ⊗ U ] = 0.
We can decompose U ⊗ U into irreducible representations

of U (d ). There are two of them: the symmetric subspace
and the alternating subspace. This is related to the fact that
the symmetric group on two elements has two irreducible
representations: the trivial one (1) and the alternating one (F ).

Using Schur’s lemma [89], the operator X must be a
multiple of the identity when restricted to either of these
two subspaces. Putting everything together (up to reordering
of spaces), the invariant subspace is spanned by |1⊗2〉 and
|F〉. �

Lemma D.2. A normalized basis for the invariant vector
space V = span(|1⊗2〉, |F〉) is given by

|0〉 = |X0〉 ⊗ |X0〉,

|1〉 = 1√
d2 − 1

d2−1∑
k=1

|Xk〉 ⊗ |X †
k 〉,

(D4)

where Xμ = (X0 = 1/
√

d, Xi ).
Proof. We defined the tensor product of two vectorized

matrices as

|A ⊗ B〉 := |A〉 ⊗ |B〉. (D5)

Applying this definition to the first vector that spans the
space, |1⊗2〉 = |1〉 ⊗ |1〉 = d|X0〉 ⊗ |X0〉. Normalizing, the
first eigenvector is therefore |0〉 := |X0〉 ⊗ |X0〉.

The Flip operator in our basis is given by considering the
permutation of computational basis states:

F :=
d,d∑
i, j

| j〉〈i| ⊗ |i〉〈 j|

=
d,d∑
i, j

| j〉〈i| ⊗ (| j〉〈i|)† =
d2∑
μ

Xμ ⊗ X †
μ (D6)

up to a dimensional factor. Therefore, |F〉 = ∑d2−1
μ=0 |Xμ〉 ⊗

|X †
μ〉. From inspection the second normalized eigenvector that

spans this subspace is

|1〉 = 1√
d2 − 1

d2−1∑
k=1

|Xk〉 ⊗ |X †
k 〉. (D7)

�
We can now write the decomposition of the projector P :=

|0〉〈0| + |1〉〈1| as

P = |X0〉〈X0| ⊗ |X0〉〈X0|

+ 1

d2 − 1

d2−1∑
i, j

|Xi〉〈Xj | ⊗ |X †
i 〉〈X †

j |. (D8)

Definition D.1. The projector

PAB :=
∫

dμHaar(UA)
∫

dμHaar(UB) (UA ⊗ UB)⊗2 (D9)

for the tensor product of two copies of a bipartite system with
subsystems A and B.

Since the integrals are independent, it is readily seen that

PAB = PA ⊗ PB =
∑
i, j

|i j〉〈i j|, (D10)

where PA is the projector P on subsystem A, and similarly for
B. We can now calculate the action of the projector PAB on two
copies of the Liouville representation of a bipartite channel
PABE⊗2PAB.

2. Calculation of elements of PABE⊗2PAB and the matrix
of subunitarities S

We now show that the operator PABE⊗2PAB can be viewed
as encoding the quadratic order invariants of the quantum
channel, and in particular the traceless components form a
3 × 3 matrix of subunitarities S for the bipartite quantum
channel. A basis of four eigenvectors of PAB can be written in
the basis (|Xμ〉 ⊗ |Yν〉)⊗2 to match the order of the subspaces
of E⊗2. This gives

|00〉 = |X0〉 ⊗ |Y0〉 ⊗ |X0〉 ⊗ |Y0〉,

|10〉 = √
αA

d2
A−1∑
n=1

|Xn〉 ⊗ |Y0〉 ⊗ |X †
n 〉 ⊗ |Y0〉,

|01〉 = √
αB

d2
B−1∑

m=1

|X0〉 ⊗ |Ym〉 ⊗ |X0〉 ⊗ |Y †
m〉,

|11〉 = √
αAαB

d2
A−1,d2

B−1∑
n,m=1

|Xn〉 ⊗ |Ym〉 ⊗ |X †
n 〉 ⊗ |Y †

m〉,

(D11)

where αi = 1/(d2
i − 1). We can now calculate the matrix el-

ements of PABE⊗2PAB in this basis. First, for each subsystem,
as the μ = 0 elements are proportional to the identity we have
X †

0 = X0 and Y †
0 = Y0. Second, as the channel E is a CPTP

map, we have that E ((Xμ ⊗ Yν )†) = (E (Xμ ⊗ Yν ))† for any
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elements of the basis, and so

〈X †
μ ⊗ Y †

ν |E|X †
σ ⊗ Y †

ω 〉 = 〈X †
μ ⊗ Y †

ν |E (X †
σ ⊗ Y †

ω )〉
= tr[(X †

μ ⊗ Y †
ν )†E (X †

σ ⊗ Y †
ω )]

= tr[E (X †
σ ⊗ Y †

ω )Xμ ⊗ Yν]

= tr[E (Xσ ⊗ Yω )†Xμ ⊗ Yν]

= 〈E (Xσ ⊗ Yω )||Xμ ⊗ Yν〉
= 〈Xσ ⊗ Yω|E†|Xμ ⊗ Yν〉, (D12)

where E† corresponds to the adjoint of E that is defined via tr(AE (B)) = tr(E†(A)B). Furthermore, note that if the nonunital
block of E is T , then the nonunital block of E† is T †.

We can now calculate the 16 possible combinations 〈a|E⊗2|b〉. One element is simply equivalent to the trace-preserving
property of a quantum channel 〈00|E⊗2|00〉 = {tr[ 1√

d
E ( 1√

d
)]}2 = 1. The remaining elements can be divided into three subblocks

to be defined,

PABE⊗2PAB =
( |00〉 |i j〉

〈00| 1 0

〈i j| x S

)
, where i j ∈ {01, 10, 11}. (D13)

Consider a diagonal 〈10|E⊗2|10〉 element in the matrix S . From the above properties, it follows that

〈10|E⊗2|10〉 = αA

d2
A−1∑

i, j=1

〈Xi| ⊗ 〈Y0|E|Xj〉 ⊗ |Y0〉〈X †
i | ⊗ 〈Y0|E|X †

j 〉 ⊗ |Y0〉

= αA

d2
A−1∑

i, j=1

〈Xi ⊗ Y0|E|Xj ⊗ Y0〉〈Xj ⊗ Y0|E†|Xi ⊗ Y0〉

= αAtr[TA→AT †
A→A] = αAtr[T †

A→ATA→A] = uA→A(E ). (D14)

and similarly 〈01|E⊗2|01〉 = uB→B(E ) and 〈11|E⊗2|11〉 = uAB→AB(E ). Off-diagonal elements in A can be calculated with an
additional dimensional factor. For example, following the same line,

〈01|E⊗2|10〉 = √
αAαB

(d2
B−1)(d2

A−1)∑
i, j=1

〈X0 ⊗ Yi|E|Xj ⊗ Y0〉〈Xj ⊗ Y0|E†|X0 ⊗ Yi〉

= √
αAαBtr[TA→BT †

A→B] =
√

αB

αA
uA→B(E ). (D15)

Further, we have elements such as

〈11|E⊗2|10〉 =αA
√

αB

(d2
A−1)(d2

B−1)∑
k, j,n=1

〈Xj ⊗ Yn|E|Xk ⊗ Y0〉〈Xk ⊗ Y0|E†|Xj ⊗ Yn〉

=αA
√

αBtr[T †
A→ABTA→AB] = √

αBuA→AB(E ) (D16)

and 〈10|E⊗2|11〉 = αA
√

αBtr[T †
AB→ATAB→A] = 1√

αB
uAB→A(E ). The remaining elements of S can be found by swapping the

labeling of the subsystems. Putting this together, we have the matrix of subunitarities given by

S =

⎛
⎜⎜⎜⎜⎜⎝

|10〉 |11〉 |01〉
〈10| uA→A(E ) 1√

αB
uAB→A(E )

√
αA
αB

uB→A(E )

〈11| √
αBuA→AB(E ) uAB→AB(E )

√
αAuB→AB(E )

〈01|
√

αB
αA

uA→B(E ) 1√
αA

uAB→B(E ) uB→B(E )

⎞
⎟⎟⎟⎟⎟⎠. (D17)

The three elements 〈i j|E⊗2|00〉 with i j ∈ {01, 10, 11} quantify the nonunitality of the channel for each subsystem to quadratic
order, through the Hilbert-Schmidt inner product of the generalized Bloch vector x for each subsystem. We can define xi :=
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x†
i→ixi→i. Therefore, we have

〈10|E⊗2|00〉 = √
αA

d2
A−1∑
i=1

〈Xi ⊗ Y0|E|X0 ⊗ Y0〉〈X0 ⊗ Y0|E†|Xi ⊗ Y0〉

= √
αAx†

A→AxA→A = √
αAxA, (D18)

similarly 〈11|E⊗2|00〉 = √
αAαBxAB, 〈01|E⊗2|00〉 = √

αBxB. Therefore, xT = (
√

αAxA,
√

αAαBxAB,
√

αBxB).
The final three elements 〈00|E⊗2|i j〉 with i j ∈ {01, 10, 11} are required to the zero from the trace-preserving properties of a

quantum channel. For example, considering 〈00|E⊗2|10〉 for E to be a valid TP map, we must have 〈X0 ⊗ Y0|E|Xi ⊗ Y0〉 = 0 for
all i. Therefore,

〈00|E⊗2|10〉 = √
αA

d2
A−1∑
i=1

〈X0 ⊗ Y0|E|Xi ⊗ Y0〉〈Xi ⊗ Y0|E†|X0 ⊗ Y0〉 = 0. (D19)

Through the same argument, 〈00|E⊗2|01〉 = 〈00|E⊗2|11〉 = 0.
Finally, putting all the elements together, we have

PABE⊗2PAB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|00〉 |10〉 |11〉 |01〉
〈00| 1 0 0 0

〈10| √
αAxA uA→A(E ) 1√

αB
uAB→A(E )

√
αA
αB

uB→A(E )

〈11| √
αAαBxAB

√
αBuA→AB(E ) uAB→AB(E )

√
αAuB→AB(E )

〈01| √
αBxB

√
αB
αA

uA→B(E ) 1√
αA

uAB→B(E ) uB→B(E )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (D20)

Comparing this with decomposition of the Liouville representation of a bipartite channel E in Eq. (24), we see that PAB produces
the normalized purity of every subblock of E . As subunitarities are the normalized purity of subblocks of the unital block T ,
these values are extracted, as well as the absolute value of the nonunital vector for both subsystems. Using the form of the top
row of PABE⊗2PAB, it is easily seen that

det(PABE⊗2PAB − λ1) = (1 − λ) det(S − λ1) (D21)

and therefore for any channel E the four eigenvalues of PABE⊗2PAB will be λ0 = 1 and the three eigenvalues of S .

3. The matrix components for separable channels

For a product channel E = EA ⊗ EB, the subunitarity matrix S takes a particularly simple form. Since the channel is separable,
quantum information does not flow between A and B, and Theorem B.3 tells us that uA→B(EA ⊗ EB) = uB→A(EA ⊗ EB) = 0 and
uAB→AB(EA ⊗ EB) = uA→A(EA ⊗ EB)uB→B(EA ⊗ EB). Thus, for a product channel E = EA ⊗ EB,

PABE⊗2PAB =

⎛
⎜⎜⎜⎜⎜⎝

|00〉 |10〉 |11〉 |01〉
〈00| 1 0 0 0

〈10| √
αAxA u(EA) 0 0

〈11| √
αAαBxAxB

√
αBu(EA)xB u(EA)u(EB)

√
αAu(EB)xA

〈01| √
αBxB 0 0 u(EB)

⎞
⎟⎟⎟⎟⎟⎠. (D22)

From this it is readily seen that the eigenvalues for a product channel are {1, u(EA), u(EB), u(EA)u(EB)}. More generally, for the
case of a separable channel EAB from Lemmas B.5 and B.6 we find instead that

PABE⊗2PAB =

⎛
⎜⎜⎜⎜⎜⎝

|00〉 |10〉 |11〉 |01〉
〈00| 1 0 0 0

〈10| √
αAxA uA→A(EAB) 0 0

〈11| √
αAαBxAB

√
αBuA→AB(EAB) uAB→AB(EAB)

√
αAuB→AB(EAB)

〈01| √
αBxB 0 0 uB→B(EAB)

⎞
⎟⎟⎟⎟⎟⎠ (D23)

and so now the eigenvalues are {1, uA→A(EAB), uB→B(EAB), uAB→AB(EAB)}. Therefore, (PABE⊗2PAB)m will have eigenvalues

{λi} = {1, uA→A(EAB)m, uB→B(EAB)m, uAB→AB(EAB)m}, (D24)

which implies that the subunitarities are the decay constants for the benchmarking protocol.
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More generally we do not have such a simple link between the eigenvalues and subunitarities. Indeed, it may be the case that
the matrix cannot be diagonalized fully, and so one must instead use a Jordan decomposition to determine the decay law for the
protocol. We provide the details for the fully general case in the next section.

4. Jordan decomposition for arbitrary bipartite channels

For a general bipartite channel E we can use the Jordan normal form of the matrix PABE⊗2PAB to study the structure scales
with a power, (PABE⊗2PAB)m.

Definition D.2. Using the Jordan matrix decomposition of any square matrix M, we can find the Jordan normal form such that

M = S−1JS, (D25)

where S is an invertible matrix, and J is a block-diagonal matrix of Jordan blocks [70].
Corollary D.1. The Jordan matrix decomposition of a square matrix M to the power n is

Mn = S−1JnS. (D26)

�
Proof. This follows simply from SS−1 = 1.
This implies that if we write PABE⊗2PAB in a Jordan normal form, J , then the decay law of (PABE⊗2PAB)m will be determined

entirely by Jm. There are three possibilities that could occur:

J =

⎛
⎜⎝

1 0 0 0
0 λ1 0 0
0 0 λ3 0
0 0 0 λ2

⎞
⎟⎠, J =

⎛
⎜⎝

1 0 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

⎞
⎟⎠, J =

⎛
⎜⎝

1 0 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1

⎞
⎟⎠, (D27)

where λi are the eigenvalues of the block S . Which form the Jordan decomposition takes depends on the degeneracy of λi and
whether the geometric and algebraic multiplicities of each λi coincide [70].

For J diagonal, we have that

(PABE⊗2PAB)m = S−1JmS = S−1

⎛
⎜⎝

1 0 0 0
0 λm

1 0 0
0 0 λm

3 0
0 0 0 λm

2

⎞
⎟⎠S, (D28)

where {λi} are the eigenvalues of S . Therefore,

(PABE⊗2PAB)m = S−1(|00〉〈00| + λm
1 |10〉〈10| + λm

2 |01〉〈01| + λm
3 |11〉〈11|)S. (D29)

If the Jordan decomposition of PABE⊗2PAB is not completely diagonal, then (PABE⊗2PAB)m still scales with the eigenvalues of
S but in a slightly more complex manner. From above, the two remaining options are

(PABE⊗2PAB)m = S−1

⎛
⎜⎝

1 0 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

⎞
⎟⎠

m

S = S−1

⎛
⎜⎜⎝

1 0 0 0
0 λm

1 mλm−1
1 0

0 0 λm
1 0

0 0 0 λm
2

⎞
⎟⎟⎠S (D30)

and

(PABE⊗2PAB)m = S−1

⎛
⎜⎝

1 0 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1

⎞
⎟⎠

m

S = S−1

⎛
⎜⎜⎝

1 0 0 0
0 λm

1 λm−1
1

m(m−1)
2 λm−2

1
0 0 λm

1 λm−1
1

0 0 0 λm
1

⎞
⎟⎟⎠S. (D31)

Therefore, in this more general scenario the decay law behavior of (PABE⊗2PAB)m is still described by the constants {λi}.

5. Analysis of the C × C unitarity benchmarking protocol

We now show that the unitarity benchmarking protocol detailed in Protocol 1 generates the claimed decay law for the noise
channel associated with the gate-set �AB.

Lemma D.3. Over all sequences s, and for a gate-independent noise channel E , the expectation value of an observable M
squared can be written as

Es[m(s)2] = 〈M|⊗2(PABE⊗2PAB)k−1|E (ρ)〉⊗2 (D32)

with a circuit of depth k, and sequences indexed via s = (sA, sB) with sA = (a1, a2, . . . , ak ) and sB = (b1, b2, . . . , bk ) specifying
the particular target unitary in each of the local gate-sets �AB = �A ⊗ �B.
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Proof. From Eq. (41) over all sequences, we have

Es[m(s)2] := 1

|�AB|k
∑

s

m(s)2 = 1

|�AB|k
∑

s

{tr[MŨs(ρ)]}2

= 1

|�AB|k
∑

s

〈M|Ũs(ρ)〉2 = 1

|�AB|k
∑

s

〈M|Ũs|ρ〉2

= 1

|�AB|k
∑

s

〈M|Ũsk Ũsk−1 · · · Ũs1 |ρ〉2

= 1

|�AB|k
∑

s

〈M|(UskE )(Usk−1E ) · · · (Us1E )|ρ〉2, (D33)

which we can write equivalently as a bipartite system,

Es[m(s)2] = 1

|�AB|k
∑

s

〈M|⊗2
(
U⊗2

sk
E⊗2

)(
U⊗2

sk−1
E⊗2

) · · · (
U⊗2

s1
E⊗2

)|ρ〉⊗2. (D34)

The summation over Us for each gate k can be expanded,

Es[m(s)2] = 〈M|⊗2

⎛
⎝ 1

|�AB|
∑

Usk ∈�AB

U⊗2
sk

E⊗2

⎞
⎠

⎛
⎝ 1

|�AB|
∑

Usk−1 ∈�AB

U⊗2
sk−1

E⊗2

⎞
⎠ · · ·

⎛
⎝ 1

|�AB|
∑

Us1 ∈�AB

U⊗2
s1

E⊗2

⎞
⎠|ρ〉⊗2, (D35)

recalling Us = UsA ⊗ UsB and the sequences expand as
∑k2

s = ∑k,k
sA,sB

. We now have the form to use the property of the unitarity
two-design gate-set on each subsystem from Eqs. (38) and (43),

Es[m(s)2] = 〈M|⊗2

(∫
dμHaar(UA)

∫
dμHaar(UB) (UA ⊗ UB)⊗2E⊗2

)

× · · ·
(∫

dμHaar(UA)
∫

dμHaar(UB) (UA ⊗ UB)⊗2E⊗2

)
|ρ〉⊗2. (D36)

There are now k identical integrals over UA and UB. So we can write

Es[m(s)2] = 〈M|⊗2

(∫
dμHaar(UA)

∫
dμHaar(UB) (UA ⊗ UB)⊗2E⊗2

)k

|ρ〉⊗2. (D37)

This is just the projector PAB, where PAB = PA ⊗ PB up to reordering of subsystems, given by

Es[m(s)2] = 〈M|⊗2(PABE⊗2)k|ρ〉⊗2

= 〈M|⊗2(PABE⊗2)k−1(PABE⊗2)|ρ〉⊗2

= 〈M|⊗2(PABE⊗2)k−1(PAB)|E (ρ)〉⊗2, (D38)

where we have absorbed the first noise channel to the initial state of the system ρ. As PAB = (PAB)2, we are free to write all the
intermediate projectors twice,

Es[m(s)2] = 〈M|⊗2(PABE⊗2)(P2
ABE⊗2)k−2(PAB)|E (ρ)〉⊗2

= 〈M|⊗2(PABE⊗2PAB)(PABE⊗2PAB)k−2|E (ρ)〉⊗2

= 〈M|⊗2(PABE⊗2PAB)k−1|E (ρ)〉⊗2, (D39)

which completes the proof. �
From Appendix D 4 if the Jordan decomposition is diagonal,

(PABE⊗2PAB)k−1 = S−1(|00〉〈00| + λk−1
1 |10〉〈10| + λk−1

2 |01〉〈01| + λk−1
3 |11〉〈11|)S, (D40)

where λi are the eigenvalues of the matrix S . Therefore, from Lemma D.3 we can write

Es[m(s)2] = 〈M|⊗2(PABE⊗2PAB)k−1|E (ρ)〉⊗2

= 〈M|⊗2S−1Jk−1S|E (ρ)〉⊗2

= 〈M|⊗2S−1(|00〉〈00| + λk−1
1 |10〉〈10| + λk−1

2 |01〉〈01| + λk−1
3 |11〉〈11|)S|E (ρ)〉⊗2. (D41)
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The transformation matrix S can be absorbed into the initial state of the system and the final measurement

Es[m(s)2] = 〈S−1†(M⊗2)|Jk−1|S(E (ρ)⊗2)〉
= 〈S−1†(M⊗2)|(|00〉〈00| + λk−1

1 |10〉〈10| + λk−1
2 |01〉〈01| + λk−1

3 |11〉〈11|)|S(E (ρ)⊗2)〉, (D42)

and it can be further expanded as

Es[m(s)2] = 〈S−1†(M⊗2)|00〉〈00|S(E (ρ)⊗2)〉 + λk−1
1 〈S−1†(M⊗2)|10〉〈10|S(E (ρ)⊗2)〉

+ λk−1
2 〈S−1†(M⊗2)|01〉〈01|S(E (ρ)⊗2)〉 + λk−1

3 〈S−1†(M⊗2)|11〉〈11|S(E (ρ)⊗2)〉. (D43)

Or simply,

Es[m(s)2] = c00 + c10 λk−1
1 + c01 λk−1

2 + c11 λk−1
3 . (D44)

So if a channel E produces a diagonal Jordan decomposition
J , the protocol will produce a fit of this form where λi are the
eigenvalues of S .

If the Jordan decomposition is not diagonal, then there are
two remaining options. First,

Jk−1 =

⎛
⎜⎜⎝

1 0 0 0
0 λk−1

1 (k − 1)λk−2
1 0

0 0 λk−1
1 0

0 0 0 λk−1
2

⎞
⎟⎟⎠, (D45)

where the fit will take the following form: Es[m(s)2] = c0 +
c1 λk−1

1 + c2 λk−1
2 , where λi are the degenerate eigenvalues

of S , and constants ci are dependent on M, ρ, S, S−1, and x.
Second,

Jk−1 =

⎛
⎜⎜⎝

1 0 0 0
0 λk−1

1 λk−2
1

(k−1)(k−2)
2 λk−3

1
0 0 λk−1

1 λk−2
1

0 0 0 λk−1
1

⎞
⎟⎟⎠, (D46)

where the fit will take the following form: Es[m(s)2] = c0 +
c1 λk−1

1 , where λ1 is the degenerate eigenvalue of S , and for
different constants ci dependent on M, ρ, S, S−1, and x.

APPENDIX E: ESTIMATING SUBUNITARITIES VIA
MIDCIRCUIT RESET PROTOCOLS

The local subunitarities uA→A(EAB) and uB→B(EAB) of any
bipartite channel EAB are measures of interest in their own
right. However, the exact estimation of the subunitarity of gate
noise through unitarity benchmarking requires the repeated
preparation of the maximally mixed state on the ancillary
subsystem. As shown in [23], this introduces additional noise
from the imperfect depolarization.

In the main text, figures were given of simulations of the
estimation of local subunitarities under the assumption that
any error in the preparation of the maximally mixed state
was purely local to the ancillary subsystem. What follows
is a discussion of possible methods to extract estimates of
local subunitarities under more physically realistic assump-
tions about the nature of induced reset errors and the quantum
device in question.

1. Estimating local subunitarities with reset errors

The manner in which the induced error is modeled
determines the accuracy of the predicted estimate of the

subunitarity. If we model the noisy reset channel R̃B as

R̃B = EP ◦ (idA ⊗ RB) ◦ EM, (E1)

where RB is the exact reset, and where EM and EP are SPAM
errors on the whole system related to the imperfect reset of the
subsystem B, then it can be shown that Protocol 2 allows the
estimation of the subunitarity of the combined channel,

EsA [m(sA)2] = c1 + c2uA→A(EM ◦ E ◦ EP )k−1 (E2)

for a sequence of length k, where E is the noise channel
associated with the gate-set. The constants c1 and c2 depend
on the initial and final SPAM and nonunitality of the channel
E .

Protocol 2 requires the preparation of the maximally mixed
state (|Y0〉/

√
dB in our notation) on subsystem B, albeit

noisily. However, we can consider an alternative, where we
randomly reset to one of the computational basis states. For
two qubits, we can consider the Liouville representation of
the preparation channel,

prepB,±Z := idA ⊗ (|Y0〉/
√

2 ± |YZ〉/
√

2), (E3)

which prepares the state |0〉〈0| = 1
2 (1B ± Z ) on subsystem B.

For a bipartite channel E , the related channel E+Z on qubit A
is defined as

E+Z := trB · E · prepB,+Z

= (idA ⊗ 〈Y0|) E (idA ⊗ (|Y0〉 + |YZ〉)), (E4)

and similarly E−Z := trB · E · prepB,−Z .
We can calculate the structure of the unitarity of these

channels using the Liouville representation. The definition of
unitarity can be written in our basis as

u(EA) = 1

d2 − 1

∑
i j

〈Xi|E†|Xj〉〈Xj |E|Xi〉 (E5)

for some channel EA that maps B(HA) → B(HA). The uni-
tarity of the channel E+Z can then be related to the local
subunitarity of the channel E as

u(E+Z ) = uA→A(E ) + 1

3

∑
i j

〈Xi ⊗ YZ|E†|Xj ⊗ Y0〉

× 〈Xj ⊗ Y0|E|Xi ⊗ YZ〉
+ 〈Xi ⊗ YZ|E†|Xj ⊗ Y0〉〈Xj ⊗ Y0|E|Xi ⊗ Y0〉
+ 〈Xi ⊗ Y0|E†|Xj ⊗ Y0〉〈Xj ⊗ Y0|E|Xi ⊗ YZ〉,

(E6)
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and similarly

u(E−Z ) = uA→A(E ) + 1

3

∑
i j

〈Xi ⊗ YZ|E†|Xj ⊗ Y0〉

× 〈Xj ⊗ Y0|E|Xi ⊗ YZ〉
− 〈Xi ⊗ YZ|E†|Xj ⊗ Y0〉〈Xj ⊗ Y0|E|Xi ⊗ Y0〉
− 〈Xi ⊗ Y0|E†|Xj ⊗ Y0〉〈Xj ⊗ Y0|E|Xi ⊗ YZ〉.

(E7)

This follows from expansion of the definitions of the channels
and the Liouville definition of unitarity. By taking the mean
of the unitarity of these two channels, we find

1

2
[u(E+Z ) + u(E−Z )]

= uA→A(E ) + 1

3

∑
i j

〈Xi ⊗ YZ|E†|Xj ⊗ Y0〉

× 〈Xj ⊗ Y0|E|Xi ⊗ YZ〉. (E8)

As the second term in Eq. (E8) is strictly non-negative, we
can use this measure to bound the subunitarity of the tar-
get channel. Therefore, if we can better reset to one of the
computational basis states, then we can estimate the A → A
subunitarity via the following.

Lemma E.1. The local subunitarity of a bipartite channel
uA→A(E ) can be bounded by the average unitarity of the chan-
nel with two specific initial conditions,

uA→A(E ) � 1
2 [u(E+Z ) + u(E−Z )], (E9)

where E+Z (ρ) = trB[E (ρ ⊗ |0〉〈0|)] and E−Z (ρ) = trB[E (ρ ⊗
|1〉〈1|)].

Proof. This follows from Lemma E1 and the non-negativity
of any element E∗

i jE i j . �
Corollary E.1. If E is a product channel,

uA→A(E ) = 1
2 [u(E+Z ) + u(E−Z )]. (E10)

Proof. If E = EA ⊗ EB, the second term always contains
the element 〈Y0|EB|Yi〉, which must be zero for a valid CPTP
map. �

Additionally, it can be shown that Lemma E.1 holds for any
two orthogonal initial states on qubit B.

Corollary E.2. The local subunitarity of a bipartite chan-
nel uA→A(E ) can be bounded by the average unitarity of the
channel with two specific initial conditions,

uA→A(E ) � min[ 1
2 [u(E+b) + u(E−b)] ], (E11)

where E±b(ρ) = trB(E (ρ ⊗ 1
2 (1B ± b · σ))).

Proof. This follows from Lemma E.1, replacing Z with a
general Bloch vector on qubit B. �

Under the assumption that computational basis states in-
duce fewer errors when prepared compared to the maximally
mixed state, then estimating u(E+Z ) and u(E−Z ) with a RB
protocol allows an upper bound to be placed on the local
subunitarity uA→A(E ), where E is the noisy channel associated
with the target gate-set.

In such a case, the RB protocol would simply entail two
experiments: first performing unitarity RB on qubit A with a
reset of qubit B to |0〉, and then secondly with a reset to |1〉.
If we assume the reset is performed completely incoherently,
but with bipartite SPAM errors that we have for the first
experiment, we will obtain a fit of the form

EsA [m(sA)2] = c1 + c2u(E+Z,M ◦ E+Z ◦ E+Z,P )k−1, (E12)

where �+Z,M and �+Z,P are the bipartite SPAM errors asso-
ciated with the noisy reset of qubit B to |0〉. Similarly, the
second experiment will produce a fit of the form

EsA [m(sA)2] = c1 + c2 u(E−Z,M ◦ E−Z ◦ E−Z,P )m−1,

(E13)

where E±Z,M and E±Z,P are the bipartite SPAM errors asso-
ciated with the noisy reset of qubit B. Such a modification
could then be used when the preparation of a maximally
mixed state is significantly noisier compared to compu-
tational basis state preparation and reset, which would
detrimentally affect estimation of uA→A(E ). In the case when
E±Z,M,P ≈ id , an upper bound could be estimated as shown
above.

APPENDIX F: UNITARITY BOUNDS
ON THE DIAMOND NORM

The unitarity provides improved bounds on the diamond
norm compared to infidelity, while still being efficiently es-
timable in a SPAM robust manner. From Eq. (32) of Ref. [90],
we have

K√
2
� 1

2
||id − E ||� �

√
d3K2

4
+ (d + 1)2r(E )2

2
, (F1)

where K2 = d2−1
d2 [u(E ) + 2d

d−1 r(E ) − 1]. Therefore, when the
channel E is unitary [u(E ) = 1], both bounds scale as
O(

√
r(E )). For a purely stochastic channel, where the uni-

tarity is directly related to the infidelity, the bounds scale as
O(r(E )), thereby tightening the bound of Eq. (1).
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Random quantum operations, Phys. Lett. A 373, 320
(2009).

[56] J. Johansson, P. Nation, and F. Nori, Qutip 2: A python frame-
work for the dynamics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

[57] E. Knill, Non-binary unitary error bases and quantum codes,
arXiv:quant-ph/9608048.

[58] A. Y. Kitaev, Quantum computations: Algorithms and error
correction, Usp. Mat. Nauk 52, 53 (1997).

[59] A. Carignan-Dugas, J. J. Wallman, and J. Emerson, Bounding
the average gate fidelity of composite channels using the unitar-
ity, New J. Phys. 21, 053016 (2019).

[60] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia, Com-
paring Experiments to the Fault-Tolerance Threshold, Phys.
Rev. Lett. 117, 170502 (2016).

[61] T. Proctor, K. Rudinger, K. Young, M. Sarovar, and R. Blume-
Kohout, What Randomized Benchmarking Actually Measures,
Phys. Rev. Lett. 119, 130502 (2017).

[62] J. J. Wallman, Randomized benchmarking with gate-dependent
noise, Quantum 2, 47 (2018).

[63] S. T. Merkel, E. J. Pritchett, and B. H. Fong, Randomized
benchmarking as convolution: Fourier analysis of gate depen-
dent errors, Quantum 5, 581 (2021).

[64] W. T. Gowers and O. Hatami, Inverse and stability theo-
rems for approximate representations of finite groups, Sbornik:
Mathematics 208, 1784 (2017).

[65] D. S. França and A. Hashagen, Approximate randomized
benchmarking for finite groups, J. Phys. A 51, 395302 (2018).

[66] H. Zhu, Multiqubit clifford groups are unitary 3-designs, Phys.
Rev. A 96, 062336 (2017).

[67] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan,
J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B.
Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen, Efficient
Measurement of Quantum Gate Error by Interleaved Random-
ized Benchmarking, Phys. Rev. Lett. 109, 080505 (2012).

[68] S. Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson, and
T. Ohki, Robust Extraction of Tomographic Information Via
Randomized Benchmarking, Phys. Rev. X 4, 011050 (2014).

[69] This assumes a nondegenerate form of a Jordan matrix decom-
position. Degenerate cases give rise to similar expressions. See
Appendix D 4 for details.

[70] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cam-
bridge University Press, Cambridge, 2012).

[71] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys. Rev. A
94, 052325 (2016).

[72] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B. Mitchell,
J. M. Kreikebaum, M. Davis, E. Smith, C. Iancu, K. P. O’Brien
et al., Randomized Compiling for Scalable Quantum Comput-
ing on a Noisy Superconducting Quantum Processor, Phys. Rev.
X 11, 041039 (2021).

[73] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses,
M. Allman, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer
et al., Demonstration of the qccd trapped-ion quantum computer
architecture, Nature 592, 209 (2021).

[74] A. D. Corcoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev,
J. M. Chow, and J. M. Gambetta, Exploiting Dynamic Quantum
Circuits in a Quantum Algorithm with Superconducting Qubits,
Phys. Rev. Lett. 127, 100501 (2021).

[75] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington,
and R. Duncan, Tket: A retargetable compiler for nisq devices,
Quantum Sci. Technol. 6, 014003 (2021).

[76] Qiskit: An open-source framework for quantum computing
(2019).

[77] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen,
and R. Blume-Kohout, Detecting crosstalk errors in quantum
information processors, Quantum 4, 321 (2020).

[78] D. C. McKay, A. W. Cross, C. J. Wood, and J. M. Gambetta,
Correlated randomized benchmarking, arXiv:2003.02354.

[79] A. Winick, J. J. Wallman, and J. Emerson, Simulating and
Mitigating Crosstalk, Phys. Rev. Lett. 126, 230502 (2021).

[80] H. Ball, T. M. Stace, S. T. Flammia, and M. J. Biercuk, Effect
of noise correlations on randomized benchmarking, Phys. Rev.
A 93, 022303 (2016).

[81] J. Qi and H. K. Ng, Randomized benchmarking in the presence
of time-correlated dephasing noise, Phys. Rev. A 103, 022607
(2021).

[82] R. Harper, I. Hincks, C. Ferrie, S. T. Flammia, and J. J.
Wallman, Statistical analysis of randomized benchmarking,
Phys. Rev. A 99, 052350 (2019).

[83] X. Xue, T. F. Watson, J. Helsen, D. R. Ward, D. E. Savage,
M. G. Lagally, S. N. Coppersmith, M. A. Eriksson, S. Wehner,
and L. M. K. Vandersypen, Benchmarking Gate Fidelities in a
Si/Sige Two-Qubit Device, Phys. Rev. X 9, 021011 (2019).

[84] J. Helsen, F. Battistel, and B. M. Terhal, Spectral quantum
tomography, npj Quantum Inf. 5, 74 (2019).

[85] Alternatively this formula can be calculated from the definition
involving Haar measure.

[86] M. S. Byrd and N. Khaneja, Characterization of the positivity
of the density matrix in terms of the coherence vector represen-
tation, Phys. Rev. A 68, 062322 (2003).

[87] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn,
Universal state inversion and concurrence in arbitrary dimen-
sions, Phys. Rev. A 64, 042315 (2001).

[88] R. Horodecki and M. Horodecki, Information-theoretic aspects
of inseparability of mixed states, Phys. Rev. A 54, 1838 (1996).

[89] Schur’s Lemma states that the only matrices that commute with
all elements of an irreducible representation of a group are
scalar multiples of 1.

[90] J. J. Wallman, Bounding experimental quantum error rates rel-
ative to fault-tolerant thresholds, arXiv:1511.00727.

023041-29

https://doi.org/10.1007/s10946-014-9454-z
https://doi.org/10.1038/299802a0
https://doi.org/10.1016/0375-9601(86)90660-2
https://doi.org/10.1103/PhysRevLett.76.2818
https://doi.org/10.1103/PhysRevLett.99.240501
https://doi.org/10.1016/j.physleta.2008.11.043
https://doi.org/10.1016/j.cpc.2012.11.019
http://arxiv.org/abs/arXiv:quant-ph/9608048
https://doi.org/10.4213/rm892
https://doi.org/10.1088/1367-2630/ab1800
https://doi.org/10.1103/PhysRevLett.117.170502
https://doi.org/10.1103/PhysRevLett.119.130502
https://doi.org/10.22331/q-2018-01-29-47
https://doi.org/10.22331/q-2021-11-16-581
https://doi.org/10.1070/SM8872
https://doi.org/10.1088/1751-8121/aad6fa
https://doi.org/10.1103/PhysRevA.96.062336
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1103/PhysRevX.4.011050
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1103/PhysRevX.11.041039
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1103/PhysRevLett.127.100501
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.22331/q-2020-09-11-321
http://arxiv.org/abs/arXiv:2003.02354
https://doi.org/10.1103/PhysRevLett.126.230502
https://doi.org/10.1103/PhysRevA.93.022303
https://doi.org/10.1103/PhysRevA.103.022607
https://doi.org/10.1103/PhysRevA.99.052350
https://doi.org/10.1103/PhysRevX.9.021011
https://doi.org/10.1038/s41534-019-0189-0
https://doi.org/10.1103/PhysRevA.68.062322
https://doi.org/10.1103/PhysRevA.64.042315
https://doi.org/10.1103/PhysRevA.54.1838
http://arxiv.org/abs/arXiv:1511.00727

