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Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the
gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity
of transmons imposes profound constraints on the gate design, leading to increased complexity of devices
and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-
anharmonic fluxonium qubits. Namely, applying an off-resonant drive to noncomputational transitions in a pair
of capacitively-coupled fluxoniums induces a ZZ interaction due to unequal ac Stark shifts of the computational
levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ term or
increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase
shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by
incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in
designing the next generation of quantum processors.
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I. INTRODUCTION

Wiring up a pair of superconducting qubits creates an unin-
tentional ZZ term in the two-qubit Hamiltonian, where Z is the
single-qubit Pauli σz operator. This ZZ interaction arises from
the repulsion between computational and noncomputational
energy levels of the coupled circuit; the effect would be absent
for purely two-level systems. On one hand, such an interaction
realizes a controlled-phase logical operation, inducing a phase
shift on one qubit depending on the state of the other one
[1,2]. On the other hand, a small but nonzero ZZ term would
induce coherent errors during single-qubit operations and lead
to quantum cross-talk across the qubit register [3–9]. There-
fore, any high-fidelity multiqubit system must either achieve
an in situ control over the ZZ term or have it permanently
eliminated. The former approach invokes flux-tunable qubits
and coupler circuits [5,10–14], which comes at the price of
limiting the qubit coherence time by the 1/f flux noise and
introducing a new error channel due to the leakage of quan-
tum information into the coupler degrees of freedom [14,15].
The latter approach critically relies on fine tuning the circuit
parameters at the nanofabrication stage, which both reduces
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the device yield and narrows the parameter space available for
performance optimization [16–20].

A technologically attractive control scheme would be to
tune the ZZ term in a fixed-parameter circuit using a mi-
crowave drive [21–23]. Indeed, as long as the drive does not
resonantly excite the circuit transitions, its effect would be
reduced to ac Stark shifts, which generally modify the level
repulsion structure and hence the magnitude of the ZZ term.
Such ideas are hard to implement for transmon qubits, largely
due to their weak anharmonicity, responsible for leakage of
quantum information outside the computational subspace. Re-
cently, a complete suppression of the static ZZ term was
demonstrated in a weakly-anharmonic capacitively-shunted
flux qubit thanks to breaking the parity selection rule with
an external flux bias [24]. However, the qubit is unavoidably
exposed to the first-order 1/f flux noise, which limits the qubit
coherence and hence the gate error.

In this paper, we unleash the full potential of controlling
ZZ interaction with an off-resonant microwave pump [21–24].
This is achieved by using strongly-anharmonic qubits—
fluxoniums [25,26]—that are coupled by a fixed capacitance,
which is compatible with transmon-based processors, and bi-
ased at the half-integer flux quantum, practically eliminating
the flux-noise decoherence channel. Our key result is that
the ZZ term can be either suppressed to zero or enhanced
to about 10 MHz on demand, resulting in a resource-efficient
controlled-phase (CP) gate free of appreciable spurious ef-
fects, such as coherent state leakage. Previously, we have
demonstrated a controlled-Z (CZ) gate in such a system by
applying a near-resonant drive to the transition between first
and second excited states of one of the qubits [27]. In that

2643-1564/2022/4(2)/023040(16) 023040-1 Published by the American Physical Society

https://orcid.org/0000-0002-6454-0837
https://orcid.org/0000-0002-7981-4861
https://orcid.org/0000-0003-3993-8250
https://orcid.org/0000-0002-6351-1874
https://orcid.org/0000-0002-8879-3249
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023040&domain=pdf&date_stamp=2022-04-15
https://doi.org/10.1103/PhysRevResearch.4.023040
https://creativecommons.org/licenses/by/4.0/


HAONAN XIONG et al. PHYSICAL REVIEW RESEARCH 4, 023040 (2022)

FIG. 1. Differential ac Stark shift in a two-fluxonium circuit. (a) False color picture of the two-fluxonium device. The device is similar to
that reported in Ref. [27]. (b) Photograph of the cavity that has the same design as the one used in this experiment. All the microwave drives
share the same drive port. The transmitted signal at the cavity frequency is collected from the readout port. The two halves of the cavity are
sealed with indium [not shown]. The size of the fluxoniums in this picture is exaggerated for better visibility. (c) Spectrum of allowed transitions
of the two-fluxonium circuit extracted from spectroscopy data. The simulated quantity �kl−k′l ′ defines an on-resonance Rabi frequency that a
drive field would induce, assuming the field amplitude is frequency independent. Note that only transitions between states with different parity
are allowed. The green arrow indicates the drive frequency fd used to induce the differential ac Stark shift. (d) Schematic of the energy level
diagram for qubit B in the ground state (left) and qubit B in the excited state (right). A drive at frequency fd pulls the energy level |11〉 more
than the energy level |10〉, without affecting levels |00〉 and |01〉, which is equivalent to a differential ac Stark shift ξ drive

ZZ > 0. (e) Calculated
total ZZ-interaction rate ξZZ = −|ξ static

ZZ | + ξ drive
ZZ for a fixed drive amplitude (�11−21 = 52 MHz). Note, at an appropriate detuning δ, the total

qubit-qubit interaction is switched off, we get ξZZ = 0.

experiment, the ZZ term was naturally suppressed by the
special choice of relatively low qubit frequencies (about
100 MHz). Here we (i) explore a much broader range of qubit
frequencies (up to 1.3 GHz), for which the static ZZ term
is significant, and (ii) use off-resonant driving, the effect of
which can be understood in terms of radiation-dressing and
light-shifts.

The practicality of our scheme is illustrated by the per-
formance of the controlled-phase (CP) gate with an arbitrary
programmed phase, implemented by rapidly turning the ZZ
term on and off. We used the cross-entropy benchmarking
technique [5,12,28,29] to measure the CP gate error for a
set of 16 equally spaced phase values, obtaining an error
of about 3 × 10−3 per radian, while the single qubit error
reaches 1 × 10−3. Notably, both numbers are limited by a
manifestly suboptimal coherence in the current experimental
setup [30], yet, they are already close to the state-of-the-art
for transmons. In fact, our phase-averaged CP gate error of
8 × 10−3 is only few times larger than the best result re-
cently demonstrated on a flux-controlled processor [12,13].
This direct access to the complete family of CP gates is im-
portant since they can reduce the required circuit depth in a
number of useful algorithms [12,31–35] such as the quantum
approximate optimization algorithms (QAOA) and variational
quantum eigensolvers (VQE) [36–38]. The minimalism of
our qubit-qubit interaction control scheme, enabled in large
part by the strong anharmonicity of fluxoniums, can provide

a significant advantage for constructing large-scale quantum
processors.

II. DIFFERENTIAL AC STARK SHIFT

We describe experiments on two devices with significantly
distinct spectral properties. In the main article, we focus on the
first device, while the Appendix H supports our conclusions
with the data obtained with the second device. The device
geometry [shown in Fig. 1(a)] and the measurement setup are
similar to those previously reported in Ref. [27]. We conven-
tionally label the coupled energy eigenstates as |kl〉, where
the k and l indices are the uncoupled eigenstates of qubits
A and B, respectively. For example, qubit A’s (B’s) com-
putational transition is labeled |00〉 − |10〉 (|00〉 − |01〉) and
has a frequency fA = 217.2 MHz ( fB = 488.9 MHz). While
the qubit lifetimes are above 100 μs, the Ramsey coherence
times are in the 10 − 14 μs interval, limited by insufficient
thermalization of the measurement lines. The relevant part of
the measured two-qubit spectrum is shown in Fig. 1(c). The
simulated quantity �kl−k′l ′ attached to every transition is the
Rabi frequency that would be induced by a resonant drive
with the same amplitude for all transitions. This frequency
scale quantifies the effective coupling of the external drive
to the circuit transitions, reflecting both the values of matrix
elements of fluxonium charge operators and the asymmetric
coupling of the drive field to each qubit [we use only one
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port to drive both qubits at shown in Fig. 1(b)]. Details of
spectroscopic and time-domain characterization of our device
are provided in the Appendix B.

The computational states |00〉, |10〉, |01〉, and |11〉 are
separated in energy from noncomputational states by at least
a few GHz, which exceeds the qubit frequencies by almost an
order of magnitude. Within the computational subspace, the
two-qubit dynamics obeys the Hamiltonian

Ĥ

h
= fA

ZI

2
+ fB

IZ

2
+ ξZZ

ZZ

4
, (1)

where Z is the corresponding Pauli matrix and ξZZ = ξ static
ZZ =

−357 kHz is the ZZ-interaction strength in the present device.
The quantity ξ static

ZZ has a negative sign because the noncom-
putational levels push stronger on level |11〉 than on the other
computational levels.

Tuning the magnitude of ξZZ by an externally applied mi-
crowave drive can be understood as follows. First, let us note
that the capacitive coupling leads to much stronger interaction
between the noncomputational states, splitting the otherwise
degenerate transitions |10〉 − |20〉 and |11〉 − |21〉 by � =
8.47 MHz � |ξ static

ZZ |, which provides us the resource to dy-
namically modify ξZZ . The same is true for other transition
pairs, e.g., |11〉 − |12〉, |01〉 − |02〉, or |00〉 − |03〉, |10〉 −
|13〉, although the splitting may vary. Consider driving the
circuit at the frequency fd , blue detuned from the |10〉 − |20〉
resonance by an amount δ � � [see Fig. 1(d)]. Except for
the paired transition |11〉 − |21〉, there are no other circuit
transitions in the GHz vicinity [see Fig. 1(c)] due to the large
anharmonicity. Therefore, the effect of the drive reduces to the
attraction between levels in pairs {|10〉 , |20〉} and {|11〉 , |21〉},
while other transitions are not driven. Specifically, if qubit
B is in the ground state, there is a positive ac Stark shift
δ f Stark(�, δ) = (

√
�2 + δ2 − δ)/2 on the qubit A frequency,

which can be thought of as pulling level |10〉 towards level
|20〉 by the δ-detuned drive. However, this shift is larger when
qubit B is in the excited state, because the detuning (δ −
�) is smaller and the effective drive amplitude � is larger.
Therefore, each qubit acquires a differential ac Stark shift,
which is equivalent to modifying the ZZ term in Eq. (1) as
ξZZ = ξ static

ZZ + ξ drive
ZZ , where ξ drive

ZZ = δ f Stark(�11−21, δ − �) −
δ f Stark(�10−20, δ). Because ξ static

ZZ < 0 and ξ drive
ZZ > 0 for typi-

cal fluxonium parameters, the total qubit-qubit interaction ξZZ

in Eq. (1) can be tuned through zero or increased by about an
order of magnitude compared to the static value by adjusting
the drive frequency and amplitude [see Fig. 1(e) and Fig. 2(b),
right panel].

III. TOMOGRAPHY OF DRIVE-TUNED ZZ INTERACTION

We verify that the qubit-qubit interaction indeed takes
the form of Eq. (1) using a tomography protocol depicted
in Fig. 2(a) [39]. The pulse sequence shown results in the
observation of Ramsey-type fringes oscillating at the fre-
quency ξZZ . Figure 2(b) shows the measured oscillations by
sweeping the driving frequency around fd ≈ 4.5 GHz and
fixing the amplitude such that �11−21 = 52 MHz. As the drive
frequency approaches either the |10〉 − |20〉 or |11〉 − |21〉
transitions (marked by the black dashed lines at 4.488 GHz
and 4.496 GHz, respectively), the ZZ-interaction rate reaches

FIG. 2. Tuning the ZZ interaction. (a) Pulse sequence used to
measure the interaction rate ξZZ . The qubits evolve under Uac that
corresponds to the ZZ term in Eq. (1). We use a refocusing pulse on
each qubit in the middle of the sequence to cancel single-qubit Z rota-
tions. (b) Induced ZZ interactions (a two-qubit Ramsey-type fringe)
as a function of drive frequency and amplitude around the |10〉 − |20〉
and |11〉 − |21〉 transitions. The color scale is proportional to 〈ZI〉.
The oscillation rate expectedly increases on approaching a resonance
condition (left panel). The induced interaction rate reaches about
ξZZ = 5 MHz (right panel). (c) Cancellation of the qubit-qubit in-
teraction. When applying a drive at 4.65 GHz, the ZZ oscillations
slow down and speed back up as the drive amplitude passes though
the value �11−21 = 30.4 MHz. At this point, we can extract that
ξZZ < 20 kHz.

about 6 MHz before the off-resonant ac Stark shift picture
breaks down [Fig. 2(b), right inset]. Beyond that point, the
drive field and the two noncomputational transitions undergo
a coherent energy exchange, witnessed by the detection of
rapidly oscillating ripple features in Fig. 2(b). The ZZ in-
teraction can also be controlled by off-resonantly driving
the pair of doublets of transitions |00〉 − |03〉, |10〉 − |13〉,
|01〉 − |31〉, |00〉 − |30〉, near the frequency f ′

d ≈ 6.5 GHz,
where we obtained ξZZ > 10 MHz (Appendix G and Fig. 8).
Furthermore, with a more optimal structure of the noncompu-
tational transitions, we observed ξZZ > 23 MHz in the second
device (Appendix H).

The immediate application of our differential ac Stark shift
phenomenon is to permanently cancel the static ZZ interaction
between qubits. This is achieved by applying a microwave
tone at the frequency fd = 4.65 GHz and the amplitude such
that �11−21 = 30.4 MHz [see Fig. 2(c)]. As we fine tune the
drive amplitude, the two-qubit Ramsey fringe slows down
from the static value of 357 kHz to the value ξZZ < 20 kHz,
beyond which the oscillations cannot be resolved due to the
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FIG. 3. Benchmarking of arbitrary CP gates. [(a),(b)] Examples of the quantum process tomography (QPT) for the two values of the
controlled phase φ = π (top) and φ = π/2 (bottom). Left (right) panels indicate experimental (theoretical) values. The process tomography χ

matrix reproduces the ideal process with a fidelity F QPT
φ=π = 0.959 and F QPT

φ=π/2 = 0.977. (c) Cross-entropy benchmarking (XEB) for the phases
φ = π/2 and π corresponding to the process tomography shown in [(a),(b)]. We extract the Pauli and gate errors from the decay of the XEB
sequence fidelity with the number of cycles. The gate fidelity at φ = π/2 reaches (99.2 ± 0.1)%. (d) Fidelity of the controlled-phase gate
family. The green circles are obtained by cross-entropy benchmarking and the magenta squares are obtained by master equation simulations
using the average T1 and T E

2 shown in Table I (see Appendix I). The gate fidelity averaged over the complete family exceeds 99.2%.

qubit’s finite coherence time. We characterized single-qubit
operations, in the presence of the ZZ-canceling drive, us-
ing conventional randomized benchmarking sequences [40].
In the case of individual benchmarking, the average single-
qubit gate fidelity is 0.9969 (45-ns-long pulses) for qubit
A and 0.9991 for qubit B (26-ns-long pulses). The simulta-
neous qubit benchmarking requires longer pulse sequences,
which reduces the fidelity to 0.9963 ± 0.0001 for qubit A and
0.9957 ± 0.0001 for qubit B (see Appendix D for details).

IV. ARBITRARY CONTROLLED-PHASE GATE

The ZZ term in Eq. (1) can be switched on and off
on a time scale of about 10 ns using Gaussian-edge pulses
supplemented with the commonly used derivative removal
(DRAG) distortion [41,42]. During the time interval of
ξZZ (t ) �= 0, the states |10〉 and |11〉 accumulate different
phases φ10 and φ11, which is equivalent to the action of a
unitary evolution operator U = diag(1, e−iφ10 , 1, e−iφ11 ) in the
computational subspace. Using virtual Z rotations [40], the
accumulated phase can be entirely assigned to any state such
as |11〉 to implement a controlled-phase operation UCP(φ) =
diag(1, 1, 1, e−iφ ) where φ = φ11 − φ10. In principle, one can
modulate both the drive frequency and amplitude during the
gate pulse, but for simplicity we fixed the drive frequency
and tried two different values, fd = 4.545 GHz (detuned by

49 MHz from transition |11〉 − |21〉) and f ′
d = 6.665 GHz (de-

tuned by 55 MHz from |00〉 − |30〉, see Appendix G).
We start the CP gate characterization by performing quan-

tum process tomography (QPT). The process tomography
matrix (the χ matrix) [43,44] is obtained by preparing 16
independent input states, applying the CP gate, and perform-
ing the state tomography of the final quantum state (see
Appendix E). By comparing the measured χ -matrix to the
theoretical one, we perform the initial tune up of the pulse
parameters required to implement the CP gate with the given
phase φ: gate duration, drive amplitude, DRAG coefficient,
and the phases of the virtual Z rotations. Optimized QPT
examples for φ = π and φ = π/2, with the single-qubit Z
rotations adjusted to exhibit only the ZZ evolution, are shown
in Figs. 3(a) and 3(b). The χ -matrix fidelity [45] reached
0.959 for φ = π and 0.977 for φ = π/2, likely limited by the
state preparation and measurement (SPAM) errors.

At φ = π the CP gate belongs to the Clifford group, i.e. it
becomes the controlled-Z gate. Hence, it can be characterized
using randomized benchmarking (RB), which evades SPAM
limitations. Using procedures similar to those described in
Ref. [27], we optimized the gate pulses and obtained a CZ
gate fidelity of 0.989 ± 0.001 at fd = 4.545 GHz and 0.991 ±
0.001 at f ′

d = 6.665 GHz. Next, we characterize the CP gate
at φ = π using the cross-entropy (XEB) benchmarking tech-
nique, which is applicable to non-Clifford operations, and
also evades the SPAM errors [5,12,29]. The XEB procedure
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consists of a succession of cycles, each composed of one
randomly chosen single-qubit Clifford gate on each qubit and
a given CP gate. The sequence fidelity is calculated from the
cross-entropy between the measured and expected qubit state
distribution [29], which decays exponentially with the number
of cycles (see Appendix F). The optimal gate parameters are
found by optimizing the sequence fidelity at a fixed number of
cycles with the Nelder-Mead algorithm. The XEB procedure
applied to the CZ gate at fd = 4.545 GHz yields a gate fidelity
of 0.988 ± 0.001, which agrees with the results of randomized
benchmarking and hence validates the use of XEB for other
values φ of the controlled phase.

Finally, we apply the XEB procedure to a family of CP
gates with the value of φ equally spaced by π/16. The ex-
tracted gate error grows approximately linearly in φ with
a slope of about 3 × 10−3 per radian [Fig. 3(d), circular
markers]. For φ = π/16, the CP gate error reaches 2 ×
10−3, which is close to the experimental resolution limit.
In order to understand the origin of the gate error, we per-
formed detailed master-equation simulations of the driven
two-fluxonium system (see Appendix I). Our numerical model
closely reproduces the data while relying only on experi-
mentally measured parameters [Fig. 3(d), square markers].
According to the model, the error is entirely due to incoherent
processes, while the coherent error is absent down to the
10−4 level thanks to the strong anharmonicity of fluxonium’s
noncomputational transitions.

V. DISCUSSION

The off-resonant drive in our experiment essentially
replaces the original (undriven) qubit states with the
“dressed” ones, e.g., |10〉 → |10〉 + (λ/2)|20〉 and |11〉 →
|11〉 + (λ/2)|21〉 in the case shown in Fig. 1(d), where λ ≈
�/δ. It is this dressing that leads to the tunable interaction rate
ξZZ in Eq. (1). One can further show that in the presence of en-
ergy relaxation between the undressed single-qubit states |20〉
and |10〉 at a rate 1/T (2→1)

1 , the dressed qubit transition |00〉 −
|10〉 inherits a pure dephasing rate λ2/8T (2→1)

1 . Remarkably,
dressing due to the ZZ-cancellation drive is so weak, λ2 ≈
0.04, that even for a low relaxation time T (2→1)

1 ≈ 5 μs in our
present experiment, the extra dephasing becomes significant
only at the 1 ms level. Thus, the highest measured single-
dressed-qubit gate fidelity reached 0.999, and it is limited by
the undressed coherence time of about 10 − 15 μs. In other
words, our scheme for eliminating the ZZ interaction has prac-
tically no adverse effects, and hence can be generally used to
cancel the quantum cross-talk in fluxonium-based processors.

During the CP gate, both ξZZ and λ temporarily grow
stronger, and hence the energy relaxation of the noncompu-
tational transitions becomes an important contributor to the
incoherent gate error. Let us note that the |1〉 − |2〉 transition
of fluxoniums has the frequency and charge matrix element of
typical transmons, whose relaxation time usually belongs to
the 10 − 100 μs range. Therefore, we expect the same range
for T (2→1)

1 in fluxoniums once the fabrication and thermal-
ization procedures are properly optimized [30]. In this case,
a ZZ-interaction rate in the range ξZZ = 5 − 10 MHz can be
induced with no decoherence exposure at the level of a few
hundred microseconds. In fact, the numerical model projects

a CP gate error (for φ = π ) well in the 10−4 range for the next
generation of fluxonium devices.

VI. CONCLUSIONS

The demonstrated all-microwave control over the ZZ
interaction is technologically attractive for scaling-up su-
perconducting quantum processors. Our scheme has the
following advantages. First, it does not require close ar-
rangement of qubit frequencies, in contrast to the case of
the cross-resonance (CR) gate [17,18] for transmons, which
would mitigate the spectral crowding issues [7,17], allows
tolerance to fabrication variability, and enables multiplexing
of the qubit control. For example, here we used only one input
port for the entire experiment. The qubit frequency could be
as low as 100 MHz, as in our earlier demonstration of the CZ
gate [27], but it can also be around 200 − 500 MHz (the main
device here) or even 700 − 1300 MHz (the second device
here). Second, fluxonium’s highly anharmonic spectra allow
great flexibility of choosing drive frequencies and to operate
the gate in the far-detuned regime, in which higher states
are almost unoccupied during the gate operation, reducing
leakage error and error due to decoherence of higher states.
The required drive power is also comparable to single-qubit
rotations [23]. This makes our method highly scalable. Third,
our scheme does not require any additional circuitry as in
schemes to cancel ZZ coupling using tunable couplers.

Among the previously explored two-qubit gates with a
high degree of flexibility, our scheme is most reminiscent of
the resonator-induced phase (RIP) gate [22,46,47] for trans-
mons. The RIP gate populates an auxiliary bus mode with
off-resonant photons to induce a differential Stark shift. In
comparison, our CP gate requires no auxiliary modes or com-
plex pulse-shaping, has closely-confined driven dynamics,
and already enables a higher fidelity in devices with very
suboptimal coherence, all thanks to the strong anharmonicity
of fluxoniums.

Dressing qubits with microwave drives to control their
interaction opens up a new route to implement on-demand
interaction in a qubit register. We note that similar methods
for transmon qubits have been very recently reported by two
groups [48,49]. In both cases, the ZZ coupling is controlled
by driving off-resonantly computational transitions of super-
conducting circuits. Moreover, Ref. [49] successfully applied
this technique to a multiqubit system, demonstrating the scal-
ability of this approach.
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APPENDIX A: EXPERIMENTAL SETUP

We use the same readout and initialization procedures
described in Ref. [27]. The device is embedded into a rect-
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angular copper cavity resonator with a resonance frequency
fC = 7.538 GHz and linewidth κ/2π = 5 MHz, thermally an-
chored to the base plate of a dilution refrigerator at 14 mK.
External driving is provided through a single input port to
the cavity and the transmission signal is monitored using a
stronger coupled output port. Spectroscopy versus flux data
was used to accurately extract circuit parameters and calculate
transition matrix elements. The table of relevant coherence
times is provided below.

We perform a single-shot joint readout of the two qubit
states [50] by preamplifying the readout signal with the
Josephson traveling parametric-wave amplifier (JTWPA) [51].
The equilibrium population of the two qubit states are ob-
tained by fitting the single-shot histograms with 4 Gaussian
distributions, and we compensate the readout error with an
empirical model. Prior to each experiment, the qubits are
initialized by populating the cavity with a large number of
photons, which conveniently prepares the two qubits in a
mixed state with the excited state populations of 69% and
82%, respectively. Such a degree of state initialization is
sufficient to perform accurate gate error measurement, in-
cluding the quantum process tomography. We did not focus
on improving initialization in this paper. There are some
high-fidelity initialization procedures already implemented on
single fluxoniums using sideband transitions [25], using a
fast feedback loop [52] or on a “heavy” fluxonium [53] by
using two driving tone to convert qubit excitations into cavity
photons. The details of experimental procedures are provided
in the Appendix E.

A schematic of the experimental setup is depicted in Fig. 4.
We use standard modulation and demodulation techniques of
microwave signals. Intermediate frequency pulses are gener-
ated by two M3202A PXIe arbitrary waveform generators (not
represented) and the readout signal is digitized by a M3102A
PXIe Digitizer (not represented) in the same M9010A PXIe
Chassis. The signal departing the cavity is amplified by a
JTWPA provided by Lincoln labs [51].

APPENDIX B: SPECTROSCOPY AND TIME-DOMAIN
MEASUREMENTS

The two-fluxonium spectrum is obtained with the standard
two-tone experiment technique where we readout the cav-
ity after exciting the system with a probe tone. The qubit
parameters are extracted by fitting the spectrum at different
external flux points with the numerical diagonalization of the
Hamiltonian given by Eq. (I2) as shown in Figs. 5(a) and 5(b).
The |1〉 − |2〉 transition of qubit A splits into two transitions
|11〉 − |21〉 and |10〉 − |20〉 due to its capacitive coupling to

TABLE I. Energy relaxation time T1, Ramsey coherence time T R
2 ,

and spin echo coherence time T E
2 . The ranges corresponds to time

fluctuations during the experiment.

T1 (μs) T R
2 (μs) T E

2 (μs)

|00〉 − |10〉 158 − 207 10 − 12 14 − 15
|00〉 − |01〉 116 − 141 13 20 − 25
|11〉 − |21〉 4.9 − 6.2 2.6 − 2.8 3.3

FIG. 4. Schematics of the experimental setup. See labeling on the
plot for details.

qubit B. Off-resonantly driving these two transitions induces
the ZZ interaction required to cancel the static ZZ interac-
tion and to perform for CP gates as described in the main
text.
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FIG. 5. Two-tone spectroscopy and time-domain characterization. (a) Two-tone spectroscopy of the fluxonium transitions as a function
of the external flux threading both fluxonium loops. The |00〉 − |10〉 and |00〉 − |01〉 transitions show the qubit frequencies at the sweet spot
of 217.2 MHz and 488.9 MHz, respectively. (b) Two-tone spectroscopy of the |11〉 − |21〉 and |10〉 − |20〉 transitions used to induce the ZZ
interaction in the main text. (c) Energy relaxation time T1, Ramsey coherence time T Ramsey

2 , and spin-echo coherence time T Echo
2 characterization

of the qubit transitions.

The coherence time of the fluxonium transitions are ex-
tracted using time-domain measurements preceded by an
initialization pulse at the cavity frequency. Measuring the
energy decay of the qubits from the initialized state yields
T A

1 = (207 ± 3.7) μs and T B
1 = (141 ± 5.2) μs, while stan-

dard Ramsey and spin-echo sequences give the coherence
times T A

2,R = (9.69 ± 0.33) μs, T B
2,R = (13 ± 0.4) μs, T A

2,E =
(14.3 ± 0.27) μs, T B

2,E = (24.6 ± 0.47) μs [see Fig. 5(c)].
The fluctuation range of these numbers are reported in Table I.

APPENDIX C: READOUT ERRORS

We adopt an empirical method to compensate for readout
errors similar to the one in Ref. [27]. We assume the mea-

sured populations p′
i j are linked to the populations pi j at the

beginning of the readout by a linear transformation M̂,

⎛
⎜⎜⎝

p′
gg

p′
ge

p′
eg

p′
ee

⎞
⎟⎟⎠ = M̂

⎛
⎜⎝

pgg

pge

peg

pee

⎞
⎟⎠. (C1)

The error matrix M̂ has 6 parameters that account for the
incorrect mapping |0〉 → |1〉 and |1〉 → |0〉 for both qubits
and transitions between the two qubits during the readout. The
error matrix reads

M =

⎛
⎜⎜⎜⎝

1 − a1 − b1 b2 a2 0

b1 1 − a1 − b2 − c1 c2 a2

a1 c1 1 − a2 − b1 − c2 b2

0 a1 b1 1 − a2 − b2

⎞
⎟⎟⎟⎠. (C2)

Among the 6 parameters, a1 and a2 represent incorrect
mappings |0〉A → |1〉A and |1〉A → |0〉A. b1 and b2 repre-
sent incorrect mappings |0〉A → |1〉B and |1〉B → |0〉A. c1

and c2 describe the readout cross-talk where the two qubits
swap excitations. In addition to these six parameters, the
initial populations for the two qubits p0

gA, p0
gB are also two
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FIG. 6. Rabi oscillations with and without readout errors correc-
tion. Oscillations of qubit A [(a),(b)] and qubit B [(c),(d)]. Before
correction (left), the Rabi oscillations are not centered around 0.5
because of qubit transitions occurring during the readout. We also
correct for readout cross-talk: qubit B readout signal oscillates when
qubit A is rotated before correction, and vice versa.

unknown variables that need to be determined. To cali-
brate all the parameters, we perform Rabi measurements on
each qubit while the other qubit is left in the |+〉 state, as
shown in Fig. 6. Assuming that the system starts with the
populations

⎛
⎜⎜⎜⎝

pgg

pge

peg

pee

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

p0
gA p0

gB

p0
gA

(
1 − p0

gB

)
(
1 − p0

gA

)
p0

gB(
1 − p0

gA

)(
1 − p0

gB

)

⎞
⎟⎟⎟⎟⎟⎠

, (C3)

one can predict the Rabi oscillation amplitudes and offsets
in the two Rabi measurements of Fig. 6 as a function of
the 6 parameters of the error matrix—and then deduce M̂.
The corrected populations are obtained by applying M̂−1 to
the measured populations (p′

gg, p′
ge, p′

eg, p′
ee)T . With this cal-

ibration technique, the populations for both qubits oscillate
around 0.5 and only the rotated qubit displays oscillations
during the Rabi experiment.

APPENDIX D: SINGLE-QUBIT RANDOMIZED
BENCHMARKING

Single-qubit randomized benchmarking (RB) is performed
on each qubit—individually and simultaneously—by apply-
ing a series of randomly chosen Clifford gates listed in
Table II. Z rotations are performed with virtual Z gates
[40]—which simply change the phase of X, Y pulses in sub-
sequent gates. Therefore, our Z rotations and identity gates
have a zero duration. In the individual single-qubit RB se-
quence, one Clifford gate contains on average 0.83 physical
pulses. As shown in Fig. 7, the average individual single-
qubit fidelity is (99.69 ± 0.01)% for qubit A with 45-ns-long

TABLE II. Single-qubit Clifford gates used in the RB sequences.
Z rotations are realized with virtual Z gates. Only X and Y pulses
have a nonzero duration.

Single qubit Clifford group

I , Xπ , Yπ , Zπ , Xπ/2, X−π/2, Yπ/2, Y−π/2, Zπ/2, Z−π/2,
Yπ/2Zπ/2, Y−π/2Z−π/2, Yπ/2Z−π/2, Y−π/2Zπ/2, Xπ/2Z−π/2, X−π/2Zπ/2,

Xπ/2Zπ/2, X−π/2Z−π/2,
Zπ/2Xπ/2Zπ/2, Zπ/2X−π/2Zπ/2, Z−π/2Yπ/2Z−π/2, Z−π/2Y−π/2Z−π/2,

Z−π/2Xπ Z−π , Zπ/2Xπ Z−π

pulses and (99.91 ± 0.003)% for qubit B with 26-ns-long
pulses.

In our simultaneous RB sequence, there is a possible idle
time for one qubit when the other qubit is rotated on the
Bloch sphere. So the simultaneous RB sequence is longer than
the individual RB sequences with the same number of Clif-
ford gates. The change of fidelity when operating the qubits
simultaneously cannot be directly associated to cross-talks.
With such sequences, the simultaneous single qubit fidelity is
(99.63 ± 0.01)% for qubit A and (99.57 ± 0.01)% for qubit
B. These numbers are used to extract the CP gate fidelity in
the XEB measurements.

APPENDIX E: QUANTUM PROCESS TOMOGRAPHY

We perform a process tomography of the gate operation
using a standard procedure described in [43,44]. The quan-
tum process to be characterized is interleaved between one
preparation pulse and one tomography pulse chosen in Ta-
ble III. The process matrix χ characterizes fully the quantum
process E . We prepare 16 input states {ρ j} and measure the

FIG. 7. Randomized benchmarking of single-qubit gates.
(a) Population of qubit A and (b) population of qubit B as a function
of the sequence length. A list of 51 randomly chosen sequence
of Clifford gates are applied to the individually or simultaneously
to the qubits before applying a recovery gate. The average single
qubit fidelity for qubit A [resp. qubit B] for a gate duration of 45 ns
[resp. 26 ns] is (99.69 ± 0.01)% [resp. (99.91 ± 0.003)%] in the
individual case and (99.63 ± 0.01)% [resp. (99.57 ± 0.01)%] in the
simultaneous case. The duration of a simultaneous operation is given
by the longest gate time (gate time of qubit A or gate time of qubit
B if a zero-duration pulse is applied to A). The fidelities extracted
from the simultaneous RB are used to calculate the CP gate fidelity
in Fig. 3 of the main text.
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TABLE III. Preparation and tomography pulses used for quan-
tum process tomography (QPT). The first letter refers to the rotation
axis and the subscript is the rotation angle. I is the identity. We
prepare d2 = 16 input states (where d = 4 is the dimension of the
Hilbert space). An overcomplete set of 36 pulses is used for the state
tomography – combined with a maximum likelihood estimation – to
reduce the sensitivity of our tomography to pulse imperfections.

Preparation pulses Tomography Pulses

II , IXπ/2, II , Xπ I , Xπ/2I , X−π/2I ,
IYπ/2, IX−π/2, Yπ/2I , Y−π/2I , IXπ , Xπ Xπ ,
Xπ I , Xπ Xπ , Xπ/2Xπ , X−π/2Xπ , Yπ/2Xπ , Y−π/2Xπ ,
XπYπ/2, Xπ X−π/2, IXπ/2, Xπ Xπ/2, Xπ/2Xπ/2, X−π/2Xπ/2,
Yπ/2I , Yπ/2Xπ , Yπ/2Yπ/2, Y−π/2Yπ/2, IX−π/2, Xπ X−π/2,
Yπ/2Yπ/2, Yπ/2X−π/2, Xπ/2X−π/2, X−π/2X−π/2,
X−π/2I , X−π/2Xπ , Yπ/2X−π/2, Y−π/2X−π/2,
X−π/2Yπ/2, X−π/2X−π/2 IYπ/2, XπYπ/2, Xπ/2Yπ/2, X−π/2Yπ/2,

Yπ/2Yπ/2, Y−π/2Yπ/2, IY−π/2, XπY−π/2,
Xπ/2Y−π/2, X−π/2Y−π/2,
Yπ/2Y−π/2, Y−π/2Y−π/2

output states E (ρ j ) = ∑
m,n χmnPmρ jP†

n where Pi are the 16
two-qubit Pauli operators.

1. State tomography

The density matrix of each output state is reconstructed by
maximizing the likelihood of a list of 36 measurements ob-
tained by applying the tomography pulses given in Table III.
The maximum likelihood estimation (MLE) technique [54]
searches the space of density matrices to find the one that is
the most likely to reproduce the observations. To calculate the
expected output signal for an arbitrary density matrix, we first
calibrate the measurement operator

M̂ = βIII ⊗ I + βIZI ⊗ σZ + βZIσZ ⊗ I + βZZσZ ⊗ σZ

(E1)

where βi j are complex coefficients and σi are Pauli matrices.
βi j are measured by applying the pulses {II, IXπ , Xπ I, Xπ Xπ }
to the initial state before measuring the output signal. After
calibrating the measurement operator, we can predict the out-
put signal for a state ρ after any of the 36 tomography pulses.
We parametrize the density matrix with 16 real parameters
as ρ = T †T /Tr(T †T ), where T is a lower triangular matrix
given by

T =

⎛
⎜⎝

t1 0 0 0
t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4

⎞
⎟⎠. (E2)

This Cholesky decomposition ensures that ρ corresponds to
a physical quantum state (see Sec. V of the supplementary
material of Ref. [55]). The state ρ is then obtained by maxi-
mizing the likelihood of the 36 output measurements over the
16 parameters of T .

2. Process matrix

The process matrix χ is then calculated by linear inversion
following the procedure described in Ref. [43]. This proce-
dure is valid in our case even if the input states ρ j are not
pure states because they are still linearly independent. The
gate fidelity [45] compared to the ideal process matrix χideal

is F (χ, χideal ) = (Tr(χ†χideal )d + 1)/(d + 1), where d is the
dimension of the Hilbert space.

APPENDIX F: CROSS-ENTROPY BENCHMARKING (XEB)

The corrected populations are used to calculate the
cross-entropy between the experimental populations and the
expected populations starting from the state after the initial-
ization pulse. The cross entropy yields the XEB sequence
fidelity. By fitting the sequence fidelity versus number of
cycles with Apm + B, the Pauli error per cycle rP

cycle is given
by

rcycle = N − 1

N
(1 − p) (F1)

rP
cycle = N + 1

N
rcycle (F2)

where N is the dimension of the system. Then we ex-
tract the CP gate Pauli error rP

CP from the equation (1 −
rP

cycle ) = (1 − rP
A )(1 − rP

B )(1 − rP
CP), where rP

A , rP
B are the av-

erage single-qubit Pauli error measured from the simultaneous
RB experiment described in Appendix D. The arbitrary CP
gate fidelity is calculated by converting Pauli error back to the
gate error rCP as shown in Figs. 3(c) and 3(d).

APPENDIX G: ZZ INTERACTIONS INDUCED WHEN
DRIVING AROUND 6.5 GHz

As stated in the main text, our gate scheme is applicable by
driving near any transition from the computational subspace to
higher states with a large transition dipole. Indeed, ZZ inter-
actions can be induced using the four transitions |00〉 − |03〉,
|10〉 − |13〉, |01〉 − |31〉, and |00〉 − |30〉. Figure 8 shows ZZ
oscillations similar to the one of Fig. 2 of the main text by
driving around 6.5 GHz. We find that the induced interaction
rate in this frequency range can exceed the one achievable in
the vicinity of the |10〉 − |20〉 and |11〉 − |21〉 transitions—
and reach values greater than 10 MHz.

Our optimal CZ gate in this frequency window is obtained
at f ′

d = 6.665 GHz (blue line in Fig. 8) with a drive amplitude
�00−30 = 91 MHz. Because the detuning to the four transi-
tions are on the same order of magnitude compared to the
drive amplitude, all four transitions contribute to the induced
ZZ interaction during the gate. Even though more transitions
are involved when performing a CZ gate at f ′

d compared to
the gate at fd = 4.545 GHz, the gate fidelity is still higher
(99.1% at f ′

d compared to 98.9% at fd ) due to the larger
ZZ-interaction rate.

APPENDIX H: OVER 20 MHZ ZZ INTERACTIONS

We realize the same type of CP gate at a faster speed
(40 ns for a CZ gate) in the second two-fluxonium device
measured in a different laboratory. This device has a similar
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FIG. 8. ZZ interactions induced by driving around 6.5 GHz. We use the pulse protocol depicted in Fig. 2(a) of the main text to measure ZZ
oscillations (left panel). At this drive frequency, the four transitions |00〉 − |03〉, |10〉 − |13〉, |01〉 − |31〉, and |00〉 − |30〉 contribute to the ac
Stark shift in the computational subspace. We achieve interaction rates exceeding 10 MHz (right panel).

design but with different parameters shown in Table IV. The
coupling constant JC is comparable with that in the main
text, which does not require large coupling capacitors. Despite
abnormally low coherence times in this particular device, we
measured a CZ gate fidelity of (97.6 ± 0.3)% using RB.

This device has a stronger static ZZ interaction ξ static
ZZ =

−2.1 MHz. We use an always-on tone (detuned from
the |11〉 − |21〉 transition by δ = 80 MHz, Rabi rate � =
43 MHz) to cancel the ZZ interaction at all times. We per-
form simultaneous randomized benchmarking to characterize
our single-qubit gates and obtain gate fidelities of (99.35 ±
0.03)% and (99.16 ± 0.03)% for qubits A and B, respectively.

The single-qubit gate fidelity is predominantly limited by
the low coherence times of the computational transitions
compared with the single-qubit gate time of 24 ns. Qubit A
(707 MHz) has T1 = 11 μs, T R

2 = 4.2 μs, T E
2 = 5.3 μs, Qubit

B (1310 MHz) has T1 = 8.1 μs, T R
2 = 1.6 μs, T E

2 = 2.4 μs.
The |1〉 − |2〉 transitions for both qubits have T1 = 0.7 μs,
T R

2 = 1.0 μs, T E
2 = 1.3 μs on average. The low coherence

time is suspected to be associated with dielectric loss dete-
rioration during the mailing or packaging.

By increasing the amplitude of the same tone above � =
190 MHz, we can obtain an induced ZZ coupling strength
ξ ind

ZZ = 23 MHz to implement a fast CP gate. Using a flat-
topped Gaussian microwave pulse, we achieve a CZ gate time
of 40 ns. We characterize this two-qubit gate with interleaved
RB and show the results in Fig. 9. The data is produced from

TABLE IV. Charging, inductive, Josephson energy, and coupling
constant of the device discussed in Appendix H.

EC,i (GHz) EL,i (GHz) EJ,i (GHz) JC (GHz)

Qubit A 1.1 0.84 3.5 0.33
Qubit B 1.0 1.7 4.0

45 randomized gate sequences and the two-qubit Clifford
group is constructed with on average 5.583 physical single-
qubit gates (incorporating virtual Z gates for the single-qubit
Z rotations) and 1.5 CZ gates per Clifford gate. The CP gate
fidelity extracted from the interleaved RB measurement is
(97.6 ± 0.3)%. This value is slightly lower than the simulated
error 98.7% from Appendix I, which should come from the in-
sufficient optimization of the pulse parameters or the temporal
fluctuation of the relaxation and dephasing time.

FIG. 9. Interleaved randomized benchmarking of the CZ gate
for the second device. The blue and yellow circles depict the in-
terleaved and reference sequence. We extract the CZ gate fidelity
(97.6 ± 0.3)%.
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TABLE V. Parameters of the Hamiltonian (I2) extracted from the two-tone spectroscopy measurements and predicted qubit transition
frequencies and charge matrix elements.

EC,α (GHz) EL,α (GHz) EJ,α (GHz) JC (GHz) f α
01 (GHz) f α

12 (GHz) | 〈0| n̂α |1〉α | | 〈1| n̂α |2〉α |
Qubit A 1.051 0.753 5.263 0.217 4.489 0.066 0.576

0.248
Qubit B 1.069 0.771 3.870 0.489 3.510 0.131 0.559

In all measurements of this device, we did not optimize
our readout parameters sufficiently to perform single-shot
joint readout of the two-qubit states. As an alternative, to
measure the population distribution of any two-qubit state
�P = [Pgg, Pge, Peg, Pee]T , we repeatedly prepare the same state
and measure the cavity transmission following four different
single-qubit rotations: no rotation, π rotation on qubit B, π

rotation on qubit A, and π rotation on both qubits. These
measurements yield a 4-vector of complex transmission co-
efficients �V = [VII ,VIπ ,VπI ,Vππ ]T . This measurement signal
can be converted to the population vector via a calibrated
measurement matrix M: �P = M �V ,

⎛
⎜⎝

pgg

pge

peg

pee

⎞
⎟⎠ =

⎛
⎜⎝

Mgg Mge Meg Mee

Mge Mgg Mee Meg

Meg Mee Mgg Mge

Mee Meg Mge Mgg

⎞
⎟⎠

−1⎛
⎜⎝

VII

VIπ

VπI

Vππ

⎞
⎟⎠. (H1)

The M matrix is calibrated and updated throughout all exper-
iments by measuring �V of the initial state of the system �Pi

(which typically is about [0.87, 0.04, 0.09, 0.00]T following a
driven reset protocol). �Pi is determined self-consistently with
additional calibration routines.

APPENDIX I: THEORETICAL ANALYSIS

In this Appendix, we analyze the controlled-phase (CP)
gate with fluxonium qubits theoretically. First, we simulate
the unitary dynamics during the gate operation, calculate the
unitary error, and discuss coherent leakage to higher noncom-
putational levels. Second, we estimate the incoherent error
caused by relaxation and dephasing, which are the dominant
sources of error in our devices. Our estimate of this error
is in good agreement with experimental gate infidelities in
Fig. 3 of the main text. Finally, we discuss effects of the
ZZ-cancellation tone.

1. Unitary dynamics and coherent leakage to higher levels

We describe the unitary dynamics of the driven system of
two capacitively coupled fluxonium qubits by the Hamiltonian

Ĥ = Ĥstatic + Ĥdrive(t ). (I1)

Here the static part of the Hamiltonian reads (α labels the two
circuits A and B)

Ĥstatic

h
=

∑
α=A,B

[
4EC,α n̂2

α + 1

2
EL,αϕ̂2

α − EJ,α cos(ϕ̂α − φext,α )

]

+ JCn̂An̂B, (I2)

where EC,α is the charging energy (antenna) of fluxonium α,
EL,α is its inductive energy (junction array), EJ,α is Josephson

energy (small junction), and φext,α is proportional to the exter-
nal magnetic flux threading the loop formed by the junction
array and the small junction of qubit α. Here we operate at
the flux sweet spot where φext,α = π . The operators ϕ̂α and
n̂α are the generalized flux and Cooper-pair number operators
of fluxonium α, respectively, which satisfy the commutation
relation [ϕ̂α, n̂α′ ] = iδαα′ . Table V gives the experimental val-
ues of the parameters in the Hamiltonian (I2) obtained by
fitting two-tone spectroscopy measurements to the numeri-
cal diagonalization of the Hamiltonian and calculated values
of single-qubit transition frequencies and charge matrix el-
ements. The notation f α

kl stands for the frequency of the
|k〉α − |l〉α transition. Our qubits are coupled by an interaction
term JCn̂An̂B with a coupling constant JC = 0.248 GHz. This
affects two-qubit transition frequencies, which are shown in
Fig. 1(c) of the main text.

We model the time-dependent drive term in the Hamilto-
nian (I1) by

Ĥdrive(t )

h
= (εAn̂A + εBn̂B)[gx(t ) cos(2π fdt )

+ gy(t ) sin(2π fdt )]. (I3)

Here the envelope functions gx(t ) and gy(t ) describe two
independent quadrature controls. Assuming that they are nor-

malized as
√

g2
x + g2

y = 1 for a continuous microwave tone,

we find that the on-resonance Rabi frequency for the two-
qubit transition |kl〉 − |k′l ′〉 is given by

�kl−k′l ′ = |〈kl|(εAn̂A + εBn̂B)|k′l ′〉|. (I4)

Here |kl〉 is the eigenstate of the interacting Hamiltonian
(I2) that is connected adiabatically to the noninteracting
state |k〉A ⊗ |l〉B. To match the experimentally measured in-
duced ZZ rate of ξ ind

ZZ = 2.9 MHz at fd = 4.545 GHz at the
drive power corresponding to �11−21 = 52.4 MHz, we choose
εB/εA = 1.3 in the drive term (I3). Equation (I4) has been used
in simulating Rabi frequencies shown in Fig. 1(c) in the main
text.

For the control gx(t ), we use a Gaussian flat-topped pulse
with the length of each of the rising and lowering edges trise

and the duration of the flat part tflat. Up to a normalization
constant, the rising edge of the pulse at 0 < t < trise is given
by

gx(t ) ∝ exp

[
− (t − trise )2

2σ 2

]
− exp

[
− t2

rise

2σ 2

]
, (I5)

where σ = trise/
√

2π , and the lowering edge is given by
a similar expression at tgate − trise < t < tgate, where tgate =
2trise + tflat. For the orthogonal quadrature, we use the DRAG
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approach [41], which gives

gy(t ) = αDRAG
dgx

dt
, (I6)

where αDRAG is the DRAG coefficient adjusted to avoid leak-
age errors during the gate.

To calculate the unitary gate errors, we first simulate the
operator of evolution between t = 0 and t = tgate for a system
described by the Hamiltonian (I1) and project it into the com-
putational subspace to obtain Û . To properly compare Û with
the target CP gate operator ÛCP(φ), where

ÛCP(φ) = diag(1, 1, 1, e−iφ ), (I7)

we adjust Û with single-qubit Z rotations as follows. We
define the phase accumulation for operator Û as

φU = φ00 + φ11 − φ10 − φ01, (I8)

where φkl = −arg〈kl|Û |kl〉 is the opposite of the phase of
the corresponding diagonal matrix element. The combination
(I8) is invariant under single-qubit Z rotations. It results in the
phase mismatch

δφ = φU − φ (I9)

between the accumulated and target phases. We then calculate
Û ′ = ÛZÛ , where

ÛZ = diag[ei(φ00−δφ/4), ei(φ10+δφ/4), ei(φ01+δφ/4), ei(φ11−δφ/4−φ)]
(I10)

is the product of two single-qubit Z rotations and an overall
phase factor. Using the operator Û ′, we use the standard ex-
pression for the two-qubit gate fidelity [56]:

F = Tr[(Û ′)†Û ′] + |Tr[Û †
CP(φ)Û ′]|2

20
. (I11)

There are two major sources of coherent errors: the
phase error and the error due to leakage to noncomputa-
tional levels. To calculate the phase error, we take Û =
diag(e−iφ00 , e−iφ01 , e−iφ10 , e−iφ11 ) and find using Eq. (I10)
that Û ′ = diag(e−iδφ/4, eiδφ/4, eiδφ/4, e−iδφ/4−iφ ). The infi-
delity 1 − F calculated using Eq. (I11) then gives the phase
error

Eφ = 4

5
sin2

(
δφ

4

)
. (I12)

The coherent leakage error is the average leakage probability,
which is given by

Pleak = 1 − 1
4 Tr(Û †Û ). (I13)

Since Û is obtained following the projection into the compu-
tational subspace, it is generally nonunitary, so Pleak can be
nonzero.

Using this procedure, we calculated coherent errors for 16
target phases φ = π/16, π/8, . . . , π , discussed in the main

text. For each target phase, we used experimental pulse dura-
tion parameters trise and tflat and optimized 1 − F numerically
over the DRAG parameter αDRAG, the overall drive ampli-
tude, and the drive frequency, which we allowed to vary
within a ±5 MHz window around its experimental value fd =
4.545 GHz. For each of the 16 CP gates optimized this way,
we found that 1 − F < 10−4, Pleak < 10−4, and Eφ < 10−5.
We show these errors as a function of tflat in Fig. 10(a) and
10(b) for φ = π/2 and φ = π , respectively, where we keep
other parameters fixed at their optimal values. For φ = π/2,
Fig. 10(a), we notice that Pleak < 10−4 for any value of tflat,
which is explained by long edges of the pulse with trise =
50 ns. Therefore, for this set of gate parameters, we can obtain
a complete family of CP gates with the total unitary error
1 − F < 10−4 for any target phase φ by simply varying tflat.
We have checked that in this case, the accumulated phase (I8)
is a linear function of tflat and is given by φU = 2πξZZtflat up
to a constant with ξZZ = 4.3 MHz. In comparison, a shorter
trise = 10 ns has been used in simulations and experiment
for the target phase φ = π , see Fig. 10(b), which resulted in
maxima of Pleak (tflat ) around 10−2. In this case, the optimized
gate requires simultaneous elimination of leakage in both
|10〉 − |20〉 and |11〉 − |21〉 transitions at the end of the pulse,
which happens at sharp minima of Pleak (tflat ) in Fig. 10(b).

In Fig. 10(c), we show simulations for the target phase
φ = π for the second device, which is discussed in detail in
Appendix H. This device has a stronger repulsion between
|12〉 and |21〉, which results in a larger detuning between
frequencies of the |10〉 − |20〉 and |11〉 - |21〉 transitions
and, therefore, in a faster CP gate. In simulations, we have
chosen εA = εB in the drive term (I3) to match the experi-
mental value of �11−21/�10−20. To match experimental time
parameters, we have used trise = 18 ns and σ = 30/

√
2π ns

in the Gaussian edge (I5). As is evident from Fig. 10(c), this
device allows a fast CP, while maintaining a small leakage
Pleak < 10−3. Here, it is a specific device spectrum rather than
a short gate duration that prevents us from easily achieving
leakage error below 10−4 as in Figs. 10(a) and 10(b). For this
device, the |01〉 − |02〉 and |11〉 − |12〉 transitions are addi-
tional important leakage channels as their frequencies are only
100–200 MHz below those of the |10〉 − |20〉 and |11〉 − |21〉
transitions. This makes it harder to match off-resonant Rabi
oscillations in all the leaking transitions to achieve sharp
minima as in Fig. 10(b). Thus, a longer Gaussian edge as
in Fig. 10(a) or more advanced pulse shaping is required to
obtain 1 − F < 10−4.

2. Incoherent error

In the present experiment, the actual gate fidelity is lim-
ited by decoherence rather than coherent errors. To estimate
this limit, we use a simple model in the rotating-wave ap-
proximation with only six levels in the Hilbert space: four
computational states as well as states |20〉 and |21〉. Thus, we
use

ĤRWA

h
= −δ|20〉〈20| − (δ − �)|21〉〈21| + gx(t )

2
[�10−20(|10〉〈20| + |20〉〈10|) + �11−21(|11〉〈21| + |21〉〈11|)]

− igy(t )

2
[�10−20(|10〉〈20| − |20〉〈10|) + �11−21(|11〉〈21| − |21〉〈11|)], (I14)
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(a) (b) (c)

FIG. 10. Simulated coherent gate errors. The total unitary error 1 − F (solid lines), leakage error Pleak (dash-dotted lines), and the phase
error Eφ (dashed lines) are shown vs tflat, the duration of the flat part of the pulse, for the target phases φ = π/2 (a) and π (b ) and for the
second device that is described in Appendix H with the target phase of π (c ). Each gate is first optimized for a fixed Gaussian flat-topped
envelope gx (t ) with experimental values of tflat, trise, and σ , see Eq. (I5), and then simulated at other values of tflat.

where δ = fd − f10−20 ≈ 57 MHz and � = f11−21 −
f10−20 ≈ 8 MHz, see Fig. 1(c) in the main text. In addition,
here �11−21/�10−20 = 1.114 to match the ratio εB/εA in
Eq. (I3) and we use the same pulse-shaping envelopes as
in Eqs. (I5) and (I6). We find that contributions due to
decoherence of both computational and noncomputational
transitions are important in our device. The relevant time
parameter for the first contribution is the total gate duration
2trise + tflat, while the relevant time parameter for the second
contribution is the effective duration trise + tflat. Similarly to
the calculation of unitary errors, we use the experimental
values of trise and tflat to better match our estimates with
measurements.

For given target phase accumulation φ and experimental
trise and tflat, we optimize the unitary gate error over the drive
amplitude and the DRAG coefficient αDRAG. We calculate this
error following the same procedure as in Appendix I 1, but
for the Hamiltonian (I14). Once the optimal parameters are
found, we perform simulations of nonunitary dynamics using
Lindblad master equation. For the 6 × 6 density matrix ρ, it
has the form

d ρ̂

dt
= − i

h̄
[ĤRWA, ρ̂]

+
∑

k

[
L̂k ρ̂L̂†

k − 1

2
(L̂†

k L̂k ρ̂ + ρ̂L̂†
k L̂k )

]
, (I15)

where we use six collapse operators L̂k . We form them
by continuing tensor products of single-qubit collapse and
identity operators into interacting states. For example, we
take |0〉A〈1|A ⊗ (|0〉B〈0|B + |1〉B〈1|B) to obtain |00〉〈10| +
|01〉〈11|, which is exact for an uncoupled system. Thus, for
the relaxation in the main qubit transitions, we use the follow-
ing collapse operators:

L̂A
1 =

√
�A

1 (|00〉〈10| + |01〉〈11|), (I16a)

L̂B
1 =

√
�B

1 (|00〉〈01| + |10〉〈11| + |20〉〈21|). (I16b)

We notice that while the unitary dynamics of states |00〉
and |01〉 is independent of that of other levels in our simplified
model (I14), these states are no longer uncoupled from the rest
of the Hilbert space once incoherent channels are accounted
for. For the pure dephasing of the main qubit transitions, we
use

L̂A
ϕ =

√
2�A

ϕ (|00〉〈00| + |01〉〈01|), (I17a)

L̂B
ϕ =

√
2�B

ϕ (|00〉〈00| + |10〉〈10| + |20〉〈20|). (I17b)

For relaxation and pure dephasing of the |1〉A → |2〉A tran-
sition of qubit A, we use

L̂1−2,A
1 =

√
�1−2,A

1 (|10〉〈20| + |11〉〈21|), (I18a)

L̂1−2,A
ϕ =

√
2�1−2,A

ϕ (|20〉〈20| + |21〉〈21|). (I18b)

In these equations, the relaxation and dephasing rates are
given by �1 = 1/T1 and �ϕ = 1/T E

2 − 1/2T1, where T1 and
T E

2 are the relaxation and T2 echo times of the corresponding
transition. In simulations, we use average values of T1 and T E

2
for the ranges shown in Table I.

After solving the master equation (I15) for an initial
state |ψ0〉 at t = 0, we find the density matrix ρ̂ describing
the system at time t = tgate. We calculate the state fi-
delity as Fρ = Tr(ρ̂ρ̂ideal ), where ρideal = |ψideal〉 〈ψideal| with
|ψideal〉 = Û †

Z ÛCP(φ) |ψ0〉 and ÛZ describing virtual Z rota-
tions used to calculate unitary gate error, see Eq. (I10).
We then estimate the gate error 1 − F by averaging 1 − Fρ

over 36 initial two-qubit states generated from the set of
six initial single-qubit states {|0〉, |1〉, (|0〉 ± |1〉)/

√
2, (|0〉 ±

i|1〉)/
√

2}. Gate errors calculated this way are shown by
squares in Fig. 3(d) of the main text.

The simulated gate error for the accumulated phase φ = π

is 1 − F ≈ 1.1 × 10−2, which agrees well with the experi-
mental value. A natural question to ask is how small this
error can be in devices with longer coherence times. For T1 =
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T2 = 500 μs of single-qubit transitions and T1 = T2 = 50 μs
of the |1〉A → |2〉A transition, we find that this error reduces
to 7 × 10−4. When these relaxation and coherence times are
further increased by a factor of two to 1000 and 100 μs,
we estimate 1 − F ≈ 4 × 10−4. To obtain 1 − F < 10−4, we
additionally need to change the device parameters of Table V
to allow for a shorter gate. For example, this can be achieved
by increasing JC by a factor of 2, which increases � by a factor
of 4 and thus reduces the shortest possible gate duration by the
same factor.

A similar approach to estimate gate error due to relax-
ation and dephasing applied to the second device, which is
discussed in Fig. 10(c) and in Appendix H, gives the error
of about 1.3%. Since in that device, the frequencies of the
|01〉 − |02〉 and |11〉 − |12〉 transitions are only 100–200 MHz
away from those of the |10〉 − |20〉 and |11〉 − |21〉 transi-
tions, we extended the model (I14) to add levels |02〉 and |12〉
and modified the set of collapse operators accordingly with
the extra relaxation and dephasing channels.

3. Effect of the ZZ-cancellation tone

We have seen in our simulations that the relaxation and de-
phasing of the |1〉A − |2〉A transition of qubit A is responsible
for about half of the CP gate error because the population of
state |2〉A can become as large as 20% during gate operation.
Similarly, the microwave tone that is used to cancel static
ZZ-interaction results in modified relaxation and dephasing
channels within the computational subspace as expected from
the hybridization of |10〉 with |20〉 and |11〉 with |21〉. How-
ever, in comparison to a fast CP gate, where �11→21 ∼ δ − �,
the ZZ-cancellation tone has a lower power of �11−21 ≈
30 MHz and a larger detuning | fd − f11−21| ≈ 150 MHz.

In the rotating frame [the frame of the Hamiltonian (I14)],
this leads to a weak hybridization between computational
and higher levels. Keeping only terms that are linear in λ =
�11−21/| fd − f11−21| ≈ �10−20/| fd − f10−20| ≈ 0.2, we find
the following dressed states [eigenstates of the Hamiltonian
(I14)]:

|11〉λ = |11〉 + λ

2
|21〉 , (I19a)

|21〉λ = −λ

2
|11〉 + |21〉 , (I19b)

and similarly for |10〉λ and |20〉λ. The set of states
{|00〉 , |01〉 , |10〉λ , |11〉λ} is the computational subspace in the
presence of the cancellation tone (the dressed computational
subspace). When the system is in one of the dressed states
|10〉λ or |11〉λ, the population of the bare state |20〉 or |21〉
is only λ2/4 ≈ 0.01, so we anticipate only a weak reduction
of the relaxation and dephasing rates of qubit transitions in
comparison to their values at λ = 0.

To calculate these rates accurately, one needs to apply the
transformation given by Eqs. (I19a) and (I19b) to the Hamilto-
nian describing system-bath interaction, trace out bath degrees
of freedom, and obtain a master equation in the new basis [57].
Here we only estimate the effect of the interplay of the can-
cellation tone and relaxation and dephasing of the |1〉A − |2〉A
transition to demonstrate that such an effect is small. To this
end, we apply the transformation given by Eqs. (I19a) and
(I19b) to the collapse operators (I18a) and (I18b). To the
zeroth order in λ, we find the collapse operators having the
same forms as Eqs. (I18a) and (I18b) but written in terms of
the dressed states. The corrections to them are given by

δL̂1−2,A
1 = λ

2

√
�1−2,A

1 (|10〉λ 〈10|λ − |20〉λ 〈20|λ + |11〉λ 〈11|λ − |21〉λ 〈21|λ) + O(λ2), (I20a)

δL̂1−2,A
ϕ = λ

2

√
2�1−2,A

ϕ (|10〉λ 〈20|λ + |20〉λ 〈10|λ + |11〉λ 〈21|λ + |21〉λ 〈11|λ) + O(λ2). (I20b)

We observe that the relaxation channel introduces a small
dephasing of the |1〉A − |2〉A transition and vice versa. In ad-
dition, the terms with |10〉 〈10| and |11〉 〈11| in the right-hand
side of Eq. (I20a) yield additional dephasing of computational
transitions. This additional dephasing can be characterized by

the rate �′
φ defined as

√
2�′

φ ≈ (λ/2)
√

�1−2,A
1 . For our param-

eters, we find 1/�′
φ ≈ 8/(λ2�1−2,A

1 ) ≈ 1 ms, which is much
longer than qubit dephasing times in our device. This num-
ber is comparable with longest fluxonium coherence times
reported so far [30,58]. As we anticipate a significant im-
provement in T1 of the |1〉 → |2〉 transitions of future devices,
1/�′

φ is expected to become much longer. Therefore, we
do not predict any significant increase in the dephasing rate
caused by the cancellation tone in both current and future
devices.

We notice that Eqs. (I20a) and (I20b) do not predict
directly any relaxation within the computational subspace.
Cancellation-tone-induced relaxation is possible in a more
detailed model (I2), which properly accounts for the capac-
itive interaction. With the interaction-induced hybridization
of states |10〉 and |01〉 taken into account, an additional re-
laxation channel is possible with the rate �′

1, where
√

�′
1 ∼

λν

√
�1→2,A

1 , ν = JCnA
01nB

01/| f A
01 − f B

01| ≈ 0.008 describes the
hybridization strength, and nα

kl = | 〈k| n̂α |l〉 |. Alternatively,
qubit relaxation can be facilitated by a stronger hybridiza-
tion of states |21〉 and |12〉 with the strength JCnA

12nB
12/| f A

12 −
f B
12| ≈ 0.08. For both of these cases, we find that the theory

predicts a correction to the qubit relaxation rate negligible
compared to the energy relaxation rates of the qubit transitions
of our devices.
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