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Spatiotemporal diffusion as early warning signal for critical transitions
in spatial tumor-immune system with stochasticity
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Complex dynamical systems have tipping points and exhibit nonlinear dynamics. It is difficult to predict
and prevent the onset and progression of the tumors, mainly due to the complexity of interactions between
tumor growth and tumor-immune cells involved. Moreover, previous models were based on the influence of the
zero-dimensional systems and did not consider the spatiotemporal fluctuation in the tumor microenvironment.
We here extend the previous model to a two-dimensional system and employ spatial early warning signals to
study the spatially extended tumor-immune system with stochasticity. On the one hand, we obtain the stationary
probability density of the system under the mean-field approximation assumption. It is found that the health state
gets more and more stable than the disease state as the noise level increases when the system has a bistable state,
and the system goes from health to disease state through a bistable region as the growth rate increases. On the
other hand, we present a spatiotemporal diffusion coefficient indicator to predict upcoming critical transitions.
It is shown that a rising spatiotemporal diffusion coefficient obtained from the spatial snapshot data can be
an effective indicator for predicting upcoming critical transitions. Anticipating critical transitions in the spatial
tumor-immune system with stochasticity can be greatly helpful to prevent disease onset and progression, which
may intercept abrupt shifts from health to disease state.
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I. INTRODUCTION

Some ecosystems and biological systems are complex,
characterized by abrupt shifts, and usually comply with non-
linear dynamics [1]. Moreover, many complex systems have
tipping points where their equilibrium state abruptly shifts
from one stable state to another [2]. These shifts are re-
ferred to as regime shifts or critical transitions [3]. In the
past decade, several studies provided evidence for the pres-
ence of critical transitions in ecosystems. In ecology [4],
critical transitions have been related to the eutrophication of
lakes [5–7], the collapse of fish populations [8], algae over-
growth coral reefs [9,10], and Dansgaard-Oeschger events in
Greenland [11]. There are similar characteristics in biological
systems and ecosystems, i.e., critical transitions. In biology,
already identified critical transitions have also been associ-
ated with microbiome dysregulation [12], depression [13],
epileptic seizures [14,15], and cancer [16]. Theoretical and
empirical studies indicate that the notion of critical transitions
and tipping points has been applied to biological systems [1].
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The evolution of spatial patterns has been an impor-
tant concept and extensively studied in biophysical and
biochemical systems [17–21]. Their classification systems in-
clude the Ginzburg-Landau model [22], the Swift-Hohenberg
equation [23,24], the Belousov-Zhabotinsky reaction [25,26],
and the Synchronization [27,28]. In particular, there is evi-
dence that spatial patterns play a crucial role in the growth and
development of tumors. Examples include solid tumor growth
models [29,30], avascular tumor growth models [31,32], inva-
sive tumor growth coupled reaction-diffusion equations [33],
and stratified epithelia nutrient-diffusion dynamics [34]. The
majority of previous studies on the modeling of the tumor mi-
croenvironment (TME) are based on spatial pattern formation.
A majority of these studies have mostly ignored quantitative
research of tumor cell populations. Moreover, in previous
studies, these systems only involved the time dimension and
were not sufficient to describe the real environment of tumor
growth [35–37]. To simplify the analysis, our model simplifies
the parametrization of the TME, namely, the model assumes a
constant reserve of immune cells that serve to kill tumor cells.
A simplified model of tumor growth and tumor-immune cell
interactions can allow for focusing on two aspects: (1) Study-
ing the influence of a stochastic growth rate and a diffusion
of the tumor cells in the overall competition and (2) devel-
oping spatial warning signals for critical transitions between
low and high tumor density states. Furthermore, in spatially
extended tumor-immune systems with stochasticity, the local
dynamics are coupled between neighboring sites, a character-
istic that is obviously inexistent in purely temporal systems
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[38]. It is worth noting that stochasticity has also been the
subject of classic studies in nonlinear dynamics [38,39]. In
this paper, we extend the previous system to the spatially ex-
tended tumor-immune system with stochasticity to study how
spatiotemporal noise (stochastic growth rate) and diffusion
(connectivity) affect the behavior of the system.

It is difficult to predict these critical transitions as the
equilibrium state of the system may display little change until
the tipping point is reached [2]. In addition, it is impossible
to thoroughly study the mechanisms and parametrizations of
the various complex systems [40]. Although it is extremely
difficult to predict critical transitions before they are reached,
work in different scientific fields has shown the existence
of generic early warning signals [41]. These early warn-
ing signals have been applied to complex systems, such as
ecosystems [4,21,42,43], climate [11,44], biological systems
[45,46], and financial markets [47,48]. One issue is that the
detection of critical transitions from time series inclines to
require long, high-resolution data [49]. In other words, time
series might offer insufficient information to find upcoming
critical transitions. Then will spatial indicators accurately re-
veal early warning signals more than time indicators? Because
a spatial snapshot can carry much more information than a
single point in a time series, spatial indicators are a potentially
forceful option [49]. Here we aim to provide spatial early
warning signals (SEWSs) of critical transition in the spatially
extended tumor-immune systems with stochasticity.

The paper is organized as follows. In Sec. II A, we present
the dynamical model of the spatially extended tumor-immune
system with stochasticity [37]. In Sec. II B, through the
mean-field approximation (MFA) assumption, we derive a
corresponding Fokker-Planck equation from the Langevin
equation and give the stationary probability distribution
solution. In Sec. II C, we propose the metric-based spatial in-
dicators to predict upcoming critical transitions. In Sec. III A,
we study the effect of the noise levels Q and growth rates r
in the spatially extended tumor-immune system with stochas-
ticity by calculating the stationary probability distributions. In
Sec. III B, we present a novel indicator to identify upcoming
critical transitions in the spatially extended tumor-immune
systems with stochasticity. In Sec. IV, we briefly summa-
rize the results for the spatial tumor-immune system with
stochasticity.

II. MODEL AND METHODS

A. Model description

The tumor growth under immune surveillance can be de-
scribed by the insect outbreak model [50,51]. We simplify the
problem by exploiting a separation of time scales: the tumor
cell population evolves on a fast time scale (their doubling
time is generally several months, so they have a characteristic
time scale of months), whereas the nutrients are stored on
a slow time scale (at a much slower rate than tumor cells,
they consume their stored nutrients in the case of tumor cell
density above a critical threshold, and the human life span
in the absence of cancer is between 70 and 100 years so
that their generation time is measured in decades) [50]. Thus
the minimum number of variables will include tumor cell

FIG. 1. (a) The bifurcation diagram and (b) Lyapunov exponent
as a function of r, respectively. The parameters are chosen as β = 2.0
and K = 10.0.

population as a fast variable and nutrient storage quantity as
a slow variable. It means that in this case, nutrient storage
variables may be treated as constants. In addition, the main
limiting features for tumor growth are nutrient supply and the
effects of immune cells. Therefore the model for the tumor
growth and tumor-immune cell interactions can be written as
[52,53]

dφ̂

dt̂
= r̂φ̂

(
1 − φ̂

K̂

)
− p(φ̂), (1)

where φ̂ denotes the tumor nuclei density, r̂ represents growth
rate, and the carrying capacity K̂ is assumed to depend on the
nutrients available. p(φ̂) = βφ̂2/(ε2 + φ̂2) represents the im-
mune term with the ability to recognize and eliminate nascent
tumors [51]. Here β is the immune coefficient, and ε is the
critical level. The physical significance of the immune term
suggests that immune cells increase with increasing tumor
cells. However, once the tumor cell density exceeds a certain
critical level φ = ε, the immune system turns on sharply and
then saturates (the immune cells are working as fast as they
can). The dimensionless form [54,55] of Eq. (1) is given by

dφ

dt
= rφ

(
1 − φ

K

)
− βφ2

1 + φ2
, (2)

where φ = φ̂/ε, t = t̂/ε, r = r̂ε, and K = K̂/ε. Here r, K ,
and β are the dimensionless growth rate, carrying capacity,
and immune coefficient, respectively.

It should be noted that the early work had discussed the
discrete tumor growth model [56] in pathology of which a
detailed description is given in Appendix A. As shown in
Fig. 1, the bifurcation diagram reveals the appearance of the
transition from order to the chaotic system with increasing
growth rate r. The TME mainly includes tumor cells, immune
cells, and stromal cells [57]. The interaction of two or more
subpopulations of cancer cells may lead to negative, neutral,
and positive selection for tumor evolution [57]. It is worth
mentioning that the TME has a strong influence on cancer
evolution [57], which suggests the existence of spatiotemporal
fluctuations [58,59] in growth rate r. Therefore the growth rate
r in Eq. (2) should be rewritten as r + η(x, t ). Here η(x, t ) is
a Gaussian white noise in both time and space with zero mean
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and the correlation function is given by

〈η(x, t )η(x′, t ′)〉 = 2Qδ(x − x′)δ(t − t ′), (3)

where Q is the noise level. Connectivity is modeled as the
exchange of tumor nuclei density between neighboring lat-
tices mimicked through a simple diffusive process. As such,
the stochastic partial differential equation (SPDE) in the most
standard form [40,59] can be written as

∂φ(x, t )

∂t
= rφ

(
1 − φ

K

)
− βφ2

1 + φ2
+ D∇2φ

+ φ

(
1 − φ

K

)
η(x, t ), (4)

where φ(x, t ) is density variable in the spatial lacation x at
time t and D denotes diffusion coefficient.

To simplify the simulation, we consider a lattice form in d
dimension. Each lattice is connected with its four neighboring
lattices. Partition space (see Appendix B) into N = Ld squares
of lattice spacing �x, Eq. (4), can be rewritten as [38,39,60]

dφi(t )

dt
= rφi

(
1 − φi

K

)
− βφ2

i

1 + φ2
i

+ D

2d�xd

∑
j∈nn(i)

(φ j − φi)

+ φi

(
1 − φi

K

)
ηi(t ), (5)

where nn(i) represents the set of 2d nearest neighbors of site
i and d denotes space dimension. For the white noise, the
correlation function of Eq. (3) can be rewritten as

〈ηi(t )η j (t
′)〉 = 2

Q

�xd
δi jδ(t − t ′). (6)

B. Theoretical analysis

The MFA is achieved through the following assumptions
[38]:

D

2d�xd

∑
j∈nn(i)

(φ j − φi ) = D

�xd
(〈φ〉 − φi ). (7)

Let f [φi(t )] = rφi(t )[1 − φi(t )/K] − βφ2
i (t )/[1 + φ2

i (t )] and
g[φi(t )] = φi(t )[1 − φi(t )/K]; one can obtain the correspond-
ing Fokker-Planck equation of Eq. (5) under the MFA
assumption Eq. (7) written in the Stratonovich interpretation
(α = 1/2) as [61–63]

∂P({φi}, t )

∂t
= −∂[A({φi})P({φi}, t )]

∂{φi} +∂2[B({φi})P({φi}, t )]

∂{φi}2
,

(8)
where

A({φi}) = f ({φi}) + D

�xd
(〈φ〉 − {φi}) + Qg({φi})g′({φi}),

B({φi}) = Q[g({φi})]2. (9)

For convenience, we drop the subscript i. Evaluation of the
quantity 〈φ〉 is introduced, which is the solution of MFA, and
then it can be written as [38]

〈φ〉 = F (〈φ〉) =
∫

φPst (φ, 〈φ〉) dφ. (10)

FIG. 2. The MFA of solutions 〈φ〉 as a function of growth rate
r for three different noise intensities Q. These points correspond
to the intersection of these curves in the inset. Inset: The set of
solutions, 〈φ〉, of the self-consistency equation (10) is the intersec-
tion point between F (〈φ〉) = 〈φ〉 and F (〈φ〉) = ∫

φPst (φ, 〈φ〉) dφ

for noise level Q = 0.01 (data not shown), Q = 0.10, and Q = 0.20
(data not shown). Other parameter values are β = 2.0, K = 10.0, and
D = 0.1.

Equation (10) is a self-consistency equation because the sta-
tionary probability distribution relies on unknown variables
〈φ〉. Consequently, finding the set of solutions of this self-
consistency equation is solving the MFA.

We use the secant intersection method to solve the tran-
scendental equation of Eq. (10) [60]. Figure 2 shows that
through the intersection point between F (〈φ〉) = 〈φ〉 and
F (〈φ〉) = ∫

φPst (φ, 〈φ〉) dφ, we can obtain the solution 〈φ〉
as a function of growth rate r. It is clear that the solutions
of the self-consistency equation exhibit a monostable state for
the low and high values of r and bistable states for a range
of intermediate values of r. Namely, the increase of noise
leads to the transition from three equilibria to an equilibrium
of the solution of the self-consistency equation. This finding
suggests that the noises play a significant role in the critical
transitions.

The corresponding stationary probability distribution solu-
tion Pst (φ, 〈φ〉) of Eq. (8) reads [64,65]

Pst (φ, 〈φ〉) = N

B(φ)
exp

∫ φ A(φ′)
B(φ′)

dφ′

= N√
Qg(φ)

exp
∫ φ f (φ′)

B(φ′)
dφ′

= N exp

[∫ φ f (φ′)
B(φ′)

dφ′ − ln
√

Qg(φ)

]

= N exp

[
−Ueff (φ, 〈φ〉)

Q

]
, (11)

where N is the normalization constant. Ueff (φ, 〈φ〉) is the
effective potential (landscape) and it can be expressed as
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follows:

Ueff (φ, 〈φ〉) = 2βK3

(1 + K2)2

(
ln

∣∣∣∣∣K
√

1 + φ2

K − φ

∣∣∣∣∣ + K

2
arctan φ

)

+ (r + Q − D) ln

∣∣∣∣K − φ

φ

∣∣∣∣
+ βK2

(1 + K2)2

(
1

K − φ
− arctan φ + K2

K − φ

)

+ Q ln

∣∣∣∣
√

Qφ2

K

∣∣∣∣
+ DK

K − φ
+ D〈φ〉K − 2φ

φ(K − φ)

+ 2D〈φ〉
K

ln

∣∣∣∣K − φ

Kφ

∣∣∣∣. (12)

C. Metric-based spatial indicators

In this work, metric-based spatial indicators quantify al-
ternations in the statistical properties of the spatial datasets
produced by Eq. (5). Moreover, they can be used to identify
impending critical transitions between alternative stable states
in complex systems. These indicators have been fully veri-
fied in complex systems, such as ecosystems [4,21], climate
[11,44], biological systems [45,46], and financial markets
[47,48].

1. Spatial variance

Critical slowing down can give rise to larger fluctuations
near the equilibrium state of the system, which leads to the
increase of spatial variance of the system before a transition.
Here we define the spatial variance functions of the state
variable as [6,40]

σ 2 = 1

N

N∑
i=1

(φi − φ̄)2, (13)

where N is the total number of spatial units. φi denotes the
attribute value of the spatial unit i, and the subscript i stands
for d-dimension space; φ̄ is the average of all spatial unit
values.

2. Spatial skewness

When the system approaches a transition, spatial patterns
can become increasingly asymmetric. The spatial asymmetry
can be measured by spatial skewness, which is defined by
[21,40]

γ = 1

Nσ 3

N∑
i=1

(φi − φ̄)3. (14)

3. Spatial kurtosis

Fluctuations can cause the spatial kurtosis of states of a
system to reach more extreme values close to a transition. This
kurtosis is the standardized fourth moment of fluctuations of

state variable and is defined by [66]

κ = 1

Nσ 4

N∑
i=1

(φi − φ̄)4. (15)

4. Near-neighbor spatial correlation

The near-neighbor spatial correlation [20,67,68] (at lag-1)
captures the increasing correlation among neighboring spatial
sites. It can be quantified by the spatial correlation function
between biological states φi and φ j separated by a distance R;
thus it is defined by

C(R) = N
∑N

i=1

∑N
j=1 ωi j (φi − φ̄)(φ j − φ̄)

W
∑N

i=1(φi − φ̄)2
, (16)

where W = ∑N
i=1

∑N
j=1 ωi j is the total number of units sepa-

rated by distance R; ωi j is the spatial weight matrix. It is equal
to 1 if spatial units i and j are separated by a distance R and
to 0 otherwise; φi and φ j represent the attribute value of the
spatial unit i and the spatial unit j, respectively.

5. Near-neighbor spatiotemporal diffusion coefficient at lag-1

The spatiotemporal dispersion at time lag τ and neighbor-
ing units separated by the distance R are given by

δφi j (t ) = ωi j[φ j (t ) − φi(t − τ )]. (17)

The spatiotemporal diffusion coefficient is characterized by
the mean-square deviation of the density variable δφi j (t ) in
the spatial locations i and j at time t [69–72], namely,

D(R, τ ) = 1

N2

N∑
i=1

N∑
j=1

〈δφ2
i j (t )〉 − 〈δφi j (t )〉2

4τ
. (18)

In our numerical simulation, both R and τ are taken as 1, thus
C(R) = C(1) and D(R, τ ) = D(1, 1).

III. RESULTS

A. Stationary probability distribution function

To validate the theoretical results obtained from the sta-
tionary probability density function (SPDF) of Eq. (11), we
employ the stochastic Heun algorithm [59,73] to simulate
stochastic dynamics. The derivation of this algorithm is given
in Appendix B. To obtain convergent results, we run the sim-
ulations for 107 time steps and remove 106 initial transient
state data. The numerical simulations of Eqs. (5) and (6) are
performed on a square lattice of 128 × 128 cells of grid size
�x = 1 with a time step �t = 0.001 and periodic boundary
conditions. The initial conditions of φi(0) were uniformly
distributed over the interval [0,1].

The theoretical results and the numerical simulations of the
SPDF are plotted in Figs. 3(a)–3(c) for different noise levels
Q. When the noise level is small, the numerical simulations
(symbols) agree well with the theoretical prediction (solid
lines), suggesting that our results are credible. For the monos-
table region, the SPDF peaks decrease with the increases of
the noise level Q, as shown in Figs. 3(a) and 3(c). For the bist-
able region, however, with the increase of the noise level
Q, the SPDF peak increases at low tumor nuclei density
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FIG. 3. [(a)–(c)] The stationary probability distribution function
Pst (φ, 〈φ〉) for different noise levels Q and growth rates r: (a) r =
0.800, (b) r = 0.885, and (c) r = 1.000. The symbols represent
simulation results, and the solid lines depict the theoretical results
of Eq. (11). [(d)–(f)] The contour plot of numerical Pst (φ, 〈φ〉) as a
function of φ and r for different noise levels Q: (d) Q = 0.01, (e)
Q = 0.10, and (f) Q = 0.20. Other parameter values are the same as
in Fig. 2.

state (health) and decreases at high tumor nuclei density state
(disease), as shown in Fig. 3(b). These results indicate that
when the system has a bistable state, the low tumor nuclei
density state (health) gets more and more stable than the
high tumor nuclei density state (disease) as the noise level
increases. It should be noted that for Q = 0.01 and r = 0.885,
the SPDF does not show a bistable state. This finding means
that noise plays a key role in the existence of the bistable
region. Moreover, for r = 0.800 (less than the critical value),
the distribution shows a maximum for φ ≈ 0.5 [see Fig. 3(a)].
For r = 0.885 (close to the critical value), Pst (φ, 〈φ〉) shows
that the system can be found in either two states, one for
φ ≈ 1.0, which corresponds to health state, and the other for
φ ≈ 7.0, which corresponds to disease state [see Fig. 3(b)].
For r = 1.000 (greater than the critical value), the SPDF
shows a single maximum for φ ≈ 7.0 [see Fig. 3(c)]. These
results indicate that a bistable state will only occur in the
critical region. Figures 3(d)–3(f) show the contour plot of
Pst (φ, 〈φ〉) in the φ − r plane. The figures show twofold re-
sults: on the one hand, when we increase the parameter r, the
system undergoes from low tumor nuclei density (health) state
to high tumor nuclei density (disease) state through a bistable
region. On the other hand, as the noise increases, the bistable
region will gradually become larger. These transitions of the
SPDF from health to disease state are consistent with Zhong
et al., conforming to previous investigations [60].

FIG. 4. The steady-state ensemble average of tumor nuclei den-
sity as a function of growth rate r for different noise levels Q.
The black curved lines denote stable (solid) and unstable (dashed)
equilibria states. The black dots (saddle-node) are tipping points.
Other parameter values are β = 2.0, K = 10.0, and D = 0.1.

The effect of simultaneously changing the growth rates r
together with the different noise levels Q on the steady-state
ensemble average is also depicted in Fig. 4. For the deter-
ministic system of Eq. (2), the tipping points are F1 and F2,
which divide the states of systems into three states: health state
(white shaded region), bistable state (gray shaded region), and
disease state (red shaded region). The black curved lines rep-
resent stable (solid) and unstable (dashed) equilibria; the black
dots (F1 or F2) indicate tipping points. The dashed line in the
middle of the bifurcation point represents the border between
the basins of attraction of the two alternative stable states on
the upper and lower branches. In Fig. 4, we observe that the
effect of the noise level Q is a displacement of the critical
point toward lower values of growth rate r. These findings
suggest that the noise induces earlier critical transitions. We
also identify a critical growth rate r that separates the health
to the disease state of the system.

B. SEWSs

To identify the transitions from a health state to a dis-
ease state, we use a recently developed toolbox for SEWSs
[74] to anticipate critical transitions in the spatial tumor-
immune system with stochasticity [21]. We assess the SEWSs
of upcoming transitions by analyzing numerically simulated
spatial datasets from Eq. (5). The numerical simulations
are performed using the stochastic Heun algorithm (see
Appendix B) with a time step �t = 0.001 and periodic bound-
ary conditions. All simulations are also started via the random
introduction of tumor density states uniformly distributed over
the interval [0,1]. We then increase the growth rate r linearly
in 10,000 time intervals from 0.6 to 1.6. After each stepwise
alteration in the growth rate r, we run 1000 time steps to
reduce transient effects [20]. At the finish of the 1000 time
steps, we used the last obtained snapshot of the state variables
to calculate the statistical properties of the spatial datasets.
These properties can quantify the SEWSs, which antecede
some disease state transitions.
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FIG. 5. CSD is an indicator in which the system has lost re-
silience. [(a)–(c)], Far from the transition point, resilience is large
(a). [(d)–(f)], Close to the transition point, resilience is small (d).
If the basin of attraction is small (d), the recovery rates on tiny
perturbations are slower than when the basin of attraction is large
(a). The effect of this reduced resilience may be measured in spatial
snapshots in the state of the system [(b) and (e)] as increased spatial
variance, the temporal autocorrelation function at lag-1 [ACF(1)],
and the near-neighbor spatial correlation [(c) and (f)]. The parameter
values are β = 2.0, K = 10.0, D = 0.1, Q = 0.1, and either r = 0.8
[(a)–(c)] or r = 1.1 [(d)–(f)].

To see SEWSs of the transition from health to disease state,
we first investigate the phenomenon of critical slowing down
(CSD) that the recovering rates of the system become increas-
ingly slow from small perturbations. Namely, the system loses
its resilience. Figures 5(a) and 5(d) show the stable landscapes
far from and close to critical points of r. The slopes of the
this landscape and the size of the basin of attraction around
equilibrium can be related to its resilience that is defined as
the ability of the system to recover from small disturbances.
This resilience is expressed not only in spatial snapshots but

also in time characteristics [75]. These results reveal that as
the system approaches critical points, certain characteristics
change in the spatial snapshots [see Figs. 5(b) and 5(e)] and
the short-term memory of time data are expected to occur. One
important prediction is that the CSD should lead to an increase
in spatial variance in near-neighbor spatial correlation and in
temporal autocorrelation function at lag-1 [66] [see Figs. 5(c)
and 5(f)]. Hence the CSD has also been considered as an indi-
cator of whether a system is approaching a critical transition.

The spatial datasets obtained by Eq. (5) are used to cal-
culate the transient-state ensemble average and the following
warning indicators: Near-neighbor spatiotemporal diffusion
coefficient at lag-1, spatial variance, spatial skewness, spatial
kurtosis, and near-neighbor spatial correlation. All SEWSs
show recognizable trends before the disease occurs for both
noise levels Q = 0.01 [see Figs. 6(a)–6(f)] and Q = 0.10 [see
Figs. 6(g)–6(l). The results indicate that these indicators can
effectively identify critical transitions before the disease oc-
curs. Moreover, these indicators have universality for different
noise levels Q.

In Figs. 6(a) and 6(g), we present the dependence of the
transient-state ensemble average 〈φ̄〉 on the growth rate r for
different two noise levels Q. For the critical region, there are
increases abruptly in 〈φ̄〉; for outside the critical region, it
increases smoothly with r. The results show that the increase
of the noise level displaces the critical point toward lower
values of the growth rate r. In addition, for the critical region,
the slope of 〈φ̄〉 becomes smoother when the noise level Q
increases. These results suggest that the shift is gradual in the
case of high heterogeneity (Q > 0); however, when hetero-
geneity is low, i.e., homogeneity (Q = 0), the shift is abrupt.

Figures 6(b) and 6(h) display the results of spatiotemporal
diffusion coefficient at lag-1 for different noise levels Q. It
reaches a peak (gray region). These results indicate that the
spatiotemporal diffusion coefficients inside the critical region
are larger than those outside. Its trend is similar to trends
of spatial variance σ 2 and near-neighbor spatial correlation
C(1) in recent work [21], which are presented below. The re-
sults verified that the near-neighbor spatiotemporal diffusion
coefficient appears as a robust indicator compared with the
near-neighbor spatial correlation. Hence, these findings imply
that the near-neighbor spatiotemporal diffusion coefficient at
lag-1 is an excellent indicator to detect the upcoming critical
transition.

The spatial variance, in Figs. 6(c) and 6(i), shows a rise and
a fall around the gray region. Namely, there exists a peak. For
the outside this range, the spatial variance shows a straight line
without slope. These results suggest that a peak is a critical
threshold from health to disease state.

In Figs. 6(d) and 6(j), the spatial skewness increases first,
then decreases, and finally increases with growth rate r. Be-
fore the gray region, spatial skewness is positive and rises
with growth rate r when it is close to the critical region. For
the gray region, the skewness decreases and its sign becomes
negative. After the gray region, the skewness gradually in-
creases until it is close to zero. These results show that when
the spatial skewness is equal to 0, it is a normal distribution
and a critical threshold for upcoming critical transitions.

Figures 6(e) and 6(k) show the results of spatial kurtosis
for different noise levels Q. The spatial kurtosis shows two
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FIG. 6. [(a), (g)] The transient-state ensemble average of tumor nuclei density as a function of growth rate r and simulation time. The
vertical gray lines correspond to the increasing growth rate (r) over simulation time, where spatial snapshots are shown at the top. The
snapshots are drawn in grayscale, where brighter regions represent higher tumor nucleus density. The snapshots show deviations from the
ensemble average of tumor nuclei density in the snapshot, as variation in tumor nuclei density was much larger between snapshots than within.
[(b)–(f), (h)–(l)] SEWSs for simulated spatial snapshots data obtained from the stochastic model of Eq. (5). Near-neighbor spatiotemporal
diffusion coefficient at lag-1 [(b), (h)], spatial variance [(c), (i)], spatial skewness [(d), (j)], spatial kurtosis [(e), (k)], and near-neighbor spatial
correlation [(f), (l)] as functions of growth rate r and simulation time. The parameter values are β = 2.0, K = 10.0, D = 0.1, and either
Q = 0.01 [(a)–(f)] or Q = 0.10 [(g)–(l)].

peaks where one locates before the critical point and the other
locates after it. The corresponding values are greater than 3,
indicating that as the system nears and exits the critical region,
the distribution of tumor nuclei density is steeper than the nor-
mal distribution that spatial kurtosis is 3 (black dotted line).
Namely, the distribution of κ > 3 is leptokurtic. Interestingly,
for the critical point, the spatial kurtosis is less than 3. That is,
its distribution is platykurtic. These results indicate that spatial
kurtosis reached a low point in the critical threshold.

The spatial correlations in Figs. 6(f) and 6(l) display the
degree of spatial correlation between neighboring patches for
different noise levels Q. The gray region shows that spatial
correlation increases with increasing growth rate r until maxi-
mum spatial correlation is reached and then spatial correlation
decreases with increasing growth rate r. Moreover, it shows a
smooth straight line outside the critical region. These results
suggest that spatial correlation peaks in the critical threshold.

All these results demonstrate that SEWSs show recog-
nizable trends in spatially extended tumor-immune systems
with stochasticity. These results are consistent with previous

studies on spatial variance [6,40], spatial skewness [21,40],
spatial kurtosis [66], and spatial correlation [20,67,68]. More
importantly, the rising spatiotemporal diffusion coefficient
may be an effective novel indicator of biological systems.
Therefore the spatiotemporal diffusion coefficient indicator
will provide a novel approach to predict the critical transition
for pathology and computed tomography images [76,77].

Figure 7 shows the effect of changing the diffusion coef-
ficient D on the transient-state ensemble average 〈φ̄〉 and the
following warning indicators: D(1, 1), σ 2, γ , κ , and C(1).
Figure 7(a) shows the transient-state ensemble average 〈φ̄〉
as a function of the growth rate r for different diffusion co-
efficients D. For the critical region (gray region), the slope
of 〈φ̄〉 becomes steeper when the diffusion coefficient D in-
creases. These results suggest that the shift in the case of
low connectivity (D = 0) is gradual, as each cell shifts almost
independently from its neighbor; however, it is abrupt when
connectivity is high (D > 0).

When the diffusion coefficient D increases, the value of
the warning indicators decreases significantly, especially in

023039-7



MA, LUO, ZENG, AND ZHENG PHYSICAL REVIEW RESEARCH 4, 023039 (2022)

FIG. 7. (a) The transient-state ensemble average of tumor nu-
clei density as a function of growth rate r and simulation time
for different diffusion coefficients D. [(b)–(f)] SEWSs for simu-
lated spatial snapshots data obtained from the stochastic model of
Eq. (5). Near-neighbor spatiotemporal diffusion coefficient at lag-1
(b), spatial variance (c), spatial skewness (d), spatial kurtosis (e), and
near-neighbor spatial correlation (f) as functions of growth rate r and
simulation time. The parameter values are β = 2.0, K = 10.0, and
Q = 0.1.

the critical region [see Figs. 7(b)–7(e)]. However, as shown
in Fig. 7(f), this is exactly the opposite of what is observed
in Fig. 7(b). In addition, the near-neighbor spatial correlation
indicator failed to predict an upcoming regime shift when
connectivity was low (D = 0). This finding suggests that the
near-neighbor spatiotemporal diffusion coefficient indicator
has stronger applicability than the near-neighbor spatial cor-
relation indicator.

Heterogeneity and a low level of connectivity may cause
the system to change gradually in response to environmental
change. This is because systems with different components
(heterogeneity) and low connectivity lead to modularity with
adaptive capacity. By contrast, homogeneity and a highly
connected system may provide resistance to change until a
threshold for a systemic critical transition is reached [49].
In other words, homogeneity and a high level of connec-
tivity may cause the system to change abruptly in response
to environmental change. Meanwhile, it implies that predic-
tion of critical transition is more successful for homogeneity
and a highly connected system than for heterogeneity and a

low-level connected system. These findings are similar to
those reported in the literature [20,49].

IV. DISCUSSION

In this paper, we study the spatial tumor-immune sys-
tem with stochasticity via theoretical analysis and numerical
simulations to anticipate critical transitions from health to
disease state. Using the Langevin equation, the Fokker-Planck
equation, and the MFA assumption, the stationary probabil-
ity distribution solutions are derived theoretically. To verify
theoretical results, we also present corresponding numerical
results. It is shown that the numerical results agree well with
the theoretical prediction for a small noise level, suggesting
that our results are credible. Based on the theoretical analysis
and numerical simulation, we investigate how noise levels
Q and growth rates r affect the spatial tumor-immune sys-
tem with stochasticity. Our results suggest that when there
is a bistable state in the system, the health state becomes
more and more stable than the disease state as the noise
increases. Moreover, the system goes from a low tumor nuclei
density state (health) to a high tumor nuclei density state (dis-
ease) through a bistable region as the growth rate r increases.
We not only certify the findings of previous works [60,78]
but also exploit SEWSs to predict upcoming critical tran-
sitions, which have been extensively studied in ecosystems
[20,21,40]. Here we focus on a spatiotemporal diffusion coef-
ficient that combines the spatial snapshots with the temporal
dynamics, providing new and reliable SEWSs for the impend-
ing critical transitions in the spatial tumor-immune system.
The critical transition from health to disease is easily captured
in the plot of spatial averages in Figs. 6(a) and 6(g) and the
spatial indicators in Figs. 6(b)–6(f) and 6(h)–6(l), which show
substantial changes during the transition period. The spatial
averages are increasing slightly with simulation time up to
7000 (r = 1.3) and 6000 (r = 1.2), as shown in Figs. 6(a)
and 6(g). There are rising trends of the near-neighbor spa-
tiotemporal diffusion coefficient, the spatial variance, and the
near-neighbor spatial correlation when the system closes to
critical transitions. The spatial skewness shows a sharp variety
from a positive to a negative value in the critical region,
revealing the system traversing in this region and approaching
the disease state. The spatial kurtosis of tumor nuclei density
changes from leptokurtic to platykurtic and leptokurtic again
in this region and immediately later. When the spatial aver-
age does not display a clear disease state, the near-neighbor
spatiotemporal diffusion coefficient, spatial variance, spatial
skewness, spatial kurtosis, and near-neighbor spatial corre-
lation provide us five potential early warning signals of an
impending transition. Hence these indicators can effectively
identify critical transitions before the disease occurs.

The TME is heterogeneous and fluctuating. Therefore a
significant challenge for modeling the TME is to analyze
spatiotemporal fluctuations in complex environments. It is
important to develop models of tumor growth that include a
representation of an immune response. In the future, we hope
to precisely consider the effect of tumor-immune cell interac-
tions [79,80]. Although our work is insufficient to accurately
describe the real tumor evolution, it provides a way to analyze
spatially extended tumor-immune systems with stochasticity.
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We expect that these findings will stimulate theoretical and
experimental work to provide practical SEWSs for the pre-
vention of cancer.

With the advancement of technology, the increasing avail-
ability and resolution of pathology images data [76,81]
provide an opportunity to detect impending critical transi-
tions. Previous studies have connected the distance from the
brightest voxel in 18F-FDG PET imaging of breast and lung
cancer patients to the tumor centroid with the evolutionary
dynamics of tumor growth [77]. This work is similar to our
study where spatially correlated features are extracted from
spatial snapshots to predict SEWSs. In the future, we hope
that these findings will stimulate machine-learning techniques
to provide a valuable way for the earlier clinical diagnosis
of cancer. All indicators of SEWSs are also applicable to
remotely sensed imagery of ecosystems [82,83]. Our results
reveal that anticipating critical transitions is imperative to pre-
vent the onset and progression of cancer, which may intercept
abrupt shifts from health to disease state.
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APPENDIX A: DISCRETE POPULATION MODEL OF
TUMOR GROWTH

The discrete tumor growth model by adding the immune
item p(φt ) = βφ2

t /(1 + φ2
t ) is

φt+1 = rφt

(
1 − φt

K

)
− βφ2

t

1 + φ2
t
, (A1)

where φt represents the initial tumor nuclei density, φt+1 is
the density after a single interval of time step, r denotes the
growth rate of the tumor cells, K stand for carrying capacity
and β indicates immune coefficient. The result is shown in
Fig. 1. The negative (positive) values of the Lyapunov expo-
nent (λ) indicate that the dynamics of system are periodical
(chaotic). Moreover, the Lyapunov exponent of λ = 0 repre-
sents the bifurcation point.

APPENDIX B: STOCHASTIC ALGORITHM

The SPDE the generic form given by

∂φ(x, t )

∂t
= f [φ(x, t )] + D∇2φ(x, t )

− g[φ(x, t )]η(x, t ). (B1)

The Laplacian operator of Eq. (B1) in a lattice form can be
discretized as [38,39,59,84]

D∇2φ(x, t ) =
∑

j

∇2
i jφ j (t ) ≡ D

2d�xd

∑
j∈nn(i)

(φ j − φi ), (B2)

where nn(i) is the set of the 2d nearest neighbors of site i. Let
h[φi(t )] = D/(2d�xd )

∑
j∈nn(i)[φ j (t ) − φi(t )]. We wished to

write the SPDE in a discrete space as follows:

dφi(t )

dt
= f [φi(t )] + h[φi(t )] − g[φi(t )]ηi(t ). (B3)

After the formal integration of Eq. (B3) in an interval of very
short time (t, t + �t ), we obtain

φi(t + �t ) = φi(t ) +
∫ t+�t

t
f [φi(t

′)] dt ′

+
∫ t+�t

t
h[φi(t

′)]dt ′ −
∫ t+�t

t
g[φi(t

′)]ηi(t
′) dt ′.

(B4)

The first and second integral terms in Eq. (B4) are performed
via the second-order predictor-corrector algorithm; the third
integral term in Eq. (B4) is implemented by the standard
Heun algorithm, and we make the following assumptions,
respectively,∫ t+�t

t
f [φi(t

′)] dt ′ =
(

f [φi(t )] + f [φ̃i(t )]

2

)
�t, (B5)∫ t+�t

t
h[φi(t

′)] dt ′ =
(

h[φi(t )] + h[φ̃i(t )]

2

)
�t, (B6)∫ t+�t

t
g[φi(t

′)]ηi(t
′) dt ′ =

(
g[φi(t )] + g[φ̃i(t )]

2

)
Xi(t ),

(B7)

where the predictor step is the first-order algorithm for the Itô
interpretation (α = 0),

φ̃i(t ) = φi(t ) + f [φi(t )]�t + h[φi(t )]�t − g[φi(t )]Xi(t ),
(B8)

and the corrector step uses the Stratonovich interpretation
(α = 1/2),

φi(t + �t ) = φi(t ) +
(

f [φi(t )] + f [φ̃i(t )]

2

)
�t

+
(

h[φi(t )] + h[φ̃i(t )]

2

)
�t

− {(1 − α)g[φi(t )] + αg[φ̃i(t )]}Xi(t ). (B9)

Therefore the discrete-spatiotemporal stochastic algorithm of
the Heun′s predictor-corrector is as follows:

φi(t + �t ) = φi(t ) +
(

f [φi(t )] + f [φ̃i(t )]

2

)
�t

+
(

h[φi(t )] + h[φ̃i(t )]

2

)
�t

−
(

g[φi(t )] + g[φ̃i(t )]

2

)
Xi(t ), (B10)

where

Xi(t ) =
√

2Q�t

�xd
γi. (B11)

Here γi are independent Gaussian random numbers with zero
mean and variance equal to 1 and using Box-Muller-Wiener
algorithm to implement them.
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