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Domain walls between different topological phases are one of the most interesting phenomena that reveal
the nontrivial bulk properties of topological phases. Very recently, gapped domain walls between different
topological phases have been intensively studied. In this paper, we systematically construct a large class of
lattice models for gapless domain walls between twisted and untwisted gauge theories with arbitrary finite group
G. As simple examples, we numerically study several finite groups (including both Abelian and non-Abelian
finite group such as S3) in 2D using the state-of-the-art loop optimization of tensor network renormalization
algorithm. We also propose a physical mechanism for understanding the gapless nature of these particular domain
wall models. Finally, by taking advantage of the classification and construction of twisted gauge theories using
group cohomology theory, we generalize such constructions into arbitrary dimensions, which might provide us
a systematical way to understand gapless domain walls and topological quantum phase transitions.
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I. INTRODUCTION

Classification and construction topological phases of
quantum matter have become an extremely important and
interesting subject in modern condensed matter physics. In
the past decade, great achievements have been made toward
establishing a complete paradigm for understanding topolog-
ical phases of quantum matter, especially for systems with
strong interactions, from the concept of long range entan-
glement to the classification of topological phases in generic
interacting bosonic and fermionic systems [1–14]. Neverthe-
less, our understanding of topological phase transitions is
still very limited, especially in higher dimensions. Until very
recently, it has been realized that a certain class of topological
phase transitions in d spatial dimensions can be realized as
gapless domain walls between topological phases in d + 1
spatial dimensions [15,16]. Such a holographic principle is
very attractive since the properties of gapless domain walls
are closely related to the bulk properties of topological phases.
It is even possible to establish a paradigm towards under-
standing generic gapless domain walls and topological phase
transitions in future.
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It has been known for a long time that domain walls
between two topological states usually exhibit extremely in-
triguing properties. At very basic level, there are two types of
fundamental domain walls: gapped domain walls and gapless
domain walls. The properties of gapped domain walls can
be systematically studied based on the mathematical frame-
work of unitary modular tensor category (UMTC) theory and
the corresponding tunneling matrix formulation. The physi-
cal nature of gapped domain walls is also well understood
in terms of anyon condensation [17–21]. Nevertheless, the
gapless domain walls are much more complicated and harder
to understand in general. Hence a systematic way to construct
and understand gapless domain walls is very desired.

In addition, it would be very useful to distinguish two types
of gapless domain walls according to their thermal Hall con-
ductance KH : those with KH �= 0, and those with KH = 0. The
edge modes of various fractional quantum Hall (FQH) states
are natural realizations of the first kind of gapless domain
walls [22], and they are well understood in terms of chiral
conformal field theory (CFT) as well as (perturbative) gravi-
tational anomaly. However, the second kind of gapless domain
walls with KH = 0 are rather unexpected from simple physical
considerations. Very recently, the gapless conditions for KH =
0 domain walls among different Abelian FQHs are established
in terms of the mathematical concept of Lagrangian subsets
[19]. The underlying physical nature of these gapless domain
walls can be explained by the so-called global gravitational
anomalies. Moreover, it is widely believed that CFTs will
also naturally emerge for the KH = 0 gapless domain walls,
however, there is still lacking of systematical understanding
and concrete lattice model realization for these CFTs.
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In the presence of global symmetries, gaplessness domain
walls exist even in the absence of gravitational anoma-
lies (assuming the corresponding global symmetry does not
break spontaneously or explicitly). Most notably, gapless do-
main walls can be constructed between different symmetry
protected topological (SPT) states [4,23–26]. For exam-
ple, gapless domain walls between free fermion topological
insulators/superconductors are well understood in terms of
massless free Dirac/Majorana fermions. Unfortunately, gap-
less domain walls for interacting SPT states are much harder
to construct and only very few special examples are well
understood so far [7,27–29].

Another motivation to construct and study gapless do-
main walls of topological phases is the novel concept of
bulk-edge correspondence between topological quantum field
theory (TQFT) and conformal field theory (CFT). The first
concrete example is the correspondence between the 3D bulk
Chern-Simons theory and the 2D boundary Wess-Zumino-
Witten (WZW) model, where the space of quantum states
in the bulk TQFT is identified with the space of conformal
blocks of the boundary CFT [30]. Such correspondence can
be viewed as an implementation of the holographic prin-
ciple [31,32]. The discovery of FQH gives rise to much
deeper physical understanding of the bulk-edge correspon-
dence, where the appearance of boundary exclusion statistics
is associated with the corresponding CFT [33], which has
their origin from anyonic excitations [34,35] with fractional
statistics. Mathematically, UMTC also provides a general
framework for describing anyons and fractionalized statistics
[36], and can also be used to construct TQFT [37]. There-
fore, a natural setup to further extend the study of bulk-edge
correspondence is the gapless domain wall between different
topological phases. Apparently, domain walls are of particular
interest because they are where different anyons in the two
bulk topological phases meet. Understanding the dynamics of
such “anyon meetings” can give us deep insights into anyon
dynamics as well as topological phase transitions.

In this paper, we systematically construct lattice models
of gapless domain walls with KH = 0 between twisted and
untwisted gauge theories (for arbitrary finite gauge group
G). Such kind of gapless domain walls are closely related
to bulk topological phase transitions and can be constructed
in arbitrary dimensions. As a simple example, we illustrate
the major steps of constructing such a gapless domain wall
between the toric code model and double semion model.
Then we study the domain wall model using the state-
of-the-art loop-optimization tensor network renormalization
(loop-TNR) algorithm [38]. Surprisingly, we find that the low-
energy spectrum of the domain wall model is consistent with
the su(2)1 Wess-Zumino-Witten model even in the absence
of global SU (2) symmetry. We also find a bulk picture to
understand the emergence of the su(2)1 CFT on the domain
wall. We further study such kind of gapless domain walls
between twisted and untwisted gauge models with several
other finite group G in 2D. For Abelian group examples, we
find all of them can be described by Luttinger liquid theory
with a central charge c = 1. For non-Abelian group example
such as S3, we find the gapless domain wall model can be
described by a CFT with central charge c = 2. We conjecture

that the su(3)1 Wess-Zumino-Witten model could be a very
good candidate for such a CFT.

On the other hand, according to the correspondence be-
tween twisted gauge theories and SPT models [27], such kind
of gapless domain walls also naturally arise on the interface
between the trivial and nontrivial SPT states, provided that
the global symmetry on the domain wall is not broken spon-
taneously or explicitly. From SPT point of view, the gapless
nature of the domain walls is closely related to gauge anomaly,
which can be systematically classified and constructed via
group cohomology theory in arbitrary dimensions [4,7]. Thus,
our constructions of gapless domain walls between twisted
and untwisted gauge theory models can be easily generalized
into higher dimensions by using group cohomology theory.
We believe that many universal properties of these gapless
domain walls could also be classified by group cohomology
theory.

The rest of the paper is organized as follows. In Sec. II,
we start with a simple example—the gapless domain walls
between toric code model and double semion model. We find a
conformal field theory (CFT) described by the orbifold double
su(2)1 Wess-Zumino-Witten model even in the absence of
global SU (2) symmetry for such a gapless domain wall. We
also study the physical mechanism for the gapless nature of
domain wall models. In Sec. III, we review group cohomology
and its role in the systematic classification and construction of
domain walls between twisted and untwisted gauge theories.
We further study examples with several other gauge group.
Finally, there will be a conclusion and a discussion on how
to generalize these gapless domain wall models into higher
dimensions.

II. A SIMPLE EXAMPLE: GAPLESS DOMAIN WALL
BETWEEN Z2 GAUGE MODEL AND TWISTED

Z2 GAUGE MODEL

A. Z2 gauge model and twisted Z2 gauge model

Let us begin with the Z2 quantum double model and
twisted quantum double model, namely, the toric code model
[39] and the doubled semion model [40]. They can be defined
as spin-1/2 systems on a honeycomb lattice where spins live
on links. The Hamiltonians are (Fig. 1)

Ht.c. = −
∑

v

Qv −
∑

p

⎛
⎝∏

l∈p

τ x
l

⎞
⎠Pp

Hd.s. = −
∑

v

Qv −
∑

p

⎛
⎝∏

l∈p

τ x
l

∏
l∈legs of p

i
1+τ z

l
2

⎞
⎠Pp

(1)

where v, p, l denote a vertex, a plaquette, and a link respec-
tively, and

Qv =
∏
l∈v

τ z
l , Pp =

∏
v∈p

1 + Qv

2
. (2)

Here
∏

l∈p τ x
l is the product of the τ x

l around a plaquette p
and

∏
l∈v τ z

l is the product of the τ z
l around a vertex v. These

two models are simplest examples of string-net models [40].
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FIG. 1. The toric code model and doubled semion model Ht.c.,
Hd.s. (1). For both models, the first term Qv is a product of τ z

l on the
three links connected to the vertex v, the second term is a product of
τ x

l on the six links in the plaquette, functions f (τ z
l ) on the six links

connected to the plaquette, and projector Pp. (a) f (x) = 1 (trivial)
for the toric code model. (b) f (x) = i(1+x)/2 for the doubled semion
model.

The ground state |�t.c.〉 of Ht.c. is exactly known since all
the plaquette terms and vertex terms commute with each other.
The string language provides us with a very intuitive way to
understand the ground-state wave function: We interpret the
τ z

l = −1 and τ z
l = 1 states on a single link as the presence or

absence of a string. (This string is literally an electric flux line
in the Z2 gauge theory.) The appropriate low-energy Hilbert
space is made up of closed string states that satisfy

∏
l∈v τ z

l =
1 at every vertex. The ground state is simply a superposition
of all closed string states:

|�t.c.〉 =
∑

Xclosed

|X 〉. (3)

Such a model realizes the simplest topologically ordered state
in 2D. If we put the ground-state wave function Eq. (3) on a
torus, there are four different topological sectors, character-
ized by even/odd number of large strings wrapping around a
torus in both directions. Moreover, the Z2 electric charge e
can be described as the ends of a string, which are bosons and
are created/annihilated in pairs.

Hd.s. is a less well-known model, which has the same
number of ground-state degeneracy on torus, but exhibits a
different kind of topological order. The low-energy Hilbert
space of the model is again made up of closed string states.
However, the ground-state wave function of this model is very
similar to the toric code wave function except that different
closed string states are weighted by different phase factors:

|�d.s.〉 =
∑

Xclosed

(−)n(X )|X 〉 (4)

where n is the number of closed loops in the closed-string
state X . The (−)n(X ) phase factor makes the Z2 electric charge
(described as the ends of string) carry semion statistics.

The above two models can be mapped to Z2 gauge models
and twisted Z2 gauge models on dual triangular lattices [27].
Edges of the triangular lattice are perpendicular to edges of the
original honeycomb lattice. Spins on the edges are mapped ac-
cordingly. Centers of hexagonal plaquettes in the honeycomb
lattice correspond to vertices of the triangular lattice. We put

)b()a(

pp

q q’

FIG. 2. Z2 gauge models H0, H1 (7). (a) For H0, the first term of
the Hamiltonian is a gauge flux term μz

pqμ
z
qrμ

z
r p on the three links

of the triangle 〈pqr〉, and the second term is a product of σ x
p and a

projector Op that acts on the six triangles adjacent to p. (b) For H1,
the first term is the same gauge flux term, and the second term is
more complex BpOp.

additional spins on these vertices. For each new spin, associate
a gauge transformation

Wp = σ x
p

∏
q

μx
pq (5)

where p labels a vertex in the triangular lattice and pq labels
the edge connecting p and q, so that dimension of the physical
Hilbert space remains the same. Operator mapping compatible
with the gauge transformation is then found to be

τ z
l = σ z

pσ
z
qμz

pq, τ x
l = μx

pq. (6)

The resulting Hamiltonians read (see Fig. 2)

H0 = −
∑
〈pqr〉

μz
pqμ

z
qrμ

z
r p −

∑
p

σ x
p Op,

H1 = −
∑
〈pqr〉

μz
pqμ

z
qrμ

z
r p −

∑
p

BpOp, (7)

Op =
∏
〈pqr〉

1 + μz
pqμ

z
qrμ

z
r p

2
, Bp = σ x

p

∏
〈pqq′〉

i
1+σ z

qμz
qq′ σ z

q′
2 ,

where the product runs over six triangles adjacent to the
vertex p. Apparently, μz

pq can be regarded as the Z2 gauge
connection. Both H0 and H1 are invariant under the Z2 gauge
transformation.

B. Operator algebra for the domain wall between toric code
model and double semion model

We now consider a system whose upper half plane is
described by the toric code model and lower half plane is
described by the doubled semion model. All local terms of
the Hamiltonian commute with each other except on the do-
main wall. Denote the plaquette operators in the Hamiltonian
Eq. (1) as

Bt.c.
p =

∏
l∈p

τ x
l

Bd.s.
p =

∏
l∈p

τ x
l

∏
l∈legs of p

i
1+τ z

l
2 (8)

and label the plaquettes on the domain wall in a sequential or-
der as shown in Fig. 3(a). The nontrivial Hamiltonian algebra
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FIG. 3. (a) Domain wall between the toric code and doubled
semion model; (b) Effective domain wall between H0 and H1.

on the domain wall can be written as(
Bt.c.

n

)2 = 1,
(
Bd.s.

n

)2 = 1,[
Bt.c.

m , Bd.s.
n

] = 0, when |m − n| > 1, (9)

Bt.c.
n Bd.s.

n±1 = −Bd.s.
n±1Bt.c.

n τ z
n−1,n+1τ

z
n±1,n±2,

where τ z
m,n denotes the spin operator on the edge in between

plaquettes m and n. Unfortunately, the above Hamiltonian
algebra is very complicated and can not be solved in an
easy way. On the other hand, this domain wall model and
its operator algebra can be easily translated to the Z2 gauge
models through mappings defined in the previous section [see
Fig. 3(b)]:(

σ x
n

)2 = 1, (Bn)2 = 1,[
σ x

m, Bn
] = 0, when |m − n| > 1,

σ x
n Bn±1 = −Bn±1σ

x
n σ z

n∓1σ
z
n±2μ

z
n−1,n+1μ

z
n±1,n±2. (10)

C. Gauge fixing and connections to domain wall models
between SPT phases

We would like to simplify the Hamiltonian algebra Eq. (10)
in the low-energy sector by choosing a convenient gauge and
fix all spins on edges. The Z2 flux terms −μz

pqμ
z
qrμ

z
r p com-

mute with all other terms in both H0 and H1, hence always
represent an independent finite-energy change. Therefore, we
expect the low-energy physics of a gapless domain wall to
be entirely captured in the subspace where μz

pqμ
z
qrμ

z
r p = 1,

i.e., no local Z2 flux. We will show later that the domain wall
is indeed gapless. The simplest configuration with no local
gauge flux is μz

pq ≡ 1. Given any eigenstate of {μz
p} with no

local gauge flux, the uniform μz
pq ≡ 1 configuration can be

achieved by applying gauge transformations if and only if
there is no global gauge flux going through the domain wall,
or equivalently in the string-net language, when there is no
global string crossing the domain wall. We will henceforth
assume this is the case and use the uniform gauge.

Under this uniform gauge, the domain wall Hamiltonian
algebra simplifies to(

σ x
n

)2 = 1, (B̄n)2 = 1,[
σ x

m, B̄n
] = 0, when |m − n| > 1,

σ x
n B̄n±1 = −B̄n±1σ

x
n σ z

n∓1σ
z
n±2. (11)

Such a Hamiltonian algebra can naturally arise on the do-
main wall between the trivial and nontrivial Z2 SPT phases.

FIG. 4. Spin models H0, H1 (12). (a) H0 is a sum of all σ x
p . (b) H1

is a sum of B̄p = σ x
p

∏
〈pqq′〉 i

1+σ z
qσ z

q′
2 , where the product runs over six

triangles 〈pqq′〉 adjacent to site p.

The corresponding bulk Hamiltonians are simply those of the
gauge models H0, H1 with only spins on vertices and without
gauge fields on edges (Fig. 4):

H̄0 = −
∑

p

σ x
p , H̄1 = −

∑
p

B̄p,

B̄p = σ x
p

∏
〈pqq′〉

i
1+σ z

qσ z
q′

2 , (12)

where the product runs over all six triangles 〈pqq′〉 con-
taining p. Both systems have spin-flip Z2 global symmetry
S = ∏

p σ x
p inherited from the gauge symmetry, and both have

commuting local terms and unique ground states. Specifically,
ground-state wave functions are

|�0〉 =
∑
{αp}

|{αp}〉,
(13)

|�1〉 =
∑
{αp}

(−1)Ndw |{αp}〉,

where {αp} is a spin configuration in σ z
p eigenbasis with αp =

↑ or ↓, and Ndw is the number of domain walls between spin
up and down regions.

As shown in Ref. [27], these two spin models realize the
only two short-range entangled bosonic phases with on-site
Z2 symmetry. We can, in fact, start from these two SPT
models and follow the gauge coupling procedures specified
in Ref. [27] to obtain the Z2 gauge models H0, H1. On the
other hand, the domain wall models between the two SPT
models H̄0 and H̄1 satisfy the Hamiltonian algebra Eq. (11)
automatically.

D. Effective Hamiltonian with the same operator algebra

The Hamiltonian algebra of the gauge-fixed flux-free do-
main wall decouples from the bulk terms, so it can be realized
on a purely 1+1D spin model. We can straightforwardly
check that the following mapping to virtual spin operators
{τ̄ x

n , τ̄
y
n , τ̄ z

n} preserves this algebra Eq. (11):

σ x
n = 1√

2

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)
,

B̄n = 1√
2

(
τ̄ y

n − τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)
,

σ z
n = τ̄ z

n . (14)
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In particular, we verify that

σ x
n B̄n+1

= 1
2

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)(
τ̄

y
n+1 − τ̄ z

n τ̄
x
n+1τ̄

z
n+2

)
= − 1

2

(
τ̄

y
n+1 − τ̄ z

n τ̄
x
n+1τ̄

z
n+2

)
τ̄ z

n+2τ̄
z
n−1

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)
= −τ̄ z

n−1τ̄
z
n+2B̄n+1σ

x
n . (15)

We further unitarily transform the operators with U = ∏′
τ̄

y
n ,

where the product runs over every other site on the domain
wall. This makes all B̄n’s and σn’s take the same form and
enhances translational symmetry of the effective Hamiltonian,
which takes the final form

Hdw = − 1√
2

∑
n

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)
. (16)

We will henceforth refer to this model as the Ising domain
wall model. This model has a Z2 symmetry

Sdw =
∏

n

τ̄ x
n

∏
n

exp

[
iπ

4

(
τ̄ z

n τ̄
z
n+1 − τ̄ z

n − 1
)]

, (17)

which we will show in Sec. III is indeed the Z2 symmetry
inherited from the gauge symmetry in the bulk. This symme-
try also acts as a self-dual transformation, as it transforms the
two terms τ̄

y
n and τ̄ z

n−1τ̄
x
n τ̄ z

n+1 into each other. We introduce
an adjustable parameter g into Hdw and transform this more
general model with Sdw:

Hdw(g) = − 1√
2

∑
n

(
gτ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)
, (18)

S†
dwHdw(g)Sdw = gHdw(1/g). (19)

We see that the spectrum of Hdw(g) and Hdw(1/g) is the same
up to a factor of g, which makes g = 1 a self-dual point. The
spectrum of such a self-dual model is likely to be critical.
On the other hand, since the flux-free Hamiltonian algebra
Eq. (11) is also realized as the domain wall between a trivial
and a nontrivial Z2 SPT phases, it is natural to expect such a
domain wall model to be gapless if the global Z2 symmetry is
not spontaneously broken.

E. Numerical calculations

We now perform numerical calculations on the Ising do-
main wall model Hdw in Eq. (16). We show strong evidence
that the model is indeed critical. More precisely, our numerical
evidence shows that the low-energy physics is described by
the su(2)1 WZW theory, or equivalently the compactified free
boson CFT at the self-dual radius.

We perform both exact diagonalization for small system
size and loop-TNR calculation for larger system size. For
comparison, we also perform numerical calculations on the
spin-1/2 XXX Heisenberg chain

HXXX =
∑

n

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1 + σ z

nσ z
n+1

)
, (20)

which is known to be described by the su(2)1 WZW confor-
mal field theory at low energy.

We first compute low-energy spectra of both models Hdw

and HXXX by exact diagonalization. In Fig. 5, the lowest

Ising
domain wall

E
n
er

gy

0

1

2

3

4

k / (2π / L)
−3 −2 −1 0 1 2 3

XXX 
model

k / (2π / L)
−3 −2 −1 0 1 2 3

FIG. 5. Low-energy spectra of Ising domain wall and XXX
model at size of 30 sites.

eigenenergies of the two models on a periodic spin chain at
the size of 30 sites are plotted against corresponding lattice
momenta. Both models have a typical CFT excitation tower
with linear dispersion, and an identification of low-energy
states between the two models is clear. Starting from the
ground state, degeneracies of the first few energy levels are
{1, 3, 1, 6, 6, . . . } in both models. When computing lattice
momenta, we use only three-site translations for the Ising
domain wall model and two-site translations for the XXX
model. Using a finer translational symmetry in either model
would cause the unique excitation tower at k = 0 to split into
three/two towers at different momenta, making comparisons
difficult.

The su(2)1 WZW theory is equivalent to a free compact-
ified boson at the self-dual radius. A general formula for
scaling dimensions of the compactified free boson CFT is

�m,n = 1

2

(
ρ2m2 + n2

ρ2

)
, m, n ∈ Z, (21)

where m, n label different primary fields and ρ is the com-
pactification radius (in our convention ρ = 1 is the self-dual
radius). In addition to states with the above scaling di-
mensions, there are also states corresponding to the current
operator as well as its powers and derivatives. The scaling
dimensions of the latter states are all integers. More discus-
sion on free compactified boson is given in Appendix C.
At self-dual radius ρ = 1, low-lying scaling dimensions
of all quasiprimaries are {0, 0.5, 1.0, 1.5, 2.0, 2.5, . . . } with
degeneracies {1, 4, 6, 8, 17, 28, . . . }. Finite size excitation en-
ergies should be proportional to scaling dimensions as Ei =
2πv�i/L, but this correspondence can hardly be observed in
our exact diagonalization result (Fig. 5). This large deviation
from CFT prediction is well understood for the XXX model,
where marginally irrelevant fields cause strong finite-size ef-
fects that fall off only logarithmically with increasing system
size [41]. We expect a similar logarithmic convergence for the
Ising domain wall.

To access larger system size, we next use loop-TNR [38]
to compute the central charge and scaling dimensions of both
the Ising domain wall and the XXX model. Results are shown
in Fig. 6. The system size grows exponentially with itera-
tion steps in loop-TNR, hence the logarithmic convergence
of the finite size effect is translated into a power law, which
is indeed observed in Fig. 6 for both models. Even though
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(a) Ising domain wall
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(b) XXX model

iteration step
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FIG. 6. Central charge and first 63 nonzero scaling dimensions of
Ising domain wall and XXX model computed using loop-TNR. The
effective system size grows exponentially with iteration steps. Data
points are marked with distinct markers and colors based on their
expected converged values. Corresponding exact values of su(2)1

WZW model are shown as solid lines. The correct degeneracies of
{4, 6, 8, 17, 28} are recovered in the expected convergence limit.

full convergence cannot be reached before numerical errors
drive the system away from the RG fixed point, we can still
identify each scaling dimension’s corresponding exact values
based on their trend, and recover the correct degeneracies in
the expected convergence limit.

Finally, we deform the Ising domain wall model without
breaking its anomalous global Z2 symmetry Eq. (17), and see
how scaling dimensions change with the deformation. To find
such a suitable deformation, it is easier to first make a unitary
transformation

U =
∏

n

exp

[
iπ

8

(
τ̄ z

n − τ̄ z
n τ̄

z
n+1

)] ∏
n

τ̄ x
n . (22)

The transformed Hamiltonian can then be written as a special
case of a more general class of Hamiltonians all sharing one
Z2 symmetry:

H ′
dw(g) = 1

2

∑
n

[
1 − τ̄ z

n−1τ̄
z
n+1 + g

(
τ̄ z

n−1 + τ̄ z
n+1

)]
τ̄ x

n (23)

with

S′
dw =

∏
n

τ̄ x
n

∏
n

exp

[
iπ

4

(
τ̄ z

n τ̄
z
n+1 − 1

)]
. (24)

In particular, H ′
dw(g = 1) is the transformed Ising domain

wall model, and H ′
dw(g = 0) is unitarily equivalent to the XY

model

U ′ =
∏

n

τ̄ x
4nτ̄

x
4n+1

∏
n

e
iπ
4

(
τ̄ z

2n τ̄
z
2n+1−τ̄ z

2n

)
e− iπ

4 τ̄ x
2n e

iπ
4 τ̄

y
2n+1

× U ′†H ′
dw(0)U ′ =

∑
n

(
τ̄ x

n τ̄ x
n+1 + τ̄ y

n τ̄
y
n+1

)
, (25)

FIG. 7. Scaling dimensions of deformed Ising domain wall
models (24) and corresponding best-fit compactified boson CFT
predictions (21). Best-fit compactification radius ρ ∈ [ 1√

2
, 1]. Agree-

ment is excellent except near g = 1 where convergence is poor,
probably due to large marginally irrelevant operators.

which is known to realize the ρ = 1√
2

compactified free bo-
son CFT. We compute scaling dimensions of this deformed
Ising domain wall model for 0 � g � 1, and find excellent
agreement with compactified boson CFT with 1√

2
� ρ � 1

(Fig. 7). It is known that for a free boson CFT with ρ �= 0.5,
changing ρ is the only relevant direction that preserves both
conformal symmetry and c = 1 [42]. We have therefore rather
conclusively shown that the Ising domain wall indeed realizes
the compactified free boson CFT at self-dual radius.

F. A physical picture for the gapless nature of the domain wall

The domain wall between the toric code and double
semions can be alternatively viewed as the boundary of a
stacking system of the two. It is then interesting to investigate
the bulk properties of the stacking system and how they relate
to the boundary domain wall.

We note that the toric code model has four types of anyons
1, e, m, f ≡ em, where e, m are bosons and the bound state
em is a fermion. While the double semion model also has
four types of anyons 1, s, s̄, b ≡ ss̄, where s and s̄ are semions
and the bound state b is a boson. It is well known the toric
code model admits a gapped boundary in general since we can
condense the Lagrangian subset (1, e) or (1, m). Similarly, the
double semion model also admits a gapped boundary since
we can condense the Lagrangian subset (1, b). Therefore,
the stacking system has sixteen types of anyons described
by (1, e, m, f ) ⊗ (1, s, s̄, b). In general, it also admits gapped
boundary by condensing the Lagrangian subsets (1, e) ⊗
(1, b) = (1, e, b, eb) or (1, m) ⊗ (1, b) = (1, m, b, mb).
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Then what is the mechanism that protects the gapless na-
ture of the domain wall? What makes the domain wall model
so special such that it is an su(2)1 WZW CFT? For the first
question, a quick answer can be achieved by ungauging the Z2

gauge symmetry in both models and mapping the domain wall
model back to a special boundary of Z2 SPT phase. Since both
toric code model and double semion model can be regarded
as the deconfinement phase of Z2 gauge theory, their domain
wall is also in the deconfinement phase where the Z2 symme-
try can not be spontaneously broken. Thus, the corresponding
ungauged domain wall model must be a Z2 SPT boundary
without spontaneously symmetry broken, which must be gap-
less. (It is well known that the boundary of 2 + 1D SPT phase
must be either gapless or symmetry breaking.) An alternative
argument can be achieved by considering anyon condensation
at the boundary of the stacking system. It has two properties:
(i) the anyon eb is condensed on the boundary and (ii) no Z2

flux excitations are condensed. The property (i) is equivalent
to that e and b are identified when they meet at the domain
wall. We recall from Ref. [40] that e is created by an open
string of σ z operators in the toric code model. Meanwhile, b is
also created by a string of σ z operators in the double semion
model. If we apply a σ z string across the domain wall, one
can check that it creates an anyon e on the toric code side and
an anyon b on the double semion side, while not disturbing
the energetics at the domain wall. The latter follows from the
fact that both Bt.c.

p and Bd.s.
p near the domain wall commute

with the σ z string. Therefore, e and b are indeed identified
across the domain wall. The property (ii) follows from that
all Qv terms remain commuting with the Hamiltonian, so
that the corresponding Z2 flux excitations remain gapped
(not condensed). Clearly, properties (i) and (ii) exclude the
condensation of the Lagrangian subset (1, m, b, mb). At the
same time, it remains possible to condense the Lagurangian
subset (1, e, b, eb), which corresponds to spontaneous break-
ing of Z2 symmetry in the ungauged model. Our numerical
results show that this scenario does not occur. Very recently, a
more precise mathematical language, namely, the categorical
symmetry [43] is introduced to understand such a special
boundary and our lattice model construction can be regarded
as an explicit realization of the maximal categorical symmetry
for ground-state wave functions.

The second problem is much more subtle, and we need
to analyze the anyon content for the stacking model after
condensing eb. Since all the anyons with nontrivial statistics
with eb are confined, the remaining anyons are consisting of
one boson b (which is identified to e) and two semions ms, ms̄
(which are identified with f s̄, f s). Together with the identity
particle, we end up with a new double semion model with four
anyons 1, b, ms, ms̄, whose corresponding K matrix reads:

K =
[

2 0
0 −2

]
. (26)

It is well known that the above K matrix describes two lay-
ers of filling fraction ν = 1/2 bosonic Laughlin states with
opposite chirality. Since the edge theory of ν = 1/2 bosonic
Laughlin state is described by the chiral su(2)1 WZW model,
it is quite natural that the domain wall model can be described
as the stacking of two chiral su(2)1 WZW models with oppo-
site chirality, if we assume there is no interactions between the

FIG. 8. (a) The enhanced translational symmetry domain wall
Hamiltonian Eq. (16) can also be regarded as a realization of the
Hamiltonian operator algebra Eq. (10) with a different gauge choice
of −1 for all red bonds and 1 for all black bonds. (b) The insertion
of a global Z2 across the domain wall will change the sign of gauge
fields for all bonds cut by the dashed-red line.

left and right movers. However, we stress that the emergence
of SU (2) symmetry in the above gapless domain wall model is
accidental and it does not apply to generic Z2 gapless domain
wall model preserving the anomalous Z2 symmetry Eq. (24).
Physically, this is because the interactions between left and
right movers always exist in generic Z2 gapless domain wall
models, which makes the radius ρ deviate from 1, e.g., Hamil-
tonian Eq. (23) with g �= 1. We will discuss more details in
next section.

G. Z2 flux insertion and twisted domain wall model

In fact, the Hamiltonian Eq. (16) with enhanced trans-
lational symmetry can also be regarded as a realizing of
Hamiltonian algebra Eq. (10) under a different gauge choice
with all μz

n−1,n+1 = 1 and μz
n±1,n±2 = −1 such that the last

commuting relation becomes

σ x
n Bn±1 = Bn±1σ

x
n σ z

n∓1σ
z
n±2. (27)

Let

σ x
n = Bn = 1√

2

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

) ≡ hn,

σ z
n = τ̄ z

n . (28)

It is straightforward to verify that

σ x
n B̄n+1

= 1
2

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)(
τ̄

y
n+1 + τ̄ z

n τ̄
x
n+1τ̄

z
n+2

)
= 1

2

(
τ̄

y
n+1 + τ̄ z

n τ̄
x
n+1τ̄

z
n+2

)
τ̄ z

n+2τ̄
z
n−1

(
τ̄ y

n + τ̄ z
n−1τ̄

x
n τ̄ z

n+1

)
= τ̄ z

n−1τ̄
z
n+2B̄n+1σ

x
n . (29)

Now, we can consider the Hamiltonian operator algebra
Eq. (16) with arbitrary background gauge fields μz. In partic-
ular, we will consider the case with a global Z2 flux insertion
across the domain wall. As seen in Fig. 8, the commuting
algebra remains the same except for the three pairs σ z

i , Bi±1

and σ z
i+2, Bi+1, where additional minus signs are induced by

the global Z2 flux:

σ x
i B̄i±1 = −τ̄ z

i∓1τ̄
z
i±2B̄i±1σ

x
i ,

σ x
i+2B̄i+1 = −τ̄ z

i+3τ̄
z
i B̄i+1σ

x
i+2. (30)
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Unfortunately, for systems with periodic boundary con-
ditions (PBC), the above Hamiltonian algebra can not be
realized as a purely 1D system and we will leave this problem
in our future work.

III. CONSTRUCTING LATTICE MODELS OF GENERAL
GAPLESS DOMAIN WALLS

Interesting properties of the Ising domain wall motivate us
to construct lattice models of domain walls between more gen-
eral topological orders, and find their effective field theories.
In the following, we are going to utilize the duality between
string-net/gauge models and SPT phases as shown in the Z2

example, which can be explicitly generalized to arbitrary finite
group G.

As with the Z2 case, a domain wall between SPT models
captures the low-energy physics of a corresponding domain
wall between gauge models if it is gapless and has no global
flux going through. For simplicity, we will focus on this flux-
free case, and directly use the lattice construction of SPT
phases to study domain walls between topological phases. We
will see that domain walls we construct are all gapless for
G = ZN case.

A. Constructing SPT phases using group cocycles

We first briefly review the construction of a lattice model
realizing a 2D SPT phase with finite on-site symmetry G [4].

We define our model on a triangular lattice. Each vertex
is associated with a |G|-dim Hilbert space where local basis
states |g〉 are labeled by group elements g ∈ G. The model
is constructed with a branching structure on the lattice and a
3-cocycle in the group cohomology H3(G,U (1)). A branch-
ing structure is an assignment of arrows on all edges of the
lattice such that there is no local oriented loop, which defines
a natural ordering of vertices for each triangle. A 3-cocycle,
for our purpose, is a function ν : G4 → U (1) that satisfies two
conditions

ν(gg0, gg1, gg2, gg3) = ν(g0, g1, g2, g3), (31a)

ν(g1, g2, g3, g4)ν(g0, g1, g3, g4)ν(g0, g1, g2, g3)

ν(g0, g2, g3, g4)ν(g0, g1, g2, g4)
= 1,

(31b)

for any g, gi ∈ G. Two 3-cocycles ν, ν ′ are considered equiv-
alent if they only differ by a 3-coboundary λ, i.e., ν ′ = νλ. A
3-coboundary is a function λ : G4 → U (1) that satisfies

λ(g0, g1, g2, g3) = μ(g1, g2, g3)μ(g0, g1, g3)

μ(g0, g2, g3)μ(g0, g1, g2)
,

μ(gg0, gg1, gg2) = μ(g0, g1, g2). (32)

The choice of coboundary can be thought of as a gauge
freedom for cocycles. Equivalent classes of 3-cocycles form
the third group cohomology H3(G,U (1)), which itself is an
Abelian group. A more detailed introduction to group coho-
mology can be found in Appendix A.

FIG. 9. A triangular lattice with a branching structure. The or-
dering of vertices pqr and the orientation spqr = ±1 of a triangle are
both in accordance with the branching structure. Each local term of
the Hamiltonian acts on seven sites forming a hexagon.

Define a unitary transformation on the triangular lattice
with a branching structure (Fig. 9)

Uν |{gi}〉 =
∏
{pqr}

νspqr (gp, gq, gr, g∗)|{gi}〉, (33)

where g∗ is a fixed group element, the product runs over all
triangles labeled by their three vertices pqr ordered according
to the branching structure, and spqr = ±1 if the triangle has
anticlockwise/clockwise orientation respectively. The Hamil-
tonian is defined as

Hν = −
∑

p

Hp, Hp = Uν |φp〉〈φp|U †
ν

|φp〉 =
∑
gp∈G

|g〉. (34)

Although Uν acts on the entire lattice, each term of the
Hamiltonian acts nontrivially only on seven neighboring sites
centered at p. Explicitly, with a branching structure as shown
in Fig. 9,

〈g′
p, g1g2g3g4g5g6|Hp|gp, g1g2g3g4g5g6〉

= ν(g4, g5, gp, g′
p)ν(g5, gp, g′

p, g6)ν(gp, g′
p, g6, g1)

ν(gp, g′
p, g2, g1)ν(g3, gp, g′

p, g2)ν(g4, g3, gp, g′
p)

.

(35)

This expression has been simplified using the cocycle con-
dition Eq. (31b). All local terms commute, so the model is
exactly solvable. It has a unique ground state

|�GS〉 =
∑
{gp}

Uν |{gp}〉. (36)

Both the Hamiltonian and the ground state have the G sym-
metry {|gp〉} → {|ggp〉}. Models realize distinct SPT phases if
and only if they are defined by inequivalent 3-cocycles.

B. Domain walls between general SPT phases

We now use the construction in the previous section to
derive domain wall models between different SPT phases with
the same symmetry G.

Consider a system on a triangular lattice with the Hamilto-
nian

H = −
∑
p∈{◦}

Ha
p −

∑
p∈{•}

Hb
p , (37)
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FIG. 10. The domain wall of two SPT phases. Ha
p and Hb

p act on
white and black vertices respectively. A denotes the white region,
and B denotes the green shaded region.

where {◦} and {•} denote vertices in the upper and lower half
plane respectively (Fig. 10). Each local term Ha,b

p acts on
seven neighboring sites centered at p. Ha

p and Hb
p are defined

similarly by Eq. (34), but use two inequivalent cocycles νa, νb.
All Ha

p ’s commute and all Hb
p ’s commute, leaving the domain

wall as the only nontrivial part of the system.
To explicitly decouple the domain wall from the bulk, we

consider the unitary transformation

Uab =
∏

{pqr}∈A
ν

spqr
a (gp, gq, gr, g∗)

·
∏

{p′q′r′}∈B
ν

sp′q′r′
b (gp′ , gq′ , gr′ , g∗), (38)

where A and B are regions on the lattice, as shown in Fig. 10,
that mostly represent upper and lower half planes respectively.
It changes local terms in the bulk into trivial one body inter-
action, leaving the domain wall explicitly decoupled. On the
domain wall, the Hamiltonian transforms into

U †
abHa

pUab =
∑
g∈G

|ggp〉〈gp|
ν

si jk

ab (gi, g j, gk, g∗)

ν
si jk

ab (gi, gg j, gk, g∗)
,

U †
abHb

pUab =
∑
g∈G

|ggp〉〈gp|
ν

si jk

ab (gi, gg j, gk, g∗)

ν
si jk

ab (gi, g j, gk, g∗)
,

νab ≡ ν−1
a νb. (39)

i, j, k label a triangle whose top or bottom vertex is p, while
which vertex each of them represents is assigned according to
the branching structure (Fig. 10). Due to the group structure
of group cohomology H3(G,U (1)), we see that the domain
wall is defined only by one 3-cocycle νab rather than two.

In general, different branching structures lead to different
domain wall models, and Ha,b

p ’s can be different from one
another. For concreteness, we will mostly focus on the specific
branching structure shown in Fig. 10. This branching struc-
ture is particularly nice, since it gives us a fully translational
invariant domain wall. The corresponding Hamiltonian reads

H = −
∑

n

Hn,

〈g′
n, gn−1gn+1|Hn|gn, gn−1gn+1〉

= νab(gn+1, g′
n, gn−1, g∗)

νab(gn+1, gn, gn−1, g∗)
. (40)

Its effective anomalous symmetry operator can also be com-
puted

Sg|{gn}〉 =
∏

n

ν−1
ab (gn+1, gn, g−1g∗, g∗)|{ggn}〉. (41)

Now we have obtained a general domain wall model of 2D
bosonic SPT phases. To construct an explicit model, we only
need to find explicit expression of group 3-cocycles.

C. ZN domain wall models

It is no coincidence that both ZN gauge theories and SPT
phases in 2+1D are classified by the group cohomology
H3(ZN ,U (1)) ∼= ZN . We note that string-net realizations of
all N distinct ZN gauge theories can be constructed [44], and
lattice models exist for any SPT phases with finite on-site
symmetry [4].

The formula of ZN 3-cocycles is well known [33]

ν3(g0, g1, g2, g3) = exp

[
i
2πk

N2
g10(g21 + g32 − g31)

]
,

gi j ≡ (gi − g j )modN,

gi, k ∈ {0, 1, . . . , N − 1}, (42)

where gi labels a group element and k labels the N dif-
ferent classes of 3-cocycles in H3(ZN ,U (1)) ∼= ZN . Using
this formula in Eq. (40), we can define a ZN domain wall
model that is labeled by (N, k). Hamiltonians given by (N, k)
and (N, N − k) are related by complex conjugation, therefore
there are effectively only �N/2� distinct nontrivial domain
wall models for a given N .

1. Rederiving the Z2 domain wall

The simplest nontrivial domain wall model defined by
Eq. (40) is given by (N, k) = (2, 1). We expect this model to
be equivalent to the Ising domain wall we studied in Sec. II.
The cocycle formula in this case simplifies to

ν({gi}) =
{−1, {gi} = {0, 1, 0, 1} or {1, 0, 1, 0}

1, otherwise . (43)

Substituting this formula into Eq. (40), we find

Hn = 1
2

(
1 + σ z

n−1 + σ z
n+1 − σ z

n−1σ
z
n+1

)
σ x

n ,

S =
∏

n

σ x
n

∏
n

exp

[
iπ

4

(
σ z

nσ z
n+1 − 1

)]
, (44)

which is exactly the same as Eq. (24) at g = 1, hence equiva-
lent to the Ising domain wall model.

2. Z3,Z4, and Z5

We numerically investigate all five distinct domain wall
models as defined by Eq. (40) for N = 3, 4, 5.

Entanglement entropy scaling [45] of a 48-site periodic
chain as computed by density matrix renormalization group
(DMRG) [46–48] is plotted in Fig. 11. We find very precise
logarithmic scaling that is fitted with central charge very close
to 1 for all models, proving criticality of these models.

We next use loop-TNR to compute lowest virtual energies
of these models, normalized such that ground-state energy is
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FIG. 11. Entanglement entropy S(x) of an interval of length x
in the ground state of L = 48 periodic ZN domain wall models
labeled by (N, k), plotted against d (x) = ln ( L

2π
sin( x

L 2π )). Data
is fitted with S(x) = c

3 d (x) + b and find c = 1.014–1.019 for all
models.

−1/12, compatible with a c = 1 CFT. See Fig. 12. Here, we
define virtual energies via the virtual-space transfer matrix
[49] of the quantum lattice model. They are characterized by
a theory relating to the original lattice model by an S modular
transformation. See Appendix D for details.

The loop-TNR computation does not converge for the
(4,2) model, but its converging behavior is very similar to
that of the Ising domain wall model. We again see converg-
ing trends towards {0.5, 1.0, 1.5, 2.0, 2.5} and degeneracies
{4, 6, 8, 17, 28} in the expected limit. We hence conjecture
that it is also described by the compactified free boson CFT
at self-dual radius.

The other four models’ virtual energies do not match any
known c = 1 CFT [42] (in the usual Euclidean space with
the metric being the identity matrix). The gapless edge of an
Abelian topological phase is expected to be described by a

E
n
er

gy

0.5
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1.5

2.0

2.5

(3, 1)

5 10 15

(4, 1)

5 10 15

(4, 2)

5 10 15

(5, 1)

5 10 15

(5, 2)

5 10 15

FIG. 12. Low-lying excitation energies of ZN domain wall
models labeled by (N, k), plotted against iteration step, which is
logarithmic scale in system size. Data points for the (4,2) model are
marked with different shapes and colors according to their expected
convergence limits, whose values are marked with solid-horizontal
lines.

TABLE I. Best fit parameters for nonconformal ZN domain wall
models as described by a chiral boson theory (47).

(N, k) ρ v1/v2

(3,1) 0.968 1.623
(4,1) 0.931 1.907
(5,1) 0.912 2.130
(5,2) 0.948 1.121

Luttinger liquid action [50]

Sedge = 1

4π

∫
dtdx(KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ), (45)

where K is an integer symmetric matrix, V is a positive
definite symmetric matrix, and fields are compactified φI =
φI + 2π . Our domain wall models can be viewed effectively
as special edge models. Since c = 1 from the entanglement
entropy scaling, we expect K to be a 2 × 2 matrix with
eigenvalues of opposite signs. In addition, since the domain
wall models are effectively 1D lattice models, we required
the edge theory to be modular invariant. Hence, we are led
to the conclusion that by redefining the fields φI through a
linear combination, we can simultaneously diagonalize both
matrices with a congruent transformation such that

PKPT =
(

1 0
0 −1

)
, PV PT =

(
v1 0
0 v2

)
. (46)

This diagonalized form is equivalent to two compactified
massless free chiral bosons moving in opposite directions with
velocities v1 and v2 respectively. In the usual CFT defined
with the Euclidean metric, conformal invariance requires v1 =
v2. In our case, v1 = v2 is in general not satisfied. For the
general v1 �= v2 case, we find that energies of highest weight
states are (see Appendix C)

Em,n = 1

2

(
ρ2m2 + n2

ρ2

)
+ 1 − vr

1 + vr
mn, (47a)

and energies of descendant states are

Em,n,{n1,l },{n2,l } = Em,n + 2

1 + vr

∞∑
l=1

l (n1,l + vrn2,l ) (47b)

in units of π (v1 + v2)/L, where vr = v1/v2. We note that an S
modular transformation has the effect of mapping vr → 1/vr ,
which does not change the spectrum. Hence if virtual energies
of a lattice model are characterized by Luttinger liquid, the
lattice model itself should be described by the same theory.
We proceed to fit the energies in Fig. 12 with Eq. (47) by
adjusting the two free parameters ρ and vr , and find a perfect
fit for all models. The fitted values are listed in Table I.

To further confirm this field theoretic description, we
continuously deform the (3,1) domain wall model without
breaking the effective Z3 symmetry defined by Eq. (41), and
connect it with a compactified free boson CFT for which
v1 = v2. One such deformation is found to be

Hdeform(g) = g(H(3,1) + I ) + (1 − g)H ′ (48)
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FIG. 13. Excitation energies of Hdeform(g) and corresponding best
fit Luttinger liquid (LL). States with the same quantum numbers m, n
in Eq. (47) are connected by gray lines.

with

H ′ = −
∑

i

H ′
i

H ′
i = |020〉〈010| + ei 2π

3 |101〉〈121|
+ e−i 2π

3 |212〉〈202| + H.c. (49)

where H(3,1) is the domain wall Hamiltonian, and H ′ is a fine
tuned Hamiltonian that realizes the ρ = √

2/3 compactified
free boson CFT. This deformed model realizes a CFT at g = 0,
and recovers the (3,1) domain wall model (up to a constant) at
g = 1. Virtual energies of Hdeform(g) are computed with loop-
TNR for 0 � g � 1 (Fig. 13) and fitted with the field theoretic
predictions Eq. (47) to excellent agreement.

3. Alternative branching structure and cocycle gauges

Models we studied in the previous section all assumed a
particular branching structure (Fig. 10) and cocycle gauge
Eq. (42). Changing these choices amounts to a local unitary
transformation in the bulk. This is inconsequential for the bulk
physics, but can cause nontrivial changes on the domain wall,
because the resulting local unitary transformations on the two
sides may not be the same. It is important that our general
conclusions remain valid for different choices of branching
structures and cocycle gauges.

Consider an alternative branching structure on the domain
wall, shown in Fig. 14. Applying this branching structure

n

n+1

n+2n-2

n-1 n+3

FIG. 14. An alternative branching structure on the domain wall.
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FIG. 15. Excitation energies of the Z3 domain wall model with
alternative branching structure (Fig. 14).

to Eq. (39), the new domain wall Hamiltonian for a general
group cocycle reads

H ′ = −
∑

n

(
Ha

2n + Hb
2n+1

)
,

× 〈
g′

n, gn−1gn+1

∣∣Ha
n

∣∣gn, gn−1gn+1
〉

(50)

= νab(gn+1, gn−1, gn, g∗)

νab(gn+1, gn−1, g′
n, g∗)

,

〈
g′

n, gn−1gn+1

∣∣Hb
n

∣∣gn, gn−1gn+1
〉

= νab(gn, gn+1, gn−1, g∗)

νab(g′
n, gn+1, gn−1, g∗)

. (51)

Using the same cocycle gauge Eq. (42), the new Z2 domain
wall Hamiltonian is

Ha
n = 1

2

(
1 − σ z

n−1 + σ z
n+1 + σ z

n−1σ
z
n+1

)
σ x

n ,

Hb
n = 1

2

(
1 + σ z

n−1 − σ z
n+1 + σ z

n−1σ
z
n+1

)
σ x

n . (52)

This is unitarily equivalent to the Ising domain wall. Explic-
itly, Eq. (52) is related to Eq. (24) at g = 1 by

U ′′ =
∏

n

exp

(
iπ

4
σ z

2nσ
z
2n+1

)
exp

(
− iπ

4
σ z

n

)
. (53)

The Z3 domain wall is changed by this new branching
structure. We again compute its virtual energies, see Fig. 14,
and find that it still fits the Luttinger liquid predictions per-
fectly at ρ = 0.951, vr = 1.416, see in Fig. 15.

Next, we keep the old branching structure in Fig. 10,
but multiply each 3-cocycle in Eq. (40) with an arbitrary
3-coboundary, effectively changing the cocycle gauge. Any
ZN group coboundary is fully determined by N2 independent
parameters:

μ(0, m, n) = eiθmn . (54)

For both Z2 and Z3, we generate 16 sets of random θmn ∈
[0, 2π ), and compute virtual energies of resulting domain wall
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FIG. 16. Excitation energies/scaling dimensions of Z2 domain
walls defined with random 3-coboundaries, plotted against loop-
TNR iteration number. All models match free boson CFT with
compactification radius ρ ∈ [0.945, 1.0].

models with loop-TNR. All generated Z2 domain walls fit a
free boson CFT with compactification radius ρ ∈ [0.945, 1],
and all generated Z3 domain walls fit a Luttinger liquid theory
with appropriate ρ and v1/v2. Energies of a sample of these
models are shown in Figs. 16 and 17. Best-fit parameters for
Z3 domain walls are listed in Table II.

D. Domain wall model of more complex Abelian group

For gapless domain wall models with product of Abelian
groups such as G = Z2

2, we find all of them have the same
central charge c = 1 and again can be described by Luttinger
liquid theory with appropriate compactification radius ρ. This
is not quite surprising because the gauge fluxes in these
models all carry Abelian statistics, just like those simple ZN

models we studied above.
Below we consider a more interesting case with G = Z3

2.
Under a proper choice of the 3-cocycle in this case, it turns
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FIG. 17. Excitation energy of Z3 domain walls defined with ran-
dom 3-coboundaries, plotted against loop-TNR iteration number. All
computed models match a Luttinger liquid/chiral boson theory with
appropriate parameters (Table II).

TABLE II. Best fit Luttinger liquid parameters for Z3 domain
walls plotted in Fig. 17.

ρ v1/v2

(a) 0.958 1.045
(b) 0.631 2.391
(c) 0.827 1.201
(d) 0.945 1.490
(e) 0.789 2.652
(f) 0.998 1.307

out that the gauge flux will carry non-Abelian statistics. It
is well known that for G = Z3

N , its third group cohomol-
ogy H3(Z3

N ,U (1)) ∼= Z7
N has seven generators. Writing each

group element as g = (g1, g2, g3) with gp = 0, . . . , N − 1, the
explicit expressions for the generators are [51]

α
pq
I (g0, g1, g2, g3) = exp

[
i
2π

N2
gp

10

(
gq

21 + gq
32 − gq

31

)]
,

αII (g0, g1, g2, g3) = exp

[
i
2π

N
g1

10 g2
21 g3

32

]
, (55)

where

1 � p � q � 3,

gp
i j ≡ (

gp
i − gp

j

)
mod N,

gp
i ∈ {0, 1, . . . , N − 1}. (56)

A 3-cocycle of Z3
N can be written as

ν3 = kIIαII +
∑
p,q

kpq
I α

pq
I (57)

for kpq
I , kII = 0, . . . , N − 1.

We will restrict ourselves to the simplest case of N = 2.
Of particular interest to us is the generator αII , which involves
all three sub-Z2 groups. We compute the scaling dimensions
of the domain wall defined by the cocycle kpq

I = 0, kII = 1,
which corresponds to the case with non-Abelian statistics for
the gauge flux. We again find such a gapless domain wall
model can be described by a Luttinger liquid with c = 1. As
seen in Fig. 18, the data again agrees with a compactified
boson CFT, with compactification radius ρ = 0.932.

E. Domain wall model of non-Abelian group

Finally, we consider an example with non-Abelian gauge
group G. It is well known that the smallest non-Abelian group
is S3. We label each group element by a pair of numbers
g = (g1, g2), where g1 = 0, 1 and g2 = 0, 1, 2. Group multi-
plication rule is

gh = (g1, g2)(h1, h2)

= (〈g1 + h1〉2, 〈(−1)h1
g2 + h2〉3) (58)

where 〈n〉m = n mod m. The group cohomology
H3(S3,U (1)) ∼= Z6. An explicit formula of 3-cocycles
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FIG. 18. Scaling dimensions of a Z3
2 domain wall with a nontriv-

ial αII generator. Best fit compactification radius ρ = 0.932.

is [51]

ν3(g0, g1, g2, g3)

= exp

{
i
2πk

9

[
a10(a21 + a32 − a31) + 9

2
b10b21b32

]}
,

(59)

where

ai j = (−1)g1
i
〈
g2

i − (−1)g1
i +g1

j g2
j

〉
3,

(60)
bi j = 〈

g1
i + g1

j

〉
2,

and k = 0, . . . , 5 labels the six inequivalent 3-cocycles.
We use the variational optimization algorithms for uniform

matrix product states (MPS) [52,53] to obtain the ground state.
Given a translationally invariant MPS, the correlation length
ξ can be extracted from the spectral properties of the transfer

FIG. 19. Finite-size scaling of the S3 gapless domain wall model.

FIG. 20. Entanglement entropy S(ξ ) of correlation length ξ in
the ground state of infinite size S3 domain wall models with k = 1.
Data is fitted with S(x) = cln(ξ )/6 + b and we find c ∼ 2.072.

operator [54] E = ∑
s Ās ⊗ As,

ξ = − 1

ln
∣∣ λ2
λ1

∣∣ . (61)

Here Ās is the complex conjugate of As. λ1 and λ2 are the
largest and second largest eigenvalue of E. The ratio between
λ1 and λ2 also bounds the gap of the parent Hamiltonian
[55,56],

Gap = 1 − λ2

λ1
. (62)

The central charge c of the CFT is related to correlation length
ξ by the scaling relation [57]

S = c

6
lnξ . (63)

In MPS algorithms, both S and ξ are controlled by the nu-
merical parameter “bond dimension” D. As D increases, we
obtain a more accurate ground state with larger entanglement
entropy S and larger correlation ξ . In Fig. 19, we plot the gap
as a function of correlation length ξ . In Fig. 20, we plot S(ξ )
with respect to ξ for several D. From the data fitting we find
c ∼ 2.072. It shows the gap is closed as ξ diverges, which
confirms the gapless nature of the S3 model with k = 1.

Unfortunately, due to a very big truncation error, we can
not implement the loop-TNR algorithm to compute the scal-
ing dimension in this case. Possible candidate CFTs with
c = 2 include the su(3)1 Wess-Zumino-Witten model and
two-component Luttinger liquid theory with proper compact-
ification radii.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we systematically construct lattice models
of gapless domain walls between twisted and untwisted gauge
models with arbitrary finite group G in 2 + 1D. We then use
the state-of-art loop-TNR algorithm to study several exam-
ples. For all the Abelain group cases studied here, we find
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all of them perfectly agree with the Luttinger liquid theory
descriptions with a central charge c = 1 at low energy. For
the simplest non-Abelian group case with G = S3, we find
it is still gapless but has a larger central charge c = 2. We
conjecture that the su(3)1 Wess-Zumino-Witten model could
be a very good candidate for such a CFT.

We further provide a physical picture to understand the
gapless nature of these domain walls based on the theory
of Lagrangian subsets and anyon condensation. On the other
hand, since the corresponding ungauged domain walls can be
regarded as an SPT boundary with an anomalous symmetry
action, they must be gapless if the anomalous symmetry is
not broken spontaneously, which is true for all domain wall
models constructed in this paper. We also would like to stress
that for a given finite group G, our construction actually gives
rise to a deformation class of gapless domain wall models
parameterized by different coboundary choices, and our nu-
merical results have shown that all these models have the same
central charge but with different compactification radius and
velocity ratios in general.

Finally, it is straightforward to generalize our construction
of gapless domain wall models into higher dimensions using
the correspondence between SPT models and twisted gauge
models. All we need is a branched triangulation on a higher
dimensional manifold, and an appropriate region A (Fig. 10)
to define the unitary transformation U ′. It can be easily seen
that for a higher dimensional domain wall Hamiltonian H =
−∑

i Hi, each local term Hi acts only on the site i and its near-
est neighbors. But to write down an explicit model is rather
tedious. The difficulty partly comes from the reduced transla-
tional and rotational symmetry when a branched triangulation
is imposed on a higher dimensional manifold. Such reduced
symmetry also increases the difficulty for numerical study of
these models. Physically, we believe that these models still
describe gapless phases since the anomalous symmetry cannot
be broken on domain walls separating two deconfinement
phases of gauge group G. From a more mathematical point
of view, all these domain wall models realize the so-called
categorical symmetry. Thus, our construction might even give
rise to a systematical way of understanding gapless domain
walls in bosonic systems, especially in 2+1D, since recent
studies have shown that all topological phases in 3+1D can be
realized as twisted gauge theory [58]. In future work, it will
be of great interest to investigate the whether these gapless
domain wall models are integrable or not. The generalization
of our constructions into fermionic systems is also another
important direction.
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APPENDIX A: ALGEBRAIC DEFINITION OF GROUP
COHOMOLOGY

For a group G, a G-module M is itself an Abelian group
on which the group G acts compatibly with its Abelian group
structure, i.e.,

g · (ab) = (g · a)(g · b), ∀g ∈ G, ∀a, b ∈ M. (A1)

Define a n-cochain as a map νn : Gn+1 → M that satisfies
[59]

g · νn(g0, g1, . . . , gn) = νn(gg0, gg1, . . . , ggn). (A2)

The set of all n cochains forms a group, denoted as Cn(G, M ),
whose group multiplication is simply the function multiplica-
tion of νn.

Define the coboundary operator as a map
dn : Cn(G, M ) → Cn+1(G, M )

(dnνn)(g0, . . . , gn) =
n+1∏
i=0

ν (−1)i
(g0, . . . , gi−1, gi+1, . . . , gn)

(A3)

An n cochain νn is called an n coboundary if νn = dn−1νn−1 for
some νn−1 ∈ Cn−1(G, M ). It is called an n-cocycle if dnνn = 1.
The set of all n coboundaries B(G, M ) and the set of all n
cocycles Zn(G, M ) form two subgroups of Cn(G, M ), where
we define B0(G, M ) = 0 in addition. More formally, we have

Bn(G, M ) =
{

1, n = 0;
dn−1( Cn−1(G, M )), n � 1,

(A4)

Zn(G, M ) =, ker(dn). (A5)

Finally, we define the group cohomology of (G, M ) as the
quotient group

Hn(G, M ) = Zn(G, M ) /Bn(G, M ). (A6)

For our purposes, it is sufficient to consider M = U (1)
whose elements are simply phase factors, and G is the sym-
metry group of the system. G acts on U (1) in the following
way:

g · a = as(g), ∀g ∈ G, ∀a ∈ M, (A7)

where

s(g) =
{

1, if g ∈ G acts unitarily;
−1, if g ∈ G acts anti-unitarily. (A8)

To explicitly indicate this nontrivial action of anti-unitary
group elements, we shall from now on write M = UT (1).

APPENDIX B: CONSTRUCTING BOSONIC SPT PHASES
USING GROUP COHOMOLOGY

Bosonic SPT phases can be systematically described
by group cohomology theory [4]. Specifically, (d + 1)-
dimensional bosonic SPT phases with symmetry group G
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FIG. 21. The graphical representation of the ground-state wave
function Eq. (B1) in the case of d = 1. The edge is M and the disk is
Mext .

can be labeled by elements in Hd+1[G,UT (1)]. The identity
element corresponds to a trivial phase (product state), and
nontrivial elements correspond to nontrivial SPT phases.

Furthermore, we can construct exactly solvable lattice
models of SPT phases for any finite symmetry group G
and in any dimensions. Such a model is constructed on
a d-dimensional simplicial complex M, which is itself the
boundary of an extended (d + 1)-dimensional complex Mext

with a branching structure, and we further assume that there
is only one internal vertex in Mext. Each vertex in M is associ-
ated with a |G|-dimensional local Hilbert space, where basis
vectors |gi〉 are labeled by group elements gi ∈ G. The internal
vertex of Mext is associated with a fixed group element g∗ ∈ G.
The ground-state wave function is given by (Fig. 21)

|�M〉 =
∑
{gi}M

∏
{i j···∗}

ν
si j···∗
d+1 (gi, g j, . . . , g∗)|{gi}M〉, (B1)

where the sum runs over all configurations {gi}M of the ver-
tices in M and the product runs over all simplices {i j · · · ∗} in
Mext, and νd+1 is a group (d + 1)-cocycle. The symmetry is
on-site and acts in the following simple way:

g : |{gi}M〉 → |{ggi}M〉, g ∈ G. (B2)

The ground state is trivial a product state when the cocycle
is trivial. Nontrivial ground states can be obtained from this
trivial state by a unitary transformation

U =
∏

{i j···∗}
ν

si j···∗
d+1 (gi, g j, . . . , g∗). (B3)

An exactly solvable Hamiltonian can be constructed for this
ground state as

H = −
∑

i

Hi, Hi = U |φi〉〈φi|U † (B4)

where the sum runs over all vertices i and |φi〉 = ∑
gi∈G |gi〉.

It is straightforward to check that all Hi’s commute with each
other, hence the solvability of this model.

In 2D, an explicit formula is given by (Fig. 22):

〈g′
i, g1g2g3g4g5g6|Hi|gi, g1g2g3g4g5g6〉

= ν3(g4, g5, gi, g′
i )ν3(g5, gi, g′

i, g6)ν3(gi, g′
i, g6, g1)

ν3(gi, g′
i, g2, g1)ν3(g3, gi, g′

i, g2)ν3(g4, g3, gi, g′
i )
(B5)

For G = Z2, there are two elements in H3[Z2,UT (1)], corre-
sponding to the two Hamiltonians defined by Eq. (12).

g’i

g
g2g

i

5
g1

4

g6
2
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i

kj

k+j

−

gg3

FIG. 22. A lattice model for 2-dimensional SPT phase. (a) Hi

acts on seven spins centered around i, shown as the shaded re-
gion. Down triangles (�) have orientation si jk = +, and up triangles
(�) have orientation si jk = −. (b) A graphical representation of
the phase factor, which is a product of 3-cocycles. The “internal”
vertex associated with g∗ was originally in the center of the cage,
but can be removed using cocycle condition (either graphically or
algebraically).

Finally, we note that elements in the group cohomology are
equivalence classes. Two different cocycles νn and ν ′

n describe
the same SPT phase if they differ only by a coboundary:

νn(g0, g1, . . . , gn)

= (dn−1νn−1)(g0, g1, . . . , gn) · ν ′
n(g0, g1, . . . , gn) (B6)

The choice of the branching structure is also irrelevant in the
classification of SPT phases, so we can always choose any
branching structure that is most convenient for our purpose.

APPENDIX C: ENERGY SPECTRUM OF LUTTINGER
LIQUID THEORY

In this Appendix, we derive the energy spectrum Eq. (47)
for the c = 1 Luttinger liquid theory whose action is given in
Eq. (45). For convenience, we repeat the action here

Sedge = 1

4π

∫
dtdx(KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ), (C1)

where φI is a compact boson with φI = φI + 2π . As discussed
in the main text, we only need to consider the c = 1 two-
component theory associated with

K =
(

0 1
1 0

)
, V =

(
a c
c b

)
, (C2)

where a, b, c are real numbers satisfying the conditions a > 0
and ab > c2 such that V is positive definite. This is a free the-
ory and it is well studied in the literature (see, e.g., Ref. [60]).
To be self-contained, we give a brief derivation on the relevant
results used in the main text, with a focus on the case that the
left and right movers have different velocities.

To find the spectrum, we perform the following change
of variables:

φ̃ = U −1φ (C3)

where φ = (φ1, φ2) and

U = 1√
2

(
ρ −ρ

1/ρ 1/ρ

)
(C4)
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with ρ = 4
√

b/a. Inserting Eq. (C3) into Eq. (C1), the action is
rewritten as

Sedge = 1

4π

∫
dtdx ∂xφ̃1(∂t φ̃1 − v1∂xφ̃1)

− 1

4π

∫
dtdx ∂xφ̃2(∂t φ̃2 + v2∂xφ̃2), (C5)

where v1 = √
ab + c and v2 = √

ab − c. The two fields φ̃1

and φ̃2 completely decouple, each of which is a standard free
chiral boson. The theory Eq. (C5) can then be solved using
the standard mode expansion; see, e.g., Ref. [60]. Below we
briefly state the main results.

The energy eigenstates consist of two types. First, there
is a set of highest wight states, created by the corresponding
vortex operators when acting on the ground state. This energy
of these states depend on the compactification radii of the
fields φ̃1 and φ̃2, which inherit from those of φ1 and φ2. In
the current case that φI = φI + 2π , the general form of vortex
operators are given by

Vm,n = eimφ1+inφ2 , (C6)

where m, n are integers. Acting Vm,n on the ground state |0〉,
it creates a highest weight state |m, n〉 ≡ Vm,n|0〉. These states
are the primary states of the U (1) Kac-Moody algebra that
one can read off from the action Sedge. We rewrite Vm,n =
eim̃φ̃1+iñφ̃2 , where

m̃ = 1√
2

(mρ + n/ρ), ñ = 1√
2

(−mρ + n/ρ). (C7)

The energy of the state |m, n〉 (relative to the ground state) is
given by

�m,n = πv1

L
m̃2 + πv2

L
ñ2

= π (v1 + v2)

L

[
1

2

(
ρ2m2 + n2

ρ2

)
+ 1 − vr

1 + vr
mn

]
, (C8)

where L is the system size and vr = v2/v1.
Second, in the mode expansion of the fields φ̃1 and φ̃2,

one introduces the Fourier coefficients ã1,l and ã2,l , where l
is integer. The highest weight states are annihilated by ã1,l

and ã2,l with l > 0, i.e., ã1,l |m, n〉 = ã2,l |m, n〉 = 0. On the
other hand, a Fork space is spanned by acting ã1,l and ã2,l

with l < 0 on each primary state |m, n〉:
ãn1,1

1,−1ãn1,2

1,−2 . . . ãn2,1

2,−1ãn2,2

2,−2 . . . |m, n〉 (C9)

where n1,l and n2,l are positive integers. The energy of these
descendant states are

�m,n,{n1,l ,n2,l } = �m,n +
∞∑

l=1

(
2πv1l

L
n1,l + 2πv2l

L
n2,l

)

= �m,n + π (v1 + v2)

L

2

1 + vr

∞∑
l=1

l (n1,l+vrn2,l ).

(C10)

Then, the whole spectrum is generated by varying the integers
m, n, and {n1,l , n2,l}.

Finally, we comment that the ground-state energy also de-
pends on the system size L. For periodic boundary conditions,
the ground-state energy is given by

E0 = − πc

12L
(v1 + v2), (C11)

where c is the central charge. Since c = 1, Eq. (C11) can
be used to set the energy unit π (v1 + v2)/L in numerical
calculations.

APPENDIX D: VIRTUAL-SPACE TRANSFER MATRIX
OF QUANTUM MODELS

In this section, we briefly explain how virtual energies are
defined and computed using loop-TNR.

The Euclidean path integral of a 1D quantum lattice sys-
tem can be represented as a 2D tensor network through
Suzuki-Trotter expansion [61]. For our domain wall models,
Hamiltonians, e.g., Eq. (40), consist of three-body interac-
tion terms, but local terms do not commute [Hm, Hn] �= 0
only when n = m ± 1. We therefore separate local terms into
groups of even and odd terms

H = He + Ho,

He =
∑
n even

Hn,

Ho =
∑
n odd

Hn. (D1)

All Hn’s commute within each group. A small local evolution
can be represented as a rank-6 tensor

T
s′

n−1s′
ns′

n+1
sn−1snsn+1 = 〈

s′
n−1s′

ns′
n+1

∣∣e−εHn |sn−1snsn+1
〉
. (D2)

The Euclidean time evolution operator is well approximated
by

U (β ) ≈ [e−εHe e−εHo ]β/ε, ε � 1, (D3)

which is a stack of 2β/ε alternating layers of even/odd local
evolutions. Each layer can be written in the form of matrix
product operators (MPO). The end result is a square network
of rank-4 tensors. See Figs. 23(a)–23(c).

The partition function Z = Tr e−βH of a periodic 1D quan-
tum system is obtained by putting the tensor network in
Fig. 23(c) on a torus. Following Ref. [49], we define the
real-space transfer matrix T as a time evolution operator, i.e.,
a strip of the tensor network that wraps around in the spatial
direction and transfer in the temporal direction. Similarly, we
define the virtual-space transfer matrix T̃ as a strip of the
tensor network that wraps around in the temporal direction
and transfer in the spatial direction [Fig. 23(c)].

The virtual-space transfer matrix effectively defines a re-
lated quantum system on the virtual/Trotter space, where it
serves as the evolution operator. Virtual energies, as the name
suggests, are energies of this related virtual space quantum
system, which are real exponents Ẽ j of eigenvalues of the
virtual-space transfer matrix λ̃ j = e−l (Ẽ j+iP̃j ), where l is a
normalization constant. The imaginary exponent Pj does not
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FIG. 23. (a) Local evolution operator represented as a rank-6 ten-
sor, and decomposed into an MPO via singular value decomposition.
(b) Within a single layer of even or odd evolution operators, local
evolution operators are connected to form a larger MPO. (c) A square
network of rank-4 tensors representing Euclidean path integral of a
1D quantum system. A real-space transfer matrix T and a virtual-
space transfer matrix T̃ are marked by shaded regions. (d) Compress
the tensor network in the temporal direction by iTEBD. (e) Two
iterations of loop-TNR iterations. Each tensor in the third diagram is
a coarse-grained representation of four tensors in the first diagram. (f)
A virtual-space transfer matrix constructed from four coarse-grained
local tensors.

necessarily have physical meaning, and can be eliminated by
taking appropriate powers of T̃ .

Relation between the original quantum system and the vir-
tual system can be understood via their effective field theories,
which share the same partition function but have switched
roles of spatial and temporal directions. In other words, they
are related via an S modular transformation. A CFT realized
on a lattice is modular invariant, so we expect virtual energies
to provide the same information as energies of the original
system. For nonconformal theories, the effect of S transfor-
mation can also be analyzed relatively easily.

An important distinction between the original lattice sys-
tem and its related virtual system is that the former may have
nonanalytic finite size corrections due to the discreteness of
the lattice [62]. Such corrections may render many system
sizes unsuitable for taking the continuum limit, severely ob-
scuring the corresponding field theory. On the other hand, the
virtual system is defined on a continuous strip with no inherent
discrete structure, and does not suffer from this effect. This
is why we compute virtual energies in our study of domain
walls.

To efficiently compute virtual energies, we first use iTEBD
[63] to compress the network in the temporal direction
[Fig. 23(d)] so that each local tensor becomes less anisotropic
and spans a time interval of order 1. Then we use loop-TNR
[38] to iteratively coarse grain the square tensor network,
so that a single local tensor covers exponentially larger
area of Euclidean space-time [Fig. 23(e)]. After 10–20 it-
erations, the virtual-space transfer matrix constructed from
just a few local tensors [Fig. 23(f)] is enough to give re-
sults close to the thermodynamic limit. Virtual energies are
found by sparse diagonalization of the virtual-space transfer
matrix.
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