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Modeling of human group coordination
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We study the coordination in a group of humans by means of experiments and simulations. Experiments
with human participants were implemented in a multiclient game setting, where players move on a virtual
hexagonal lattice, can observe their and other players’ positions on a screen, and receive a payoff for reaching
specific goals on the playing field. Flocking behavior was incentivized by larger payoffs if multiple players
reached the same goal field. We choose two complementary simulation methods to explain the experimental
data: a minimal cognitive force approach, based on the maximization of future movement options in the agents’
local environment, and multiagent reinforcement learning (RL), which learns behavioral policies to maximize
reward based on past observations. Comparison between experimental and computer simulation data suggests
that group coordination in humans can be achieved through nonspecific, information-based strategies. We also
find that although the RL approach can capture some key aspects of the experimental results, it achieves lower
performance compared to both the cognitive force simulation and the experiment, and matches the observed
human behavior less closely.
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I. INTRODUCTION

Human group coordination [1–6] is a ubiquitous but
challenging problem, as it spans multiple scales, from few
individuals to large-scale organizations such as political elec-
tions and international treaties [1,7,8]. Group coordination
necessarily strikes a balance between individual strategies and
social flocking behavior. Different modeling approaches have
been developed to describe emergent patterns on a group
level, based on the interaction of individual-level strategies
[9–15]. “High-level models” [16] directly encode empirically
observed features of individual or collective behavior. Another
class of models attempts to explain emergent patterns in group
behavior by making assumptions on the individuals’ underly-
ing mental processes and encoding these in a group model
[17–19]. In contrast to these, we present a functional ap-
proach, where we aim to reproduce observed human behavior,
by applying simple formalized decision making rules. We ad-
dress the question of whether high-level models, based on em-
pirical data or psychological assumptions, can be replaced by
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“low-level” [16,20], functional models of group coordination
with potentially explanatory power for the collective pattern.

It is commonly assumed that an agent’s decision process
involves two components: an estimation phase, and a decision
rule [4]. In this work, we evaluate two paradigms for the
decision process, i.e., (1) choosing the action that maximizes
future options [21–24] and (2) choosing the action that leads
to the highest expected reward learned from past experience
[25]. To examine these two simple decision making rules,
we employ the following methods: (i) computer simulations
of agents subject to an interaction called “cognitive force,”
which is based on the maximization of future options, and
(ii) multiagent reinforcement learning (RL), which learns
reward-maximizing policies from past observations collected
from the environment. As the basis for our evaluation, we
use experimental data, which was collected using a multi-
player game with human participants. The goal of this work
is to compare and evaluate two complementary methods to
explain the experimental data. Their complementarity con-
sists in how estimation and decision rules are implemented.
In the cognitive force model, decision making is based on
the maximization of future movement options in the agents’
local environment, and evaluation of future options; in the RL
model, past observations are used to create behavioral policies
in order to maximize reward.

On the one hand, the cognitive force approach using
maximum entropy arguments has already proven fruitful in
modeling distributions of organisms [26], identifying models
for flocks of birds [27], or phase transitions in pedestrian
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FIG. 1. (a) Schematic illustration of the systems’ setup. Each human player or simulated agent is represented by a slightly larger black dot
in the experiment or simulation, respectively (not visible in these schematics). The six green fields with € symbols represent the reward fields,
while the one with two € symbols represents a reward field where biased players/agents receive relatively higher payoff. (b) Cognitive force
model. Three exemplary hypothetical random walks of a simulated agent located at the center field. Visited fields are marked in dark gray. As
shown in the top-right figure, when an agent reaches a reward field for the first time, it receives additional moves. Hence, the agent continues
its hypothetical walk. The three walks, toward the right (r) shown in the top-left panel, down-right (d-r) shown in the top-right panel, and left
(l) shown in the bottom-left panel, are associated with a number of visited fields of Ar = 9, Ad−r = 17, and Al = 8, respectively. Accordingly,
the agent would choose to move to the adjacent field down-right, as illustrated in (c). (c) Based on its hypothetical random walks an agent
determines which adjacent field to move toward. (d) The relative frequency of finding an agent on a certain hexagon throughout a simulation,
where the darker the gray scale, the higher the frequency. One can observe how agents tend to move to the higher-reward field in the top right,
marked with €€. One exemplary trajectory of an agent is indicated via arrows. The frequency distribution is averaged over 100 independent
simulation runs.

dynamics [11]. In this paper we present a novel application
of this approach, which is grounded in physics [20,23] and
cognitive and artificial intelligence sciences [28–30], by using
it to model human group behavior.

Multiagent reinforcement learning, on the other hand, has
been successfully applied to solve group optimization tasks
such as swarm navigation, communication-based tasks, and
energy grid management [31–33]. However, to the best of our
knowledge, it has not yet been used to model observed human
behavior.

This article is organized as follows. In Sec. II we describe
the experimental setup and the information given to human
participants. In Sec. III both modeling approaches used here
are described: the cognitive force model and the multiagent
RL approach. In Sec. IV we present our results and critically
compare the two modeling methods. Finally, in Sec. V we
draw our conclusions.

II. EXPERIMENTS

We build both simulation approaches in a setup concep-
tually identical to the experiment described below. In the
following, we refer to human participants in the experiment
as “players” and to simulated entities as “agents.” To de-
fine what information the players and simulated agents have
access to, and what external influences have an impact on
the players’/agents’ behavior, we construct a well-controlled
environment. The experiments and related computer simu-
lations presented here are conducted using the HoneyComb
paradigm [34].

Human participants in groups of ten move in a virtual
environment, i.e., a multiclient game setup through which
they only have information about the in-game behavior of
other participants, preventing real-life visual or auditory in-

teractions. The virtual playground of the game consists of
hexagonal fields as schematically illustrated in Fig. 1(a).
Each participant is represented by an avatar, and has solely
insight into the current position and movement of their co-
participants. From their current positions, each participant can
move their avatar to one of the adjacent hexagons. At the
beginning of the game, all players’ avatars are positioned in
the center of the honeycomb. Each player has a fixed number
Mexp = 15 of available moves to play a game. Within this
setup, we implemented incentives at the individual level via
six reward fields, granting payoffs (marked in green, with €

symbols). The players were given the following information
at the start of the game:

(1) A majority of eight players was informed of six equal
lower-reward goal fields.

(2) A minority of two randomly selected players was
informed that one specific goal field held a higher reward
[marked with €€ in Fig. 1(a)], while the other goal fields
held a lower reward. The higher-reward field is randomly
positioned, but the same for both biased and unbiased players.

(3) Players were not informed about whether they were in
the unbiased or in the biased group or even that there was a
difference in information among the players.

(4) Players were informed that payoff for arriving at a
reward field was multiplied by the number of co-players at
the same reward field by the end of the game.

By limiting the information players receive in this way,
we induce goal-directed behavior, as well as group cohesion.
However, we do not motivate any specific behavioral strate-
gies, but only install a reward structure. While players strive
to maximize their individual reward, this depends on the other
players’ actions, rendering coordination advantageous. In this
paper, we use experimental data collected by Boos et al. [35],
who conducted 40 iterations of this experiment, each of which
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with a distinct group of 10 participants, i.e., a total of 400
participants.

III. MODELING

We now describe the two modeling approaches and com-
pare their results with the experiments. In the cognitive force
approach, the agents’ motion obeys the following basic algo-
rithm: (1) compute number of options; (2) make one move;
(3) repeat until the number of moves runs out or a goal field is
reached. Each agent has a fixed number Msim = 25 of moves
to complete a game. The number of moves available in the
experiment and the cognitive force simulation differs; please
refer to Sec. III in the Supplemental Material [46] for more
details. In order to make a move, the number of options is
calculated according to the steps described in the follow-
ing. Given the current position x j

t,k of agent j = 1, . . . , 10,

there are six adjacent fields x j
t,1, . . . , x j

t,6, at time t with t =
1, . . . , 25 (except at the boundary of the playing field). The
agent will move to the field x j

t ,̃k
associated with the largest

number of options. Options associated with each adjacent
field are evaluated by simulating the hypothetical trajectories
emanating from each adjacent field x j

t,1, . . . , x j
t,6. This is il-

lustrated in Figs. 1(b)–1(d). Each hypothetical trajectory is
a random walk T = (x j

a, x j
b, . . . ) of finite length Mhyp with

equal probabilities to move to one of six neighboring fields at
each step. Mrem, the remaining number of moves an agent has,
with 1 � Mrem � Msim, starts at Mrem = Msim at the beginning
of the game and decreases to Mrem = 1 just before the end of
the game.

In order to encourage agents to move to a reward field,
we introduce the payoff Mrew that is obtained upon reaching
a reward field and which is calculated so as to mirror the
reward structure in the experiment with human players, and
described as follows. When n agents reach the same reward
field during a random walk, they obtain a payoff Mrew = nP ,
where P is a default payoff. A biased minority of two agents
is furnished with double the amount of additional moves when
reaching the higher-reward field (€€) during hypothetical tra-
jectories; this multiplication is also applied when other agents
are present on that higher-reward field. We consider additional
moves a meaningful currency for payoff when reaching any
of the six reward fields; i.e., we increase Mrew if an agent
visits a reward field during a simulated random walk. This
payoff allows the agents to extend their hypothetical trajectory
and thus to visit more fields. During a hypothetical trajectory
agents receive a payoff only once, i.e., upon reaching a reward
field for the second time (either the same or another); no
additional payoff in moves is received.

Then, starting from the current position x j
t , each neigh-

boring field x j
t,1, . . . , x j

t,6 is the beginning of Nwalk = 5000
random walks of finite length Mhyp. The number of fields
visited during each random walk equals the number of options
associated with the field x j

t,k , k = 1, . . . , 6, and trajectory T ,

denoted as Nf (x j
t,k, T ). Every visited field is counted only

once, i.e., Nf � Mhyp.
In its motion, agent j will choose the neighboring field

x j
t ,̃k

associated with the single hypothetical trajectory with the

highest Nf (x j
t,k, T ). When agents reach a reward field during

actual movement, analogously to the experiment, they will
remain at the reward field until the end of the game. The
calculation of Nf (x j

t,k, T ) is repeated for each subsequent step
on the playing field, and each agent independently of each
other. During the simulation of these trajectories for any single
agent, the other agents remain stationary. This means that
rewards for visiting a reward field are only multiplied by the
number of agents already on that field.

We show three exemplary, hypothetical trajectories for an
agent located on the central hexagon in Fig. 1(b). The fields
visited by those hypothetical trajectories are marked in dark
gray. Based on the three hypothetical trajectories shown in
Fig. 1(b) an agent would decide to move down-right, because
the trajectory starting from the down-right field explored the
largest number of fields, as illustrated in Fig. 1(c). During the
hypothetical trajectory in Fig. 1(b), top-right panel, an agent
reaches a € reward field.

The simulation explained above mirrors the experimen-
tal setup by incentivizing goal-directed behavior and group
cohesion. Goal-directed behavior is motivated through the
additional moves received from visiting a reward field, while
group cohesion is promoted by multiplying payoffs by the
number of agents on a visited reward field.

IV. RESULTS

In our first simulation approach, namely the cognitive force
simulation, we find that the agents exhibit a strong tendency
to move toward the higher-reward field, Fig. 1(d). The agents’
relative occupation frequency is shown in Fig. 1(d) with the
gray shading. This result suggests that a biased minority has
a significant impact on the majority, i.e., the unbiased agents,
and can “lead” them to the higher-reward field [Fig. 2(a)]. This
is in agreement with previous work [3,9,35,36]. To further
compare the simulation and human experiment we quantify
the tendency of players/agents to coordinate as a group by
measuring the distribution of the size of the largest group of
players/agents that reached any reward field by the end of a
game; see Fig. 2(b). In the experiments, the relative frequency
is highest for a group of n = 8 players, followed by groups of
n = 9 and all 10 players on the same field. The corresponding
cognitive force model results also exhibit large peaks for
n � 8, and we find the maximum in relative frequency for
n = 10, closely matching the experiment’s results. Figure 2(c)
captures the general pattern of choices in the game. It shows
the relative frequency of finding nu unbiased players/agents
on the higher-reward field. The distribution exhibits peaks
for nu = 0 and nu = 8, corresponding to no unbiased agents
and all unbiased agents reaching the higher-reward field, re-
spectively. The cognitive force model agents reproduce the
features of the experimental data.

Assuming there is no biased minority in the game, the
probability to find an agent at a certain reward field by the
end of a game is p = 1

6 , since all reward fields are equiv-
alent. However, the biased minority is able to influence the
unbiased majority such that the relative frequency of agents at
the higher-reward field by the end of a game is significantly
higher than the lower-reward field, i.e., f€€,cogF ≈ 0.39 for the
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FIG. 2. (a) The relative frequency of players/agents reaching no reward field (0), a lower-reward field [€], or a higher-reward field
[€€] by the end of a game. The relative frequency of reaching the higher-reward field is significantly larger than the relative frequency of
reaching any single lower-reward field. The relative frequency of players/agents on a lower-reward field at the end of a game is averaged
over all of the five lower-reward fields; that is, data are normalized such that f0 + 5 f€ + f€€ = 1. (b) The relative frequency of the largest
group or the largest number of players/agents reaching the same (higher- or lower-) reward field. For both experiment and simulation the
tendency of coordinating as a group in ultimately reaching the same reward field emerges, while such a tendency is only partially observable
for the RL agents. (c) Relative frequency of finding nu number of unbiased players/agents on the higher-reward field from experimental
(orange), simulation (blue), as well as RL (green) results. The highest relative frequency is to find no unbiased agent on the higher-reward
field. Second-highest relative frequency is for nu = 8, indicating that all unbiased agents moved as a group to the higher-reward field.

cognitive force simulation. This closely replicates the results
obtained from the experiment with human players, where this
frequency was f€€,exp ≈ 0.32. We also observe a similarity
between the experiment and the simulation in that the biased
minority either leads most (in about 15% of all games with
human players compared to around 25% in the simulation) or
no unbiased players (60% in the games with humans vs 40%
in the simulation) toward the higher-reward field [Fig. 2(c)].
We may call this an all-or-nothing collective response [37].

This means that the simulated agents, although they lack
higher cognitive abilities, can reproduce the same shift of
probabilities as observed in the human experiment.

As a second approach, alternative to the simulations based
on option-maximizing agents, we implement a multiagent RL
algorithm [38] to learn a behavioral policy for each agent
that can be directly applied in our system. We express our
simulation setup using the framework of Markov games, an
extension of the Markov decision process [39]. We define
the state set S, where the agent-specific state is given by
the positions of all agents, as well as the positions of the
goal fields and the remaining moves. The biased agents, ad-
ditionally, observe the location of the higher-reward fields as
part of their state. The action set for each of the N agents,
i.e., A1, A2, . . . , AN , consists of the moves to the adjacent
hexagons and a void action that allows agents to remain on
their current field. The state transition function T : S × A1 ×
. . . × AN �→ S defines the transition to next states given the
current state and all agents’ actions. In our simulations, this
is deterministic and simply updates all agents’ states using
the moves selected in the last time step, which are executed
concurrently. Lastly, the reward function Ri : S × A1 × . . . ×
AN �→ R defines the payoff received by each agent, given
a state and all agents’ actions. The reward function reflects
the setup used for the experiments with human players; i.e.,
agents receive zero reward unless they reach a payoff field,
in which case the reward is computed according to the rules
outlined above. Our goal is then to learn a policy πθi : S �→
P(Ai ) for each agent i, parametrized by θi, that maximizes its
respective reward obtained in a game. Note that the depen-

dence of the state transition and the reward function on the
actions chosen by the other players introduces the problem
of nonstationarity to our simulation, rendering single-agent
RL algorithms invalid [40]. Consequently, we employ a state-
of-the-art multiagent RL algorithm proposed by Iqbal and
Sha [38]. They propose an actor-critic algorithm, where a
centralized critic learns state-action value functions for each
agent based on all agents’ states and actions. At the same
time, each agent has its own policy (actor) that only requires
its own state as an input. Thus, the agents do not rely on
explicit sharing of information, i.e., of chosen actions, at
test time, while reducing the nonstationarity problem in the
training process. The components of the RL algorithm, i.e.,
(1) the centralized critic and (2) the agents’ individual poli-
cies, are learned as follows. We denote agent i’s state, action,
and reward as si, ai, and ri, respectively, agent i’s next state
as s′

i and next action as a′
i, the parameters of the state-action

value function as ψ , and the parameters of agent i’s policy as
θi. Both the critic and the policies are parametrized by neural
networks, the details of which can be found in Sec. I in the
Supplemental Material [46]. To increase training stability, we
also use a target critic and a set of target policies, which are
effectively delayed versions of the critic and policies; i.e., their
parameters are updated more slowly. The parameters of these
target networks are denoted by ψ and θi, respectively. The
critic as well as the policies are learned using data sampled
from a replay buffer D; i.e., we use data not only from the
current game but from a set of games played by the agents.
A centralized critic, providing an estimate of the state-action
value function for all agents, is then learned by minimizing
the loss LQ,

LQ(ψ ) =
N∑

i=1

E(s,a,r,s′ )∼D
{[

Qψ
i (s, a) − yi

]2}
, (1)

yi = ri + γEa′∼πθ (s′ )
{
Qψ

i (s′, a′) − α ln[πθi
(a′

i|s′
i)]

}
, (2)

where Qψ
i is the current state-action value function,

ln10[πθi
(a′

i|s′
i)] is an entropy term used as a regularization, α
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is a temperature parameter setting the balance between maxi-
mizing entropy and rewards, and E(s,a,r,s′ )∼D is the expectation
over tuples sampled from the replay buffer [38]. The target yi

measures agent i’s immediate payoff ri obtained from taking
action a given state s as well as the expected payoff thereafter,
captured by the state-action value function of the next state s′

and next action a′, i.e., Qψ
i (s′, a′). For learning the state-action

value function, actions and states from all agents are used. The
individual agents learn their respective policy by ascending
the gradient of their performance function J (πθ ),

∇θi J (πθ ) = Es∼D,a∼π (∇θi ln[πθi (ai|si )]

{−α ln[πθi (ai|si )] + Qψ
i (s, a) − b(s, a\i )}), (3)

where πθi (ai|si ) is agent i’s policy, Es∼D,a∼π is the expectation
over states sampled from the replay buffer and actions sam-
pled from the agent’s policy given these states, and b(s, a\i ) is
a baseline calculated as Eai∼πi (oi )[Q

ψ
i (s, (ai, a\i ))]. This base-

line helps determine the value of taking a particular action by
comparing the state-action value function with the value of
taking the “average” action with all other agents fixed [38].
We refer the reader to Iqbal and Sha [38] for more details on
this algorithm.

In our RL-based simulations, we train the agents for up
to 2 × 106 episodes and then use the set of models that per-
formed best across these to evaluate their behavior in our
system. One episode consists of one complete game, where
all agents start in the center of the honeycomb and the game is
finished once all agents have arrived at a goal field or reached
the maximum number of moves [41].

While one would expect the agents to converge to optimal
behavior, i.e., jointly arriving on the higher-reward field in
each game, we in fact do not observe such results in our
RL-based simulations. The agents apparently fail to discover
a set of cooperative policies following the biased agents
that would lead to the reward-maximizing outcome. Instead
we find that smaller groups of up to 8 agents tend to jointly
arrive on lower-reward fields, with a small fraction failing to
arrive at any reward field or arriving at a higher-reward field
(see Fig. 2). We consequently conjecture that the RL agents do
not learn to follow the biased agents to higher-reward fields,
as observed in both the human experiments and the cognitive
force simulation, and instead converge to locally optimal poli-
cies, leading them to a lower reward field. These results can
be partially explained with the rules of the game underlying
both simulations, making the application of RL difficult. The
simulation contains 10 agents and the rewards are sparse; i.e.,
the agents only receive a payoff at the end of each game, and
the reward structure creates a high degree of interdependency
between agents as their individual rewards are significantly
impacted by their ability to coordinate. In addition, our setting
is a mixed competitive-cooperative environment, since two
biased agents may compete for the followership, while the
optimal outcome is a cooperative one; i.e., all agents move
to the same higher-reward field. Iqbal and Sha [38] focus on
cooperative problems, which could be a factor explaining the
difference in observed performance. Our RL simulations also
exhibited high brittleness, i.e., failed to converge to a stable

optimum and instead alternated between phases of moderate
and poor performance over the course of the training process.
For an example of this, please see Fig. S1 in the Supplemental
Material [46]. All of these aspects make it particularly difficult
to learn optimal policies via RL and might thus explain our
results. It should be noted that we were able to reproduce the
basic results reported by Iqbal and Sha [38], which confirms
both the applicability of their algorithm to certain problems, as
well as the correctness of our implementation. The remaining
steps we took to ensure correctness of our implementation can
be found in the Supplemental Material [46].

The ability to reach consensus has a cost. In our setting,
this cost is quantified by the number of moves employed to co-
ordinate successfully. To separate the impact of coordination
from leader-follower dynamics, we analyzed the experiment,
cognitive force model simulations, and RL-based simulations
in the absence of biased players and agents, respectively.
Figure 3 shows the dependence of the mean distance d of
players and agents from the reward field (which is eventually
reached) in each game on the normalized group-cumulative
number of moves μ of all players/agents; μ is the sum of
all the moves used by all unbiased players/agents in a given
game, and is normalized by MexpN or MsimN , for experi-
ments and simulations, respectively, where N is the number
of players/agents. For the human participants, the mean dis-
tance d decreases linearly until μ ≈ 0.6, after which it slowly
converges to d = 0. This shows that in the experiment players
tend to move directly to a reward field. In the cognitive force
model simulations, the mean distance d initially decreases
slowly, and then for μ > 0.3, d decreases more steeply when
agents move toward the reward field. In the cognitive force
model simulations, agents first move outward from the start-
ing point and later move toward a reward field. Contrary to
this, RL agents’ distance decreases almost linearly over the
entire number of moves available to them, suggesting that
their movement is less directed than that of human players
and that they take longer to reach a reward field.

Our model explicitly avoids ad hoc assumptions about the
dynamical behavior; thus we do not expect a perfect agree-
ment of the dynamical features of the movement behavior.
There is an incentive for group cohesion on the reward field
manifesting itself in the payoff scheme but no incentive to
flock at every step.

V. CONCLUSIONS

We show how a general behavioral principle—
maximization of options—leads to the emergence of
coordination in groups with a leader-follower dynamic.
Namely, letting computer-simulated agents maximize their
number of possible options produces collective patterns
which match the results of the experiment studied here and
of equivalent experiments on coordination and leadership in
human groups rather well [35]. Specifically, we observe that
a biased minority is able to significantly influence a majority
and also confirm common patterns such as first-mover effects
in the simulation data [37] (see Secs. IV and V of the
Supplemental Material [46]).

We conclude that high-level models and tailored proximate
principles for the reproduction of collective patterns can be
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FIG. 3. Dependence of the distance from a reward field on the normalized group-cumulative number of moves of all players/agents for
(a) unbiased players in the experiment, (b) unbiased cognitive-force simulated agents, and (c) unbiased RL agents. Movement of unbiased
players/agents is shown only for games in which 7 or more players/agents reached the same reward. Players/agents which did not reach
any reward field are not shown. The percentage of games where fewer than 7 players/agents reached the same reward field in experiments,
cognitive-force simulation, and RL is 10%, 10%, and 22%, respectively. Individual players’/agents’ trajectories are indicated in gray. The black
line represents the mean distances from the reward field. The shaded areas indicate the standard deviation from the mean. The group-cumulative
number of moves is normalized by the maximum number of possible moves in a game μmax = MexpN or μmax = MsimN , respectively.

replaced by a general (“low-level”) principle which might
serve as an explanation of emergent collective patterns. In
the experiment, we found that the success of the biased mi-
nority players in leading the unbiased majority to their € €

reward field was achieved by a specific locomotive pattern,
i.e., moving their avatars analogously into the same direction,
and making use of a first-mover effect [35,37,42,43].

In the cognitive force simulations, we were able to produce
results similar to those in the experiment by applying the basic
principle of maximization of options to the environmental
setup. This combination of a mechanistic and a functional
analysis [7] can contribute to a reality-based understanding
of social behavior.

Interestingly, the RL-based simulations, despite following
a similarly simple decision-making rule, did not yield results

that match the experimental data as closely. Multiagent re-
inforcement learning is still an area of active research that
suffers from instability in the learning algorithms. Our results
do therefore not invalidate the underlying decision-making
rule as a model for human behavior in its entirety.

In summary, we apply the general principle of option
maximization [20,28,29,44,45] to explain human group co-
ordination and successfully validate it by comparison to data
obtained from human experiments. Due to the generality of
the principle, it constitutes a promising approach for explain-
ing a wide range of group behavioral phenomena.
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