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Complete characterization of a noisy multipartite quantum state in terms of entanglement requires full
knowledge of how the entanglement content in the state is affected by the spatial distribution of noise in the state.
Specifically, we find that if the measurement basis in the protocol of computing localizable entanglement and
the basis of the Kraus operator representing the local noisy channel do not commute, the information regarding
the noise is retained in the system even after the qubit is traced out after measurement. Using this result and the
basic properties of entanglement under noise, we present a set of hierarchies that localizable entanglement over a
specific subsystem in a multiqubit state can obey when local noise acts on the subparts or on all the qubits of the
whole system. In particular, we propose two types of hierarchies—one tailored according to the number of noisy
unmeasured qubits, and the other one that depends additionally on the cardinality of the set of noisy measured
qubits, leading to the classification of quantum states. We report the percentage of states satisfying the proposed
hierarchies in the case of random three- and four-qubit systems and show, using both analytical methods and
numerical simulations, that in almost all the cases, anticipated hierarchies tend to hold with the variation of the
strength of noise.
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I. INTRODUCTION

Quantum entanglement [1], in both its bipartite and mul-
tipartite form, has been proved to be an important ingredient
in quantum information processing tasks, including quantum
teleportation [2–7], quantum dense coding [8–16], entan-
glement swapping [17,18], quantum cryptography [19–25],
quantum metrology [26–30], and measurement-based quan-
tum computation [31–34]. Along with designing photonic
setups for performing quantum protocols [35–41], quan-
tum many-body systems such as trapped ions [42–47],
superconducting qubits [48–50], nuclear magnetic resonance
molecules [51,52], ultracold atoms in optical lattices [53–56],
and solid-state systems [57] are also potential candidates for
realizing quantum computational tasks as well as quantum
transport over a short distance. This has also led to the study
of entanglement properties in the characteristic phases of
paradigmatic quantum many-body systems [58,59], especially
in the vicinity of quantum criticality. However, successful ex-
perimental realizations suffer from environmental interactions
with the system, thereby reducing the entanglement content
in the system. This has motivated rigorous investigation in
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understanding the behavior of entanglement when different
types of noise is present in the system [60–65].

Recent emergence of various noisy intermediate-scale
quantum (NISQ) devices [66–68] has highlighted the need
for appropriately characterizing the quantum states, which are
prepared in these systems, and are envisioned as resources in
quantum protocols. Note that all of them are currently consti-
tuted of less than 100 qubits and are viewed as the potential
pathways to achieve “quantum supremacy” [69]. A major step
towards such characterization is the investigation of the spatial
distribution of entanglement in these multipartite systems,
subject to the presence of noise in different parts of the system.
Spatial distribution of entanglement has recently been proven
useful in enabling Einstein-Podolsky-Rosen (EPR) steering
[70] in atomic clouds [71] and in Bose-Einstein condensate
[72]. Moreover, entanglement has been generated between
atoms occupying different spatial regions of a multipartite
system composed of thousands of ultracold atoms [73], which
puts the importance of the study of the effect of noise present
in different spatial parts of the system into perspective. Apart
from the many-body systems, inspiration of such studies can
also be found in the possible relation between the quantum
yield of a light-harvesting complex [74–77] and the spatial
distribution of entanglement among its different components
[78].

Despite extensive studies on the effect of local as well as
global noise on the entanglement content of a multiparty sys-
tem [60–65], it is not yet clear how the spacial distribution of
noise, in the form of the presence and absence of local noise at
various parts of a multiparty system, affects the entanglement
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content of the whole system as well as a certain block of
the system, which may consist of two or more sites. While
the notion of locality of noise is well established [79,80], a
major issue towards the line of investigation of the latter is the
quantification and subsequent computation of entanglement in
different parts of a multiparty quantum system. In this paper,
we focus on the maximum average entanglement that can be
localized in subparts of a multiparty system by performing lo-
cal projection measurement on the rest of the system, which is
also referred to as the localizable entanglement (LE) [81–84]
(cf. [85]). It has been shown to be an appropriate quantifier
in measuring entanglement since it still keeps information
about the quantum correlations in the measured subparts of
the original system. In particular, the measure is made for
the multiqubit Greenberger-Horne-Zeilinger (GHZ) [86] and
stabilizer states [79,87,88], and states emerging in the studies
of quantum networks and entanglement percolation (see [89]
and references thereto). Also, the potential of localizable en-
tanglement, even when computed over a pair of qubits, to be
considered as a multipartite measure of entanglement [90,91]
makes it an appropriate candidate for the investigation of the
effect of spatial distribution of noise on the entanglement at
different parts of the system.

In this paper, we establish the hierarchies of the values of
localizable entanglement based on the sites on which local
noise acts and local measurements are performed to different
subparts of a multiparty quantum system. We show that the
proposed ranking is independent of the strength of the noise.
We divide the ranking of states into two categories. One of
them depends only on the cardinality of the set of noisy
qubits where measurements are not performed, and we call
it as envelope ranking. On the other hand, there can also
be a fine-grained hierarchy, which additionally depends on
the cardinality of set of noisy qubits on which local mea-
surements are performed. To demonstrate this classification
among states, we consider local uncorrelated Pauli noise in-
cluding the bit-flip, phase-flip, and depolarizing noise as the
nondissipative ones, and local amplitude-damping noise as
an example of the dissipative noise. We analytically derive
conditions under which the information about the local Pauli
noise on the measured qubits is reencoded in the system
even when the measured subsystems are traced out in the
computation of localizable entanglement. For simplifying the
investigation, we use the restricted localizable entanglement
(RLE) [87,88] in which local measurements are restricted to
spin measurements based on Pauli matrices. When three-qubit
states belonging to the paradigmatic generalized GHZ and
W states, GHZ- and W-class are subjected to local noise,
we compute the percentage of states satisfying fine-grained
and envelope hierarchies for LE and RLE. We also discuss
the existence of characteristic noise strengths in relation to
the vanishing of the RLE and LE, and point out its relation
with the hierarchies. We extend our results to Haar uniformly
generated random four-qubit systems, and compare the results
with three-qubit random states regarding the validity of this
characterization. We also observe that rankings of LE in states
based on only the cardinality of the set of noisy qubits fail with
increase of noise.

The rest of this paper is organized as follows. In Sec. II,
we provide necessary definitions of localizable and restricted

localizable entanglement, and different local noise models
considered in this paper. The effect of local noise on restricted
localizable entanglement, when noise is applied to the whole
or a group of qubits in the system, is described in Sec. III. The
hierarchies of localizable and restricted localizable entangle-
ment has been introduced in Sec. IV, and the validity of them
in the systems of three and four qubits has been discussed in
Secs. V–VII in a case-by-case basis. Section VIII contains the
concluding remarks.

II. DEFINITIONS AND FORMALISM

In this section, we briefly discuss localizable entanglement,
and the issue of its optimization. We also define terminologies
used while considering different types of local noisy channels.

A. Localizable entanglement

In a multiqubit system constituted of N qubits, the maxi-
mum possible average entanglement that can be accumulated
over a chosen set S of N − n qubits by performing inde-
pendent local projection measurements on the rest of the n
qubits forming the set R, with R ∪ S = ∅, is called the local-
izable entanglement (LE) [81–84] over the qubits in S. Let
us denote the qubits in the N-qubit system by 1, 2, · · · , N ,
and an arbitrary qubit by i, i = 1, 2, · · · , N . Without any
loss in generality, we always assume that the measurement is
performed over the last n qubits, such that i ∈ R ≡ {N − n +
1, N − n, N − n − 1, · · · , N − 1, N}. For a quantum state ρ

describing the N-qubit system, the LE over the set S of qubits
is given by

ES = max
2n−1∑
k=0

pkE
(
ρ̃k

S

)
. (1)

Here, the maximization is performed over the complete set
of single-qubit rank-1 projection measurements on the qubits
in R. The multi-index k ≡ kN−n+1kN−n · · · kN denotes the out-
come of the measurement corresponding to the projectors
{Pki

i = |ki〉 〈ki|} on the qubits i ∈ R. The reduced state ρ̃
(k)
S of

the qubits in S is obtained by tracing out the qubits in R from
the postmeasured state ρ̃k corresponding to the outcome k,
given by

ρ̃k = 1

pk
MkρM†

k . (2)

The probability of obtaining the measurement-outcome k is
pk = Tr[MkρM†

k], and the measurement element is given by

Mk =
⊗
i∈R

Pki
i

⊗
j∈S

Ij, (3)

with I j being the identity operator in the Hilbert space of
qubit j. Note that in Eq. (1), we have assumed the use of a
predecided entanglement measure E on the reduced state of
the subsystem S, which is called the seed measure [92]. We
elaborate on this in the subsequent discussions.

In the case of qubit systems, the rank-1 projectors cor-
responding to each qubit i ∈ R can be parametrized using
two real parameters θi (0 � θi < π ) and φi (0 � φi � 2π ) as
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Pki
i = |ki〉 〈ki|, ki = 0, 1, with [79]

|0〉i = cos
θi

2
|0〉i + eiφi sin

θi

2
|1〉i ,

|1〉i = sin
θi

2
|0〉i − eiφi cos

θi

2
|1〉i , (4)

where {|0〉i , |1〉i} is the computational basis of the Hilbert
space of qubit i. This parametrization reduces the maximiza-
tion in Eq. (2) to a maximization problem involving 2n real
parameters. However, the maximization becomes challenging
when n is a large integer [81–84,92]. There exists only a
number of systems for which the optimal measurement basis
for maximizing LE can be determined analytically, viz. a num-
ber of paradigmatic quantum states including the multiqubit
Greenberger-Horne-Zeilinger (GHZ) [86,92], the W [92–94],
the Dicke [92,95,96], and the stabilizer [33,34,87,88] states,
and quantum spin Hamiltonians with certain symmetries [97].

The definition of LE [Eq. (2)] depends also on the com-
putability of the seed measure E for the reduced state ρS . In
cases where one has to deal with a mixed state describing
the N-qubit system, such as the scenarios involving noise,
subsequent reduced postmeasured states ρS are also mixed.
The scarcity of computable entanglement measures for mixed
states in arbitrary dimension [1] makes the determination
of LE difficult in these situations. In this paper, we restrict
ourselves to the cases where N − n = 2, for which several
computable entanglement measures are available [1]. We
select negativity [98] as the entanglement measure for calcu-
lating LE, which, for a generic bipartite state, �ab, describing
parties a and b, is defined as

E (�ab) = ∣∣∣∣�Ta
ab

∣∣∣∣
1 − 1. (5)

Here, ||�Ta
ab ||1 is the trace-norm of �

Ta
ab , which is obtained by

performing a partial transposition of the state �ab with respect
to the party a. It can be shown [99,100] that the negativity
E (�ab) can be computed from the eigenvalues {λi} of �

Ta
ab as

the absolute sum of the negative eigenvalues, given by

E (�ab) =
∑
λi<0

|λi|. (6)

Since �
Ta
ab has only one negative eigenvalue when �ab de-

scribes a two-qubit state [101], E (�ab) = |λ| for λ < 0.

B. Restricted localizable entanglement

In many of the systems where analytical computation of
LE over a pair of qubits is possible, the optimal bases cor-
responding to the local projection measurements on the rest
of the qubits belong to the eigenvectors of the Pauli matrices,
σ x,y,z [33,34,87,88,92,97]. These results inspire the following
assumption, and the subsequent definition of a restricted LE
(RLE) [87,88], which is obtained by allowing only Pauli pro-
jections over the qubits i ∈ R (cf. restricted quantum discord
[102]).

Assumption. Corresponding to each of the qubits r j ∈ R,
projection measurements “only” in the basis of (i) σ z

i (θi =
φi = 0), or (ii) σ x

i (θi = π
2 , φi = 0), or (iii) σ

y
i (θi = φi = π

2 )
are allowed in order to accumulate entanglement on the qubits
in S.

The real parameters {θi, φi} are defined in Eq. (4), and the
subsequent discussion. Evidently, under the above assump-
tion, there can be a total of 3n combinations of Pauli bases
on the n qubits in R, for each of which 2n measurement out-
come is possible and an average entanglement, representing a
possible value of RLE, can be computed.

Let us now denote the Pauli matrix corresponding to the
measurement bases on the qubit i ∈ R by σ

αi
i , where val-

ues of αi, given by αi = 0, 1, 2, represent the Pauli matrices
σ x

i , σ
y
i , and σ z

i , respectively. The overall Pauli measure-
ment configuration over the region R is represented by
σα

R , where α ≡ αN−n+1αN−n · · ·αN is the multi-index having
values 0, 1, 2, · · · , 3n − 1. For each of the all possible mea-
surement combinations {σα

R ; α = 0, 1, · · · , 3n − 1}, one can
compute a value of the RLE, denoted by E ′

α,S . The maximum
value of RLE, denoted by

E ′
S = max

{σα
R }

E ′
α,S, (7)

is obtained by maximizing E ′
α,S over the complete set of

Pauli measurement configurations {σα
R , α = 0, 1, · · · , 3n −

1}. From the definition of LE, we have

E ′
α,S � E ′

S � ES. (8)

The importance of E ′
S lies in the existence of quantum

states, such as the stabilizer states without [33,34] and in the
presence [87,88] of local uncorrelated Pauli noise, and ground
states of certain quantum many-body systems [81–84,92,97],
for which E ′

S = ES . Moreover, if one now considers the abso-
lute error originated due to the restriction, given by |ES − E ′

S|,
with |ES − E ′

S| � ε, ε being a small number, typically ∼10−3

or less, then the LE can be safely approximated by the RLE.
In this situation, the definition of RLE can be used to ob-
tain closed form expressions, which represents the LE with
negligible error, and which can not be obtained analytically
otherwise. This will be clear in subsequent sections.

C. Models of uncorrelated noise

We shall focus on local noise models in this paper, where
the noise is confined at and is identical for individual qubits
of the total system. We assume a scenario where single-qubit
uncorrelated noise acts on m (m � N ) qubits in the N-qubit
system, forming the set L. For a fixed value of m, there
can be

(N
m

)
such noise configurations with m = 0, 1, 2, · · · , N

(see Fig. 1 for an example of a four-qubit system). We shall
show the interplay between the set of qubits R on which the
measurements are made, and the set L on which the noise
acts. Let us denote an N-qubit quantum state by ρm

N , where
the subscript and the superscript specify the number of qubits
in the system and the number of noisy qubits respectively. The
noiseless state is represented by ρ0

N in this notation. The noise
map, for the initial N-qubit state ρm

N , is given by

ρ0
N → ρm

N = �L
(
ρ0

N

)
. (9)

We assume uncorrelated single-qubit noisy channels, and
employ the Kraus operator representation for the evolution �L

of a multiqubit state ρ0
N , where the operation �L(.) can be
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FIG. 1. Fine-grained hierarchies. The hierarchies H1, H2, and H3

for different distributions of local noise on a system of N = 4 qubits.
The configurations of noise are shown by the cluster of bubbles,
where a clear (opaque) bubble represents a noiseless (noisy) qubit.
The state ρl1l2 ···lm implies that the qubits {l1, l2, · · · , lm} are subjected
to noise in the N-qubit system.

expressed by an operator-sum decomposition given by [79,80]

ρm
N =

dm−1∑
μ=0

(IN−m ⊗ Kμ)ρ0
N

(
IN−m ⊗ K†

μ

)
, (10)

with {Kμ = √
pμK̃μ} being the Kraus operators satisfying∑

μ K†
μKμ = I , and

K̃μ =
⊗
i∈L

Kμi , pμ =
∏
i∈L

pμi , (11)

where
∑d−1

μi=0 pμi = 1 for a specific i ∈ L, and μ ≡
· · · μi−1μiμi+1 · · · is the multi-index corresponding to the
m-qubit Kraus operators for the qubits i ∈ L. Here, IN−m =⊗

i/∈L Ii is the identity operator in the Hilbert space of the sub-
system of (N − m) noiseless qubits, {Kμi ; μi = 0, 1, · · · , d −

1} is the set of Kraus operators corresponding to the noisy
channel on the qubit i, and d is the cardinality of the set
{Kμi}. In this paper, we shall focus on nondissipative single-
qubit Pauli noise including the bit-flip (BF), phase-flip (PF),
bit-phase-flip (BPF), and depolarizing (DP) channels [79,80],
while the amplitude-damping (AD) channel [79,80] is con-
sidered as an example of a dissipative noise. The single-qubit
Kraus operators corresponding to these channels for an arbi-
trary qubit li are given by

BF channel: d = 2; K0 =
√

1 − p

2
Ii, K1 =

√
p

2
σ x

i ;

PF channel: d = 2; K0 =
√

1 − p

2
Ii, K1 =

√
p

2
σ z

i ;

DP channel: d = 4; K0 =
√

1 − 3p

4
Ii, K1 =

√
p

4
σ x

i ,

K2 =
√

p

4
σ

y
i , K3 =

√
p

4
σ z

i ;

AD channel: d = 2; K0 =
(

1 0
0

√
1 − p

)
,

K1 =
(

0
√

p
0 0

)
, (12)

where the subscripts of the Kraus operators K are the different
values of μi, Ii is the identity matrix in the Hilbert space of
qubit i, and p (0 � p � 1) can be interpreted as the strength
of the noise.

III. EFFECT OF LOCAL PAULI NOISE ON RESTRICTED
LOCALIZABLE ENTANGLEMENT

In this section, we shall discuss the effect of local Pauli
noise on the restricted localizable entanglement (see Sec. II B)
of an arbitrary noisy quantum state ρm

N . Later, we shall show
that there exists quantum states for which these results can
safely describe the same for localizable entanglement with
negligible error.

Computation of RLE in quantum states subjected to local
Pauli noise requires a projection measurement in the basis of
a chosen Pauli matrix σ

α j

j on a qubit j in the noisy state ρm
N .

This measurement is followed by a partial trace operation on
the same qubit. For demonstration, we choose the BF noise,
where the noisy state ρm

N , obtained from the noiseless N-qubit
state ρ0

N by the application of the BF noise, can be written as

ρm
N =

(
1 − p

2

)m
ρ0

N +
(

1 − p

2

)m−1 p

2

∑
∀i∈L

σ x
i ρ0

Nσ x
i

+
(

1 − p

2

)m−2( p

2

)2 ∑
∀i, j∈L

i �= j

σ x
i σ x

j ρ
0
Nσ x

i σ x
j

+ · · ·

+
( p

2

)m
[⊗

∀i∈L

σ x
i

]
ρ0

N

[⊗
∀i∈L

σ x
i

]
. (13)

We assume a projection measurement on the qubit j in the
basis of a chosen Pauli operator σ

α j

j , where the index α j
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has been defined in the discussion preceding Eq. (7). The
projection operation can be written as

P
α j

k j
= 1

2

[
I j + (−1)k j σ

α j

j

]
, (14)

where k j = 0, 1 represents the measurement outcomes corre-
sponding to the bases of σα j . From the properties of Pauli
operators,

σ
γ

j P
α j

k j
σ

γ

j = P
α j

k′
j
, (15)

with γ = 0, 1, 2, where k′
j = k j if γ = α j , and k′

j = k j + 1
modulo 2 if γ �= α j . Note that γ = α j describes the situation
where the projection operator P

α j

k j
and σ

γ
j have the same

basis, while γ �= α j indicates otherwise. While the projection
measurement destroys all quantum correlation between the
qubit and the rest of the system, the information regarding the
noise on the measured qubit depends both on the basis of the
projection measurement as well as the basis of the single-qubit
Pauli noise. We formulate this via the following proposition.

Proposition I. When a projection operation P
α j

kl
in the basis

of a chosen Pauli matrix σαl , αl = 0, 1, 2, is performed on a
chosen qubit l corresponding to an N-qubit state ρm

N obtained
by the application of local uncorrelated bit-flip noise on m
qubits forming a set L, followed by a tracing out of the mea-
sured qubit l , then for l ∈ L, the information regarding the
noise on the measured qubit encoded in the probabilities cor-
responding to the Kraus operators is lost if the Pauli operator
chosen for measurement matches with Kraus operator corre-
sponding to the local bit-flip noise, which is not identity, i.e.,
if αl = 0, and is retained in the rest of the system otherwise,
i.e., if αl = 1, 2.

Proof. First, we note that two situations are possible cor-
responding to the chosen qubit l . First, we assume that l /∈
L, i.e., the measured qubit is noiseless. This is a situation
where application of the projection operation on qubit l and
subsequent tracing out of the measured qubit results in an
(N − 1)-qubit postmeasured states on the rest of the qubits,
with all the noisy qubits in L present in the system. The post-
measured states corresponding to both the outcomes kl = 0, 1
on the remaining N − 1 qubits after tracing out the qubit l are
of the form given in Eq. (13), where the information regarding
the noise on qubit l is lost.

As the second situation, we consider the case l ∈ L, i.e.,
the situation described in the proposition. In this scenario, two
possibilities exist.

Case 1. γ = αl .
This situation occurs in the case of BF noise when αl = 0.

Application of P0
kl

on ρm
N leads to the postmeasured states on

the remaining N − 1 qubits as

ρ̃
m−1,kl
N−1 =

(
1 − p

2

)m−1
ρ

0,kl
N−1+

(
1 − p

2

)m−2 p

2

∑
∀i∈L\l

σ x
i ρ

0,kl
N−1σ

x
i

+
(

1 − p

2

)m−3( p

2

)2 ∑
∀i, j∈L\l

i �= j

σ x
i σ x

j ρ
0,kl
N−1σ

x
i σ x

j

+ · · ·

+
( p

2

)m−1
[ ⊗

∀i∈L\l

σ x
i

]
ρ

0,kl
N−1

[ ⊗
∀i∈L\l

σ x
i

]
, (16)

for kl = 0, 1, where L\l represents the set of noisy qubits with
the qubit l removed, and

ρ
0,kl
N−1 = Trl

[
P0

kl
ρ0

N P0
kl

]
. (17)

We remind ourselves that the superscript “0” in ρ
0,kl
N−1 or in

any other quantum state represents the fact that the state is
noiseless (m = 0), while the superscript “0” in P0

kl
stands for

αl = 0, which implies the basis of the projection operator P0
kl

to be that of σ x. The state in Eq. (16) has a form identical to
the state in Eq. (13). Note that this is identical to the situation
where the qubit l is noiseless, and the number of noisy qubits
is m − 1 in a quantum state of N − 1 qubits.

Case 2. γ = α j .
This, for the BF noise, describes the case αl = 1, 2. Equa-

tion (15) indicates that for half of the terms in ρm
N [Eq. (13)],

projection operation P1,2
kl

leads to application of P1,2
k′

l
on ρ0

N ,

where k′
l = kl + 1 modulo 2. For the rest of the terms, P1,2

kl

applies to ρ0
N . This results in the postmeasured states of the

form

ρ̃
m−1,kl
N−1 =

(
1 − p

2

)
�

m−1,kl
N−1 + p

2
�

m−1,k′
l

N−1 , (18)

on the N − 1 unmeasured qubits including the remaining m −
1 noisy qubits forming the set L\l , where �kl , kl = 0, 1, has
the form given in Eq. (16), and k′

l = kl + 1 modulo 2. Note
that ρ̃

m−1,kl
N−1 has contribution of both �

m−1,kl
N−1 (with probability

1 − p/2, which is the same as the probability with which the
state of qubit l under BF noise is kept unchanged) as well as

�
m−1,k′

l
N−1 (with the same probability p/2 by which the state of

qubit l is flipped), which results from the reencoding of the
information about the single-qubit noise on qubit l in the rest
of the system after tracing qubit l out. Hence the proof. �

In situations where the noise and the projection measure-
ment on a group of qubits, say r ≡ {r1, r2, · · · , rm′ } where
r ⊆ R and r ⊆ L with m′ � m, have the same basis, the fol-
lowing corollary follows directly from Proposition I.

Corollary I. For a multiqubit state as given in Eq. (9) where
�L represents uncorrelated identical single-qubit Pauli noise
on m qubits in L, the restricted localizable entanglement E ′

(α,S)
where the values of α correspond to projection measurement
on the m′ noisy qubits in the basis that is identical with the
basis of the noise, obeys the relation

E ′
(α,S)

(
ρm

N

) = E ′
(α,S)

(
ρm−m′

N

)
. (19)

Proposition I can be extended to the case of local projection
measurements in the Pauli basis on a group of qubits in R. The
next Proposition is for the PF channel, having a proof similar
to that of Proposition I.

Proposition II. When a projection operation Pαl
kl

in the basis
of a chosen Pauli matrix σαl , αl = 0, 1, 2, is performed on a
chosen qubit l in a state ρm

N originating from local uncorrelated
phase-flip noise on m qubits, and subsequently the qubit l is
traced out, the information regarding the noise on the mea-
sured qubit encoded in the probabilities corresponding to the
Kraus operators is lost if αl = 2, and is retained in the rest of
the system if αl = 0, 1, when l is a noisy qubit.

The situation, however, is slightly different in the case of
DP noise, which is given in Proposition III, and which can
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clearly be seen from the form of the corresponding Kraus
operators in Eq. (12).

Proposition III. When a projection operation Pαl
kl

in the
basis of a chosen Pauli matrix σαl , αl = 0, 1, 2, is performed
on a noisy qubit l in a state ρm

N having local uncorrelated
depolarizing noise on m qubits, and subsequently a tracing out
of qubit l is performed, the information regarding the noise on
the measured qubit encoded in the probabilities corresponding
to the Kraus operators remains in the rest of the system irre-
spective of the values of αl .

Proof. We proceed in a fashion similar to the proof of
Proposition I, identifying two possible situations (i) l /∈ L,
and (ii) l ∈ L. The outcome of the situation (i) is complete
loss of information, as shown in Proposition I. On the other
hand, in situation (ii), as before, two possibilities exist: (a)
γ = αl , and (b) γ = α j . However, in the case of DP noise,
the situations (a) or (b) never exclusively arise as the Kraus
operators involve all three components of the Pauli matrices.
While αl = γ for a specific value of γ , αl �= γ for the rest
of the values of γ . Therefore, the information regarding the
noise on the measured qubit encoded in the probabilities cor-
responding to the Kraus operators remains in the rest of the
system irrespective of the values of αl . �

We point out here that the possible sustainability of the ef-
fect of local Pauli noise, after performing the local projection
measurement and the subsequent tracing out operation, is in
contrast with the complete disappearance of the effect of noise
when the noisy qubit is traced out without performing any
measurement. The latter is guaranteed by the trace-preserving
properties of the Kraus operators used to characterize the local
noise on individual qubits [see Eqs. (12)].

IV. SETTING THE STAGE: HIERARCHIES OF
LOCALIZABLE ENTANGLEMENT

In this section, we discuss the possible hierarchies of the
values of LE and RLE depending on the number of qubits
on which local noise is applied. From now onward, unless
otherwise stated, we localize entanglement over a region con-
stituted of two specific qubits, say, 1 and 2, by performing
local projection measurement on the rest of the N − 2 qubits,
indexed as 3, 4, · · · , N , and forming the set R. To keep the
notations uncluttered, we discard the subscript S, and denote
the LE (RLE) by E12(ρm

N ) (E ′
12(ρm

N )) in the following, where
ρm

N is the noisy state with local noise applied to m of the N
qubits, forming the set L of noisy qubits. In terms of the pair
of qubits on which entanglement is localized, three different
situations exist: when (i) none, (ii) any one, or (iii) both of the
qubits 1 and 2 belong(s) to the set L, i.e., is (are) influenced
by the local noise. These scenarios, along with the general
intuitions gathered about the trends of entanglement measures
under local decoherence [60–65], motivate us to propose cer-
tain intuitive orderings amongst the values of LEs and RLEs,
independent of the local noise models. In succeeding sections,
for specific noise models, we shall illustrate whether the LE
and the RLE follow such classifications. We assume m to be
the maximum cardinality of L, following the notations used in
Sec. III.

(i) Scenario 1. Let L ⊆ R, such that m � N − 2, i.e., qubits
1 and 2 are not affected by noise. There can be

(N−2
m

)
possible

sets L of noisy qubits in R, which, in general, will correspond
to different values of the LE and the RLE. We expect the
following relation between the values of the LE and the RLE,
as well as the cardinality of the set of noisy qubits:

max
{
E12(i)

(
ρm

N

)}
� min

{
E12(i)

(
ρm′

N

)}
, (20)

where E = E (E ′) representing the LE (RLE), m′ is the maxi-
mum cardinality of a different set L′ of noisy qubits obeying
the situation (i) (marked in the subscript), and we have
assumed m′ � m without any loss in generality. Possible sce-
narios with four qubits are exhibited in Fig. 1(a). Note that for
clarity, we denote the state ρm

N by ρl1l2···lm for all illustrations,
where the subscripts denote the qubits subjected to noise.

(ii) Scenario 2. In this case, any one of the qubits 1 and
2 are considered to be noisy, i.e., either 1 or 2 ∈ L, and
consequently m � N − 1. For each of the qubits 1 and 2 in
L, the number of possible values of both LE and RLE for ρm

N

is m
(N−1

m−1

)
. In situation (ii), we predict

max
{
E ( j)

12(ii)

(
ρm

N

)}
� min

{
E ( j)

12(ii)

(
ρm′

N

)}
, (21)

where the superscript j = 1, 2 denotes the choice for noisy
qubits from the unmeasured set of qubits, and E and m′(m′ �
m) have similar definition as in situation (i), as depicted in
Fig. 1(b).

(iii) Scenario 3. Both the qubits, 1 and 2, are noisy, imply-
ing 1, 2 ∈ L, and m � N . The total number of possibilities for
choosing the set of noisy qubits L from the N qubits is

(N−2
m−2

)
.

In this case, we anticipate

max
{
E12(iii)

(
ρm

N )
}
� min

{
E12(iii)

(
ρm′

N

)}
, (22)

where E and m′ have similar definition as in situation (i), and
m′ � m. See Fig. 1(c).

And finally, between the different situations, we propose

max
{
E12(iii)

(
ρm

N

)}
� min

{
E ( j)

12(ii)

(
ρm′

N

)}
, (23)

max
{
E ( j)

12(ii)

(
ρL

)}
� min

{
E12(i)

(
ρm′

N

)}
. (24)

Note here that the inequalities (23) and (24) together can
be satisfied even when some, or none of the inequalities (20)–
(22) are valid. In this sense, (23) and (24) are considered as an
envelope over the fine-grained hierarchies of LE presented in
(20)–(22). For the purpose of comparison, as shown in Fig. 1,
we denote inequalities (20)–(22) by H1, H2, and H3 respec-
tively, while the envelope inequalities (23) and (24) together
are denoted by H4 [Fig. 2(a)]. The inequalities (20)–(24) also
imply that more the influence of noise on the unmeasured
qubits, more can be the effect of noise on LE in the form of a
reduction in its value.

We point out here that the inequalities (20)–(24) are de-
signed with specifically LE in mind as the measure for
entanglement. For a bipartite or multipartite entanglement
measure other than LE [1], which is usually computed by
using the density matrix of the whole system or the reduced
density matrix of a subsystem, a more logical expectation
would be a hierarchy in terms of the cardinality of the set of
noisy qubits. In the present case, the ranking for entanglement
over the subsystem constituted by qubits 1 and 2, with m as

023035-6



HIERARCHIES OF LOCALIZABLE ENTANGLEMENT DUE … PHYSICAL REVIEW RESEARCH 4, 023035 (2022)

FIG. 2. Envelop hierarchies. The hierarchies H4 and H5 for different distributions of local noise on a system of N = 4 qubits. The
interpretation of the notation ρl1l2 ···lm is similar to that given in Fig. 1.

the parameter, is expected to be

max
{
E12

(
ρm

N

)}
� min

{
E12

(
ρm′

N

)}
, (25)

where m � m′. Here, we have considered entanglement over
the same pair of qubits as in the cases of (20)–(24) for the
purpose of comparison. We denote (25) by H5. Note that H5

does not take into account the configuration of noise on the
qubits 1 and 2. However, computation of the reduced state on
qubits 1 and 2 ensures the complete loss of information about
the local noise applied on the rest of the qubits, and the effect
of noise on E12 will again be determined by the local noise
present on qubits 1 and 2 only (see discussions succeeding
Proposition III ). The difference between this approach with
the one discussed in H4 is the possibility of contribution
to the local noise on qubits 1 and 2 from the local noise
on the rest of the qubits due to the projection measurement
operation involved in the case of H4, which is absent in H5,
as illustrated in Fig. 2. Specifically, when a large number of
measured qubits are noisy, the additional contribution to noise
accumulated on qubits 1 and 2 due to the measurement on the
noisy qubits other than (1,2) may be large enough so that H4

and H5 differs substantially (see Sec. III for the contribution
from the measured noisy qubits).

V. CLASSIFICATIONS OF STATES WITH PHASE- AND
BIT-FLIP NOISE

In this section, by considering a multiqubit system under
noise models, let us determine the hierarchies between the val-
ues of LE corresponding to different configurations of noise
on the system. We remind ourselves that we have adopted a
notation where the noisy state ρm

N is denoted by ρl1l2···lm , where
the subscripts provide the positions of the noisy qubits. We
start the discussion with a three-qubit system, and adopt the
notation used in Figs. 1 and 2 to describe the noisy states for
clarity. The hierarchies discussed in Eqs. (23) and (24) in the
case of a three-qubit system becomes

max {E12(ρ123), E12(ρ12)}
� min {E12(ρ13), E12(ρ23), E12(ρ1), E12(ρ2)}, (26)

max {E12(ρ13), E12(ρ23), E12(ρ1), E12(ρ2)}
� E12(ρ3), (27)

while the ones in Eqs. (20)–(22) becomes

E12(ρ123) � E12(ρ12), (28)

max {E12(ρ13), E12(ρ23)} � min {E12(ρ1), E12(ρ2)}, (29)

where E = E (E ′) represents the LE (RLE). On the other hand,
in terms of the cardinality of the set of noisy qubits, one should
expect

E12(ρ123) � min{E12(ρ12), E12(ρ13), E12(ρ23)}, (30)

max{E12(ρ12), E12(ρ13), E12(ρ23)}
� min{E12(ρ1), E12(ρ2), E12(ρ3)}, (31)

max{E12(ρ1), E12(ρ2), E12(ρ3)} � E12(ρ), (32)

according to Eq. (25). For future references, we denote
Eqs. (26) and (27) together by “Env”, and Eqs. (28) and (29)
by “A” and “B” respectively, while Eqs. (30)–(32) together
are represented by “C”. We shall now prove whether such
inequalities hold for a class of three-qubit states.

gGHZ states. Let us first consider a paradigmatic class of
three-qubit states, namely, the generalized GHZ (gGHZ) state,
given by

|gGHZ〉 = cos
α

2
|000〉 + e−iβ sin

α

2
|111〉 , (33)

where α (0 � α � π ) and β (0 � β � 2π ) are real numbers.
The three-qubit GHZ state is a special case of the gGHZ state
with β = 0, α = π

2 . The LE over qubits 1 and 2 is obtained by
performing local projection measurement in the basis of σ x

3 on
qubit 3 in the GHZ state, leading to maximally entangled post-
measurement states |�±〉 = 1√

2
(|00〉 ± |11〉) on qubits 1 and

2, which subsequently leads to E12(|GHZ〉 〈GHZ|) = 1. On
the other hand, E12(|gGHZ〉 〈gGHZ|) � E12(|GHZ〉 〈GHZ|)
for all values of α, β. Our numerical analysis suggests that
in the case of the three-qubit gGHZ states subjected to local
noise, examples of both E12 = E ′

12 and E12 > E ′
12 exist, as

discussed in the subsequent discussions. To compare the LE
and the RLE for the class of generalized GHZ states, we
specifically evaluate the absolute error ε = E12(ρ) − E ′

12(ρ).
We find that in presence of noise on all the qubits or set of
qubits, ε ∼ 10−2. Figure 3 depicts ε as bit-flip and amplitude-
damping noise is acting on the qubits in the three-qubit gGHZ
states. Note that for the PF noise, RLE can faithfully mimic
LE with sufficiently low error (∼10−3), which is not the case
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FIG. 3. Absolute errors for gGHZ state under noise. The absolute value of the difference between the RLE and the LE, |E12 − E ′
12|, as a

function of p, α, and β when single qubit bit-flip, depolarizing, and amplitude-damping channels are applied to all, or a subset of the three
qubits constituting a gGHZ state. The distribution of noise on different qubits for the different subfigures are as follows: (a) bit-flip noise on
all qubits, (b) depolarizing noise on all qubits, (c) amplitude-damping noise on all qubits, and (d) amplitude-damping noise on qubits 1 and 2.
All quantities plotted are dimensionless, except α and β, which are in radians.

for the other types of noise considered in this paper. For
the RLE under PF noise, E ′

12 = E ′
0,12, which implies that the

optimal Pauli measurement on qubit 3 is in the basis of σ x.
Note that from the symmetry of the gGHZ state,

E12(ρ13) = E12(ρ23); E12(ρ1) = E12(ρ2), (34)

where E = E , E ′, and for the RLE, local projection measure-
ment in the Pauli basis is always performed on qubit 3. This
modifies Eqs. (26)–(29) as

max {E12(ρ123), E12(ρ12)}
� min {E12(ρ13), E12(ρ1)}, (35)

max {E12(ρ13), E12(ρ1)} � E12(ρ3), (36)

E12(ρ123) � E12(ρ12), (37)

E12(ρ13) � E12(ρ1). (38)

In the following Propositions IV and V, hierarchies among the
values of RLE for different values of m and for different sit-
uations described in Sec. IV are discussed when single-qubit
BF and PF noise are applied to the three-qubit gGHZ states.

Proposition IV. Phase-flip channel. The values of E ′
12 corre-

sponding to the different values of the cardinality m = 1, 2, 3,
of the sets of noisy qubits, calculated by using negativity as

the seed measure, over the qubits 1 and 2 of a three-qubit
generalized GHZ state subjected to local uncorrelated phase-
flip noise of strength p, 0 � p � 1, satisfy

E ′
12(ρ123) � E ′

12(ρ12) = E ′
12(ρ13) � E ′

12(ρ1) = E ′
12(ρ3).

(39)

The proof of the proposition can be found in Appendix B 1.
When the bit-flip channel acts on the qubits, similar in-
equalities like (39) can be obtained by calculating localizable
negativity in different scenarios. In particular, we have the
following Proposition, the proof of which is given in Ap-
pendix B 2.

Proposition V. Bit-flip channel. When local bit-flip noise
of strength p, 0 � p � 1, acts on all or some of the qubits
in a three-qubit generalized GHZ state, the RLE obey the
following ranking:

E ′
12(ρ123) = E ′

12(ρ12) � E ′
12(ρ13) = E ′

12(ρ1) � E ′
12(ρ3).

(40)

Robustness of RLE. At this point, a word on the robustness
of RLE of the gGHZ states under local uncorrelated Pauli
noise is in order. The robustness of the RLE can be quantified
by the value of p = pc at which E ′

12(ρ) vanishes. For the
Markovian nature of the single-qubit uncorrelated Pauli noise,
the value of E ′

12(ρ) remains 0 for p � pc. The higher is the
value of pc, the more robust is the RLE for a specific set of
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FIG. 4. Variations of the localizable entanglement (Y axis) as a function of p (X axis) in the cases of bit-flip (a), phase-flip (b), depolarizing
(c), and amplitude damping (d) noise acting locally on different sets of qubits in a three-qubit gGHZ state with α = π/3, β = 0. The shaded
portion in (a) is zoomed to highlight the difference between E12(ρ123) and E12(ρ12) at the higher values of p. All quantities plotted are
dimensionless.

noisy qubits. In the case of the PF noise, the values of E ′
12

for all possible different sets L of noisy qubits vanishes only
at p = 1. However, in the case of the BF channel, E ′

12(ρ3)
never goes to zero, while E ′

12(ρ12) goes to zero at a specific
value p = pc � 1, which is computed as the solution of the
equation obtained from (B11) by converting the inequality
to an equality. The value of pc depends completely on the
initial gGHZ state, and a value of pc < 1 implies a less robust
behavior of E ′

12(ρ12) compared to that of the other sets L of
qubits under the BF noise.

Dynamics of LE. It is now logical to ask whether the LE
of the gGHZ states subjected to local noise on different sets
of qubits obey the same hierarchies as the RLE. We anticipate
from Fig. 4 that the answer can be negative. To support this
view, in Fig. 4, we consider examples of the variations of the
LE as a function of the noise strength p, when local noise of
BF, PF, DP, and AD types are applied to a set of chosen qubits
in |gGHZ〉 with α = π

3 , β = 0. It is clear from the variation of
E12(ρ123) and E12(ρ12) with p for the bit-flip noise that when
the noise strength is high (p � 0.7), E12(ρ123) < E12(ρ12),
although the maximum difference being very small (of the
order of 10−2). This modifies the hierarchy obeyed by the LE,
compared to the same for the RLE [Eq. (40)], as

E12(ρ123) < E12(ρ12) � E12(ρ13) = E12(ρ1) � E12(ρ3),
(41)

for high value of p. On the other hand, for the PF channel,
the hierarchy for the RLE mimics the same for the LE with
negligible error for the given example.

Note, however, that the modified hierarchy in Eq. (41) is
still in accordance with the proposed hierarchies for three-
qubit systems, as given in Eqs. (26)–(29). Our numerical
findings suggest that the proposed hierarchies remain valid for
gGHZ states.

gW states. Let us now move to another class of three-qubit
states, namely, the generalized W states, whose parametric
form is given by

|gW〉 = cos α |001〉 + eiγ1 sin α cos β |010〉
+ eiγ2 sin α sin β |100〉 , (42)

where 0 � α, β � π , and 0 � γ1, γ2 � 2π . Due to the in-
creased number of real parameters required for specifying the
gW states, it is not possible to obtain analytical closed forms
even for the RLE. We perform numerical analysis and find that
similar to the gGHZ states, there exists gW states for which
E12 − E ′

12 = δ ∼ 10−2 when even a low noise is applied to the
qubits. This suggests that the hierarchies of LE and RLE have
to be checked separately in the case of the gW states under
noise.

Let us first check whether inequalities. (26)–(29) remain
valid for LE in the case of gW states. We observe that the
hierarchies labeled as “Env” are valid for LE in all states
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FIG. 5. Violation of hierarchy for gW states. Variations of �B [Eqs. (43)] for gW states as functions of α (abscissa) and β (ordinate), with
γ1,2 = 0. Bit-flip (a), depolarizing (b), and amplitude-damping (c) noise with p = 0.1 acts on all the qubits. The parameters α and β are in
radians, while �B is dimensionless.

generated after interaction of local BF and PF noise with the
gW states. However, there can be violation of microscopic
hierarchies, labeled as “A” and “B”. To consider the degree
of violation of the hierarchy “B”, we consider a quantity

�B = min {E12(ρ1), E12(ρ2)}
− max {E12(ρ13), E12(ρ23)}. (43)

In Fig. 5, �B is plotted with α and β, keeping γ1,2 = 0, for
the bit-flip noise strength p = 0.1 for each qubit, and we
notice that �B is positive as well as negative, confirming the
violation. Numerical analysis suggests that this feature remain
qualitatively unchanged when the strengths of the noise is
also increased. Note, however, that in the case of RLE, all the
proposed hierarchies remain valid in the case of the gW states
subjected to BF and PF noise of all possible noise-strength.

Random 3- and 4-qubit states. Let us now investigate what
is the fraction of states for which these hierarchies are violated
in the case of three-qubit generic random pure states sent
through local noisy channels. Towards this aim, we Haar-
uniformly generate generic 3-qubit pure states of the form

|ψ〉 =
∑

i1i2i3=0,1

ai1i2i3 |i1i2i3〉 (44)

with
∑

i1i2i3=0,1 |ai1i2i3 |2 = 1 and ai1i2i3 = αi1i2i3 + iβi1i2i3 ,
where αi1i2i3 and βi1i2i3 are real numbers, by choosing the
values of αi1i2i3 and βi1i2i3 from a Gaussian distribution
of mean zero and standard deviation unity [103]. Here,
|ik〉 ∈ {|0〉 , |1〉}, k = 1, 2, 3, form the computational basis
of qubits 1, 2, and 3. These states form the GHZ class of
three-qubit states [94]. On the other hand, there exists another
class of three-qubit states [94], called the W class of states,
which can not be transferred to a state from the GHZ class
by stochastic local operations and classical communication
with a single copy A generic state belonging to the W class is
represented as

|ψ〉 = a0 |001〉 + a1 |010〉 + a2 |100〉 + a3 |000〉 , (45)

with
∑3

l=0 |al |2 = 1, and {al ; l = 0, 1, 2, 3} being complex
numbers al = αl + iβl , l = 0, 1, 2, 3, with real αl and βl .
Similar to the GHZ class states, random W class states can be
generated Haar uniformly by generating values of αl and βl ,
j = 0, 1, 2, 3, from a normal distribution of mean zero and

standard deviation unity. We Haar uniformly generate three-
qubit states belonging to these two classes, and subject them
to single-qubit local PF and BF noise on different qubits. The
percentages of such states for which the hierarchies presented
in Eqs. (26)–(29) remains valid are tabulated in Table I. The
prominent observations from the data are as follows.

(i) For both GHZ and W class states, the percentage of
states for which hierarchies “Env” and “A” remains valid
varies very slowly with increasing noise strength for both the
PF and BF noise. The maximum variation between any two
fractions of such states, corresponding to any two different
values of noise strengths, is ∼1%.

(ii) The hierarchy “B” remains valid for almost all states
belonging to the GHZ and the W classes under both PF and
BF noise.

(iii) The number of W class states for which the hierarchy
“A” is valid is considerably low in the case of the PF noise.
The number increases in the case of the BF noise, but remains
∼ half of the number of states in W class for which the
hierarchies “Env” and “A” are valid.

(iv) We also observe that for the cardinality based hierar-
chy, all of the GHZ and the W class states subjected to local
noise of BF or PF type are in agreement.

The moments of the distribution of three-qubit states that
obey the proposed hierarchies may reveal important informa-
tion about the trends of the validity of the hierarchies when
the strength of the noise is increased. In order to investigate
this, we focus on the different components of the hierarchies
“Env” for the three-qubit system [see Eq. (26)], where noise
is present at least on one of the qubits:

E0 = E12(ρ3),

Emin
1 = min {E12(ρ13), E12(ρ23), E12(ρ1), E12(ρ2)},

Emax
1 = max {E12(ρ13), E12(ρ23), E12(ρ1), E12(ρ2)}
E2 = max {E12(ρ123), E12(ρ12)}. (46)

Here, the subscripts of ρ in E12(ρ) denote the qubits on
which noise is applied, while the subscripts of E indicate
how many of the qubits 1 and 2 belong to the set of noisy
qubits. Agreement with the hierarchy “Env” would suggest
simultaneous satisfaction of (a) x = E0 − Emax

1 � 0 and (b)
y = Emin

1 − E2 � 0. We Haar uniformly generate 5 × 104 ran-
dom three-qubit states, and subject the states to single-qubit
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TABLE I. Percentages of three-qubit states under phase- and bit-flip noise, for which the proposed hierarchies for three-qubit systems
are valid, and the moments of the distributions of the states according to the “Env” hierarchy. For each type of initial states, the sample size
considered is NS = 5 × 104. The values of the moments are reported by multiplying with a factor 10−2.

Phase-flip noise

Percentage of states obeying proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

State type Env A B Env A B Env A B

GHZ class 98.78 82.29 100.00 98.95 81.53 100.00 99.07 81.15 100.00
W class 98.55 13.57 100.00 98.37 13.43 100.00 98.29 14.03 100.00

Moments of distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

State type μx σx μy σy μx σx μy σy μx σx μy σy

GHZ class 3.21 1.15 3.02 1.09 6.00 2.19 5.25 1.92 8.85 3.18 7.09 2.61
W class 2.62 1.13 2.38 1.10 4.72 2.22 3.90 1.97 6.79 3.32 4.99 2.66

Bit-flip noise

Percentage of states obeying proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

State type Env A B Env A B Env A B

GHZ class 98.84 82.56 99.99 99.01 81.87 99.99 99.10 81.42 100.00
W class 92.75 58.23 100.00 94.37 58.94 100.00 95.90 59.46 100.00

Moments of distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

State type μx σx μy σy μx σx μy σy μx σx μy σy

GHZ class 3.21 1.15 3.02 1.08 5.99 2.18 5.24 1.91 8.83 3.16 7.07 2.59
W class 2.62 1.13 2.38 1.10 4.72 2.23 3.90 1.97 6.79 3.32 4.99 2.66

noise on different sets of qubits to determine the normalized
frequency distribution fxy, and in the Table I (see columns
with heading “Env”), we report the percentage of states for
which both (a) and (b) are satisfied. In Figs. 6(a)–6(d), we
plot fxy as functions of x and y in the case of the bit-flip
noise with increasing noise strength, where the input states are
random states from the GHZ and the W class. The validity of
the envelop hierarchy is indicated by points on the frequency
map that lie in the first quadrant of the x − y plane. The
figures clearly indicate that the “Env” hierarchy remain valid
for most of the input states with increasing strength of the
bit-flip noise, which is also indicated by the percentages of
states obeying “Env” hierarchy in Table I. Using the frequency
distribution fxy, one can compute the mean μi and standard
deviations σi, (i = x, y) of x and y, which are also reported in
the Table I. Note that the values of all of these moments in-
crease with an increasing noise strength. Qualitatively, similar
results are obtained for phase-flip noise also.

In order to check whether similar trend exists for the four-
qubit systems as well, we Haar uniformly generate four-qubit
states of the form

|ψ〉 =
∑

i1i2i3i4=0,1

ai1i2i3i4 |i1i2i3i4〉 , (47)

where the coefficients ai1i2i3i4 , i1, i2, i3, i4 = 0, 1, and the bases
|ik〉, k = 1, 2, 3, 4, have similar implications as in the case
for three qubits, and the complex state parameters {aj} are
sampled in a way similar to that in the case of the 3-qubit
GHZ and W class states. We follow the same labeling scheme
for the hierarchies in four-qubit systems as in Figs. 1 and
2, where H4 and H5 represent the envelope hierarchies. In
Table II, we have tabulated the percentages of Haar uniform
random four-qubit states that obey the hierarchies labeled as
H1, · · · , H5. Note here that while checking the hierarchy H2,
in order to obtain the broad picture instead of getting data
cluttered with microscopic details, we have combined the four
microscopic hierarchies into the following two:

max
{
E (1)

12(ii)(ρ134), E (1)
12(ii)(ρ234)

}
� min

{
E (1)

12(ii)(ρ13), E (1)
12(ii)(ρ14), E (2)

12(ii)(ρ23), E (2)
12(ii)(ρ24)

}
,

(48)

max
{
E (1)

12(ii)(ρ13), E (1)
12(ii)(ρ14), E (2)

12(ii)(ρ23), E (2)
12(ii)(ρ24)

}
� min

{
E (1)

12(ii)(ρ1), E (2)
12(ii)(ρ2)

}
, (49)

where we have kept both unmeasured qubits at the same
footing. This is a logical choice when the states are generated
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FIG. 6. Distribution of three-qubit states obeying the “Env” hierarchy. Map of the normalized frequency distribution fxy as functions of
x (horizontal axis) and y (vertical axis) in the case of three-qubit GHZ [(a),(b),(e),(f)] and W [(c),(d),(g),(h)] class states under local bit-flip
[(a)–(d)] and depolarizing [(e)–(h)] noise for p = 0.1 [(a),(c),(e),(g)] and p = 0.4 [(b),(d),(f),(h)]. Both the axes are dimensionless.

Haar-uniformly in the space of four-qubit states, where noise
on qubit 1 is equivalent to noise on qubit 2 in terms of statistics
of the state space.

We now summarize the observations.
(i) The percentage of states for which the hierarchy H4

(equivalent to the hierarchy “Env” in the three-qubit system)

TABLE II. Percentage of four-qubit states subjected to phase-flip and bit-flip noise, for which the proposed hierarchies for the four-qubit
systems are valid, and the moments of the distributions of the four-qubit states according to the “Env” hierarchy. All other specifications are
same as in Table I.

Phase-flip noise

Percentage of states obeying proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3

63.72 31.82 100.00 90.41 99.95 82.34 13.05 100.00 85.26 99.98 92.602 4.19 100.00 80.83 99.97

Moments of distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

μx σx μy σy μx σx μy σy μx σx μy σy

1.08 0.02 1.07 0.02 3.16 0.07 2.88 0.05 5.92 0.12 4.97 0.07

Bit-flip noise

Percentage of states obeying proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3

63.85 31.65 100.00 89.46 99.59 82.87 12.79 100.00 84.72 99.82 92.69 4.34 100.00 80.66 99.94

Moments of distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

μx σx μy σy μx σx μy σy μx σx μy σy

1.09 0.02 1.07 0.02 3.16 0.07 2.88 0.05 5.92 0.12 4.97 0.07
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remains valid is considerably low in the low-noise scenario
(for example, p = 0.1) in the case of both PF and BF noise,
and increases with the increase in the noise strength.

(ii) Almost all random Haar-uniform four-qubit states
obey the microscopic hierarchies H1 and H3, while the per-
centages of states obeying hierarchy H2 is lower. Moreover,
unlike the other microscopic hierarchies for the four-qubit
states as well as the three-qubit system, the percentage of
states obeying hierarchy H2 decreases at a considerable rate
with increase in the noise strength for both PF and BF noise.

(iii) From our numerical data, it appears that the percent-
ages of four-qubit states obeying hierarchy H4 is approxi-
mately complementary to the fraction of four-qubit states for
which hierarchy H5 is valid. As the noise strength in the case
of the PF and the BF noise increases, the fraction of states
for which hierarchy H4 (H5) is valid decreases (increases).
Note here that the hierarchy H5 takes into account only the
cardinality of the set of noisy qubits, and not the intricacies of
localizable entanglement.

We also carry out the investigation of the distribution for
four-qubit states according to the validity of the “Env” hierar-
chy, defining E0, Emin

1 , Emax
1 , and E2 as

E0 = min{E3, E4, E34}, (50)

Emin
1 = min{E14, E24, E13, E23, E134, E234, E1, E2}, (51)

Emax
1 = max{E14, E24, E13, E23, E134, E234, E1, E2}, (52)

E2 = max{E124, E123, E12, E1234}, (53)

where E12(ρ1234) is denoted as E1234 for brevity. The normal-
ized frequency distribution fxy as functions of x and y exhibit
qualitatively similar trends under the bit- and phase-flip noisy
channels as in the case of the three-qubit system.

VI. ORDERING OF STATES AFFECTED BY
DEPOLARIZING CHANNEL

In this section, we consider a symmetric noise model,
namely, the DP noise, as opposed to the asymmetric BF and
PF noise. Similar to the previous section, we start with the
effect of DP noise on the three-qubit gGHZ state, and present
the following Proposition VI for the RLE.

Proposition VI. Depolarizing channel. When all or a set
of qubits of the generalized GHZ state are passed through
DP channel, according to the value of RLE, the following
classification of states is possible:

E ′
12(ρ123) � E ′

12(ρ12) � E ′
12(ρ13) � E ′

12(ρ1) � E ′
12(ρ3).

(54)

See Appendix B 3 for the proof. Note that in the case of the
DP noise, at p = 0,

E ′
12(ρ123) = E ′

12(ρ12) = E ′
12(ρ13) = E ′

12(ρ1) = E ′
12(ρ3),

(55)

all of which have maximum value 1
2 sin α at p = 0. For 0 <

p � 1, E ′
12(ρ3) decreases linearly with p, vanishing only at

p = 1, thereby showing a higher robustness compared to the
same for E ′

12(ρ123), E ′
12(ρ12), E ′

12(ρ13) and E ′
12(ρ1), which de-

crease monotonically with p, and may vanish at p = pc � 1.

The values of pc corresponding to E ′
12(ρ123) and E ′

12(ρ12) are
respectively given by the solutions of the equations

E ′
12(ρ123) = 0, E ′

12(ρ12) = 0, (56)

which depends on the chosen initial gGHZ state via the pa-
rameter α. However, in contrast, for E ′

12(ρ13) and E ′
12(ρ1),

pc = 1
2 and 2

3 respectively, which are independent of the cho-
sen initial state.

Let us now check the validity of the hierarchies in LE
in the case of the DP noise. For the gGHZ states, the pro-
posed hierarchy of three-qubit states remain valid for LE, as
demonstrated via the dynamics of the different LEs in Fig. 4.
However, in contrast to the BF noise, for the gW states, no
evidence is found for the violation of any of the three-qubit
hierarchies, as given in Eqs. (26)–(29). This is demonstrated
in Fig. 5 by the absence of negative values in the variation of
�B [Eq. (43)] against α and β for the depolarizing noise with
a specific noise strength.

The trends of the fraction of randomly generated three-
and four-qubit states for which the rankings are valid exhibit
several contrasting behavior to the same for the PF and the
BF noise (see Table III). For example, in the case of the DP
noise, both microscopic hierarchies “A” and “B” are satisfied
by all the randomly sampled states from the three-qubit GHZ
and W classes, which is unlike the trend in the case of the
PF and the BF noise. On the other hand, the number of states
from these classes, for which the hierarchy “Env” is valid, has
a high value, which increases slowly with p, similar to the
PF and the BF noise. This behavior remains unchanged when
the number of qubits is increased from 3 to 4, in the sense
that all the microscopic hierarchies, H1, H2, and H3, are valid
for 100% of the randomly sampled Haar-uniform four-qubit
states. However, the envelop hierarchy H4 is valid for a less
number of states, and the fraction increases at a considerable
rate when the noise strength is increased from p = 0.1 to
p = 0.3.

Note here that the variation of the size of population of
four-qubit states, for which the cardinality-based hierarchy H5

remains valid, also exhibits different trends from that of the
PF and the BF noise. The complementary nature of the values
of the fraction of states obeying H4 and H5 breaks down as
the strength of the DP noise increases, although the individual
behavior of the percentages of four-qubit states obeying H4

and H5 against the noise strength remains qualitatively the
same as in the case of PF and BF noise.

As in the case of the BF and the PF noise, we study the
normalized frequency distribution fxy of the three-, and four-
qubit states under depolarizing noise, as per the validity of the
“Env” hierarchy (see discussions in Sec. V for the definitions
of x and y), and determine the moments of these distributions
as functions of p (see Table III). In Figs. 6(e)–6(h), we plot
fxy as a function of x and y in the case of random three-qubit
states undergoing single-qubit depolarizing channels as per
the validity of the “Env” hierarchies. It is evident from the
table and the figures that the trends of μx, μy, σx, and σy are
similar against increasing p, as in the case of the BF and the
PF noisy channels.

It is logical to ask whether the trends of the moments as
functions of p in the case of the Pauli channels are altered
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TABLE III. For three-, four-, and five-qubit systems, the tables contain percentages of quantum states, which, when sent through single-
qubit depolarizing channels, satisfy the different proposed Hierarchies. The moments of the distribution of quantum states according to the
envelop hierarchies of the corresponding cases are also included. All other specifications are same as in Table I.

Three-qubit states

Percentage of states obeying the proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

State type Env A B Env A B Env A B

GHZ class 99.93 100.00 100.00 99.65 100.00 100.00 99.22 100.00 100.00
W class 93.79 100.00 100.00 91.80 100.00 100.00 91.59 100.00 100.00

Moments of distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

State type μx σx μy σy μx σx μy σy μx σx μy σy

GHZ class 3.46 1.05 3.25 0.94 6.38 2.12 5.44 1.74 9.25 3.25 6.58 2.64
W class 3.16 1.67 2.82 1.55 5.64 3.34 4.37 2.93 7.97 4.99 4.95 3.92

Four-qubit states

Percentage of states obeying the proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3

33.04 62.23 100.00 100.00 100.00 51.05 33.14 100.00 100.00 100.00 68.68 8.236 100.00 100.00 100.00

Moments of distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

μx σx μy σy μx σx μy σy μx σx μy σy

0.19 0.008 0.27 0.007 0.73 0.03 0.96 0.02 1.93 0.06 2.34 0.03

Five-qubit states

Percentage of states obeying the proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3

0.020 0.030 99.82 99.80 99.81 0.319 0.000 99.94 99.93 99.93 1.913 0.000 99.88 99.85 99.36

Moments of the distribution of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

μx σx μy σy μx σx μy σy μx σx μy σy

−2.60 0.007 −2.25 0.006 −3.98 0.021 −2.67 0.013 −3.94 0.04 −0.79 0.01

if one considers systems consisting of more than 4 qubits. In
situations where the measured qubits are noisy, the effect of
the noise may be transferred to the unmeasured subsystem
during the projection measurement for localizing entangle-
ment on the unmeasured qubits. For systems with N > 4
where entanglement is always localized on a subsystem of
N − n = 2 qubits, n > N − n, which is in contrast to n � N −
n for N � 4. The measured subsystem being larger in size,
the intricacies of the distribution of noise on the measured
subsystem increases considerably, which makes a deviation
from the observed trends of the moments of the distributions
with p possible. However, computing LE over a pair of qubits
for a larger system poses a number of challenges. Firstly, the

number of real parameters over which LE is to be optimized
increases rapidly, making the optimization difficult. Secondly,
the Haar-uniformity of the quantum states breaks down for
systems of higher number of qubits, thereby making it difficult
to generate data from which statistically relevant conclusions
on the state space can be drawn.

Using the available resource in hand, we perform the anal-
ysis for the validity of the “Env” hierarchy for a five-qubit
system under single-qubit depolarizing channels, where LE is
localized over two qubits. The normalized frequency distri-
butions fxy is depicted as functions of x and y in Fig. 7. It is
evident from the figure that the majority of the distribution
lies outside the first quadrant of the x − y plane, implying
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FIG. 7. Distribution of five-qubit states obeying the “Env” hierarchy. Map plot of the normalized frequency distribution, fxy, against x
(abscissa) and y (ordinate) in the case of Haar uniformly generated five-qubit states under local depolarizing channel for (a) p = 0.1, (b)
p = 0.2, (c) p = 0.3, and (d) p = 0.4.

violation of the “Env” hierarchy in contrast to the validity of
the same for majority of states in the case of the three- and
four-qubit systems. The moments of these distributions are
reported for p = 0.1, 0.2, and 0.3 in Table III.

VII. RANKINGS OF STATES INDUCED BY
AMPLITUDE-DAMPING NOISE

We now consider a non-Pauli noise, namely, the single-
qubit uncorrelated AD noise. The first step is to investigate its
effect on the hierarchies of the RLE. Interestingly, in contrast
with the cases of the Pauli noises considered in this paper, in
the case of the AD channel, the hierarchies are altered when

one crosses a specific value p = pcr on the p axis. The value
of pcr is fully dependent on the initial state parameters. This
is described by the following Proposition VII.

Proposition VII. Amplitude-damping channel. For the
gGHZ states, the effect of local AD channel on all or a set
of qubits may lead to a ranking of RLE given by

E ′
12(ρ123) � E ′

12(ρ12) � E ′
12(ρ13) � E ′

12(ρ1) � E ′
12(ρ3)

(57)

for π
2 � α � π . When 0 � α � π

2 ,

E ′
12(ρ123) � E ′

12(ρ12) � E ′
12(ρ13) � E ′

12(ρ1) � E ′
12(ρ3)

(58)

TABLE IV. Percentage of three- and four-qubit states satisfying proposed rankings under amplitude-damping noise, and the moments of
distributions of three- and four-qubit states according to the “Env” hierarchy. All other specifications are same as in Table I.

3-qubit states

Percentage of states obeying the proposed hierarchy

p = 0.1 p = 0.2 p = 0.3

State type Env A B Env A B Env A B

GHZ class 99.08 78.54 100.00 98.90 80.2 100.00 98.53 81.92 100.00
W class 73.19 51.54 100.00 73.43 52.74 100.00 73.85 54.03 100.00

Moments of the distributions of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

State type μx σx μy σy μx σx μy σy μx σx μy σy

GHZ class 2.41 0.92 2.27 0.87 4.23 1.74 3.61 1.52 5.94 2.55 4.40 2.00
W class 1.29 1.12 1.23 1.05 2.14 2.17 1.89 1.84 3.05 3.23 2.40 2.47

4 qubit states

Percentage of states obeying the proposed hierarchies

p = 0.1 p = 0.2 p = 0.3

H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 H1 H2 H3

38.76 34.35 100.00 91.93 100.00 47.86 23.26 100.00 90.83 100.00 53.41 16.92 100.00 90.20 100.00

Moments of the distributions of states according to “Env” hierarchy

p = 0.1 p = 0.2 p = 0.3

μx σx μy σy μx σx μy σy μx σx μy σy

0.17 0.01 0.21 0.01 0.46 0.03 0.46 0.02 0.98 0.05 0.75 0.03
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for 0 � p � pcr, and

E ′
12(ρ123) � E ′

12(ρ12) > E ′
12(ρ13) � E ′

12(ρ1) � E ′
12(ρ3)

(59)

for pcr < p � 1. Here, pcr is given by

pcr = min [1, f (α)], (60)

where

f (α) = 2 sin α − √
4 sin α[sin α + cos α − 1]

2(1 − cos α)
. (61)

Direct computation of all the expressions lead to the in-
equalities as above, as shown in Appendix B 4.

Our numerical analysis shows that the crossing point p =
pcr exists even for the case of LE [E12(ρ12) and ρ12(ρ13)] of
gGHZ states subjected to AD noise, which has been demon-
strated in Fig. 4. While all of the three-qubit hierarchies [Eqs.
(26)–(29)] remain valid for the gGHZ states subjected to the
AD noise in the range 0 < p < pcr , there exists a considerable
number of gW states which, when subjected to AD noise,
violates the microscopic hierarchy “B”. In Fig. 5, a nega-
tive value of �B demonstrates a violation of the hierarchy
“B”, which is found in a considerable number of gW states,
similar to the ones found in the case of the PF and the BF
noise. Also, in the case of the three-qubit GHZ and W class
states, all Haar-uniformly sampled states follow hierarchies
“B”—a feature which remains constant qualitatively as well
as quantitatively when the noise strength is increased. How-
ever, the fractions of the states obeying “Env” and “A” are
lower, and varies slowly with p. In contrast, in the case of
the four-qubit system, all the microscopic hierarchies except
H2 remains valid for all random four-qubit states, irrespective
of the strength of the noise. Also, the complementary nature
of the fractions of states obeying the envelope hierarchies H4

and H5 is lost in the present case, as in the case of DP noise.
However, the individual trends of the fractions of random
four-qubit states obeying H4 and H5 against the noise strength
remains qualitatively similar to that found in the case of the
PF, BF, and the DP noise, i.e., percentage of states satisfying
H4 increases with the increase of p, while the same for H5

decreases.
Our investigation on the distributions of three- and four-

qubit states under local amplitude-damping noise as per the
validity of the “Env” hierarchy reveals qualitatively similar
results as in the case of the single-qubit Pauli noise (see
Table IV) with respect to the values of the moments of the
distribution as functions of the noise strength.

VIII. CONCLUSIONS

A knowledge of how entanglement in a noisy quantum
state is affected due to a spatial distribution of noise acting on
the quantum state is essential for complete characterization of
the state. In this paper, we studied different orderings of the
values of localizable and restricted localizable entanglement,
computed using negativity as entanglement measure, over a
specific qubit-pair in a multiqubit system, when local noise
acts on the whole, or a group of qubits in the system. We
proved that the information on the noise applied to a qubit
in a multiqubit state remains even after the local projection

measurement and subsequent tracing out of the qubit from
the system required to compute localizable entanglement (LE)
as long as the measurement basis and the basis of the Kraus
operators representing the noise model do not commute. This
result remains unchanged for single-qubit phase-flip, bit-flip,
and depolarizing noise. Depending on these results, and the
properties of entanglement in noisy environments, and on our
analytical results regarding the effect of single-qubit noise on
the restricted localizable entanglement, we proposed a set of
hierarchies that the value of the localizable or restricted local-
izable entanglement should obey when local noise acts on a
set of qubits in the system. We tested the proposed rankings
among states based on localizable and restricted localizable
entanglement in Haar uniformly generated random three- and
four-qubit systems. In the former, a number of paradigmatic
classes of states, such as the generalized GHZ and the gen-
eralized W states, and the GHZ and the W classes of states,
are sent through local noisy channels of the mentioned types,
and the percentages of states with respect to the validity of
the proposed hierarchies are reported. On the other hand, we
found that a hierarchy that emerges simply from the cardinal-
ity of the set of noisy qubits is violated for both three- and
four-qubit states with the increase of the strength of the noise.
It, therefore, provides a way of classifying the random states
in the states-space according to LE under the action of local
noisy channels.
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APPENDIX A: PROJECTION MEASUREMENT ON gGHZ
STATE UNDER PAULI NOISE

Here, we discuss the effect of the local projection measure-
ment in the basis of σ x on the third qubit of the three-qubit
gGHZ state ρ = |gGHZ〉 〈gGHZ| under local uncorrelated
Pauli noise, where we have adopted the notation in Figs. 1 and
2 for the quantum states ρm

3 . The explicit forms of the noisy
states corresponding to the BF (x), PF (z), and DP (xyz) noise
are given by

ρ
(δ)
l1l2

=
(

1 − p

2

)2
ρ + p

2

(
1 − p

2

)[
σ δ

l1ρσ δ
l1 + σ δ

l2ρσ δ
l2

]
+

( p

2

)2
σ δ

l1σ
δ
l2ρσ δ

l1σ
δ
l2 , for δ = x, z, (A1)

ρ
(δ)
l =

(
1 − p

2

)
ρ + p

2
σ δ

l ρσ δ
l , for δ = x, z, (A2)

ρ
(xyz)
l1l2

=
(

1 − 3p

4

)2

ρ + p

4

(
1 − 3p

4

)

×
∑

δ=x,y,z

(
σ δ

l1ρσ δ
l1 + σ δ

l2ρσ δ
l2

)
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+
( p

4

)2 ∑
δ,δ′=x,y,z

σ δ
l1σ

δ′
l2 ρσ δ

l1σ
δ′
l2 , (A3)

and

ρ
(xyz)
l =

(
1 − 3p

4

)
ρ + p

4

∑
δ=x,y,z

σ δ
l ρσ δ

l , (A4)

where l1 �= l2 and l1, l2, l ∈ {1, 2, 3}. The projection operators
on qubit 3 in the basis corresponding to a specific Pauli oper-
ator σγ , γ = x, y, z, are given by

Pγ

k = 1
2

(
I + (−1)kσγ

)
, (A5)

where k = 0, 1 corresponds to the pair of outcomes. In the
calculation, we shall use the following identity:

σ δPγ

k σ δ = Pγ

k′ , (A6)

where k′ = k if γ = δ, and k′ = k + 1 modulo 2 if γ �= δ.
Application of the projection operator Pγ

k for γ = x, y, z, on
any one of the qubits in the gGHZ state yields

Pγ

k ρPγ

k = ρ̃
γ

k ⊗ Pγ

k , (A7)

where ρ̃
γ

k is defined on qubits 1 and 2. For γ = x,

ρ̃x
k = cos2 α

2
|00〉 〈00| + sin2 α

2
|11〉 〈11|

+ (−1)k 1

2
sin α[e−iβ |00〉 〈11| + eiβ |11〉 〈00|] (A8)

for k = 0, 1. Note here that the superscript “x” in ρ̃x
k indicates

a projection measurement on qubit 3 in the basis of σ x. Using
Eqs. (A6)–(A8), the noisy postmeasured states on qubits 1 and
2 for different types of noise can be determined in different
scenarios in a case-by-case basis.

1. Noise on two qubits: m = 2

We first consider the cases where noise is applied on any
two of the three-qubit system [Eqs. (A1) and (A3)]. The pos-
sible situations constitute of two cases depending on whether
noise is applied to the qubit 3, on which the local projection
measurement in the basis of σ x is performed. The two differ-
ent situations are as follows.

a. l1, l2 ∈ {1, 2}
Here, the third qubit is free of noise, leading to k′ = k

trivially from Eq. (A6). Without any loss in generality, we
assume l1 = 1, l2 = 2. Application of Px

k on the state ρ
(δ)
l1l2

(δ = x, z) leads to the postmeasured reduced state ρ̃
(δ,k)
12 on

qubits 1 and 2 after tracing out qubit 3, where

ρ̃
(δ,k)
12 =

(
1 − p

2

)2
ρ̃x

k + p

2

(
1 − p

2

)[
σ δ

1 ρ̃x
k σ

δ
1 + σ δ

2 ρ̃x
k σ

δ
2

]
+

( p

2

)2
σ δ

1 σ δ
2 ρ̃x

k σ
δ
1 σ δ

2 , (A9)

with δ = x, z, and k = 0, 1, which occurs with equal proba-
bility pk = 1

2 . Note that the superscript x in ρ̃x
k indicates the

operation of Px
k on the initial gGHZ state, while the index

δ (δ = x, z) in the superscript of ρ̃
(δ,k)
12 denotes the type of

noise (BF or PF) on the qubits 1 and 2.

In the case of the DP noise on qubits 1 and 2 also, k = k′

in Eq. (A6) due to application of px
k on qubit 3 in ρ

(xyz)
l1l2

, which
leads to

ρ
(xyz,k)
12 =

(
1 − 3p

4

)2

ρ̃x
k + p

4

(
1 − 3p

4

)

×
∑

δ=x,y,z

(
σ δ

1 ρ̃x
k σ

δ
1 + σ δ

2 ρ̃x
k σ

δ
2

)

+
( p

4

)2 ∑
δ,δ′=x,y,z

σ δ
1 σ δ′

2 ρ̃x
k σ

δ
1 σ δ′

2 , (A10)

after tracing out qubit 3, where ρ̃x
k is given in Eq. (A8).

b. l1 = 3 or l2 = 3

In this situation, Eq. (A6) dictates the postmeasured quan-
tum state. We assume l1 = 1, l2 = 3. In the case of BF noise
(δ = x), k = k′ according to Eq. (A6) for qubit 3, and the
postmeasured reduced two-qubit state over qubits 1 and 2 is
given by

ρ̃
(x,k)
12 =

(
1 − p

2

)
ρ̃x

k + p

2
σ x

1 ρ̃x
k σ

x
1 , (A11)

corresponding to k = 0, 1, which stand for the outcomes of
the measurement with equal probability pk = 1

2 . However, in
the case of PF noise (δ = z), k may not equal to k′ on qubit 3
for all the terms in the expansion of ρ

(z)
13 [Eq. (A1)], and the

application of Px
k , k = 0, 1, on qubit 3 in ρ

(z)
13 leads to

ρ̃
(z,0)
12 =

(
1 − p

2

)[(
1 − p

2

)
ρ̃x

0 + p

2
σ z

1 ρ̃x
0σ

z
1

]
+ p

2

[(
1 − p

2

)
ρ̃x

1 + p

2
σ z

1 ρ̃x
1σ

z
1

]
, (A12)

ρ̃
(z,1)
12 =

(
1 − p

2

)[(
1 − p

2

)
ρ̃x

1 + p

2
σ z

1 ρ̃x
1σ

z
1

]
+ p

2

[(
1 − p

2

)
ρ̃x

0 + p

2
σ z

1 ρ̃x
0σ

z
1

]
. (A13)

In the case of the DP noise, similar situations as in the case
of the PF noise arise, and the postmeasured states on qubits 1
and 2 corresponding to the projection measurement outcomes
k = 0, 1 due to the application of Px

k on qubit 3 are given by

ρ̃
(xyz,0)
12 =

(
1 − p

2

)[(
1 − 3p

4

)
ρ̃x

0 + p

4

∑
δ=x,y,z

σ δ
1 ρ̃x

0σ
δ
1

]

+ p

2

[(
1 − 3p

4

)
ρ̃x

1 + p

4

∑
δ=x,y,z

σ δ
1 ρ̃x

1σ
δ
1

]
, (A14)

ρ̃
(xyz,1)
12 =

(
1 − p

2

)[(
1 − 3p

4

)
ρ̃x

1 + p

4

∑
δ=x,y,z

σ δ
1 ρ̃x

1σ
δ
1

]

+ p

2

[(
1 − 3p

4

)
ρ̃x

0 + p

4

∑
δ=x,y,z

σ δ
1 ρ̃x

0σ
δ
1

]
. (A15)

2. Noise on a single qubit: m = 1

We now focus on the case Pauli noise applied to a single
quit in the three-qubit system [Eqs. (A2) and (A4)]. Similar to
the case of m = 2, here also exist two different situations, as
follows.
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a. l �= 3

In situations where qubit 3 is free of noise, the post-
measurement two-qubit reduced state on qubits 1 and 2
corresponding to the different outcomes k of the projection
measurement Px

k on qubit 3 for different types of noise are as
follows.

BF/PF noise:

ρ
(δ,k)
12 =

(
1 − p

2

)
ρ̃x

k + p

2
σ δ

l ρ̃x
k σ

δ
l , δ = x, z. (A16)

DP noise:

ρ
(xyz,k)
12 =

(
1 − 3p

4

)
ρ̃x

k + p

4

∑
δ=x,y,z

σ δ
l ρ̃x

k σ
δ
l . (A17)

b. l = 3

In situations where qubit 3 is noisy, the postmeasurement
two-qubit reduced state on qubits 1 and 2 corresponding to
the different outcomes k of the projection measurement Px

k on
qubit 3 for different types of noise are as follows.

BF noise:

ρ
(x,k)
12 = ρ̃x

k . (A18)

PF and DP noise:

ρ
(xyz,0)
12 = ρ

(z,0)
12 =

(
1 − p

2

)
ρ̃x

0 +
( p

2

)
ρ̃x

1, (A19)

ρ
(xyz,1)
12 = ρ

(z,1)
12 =

(
1 − p

2

)
ρ̃x

1 +
( p

2

)
ρ̃x

0 . (A20)

APPENDIX B: PROOFS OF THE PROPOSITIONS

1. Proof of Proposition IV

We first consider the case of m = 3. A local projection
measurement Px

k on qubit 3 in the basis of σ x leads to the
postmeasurement states ρ̃

(z,k)
12 , k = 0, 1 (see Appendix A).

The probabilities pk of getting the measurement outcomes
k = 0, 1 on qubit 3 are the same (pk = 1/2, k = 0, 1). The
matrices obtained by performing partial transposition with
respect to qubit 1 in the states ρ̃

(z,0)
12 and ρ̃

(z,1)
12 have identical

eigenvalues, given by

λ1 = 1
2 (1 + cos α), λ2 = 1

2 (1 − cos α),

λ3 = 1
2 (1 − p)3 sin α, λ4 = − 1

2 (1 − p)3 sin α, (B1)

with p (0 � p � 1) being the single-qubit noise-strength.
From the definition of the gGHZ state, one can assume
cos2 α

2 � sin2 α
2 without any loss in generality, which imposes

the restriction 0 � α � π
2 on α. In this region, λ4 < 0 while

λ1,2,3 � 0. Therefore, the localizable negativity is given by

E ′
12(ρ123) = 1

2 (1 − p)3 sin α. (B2)

Proceeding in similar fashion, it can be shown that in the case
of m = 2,

E12(ρ12) = E12(ρ13) = 1
2 (1 − p)2 sin α, (B3)

while in the case of m = 1,

E12(ρl ) = 1
2 (1 − p) sin α ∀l = 1, 2, 3. (B4)

Noticing the power of (1 − p) in the expressions for RLEs,

E ′
12(ρ123) � E ′

12(ρ12) = E ′
12(ρ13) � E ′

12(ρ1) = E ′
12(ρ3).

(B5)

Hence the proof. �

2. Proof of Proposition V

The case of the BF noise belongs to CASE 1 in the proof
of Proposition I . Hence, by using Corollary I,

E ′
12(ρ123) = E ′

12(ρ12), E ′
12(ρ13) = E ′

12(ρ1),

E ′
12(ρ23) = E ′

12(ρ2). (B6)

Straightforward algebra leads to the expressions of E ′
12(ρ12),

E ′
12(ρ1), and E ′

12(ρ3) as

E ′
12(ρ12) = 1

8 [sin α
√

f − 2p(2 − p)], (B7)

E ′
12(ρ1) = 1

4 [
√

p2 + 4(1 − p) sin2 α − p], (B8)

E ′
12(ρ3) = 1

2 sin α, (B9)

where

f = [p2 + (2 − p)2]2 − 4p2(2 − p)2 sin2 β. (B10)

Note that at p = 0, E ′
12(ρ12) = E ′

12(ρ1) = E ′
12(ρ3). For in-

creasing p in the range 0 < p � 1, E ′
12(ρ3) remains in-

dependent of p, while E ′
12(ρ12) and E ′

12(ρ1) decreases
monotonically with p. Also, for p > 0, E ′

12(ρ1) = 0 iff p =
1 ∀α �= 0. This implies that E ′

12(ρ1) � E ′
12(ρ3) for the full

range of p, the equality being only at p = 0.
On the other hand, the function E ′

12(ρ12) can be identified
as |λ|, where λ = [2p(2 − p) − sin α

√
f ]/8 is the negative

eigenvalue of the matrix obtained by performing partial
transposition with respect to qubit 1 on the postmeasured
state ρ̃

(x,k)
12 over qubits 1 and 2. Note that λ is negative

since sin α
√

f > 2p(2 − p), which implies that E ′
12(ρ12) =

|λ| when

[p2 + (2 − p)2]
2

4p2(2 − p)2
>

1 + sin2 α sin2 β

sin2 α
, (B11)

and E ′
12(ρ12) = 0 otherwise. The condition (B11) defines a

critical value p = pc given by the solution of the equation ob-
tained by replacing the inequality in (B11) by an equality, such
that for p < pc, E ′

12(ρ12) = |λ|, while for p � pc, E ′
12(ρ12) =

0. Therefore, for pc < p � 1, E ′
12(ρ12) � E ′

12(ρ1), where use
use the fact that E ′

12(ρ1) = 0 iff p = 1 ∀α �= 0. On the
other hand, in the range 0 < p < pc, we observe that prov-
ing E ′

12(ρ12) � E ′
12(ρ1) is equivalent to proving E ′

12(ρ1) −
max[E ′

12(ρ12)] > 0. Noting that E ′
12(ρ12) is maximum at β =

0, π, 2π, · · · , one can show that E ′
12(ρ1) − max[E ′

12(ρ12)] >

0 in the range 0 < p < pc, thereby completing the proof. �

3. Proof of Proposition VI

Following the same prescription as in Appendix A and
the proofs of the Propositions IV and V, the expressions for
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E ′
12(ρ123), E ′

12(ρ12), E ′
12(ρ13), E ′

12(ρ1), and E ′
12(ρ3) are calcu-

lated as

E ′
12(ρ123) = 1

4

[
2(1 − p)3 sin α − (2 − p)p

]
, (B12)

E ′
12(ρ12) = 1

4

[
2(1 − p)2 sin α − (2 − p)p

]
, (B13)

E ′
12(ρ13) = 1

8

[√
4p2 + f1 − 2p

]
, (B14)

E ′
12(ρ1) = 1

8

[√
4p2 + f2 − 2p

]
, (B15)

E ′
12(ρ3) = 1

2 [(1 − p) sin α], (B16)

where

f1 = 2 sin2 α
(
8 − 32p + 46p2 + 8p4 − 32p3

)
, (B17)

f2 = sin2 α(p − 2)(3p − 2). (B18)

It is clear from the expressions of E ′
12(ρ123) and E ′

12(ρ12)
that E ′

12(ρ123) � E ′
12(ρ12) for the full range of p ∀α. Also,

straightforward algebra shows that E ′
12(ρ13) − E ′

12(ρ12) can be
simplified as

E ′
12(ρ13) − E ′

12(ρ12)

= 1
8

[√
4p2 + f1 − 2(1 − p)(2(1 − p) sin α − p)

]
(B19)

Simple algebra follows,

(4p2 + f1) − 4(1 − p)2(2(1 − p) sin α − p)2

= 4p3(2 − p) + 16 sin αp(1 − p)3

+ 4 sin2 α[3 − 12p + 17p2 − 12p3 + 3p4], (B20)

which is a positive quantity for the full range of p, and for the
allowed values of α, i.e., (0 � α � π

2 ), implying E ′
12(ρ13) �

E ′
12(ρ12). Similarly, for E ′

12(ρ3) and E ′
12(ρ1),

E ′
12(ρ3) − E ′

12(ρ1) = p

2
sin α[4(1 − p) + p sin α], (B21)

which is >0 for all values of p and allowed values of
α, thereby proving E ′

12(ρ3) � E ′
12(ρ1). On the other hand,

E ′
12(ρ1) − E ′

12(ρ13) > 0 for all values of α, as shown in Fig. 8.
Hence the proof. �

4. Proof of Proposition VII

The expressions of E12(ρ12), E12(ρ13), E12(ρ1), and
E12(ρ3) are

E ′
12(ρ12) = 1

2
[(1 − p)(sin α + p cos α − p)], (B22)

E ′
12(ρ13) = 1

4

[√
f1 + 4p2 sin4 α

2
− 2p sin2 α

2

]
, (B23)

E ′
12(ρ1) = 1

8

[√
f2 + 4p2 sin4 α

2
− 2p sin2 α

2

]
, (B24)

E ′
12(ρ3) = 1

2
[
√

1 − p sin α], (B25)

FIG. 8. Variation of E ′
12(ρ1) − E ′

12(ρ13) > 0 as a function of α

and p, where α is in radian, and p is dimensionless, so is the y axis.

E ′
12(ρ123) = 1

2
[
√

(1 − p)3 sin2 α − p(1 − p)(1 − cos α)],

(B26)

where

f1 = 4(1 − p)2 sin2 α, (B27)

f2 = 4(1 − p) sin2 α. (B28)

Note that at p = 0, E ′
12(ρ12) = E ′

12(ρ13) = E ′
12(ρ1) = E ′

12(ρ3)
and the maximum value of these quantities occur at α = π/2.
In the range 0 < p � 1, E12(ρ3), E ′

12(ρ13), and E ′
12(ρ1) de-

crease monotonically with increasing p, and vanish only at
p = 1. In contrast, E ′

12(ρ12) may vanish at a critical value
p = pc, which depends on the state parameter α, and is given
by

pc = min
[
cot

α

2
, 1

]
. (B29)

In the range 0 � α � π
2 , cot α

2 > 1, implying pc = 1. On the
other hand, in the range π

2 � α � π , cot α
2 < 1, leading to

pc = cot α
2 .

In the case of E ′
12(ρ13) and E ′

12(ρ1), note that both
f1, f2 > 0 for 0 � p � 1, and f2 > f1 ∀p, thereby leading
to E ′

12(ρ1) � E ′
12(ρ13). The values of these quantities vanish

only at p = 1.
Next, we consider the difference between E ′

12(ρ13) and
E ′

12(ρ12) as

E ′
12(ρ13) − E ′

12(ρ12)

= 1

4

(√
4(1 − p)2 sin2 α + 4p2 sin4 α

2
− g

)
, (B30)

where

g =
(

4p2 sin2 α

2
+ 2 sin α − 2p sin2 α

2
− 2p sin α

)
. (B31)

Note that the solution of p from the equation E ′
12(ρ13) −

E ′
12(ρ12) = 0 provides a crossing point of the curves repre-

senting the variations of E ′
12(ρ13) and E ′

12(ρ12), which is given
by

pcr = min [1, f (α)], (B32)
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where

f (α) = 2 sin α − √
4 sin α[sin α + cos α − 1]

2(1 − cos α)
. (B33)

In the range 0 � α � π
2 , 0 � p < pcr (pcr < p < 1),

E ′
12(ρ13) > E ′

12(ρ12) (E ′
12(ρ13) < E ′

12(ρ13)). On the other
hand, in the range π

2 � α � π , E ′
12(ρ13) − E ′

12(ρ12) = 0 only
at p = 1, and E ′

12(ρ13) > E ′
12(ρ12) for the whole range of p.

Next, for E ′
12(ρ1) and E ′

12(ρ3), we get

E ′
12(ρ3) − E ′

12(ρ1)

= 1

4

(
h −

√
4(1 − p) sin2 α + 4p2 sin4 α

2

)
, (B34)

where

h =
(

2p sin2 α

2
+ 2

√
1 − p sin α

)
. (B35)

Since E ′
12(ρ1) − E ′

12(ρ3) � 0 in the full range 0 � p � 1,
E ′

12(ρ1) � E ′
12(ρ3). The proof of E ′

12(ρ12) � E ′
12(ρ123) also

follows from the fact that E ′
12(ρ12) − E ′

12(ρ123) > 0 for all
values of p, which can be shown by using the expressions of
E ′

12(ρ12) and E ′
12(ρ123) as given in Eqs. (B22) and (B26). �
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