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Achieving fault tolerance against amplitude-damping noise
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With the intense interest in small, noisy quantum computing devices comes the push for larger, more
accurate—and hence more useful—quantum computers. While fully fault-tolerant quantum computers are, in
principle, capable of achieving arbitrarily accurate calculations using devices subjected to general noise, they
require immense resources far beyond our current reach. An intermediate step would be to construct quantum
computers of limited accuracy enhanced by lower-level, and hence lower-cost, noise-removal techniques. This
is the motivation for our paper, which looks into fault-tolerant encoded quantum computation targeted at the
dominant noise afflicting the quantum device. Specifically, we develop a protocol for fault-tolerant encoded
quantum computing components in the presence of amplitude-damping noise, using a 4-qubit code and a
recovery procedure tailored to such noise. We describe a universal set of fault-tolerant encoded gadgets and
compute the pseudothreshold for the noise, below which our scheme leads to more accurate computation. Our
paper demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models,
generalizing the recent pursuit of biased-noise fault tolerance beyond the usual Pauli noise models. We also
illustrate how certain aspects of the standard fault tolerance intuition, largely acquired through Pauli-noise
considerations, can fail in the face of more general noise.
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I. INTRODUCTION

A real quantum computer is prone to noise, due to the
fragile nature of the quantum states carrying the information
and the unavoidable imperfections in gate operations. Scaling
up to large-scale, useful quantum computers relies on the
theory of quantum fault tolerance [1], a suite of methods for
reliable quantum computing even with noisy memory and
gates. Fault-tolerant quantum computation relies on encoding
the information to be processed into physical qubits using a
quantum error correcting (QEC) code. Encoded operations are
performed on the qubits to manipulate the information and,
in the presence of noise, these must be done in a manner that
controls the spread of errors. The QEC code further allows the
periodic removal of errors before they accumulate to a point
where the damage is irreparable, and fault tolerance tells us
how to do that even with noisy error correction operations,
provided the noise is below some threshold level [2–5]. The
theory of fault tolerance further includes a prescription for
increasing the accuracy of quantum computation by investing
more physical resources in error correction.
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Starting with Shor’s original proposal [4], most fault toler-
ance schemes are built upon general-purpose QEC codes, such
as polynomial codes [6], stabilizer codes [1,5], and the more
recent surface codes [7], each capable of correcting a small
number of arbitrary errors on the qubits. Fault tolerance noise
thresholds have been estimated for such schemes, incorporat-
ing concatenation and recursive simulation [8,9], magic-state
distillation [10], as well as teleportation-based approaches
[11]. Current threshold estimates suggest very stringent noise
control requirements of less than 10−4 probability of error
per gate for the concatenated Steane code, to more relaxed
(10−2) numbers for the surface codes [12]. A similar threshold
of 10−2 may also be obtained by concatenating the [[4,2,2]]
code with a 6-qubit code [13], although such a protocol re-
quires very high resource overheads to accomplish. We refer
to [14] for a comparative study of the fault tolerance threshold
obtained for different quantum codes, at a single level of
encoding, under depolarizing noise. A more recent overview
of fault-tolerant schemes using surface codes and color codes
in different dimensions may be found in [15].

The performance of a fault tolerance scheme depends
crucially on the noise in the quantum computing device in
question. The standard schemes were designed assuming no
knowledge of the noise in the physical qubits—hence the
reliance on codes that can deal with arbitrary errors—but,
threshold estimates and how well those schemes can support
accurate quantum computation, give varying perspectives de-
pending on the underlying noise models. For example, the
surface code threshold numbers are usually computed for
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depolarizing or at best Pauli noise on the qubits; Steane-code
schemes can have more relaxed threshold numbers if one
assumes depolarizing noise [9], rather than the adversarial
noise model used in the main analysis of Ref. [9].

This invites the question of whether one can devise fault
tolerance schemes specifically tailored to the predominant
noise affecting the qubits. In the current noisy intermediate-
scale quantum—or NISQ [16]—era where getting the errors
in the quantum device under control is key to progress, experi-
menters usually attempt to acquire knowledge of the dominant
noise afflicting their quantum system, and one might expect
that this knowledge can be employed usefully in the fault
tolerance design, to lower the resource overheads seen in
general-noise schemes, and for less stringent threshold num-
bers. This is borne out by the fault tolerance scheme developed
in a biased noise scenario, where dephasing noise is known to
be dominant [17,18]. This prescription was used to obtain a
universal scheme for pulsed operations on flux qubits [19],
taking advantage of the high degree of dephasing noise in the
CZ gate, leading to a numerical threshold estimate of 0.5% for
the error rate per gate operation.

Such approaches tailored to dominant noise processes can
serve as the initial steps in scaling up the quantum computer.
They weaken the effect of the dominant noise on the qubits
until other, originally less important, noise sources become
comparable in strength and one can revert to the use of the
more expensive but general-purpose fault tolerance protocols.
Recent efforts along these lines include fault-tolerant con-
structions using surface codes tailored to dephasing noise
[20,21], the proposal to use surface codes concatenated with
bosonic codes to achieve fault tolerance against photonic
losses [22], the design of noise-adapted codes for dominating
dephasing errors in spin qubits [23,24], and the demonstration
of hardware-adapted fault-tolerant error detection in super-
conducting qubits [25].

These past examples of fault tolerance schemes for
biased noise have focused on asymmetric Pauli noise—
understandably so, as standard fault tolerance theory relies
heavily on classifying the effect of general noise into Pauli
errors—and dealing with those errors using general-purpose
Pauli-based QEC codes. In this paper, we generalise the idea
of biased-noise fault tolerance to noise models and noise-
adapted codes that do not make use of this Pauli-error link. In
particular, we deal with amplitude-damping noise, for which
noise-adapted codes of a rather different nature than Pauli-
based QEC codes have been developed. Such noise-adapted
codes [26–28] are known to offer a similar level of protection
as general-purpose Pauli-based codes, when the underlying
noise is amplitude-damping in nature, while using fewer phys-
ical qubits to encode each qubit of information. Amplitude
damping, arising from physical processes like spontaneous
decay, is a significant source of noise in many experimental
quantum computing platforms [29]. Our paper demonstrates
the possibility of biased-noise fault tolerance for such noise
beyond Pauli noise, and importantly, points out the failure of
traditional fault tolerance intuition built from looking only at
Pauli noise.

Before venturing into a detailed discussion of our paper,
we first summarize, in the next section (Sec. II), our main
contributions and highlight some of the key ideas that emerge.

The rest of the paper is then organised as follows. In Sec. III
we discuss the noise model considered here and briefly re-
view the error-correcting properties of the 4-qubit code. In
Sec. IV we present the basic encoded gadgets that make up our
fault tolerance scheme, including the error correction gadget
(Sec. IV A), the logical X and Z gadgets (Sec. IV B), and
the CZ gadget (Sec. IV C). In Sec. V, we show how these
basic encoded gadgets can be combined to obtain a fault-
tolerant universal gate set via gate-teleportation. Finally, we
discuss the pseudothreshold calculation in Sec. VI and future
directions in Sec. VII. For better readability, many of the
technical details—necessary for the full logic of our paper
but unimportant for the general discussion here—have been
relegated to the appendices accompanying this article. Those
additional points are referred to at the appropriate places in
this article.

II. SUMMARY OF CONTRIBUTIONS

We develop fault-tolerant gadgets—composite circuits
made of elementary physical operations, that achieve specific
functionalities—for qubits subjected to amplitude-damping
noise. We build our fault tolerance scheme using the well-
known 4-qubit code [26] tailor-made to deal with amplitude-
damping noise.

At the heart of our scheme is a fault-tolerant error cor-
rection gadget that ensures proper correction in all our
logical operations. In addition, we demonstrate fault-tolerant
constructions of Bell-state preparation, logical X and Z mea-
surements, logical X and Z operations, as well as the logical
controlled-Z (CZ) operation. These basic fault-tolerant gadgets
are used to build a universal set of logical gadgets com-
prising the logical two-qubit CZ gate and the single-qubit H
(Hadamard), S (phase), and T (π/8) gates using the idea of
gate teleportation. From these gadget constructions, we ana-
lytically estimate the error thresholds (or pseudothresholds)
for storage and for computation, using a single layer of 4-
qubit-code encoding, below which error correction provides
genuine improvements in storage and computational accura-
cies.

Unlike past fault-tolerant error correction units devel-
oped for Pauli noise models that require only a Pauli
“frame change”—a classical operation requiring no quantum
circuits—for the recovery, the nature of the amplitude-
damping noise dictates a genuine quantum recovery for the
4-qubit code. The price to pay for using a more efficient
noise-adapted, non-Pauli-type code may hence be a more
complicated error correction quantum circuit. Furthermore,
amplitude-damping noise leads to two types of errors that one
has to correct: a damping error akin to a population decay, and
an error we refer to as the off-diagonal error arising from the
trace-preserving requirement of the quantum noise. Our error
correction gadget thus comprises a syndrome extraction unit
to first detect the two kinds of errors independently and then
uses that information to apply appropriate recovery circuits.

Crucial to the construction of our fault-tolerant gadgets
is the idea of noise-structure-preserving gates, generalizing
the idea of bias-preserving gates of the recent cat-codes dis-
cussion [30,31] beyond Pauli noise. That we use a code
that specifically corrects amplitude-damping noise means that
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our gadget construction must preserve that structure, rather
than generating errors uncorrectable by the 4-qubit code,
after propagation through the gadget. A surprising mani-
festation of this requirement is the fact that, contrary to
conventional fault tolerance wisdom from looking at Pauli-
type noise, transversality in a logical gate construction does
not guarantee a fault-tolerant gadget unless the physical gates
themselves preserve the noise structure. An example is the
logical controlled-NOT (CNOT) gate. The 4-qubit code admits
a transversal logical CNOT gate. However, it cannot be made
fault tolerant as a physical CNOT gate propagates the damping
error into errors not correctable by the 4-qubit code. In con-
trast, the physical CZ gate is noise-structure-preserving, and
hence the transversal logical CZ is automatically fault tolerant
and forms our basic two-qubit gate. Similarly, a physical CCZ

gate also adds to the set of noise-preserving gates, thereby
admitting a fault-tolerant and transversal construction for the
logical CCZ gate.

Finally, we note that our fault tolerance scheme leads to
a nontrivial pseudothreshold estimate for amplitude-damping
noise, thus marking an important first step in showing that
channel-adapted error correcting protocols can indeed be
made fault tolerant against the dominant noise that the pro-
tocols are designed for.

III. PRELIMINARIES

We follow the basic framework of quantum fault toler-
ance developed by Aliferis et al. [9], briefly reviewed here
for completeness. In a fault-tolerant quantum computation,
ideal operations are simulated by performing encoded op-
erations on logical qubits. Encoded operations, in turn, are
implemented by composite objects called gadgets, which are
made of elementary physical operations such as single- and
two-qubit gates (including identity gates for wait times), state
preparation, and measurements. We assume that the noise
acts on the qubits individually, except when two qubits are
participating in the same two-qubit gate. A location refers to
any one of these elementary physical operations. A location
in a gadget is said to be faulty whenever it deviates from the
ideal operation, and can result in errors in the qubits storing
the computational data. The key challenge is to design the
gadgets in such a way as to minimize the propagation of errors
due to the faults within the same encoded block. Standard
fault tolerance properties, ones that our constructed gadgets
must satisfy, are given in Appendix A. In short, they express
the ability of the fault-tolerant gadgets to give a correct (or at
least correctable) output even in the presence of faults within
the physical operations implementing the computation as well
as the error correction.

In what follows, we refer to the elementary physical oper-
ations as unencoded operations. Our goal is to construct the
encoded or logical gadgets corresponding to the 4-qubit code,
which are resilient against faults arising from a specific noise
model, namely, the amplitude-damping channel defined in
Eq. (2) below. In our scheme, we use the following unencoded
operations to build the fault-tolerant encoded gadgets:

{P|+〉,P|0〉} ∪ {MX ,MZ , CNOT, CZ, X, Z, S, T }. (1)

Here, P|+〉 and P|0〉 refer to the preparation of eigenstates
of single-qubit X and Z Pauli operators, respectively, and
MX and MZ refer to measurements in the X and Z basis,
respectively. CNOT refers to the two-qubit controlled-NOT gate,
CZ refers to the two-qubit controlled-Z gate, and X, Z, S, and
T are the standard single-qubit Pauli X , Pauli Z , phase gate,
and π/8 gate. Note that |0〉 is the fixed state of the amplitude-
damping channel defined in Eq. (2) and is therefore inherently
noiseless. We assume that rest of the gates and measurements
in Eq. (1) are susceptible to noise, as described below.

Our fault tolerance construction is based on the assumption
that the dominant noise process affecting the quantum device
is amplitude-damping noise on each physical qubit. Ampli-
tude damping is a simple model for describing processes
like spontaneous decay from the excited state in an atomic
qubit, and is a common noise source in many current quan-
tum devices. It is described by the single-qubit completely
positive (CP) and trace-preserving (TP) channel, EAD( · ) =
E0( · )E†

0 + E1( · )E†
1 , with E0 and E1, the Kraus operators,

defined as

E0 ≡ 1
2

[
(1 +

√
1 − p)I + (1 −

√
1 − p)Z

]
= |0〉〈0| +

√
1 − p|1〉〈1|,

and E1 ≡ 1
2

√
p(X + iY ) = √

p|0〉〈1| ≡ √
pE . (2)

Here I is the qubit identity, X,Y , and Z are the usual
Pauli operators, and |0〉 and |1〉 are the eigenbasis of Z .
p ∈ [0, 1] is the damping parameter, assumed to be a small
number—corresponding to weak noise—in any setting useful
for quantum computing. We denote the operator |0〉〈1| simply
as E .

In our analysis below, it will be important to separate out
the different error terms in EAD according to their weight in
orders of p. To that end, we write EAD as

EAD( · ) = 1
4

(
1 +

√
1 − p

)2I ( · ) + pF ( · )

+ [
1

16 p2 + O(p3)
]
Z ( · )Z, (3)

where I (·) ≡ (·) is the identity channel, and F (·) is the TP
(but not CP) channel,

F ( · ) ≡ 1
4 [( · )Z + Z ( · )] + E ( · )E† ≡ 1

2Fz( · ) + Fa( · ).
(4)

We refer to F as an error when it affects individual qubits and
refer to it as a fault when it occurs at a certain location in a cir-
cuit. Note that a single error or fault F can cause two different
kinds of errors in the computational data carried by the qubits,
since F is a sum of two terms (i) Fz = 1

2 [( · )Z + Z ( · )], and
(ii) Fa = E ( · )E†. Written in this manner, and neglecting the
p2 and higher-order terms, EAD can be thought of as leading
to no fault (and hence no error) when the I part occurs, and a
single fault (and hence possibly errors on the data) when the
F part occurs.

Furthermore, we say that the qubit has an off-diagonal
error if the Fz part remains and that the qubit has a damping
error if the Fa remains. We may remark here that the off-
diagonal error arising from amplitude-damping noise has been
noted in the context of superconducting qubits and is often
referred to as the backaction error in the literature [32,33].
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That F is not CP means that we cannot, in principle, regard
the two terms in Eq. (4) as happening in some probabilistic
combination.

In our setting, we assume that storage errors, gate errors, as
well as the measurement errors are all due to EAD. Specifically,
a noisy physical gate G is modeled by the ideal gate followed
by the noise EAD on each qubit. In the case of two-qubit gates
such as the CNOT and CZ, we assume that a noisy gate implies
an ideal gate followed by amplitude-damping noise acting on
both the control and the target qubits, that is, as the joint
channel EAD ⊗ EAD on the two qubits. A noisy measurement
is modeled as an ideal measurement preceded by the noise
EAD, while a noisy preparation is an ideal preparation followed
by EAD. Note that the noise acts on each physical qubit indi-
vidually, and is assumed to be time- and gate-independent.
One could more generally regard the parameter p as an upper
bound on the level of amplitude damping over time and gate
variations.

In a practical scenario, amplitude damping may be the
main noise mechanism for idling qubits, but often not for
the gate and measurement operations. One could view our
proposal as the lowest-level error correction protocol in a
memory device where amplitude damping is dominant for
the idling period. This can be coupled with a higher-level
fault-tolerance scheme capable of correcting arbitrary errors,
including those that arise in the gates and measurements.
Nevertheless, assuming amplitude-damping errors as the only
kind of errors that occur here allows us to focus on our main
goal of demonstrating the in-principle possibility of construct-
ing fault-tolerant circuits using QEC schemes that are adapted
to non-Pauli noise models.

As the basis of our fault tolerance scheme, we make use
of the well-known 4-qubit code, originally introduced in [26]
and studied in many subsequent papers (see, for example,
[34,35]), tailored to deal with amplitude-damping noise using
four physical qubits to encode a single qubit of information.
The code space C is the span of

|0〉L ≡ 1√
2

(|0000〉 + |1111〉)

and |1〉L ≡ 1√
2

(|1100〉 + |0011〉), (5)

giving a single encoded, or logical, qubit of information. The
code space can be regarded as stabilized by the 4-qubit Pauli
subgroup generated by XXXX , ZZII , and IIZZ [34]. The
logical X and Z operators for the 4-qubit code are identified
as

X ≡ XXII; Z ≡ ZIZI, (6)

up to multiplication by the stabilizer operators, of course.
The 4-qubit code permits detection and removal of the error

in the encoded information arising from a single amplitude-
damping fault (understood here as an application of the F)
in no more than one of the four qubits. The error-detection
is achieved via a two-step syndrome extraction procedure, as
originally noted in [34].

Step 1. Measure ZZII and IIZZ—parity measurements
on qubits 1 & 2 and 3 & 4—on the four qubits forming the
code block, giving two classical bits s1 and s2, respectively.

TABLE I. Diagnosis of error that occurred from extracted syn-
drome bits, assuming amplitude-damping faults arose in no more
than one of the four physical qubits. A × symbol in the table indicates
the syndrome bit was not extracted; see main text. Combinations of
syndrome bits that do not appear in the table correspond to events
with more faults.

s1 s2 u1 v1 u2 v2 Diagnosis

0 0 × × × × No damping error
1 0 0 1 × × Qubit 1 is damped
1 0 1 0 × × Qubit 2 is damped
0 1 × × 0 1 Qubit 3 is damped
0 1 × × 1 0 Qubit 4 is damped

Note that s1 = 0(1) if the +1(−1) eigenvalue of ZZII is ob-
tained, whereas s2 = 0(1) if the +1(−1) eigenvalue of IIZZ
is obtained.

Step 2. If (s1, s2) = (0, 0), we conclude that no damping
error Fa has been detected and proceed to correct the off-
diagonal error Fz; if (s1, s2) = (1, 0), we conclude that there
is a damping error Fa in qubit 1 or 2, and measure ZIII
and IZII , yielding two further classical bits u1 and v1; if
(s1, s2) = (0, 1), we measure IIZI and IIIZ , for two classical
bits u2 and v2. The (s1, s2) = (1, 1) outcome does not occur
in the setting of interest.

From the extracted syndromes, we can diagnose what er-
rors have occurred as summarized in Table I, assuming that
amplitude-damping faults arose in no more than one of the
four physical qubits. We note here that while either of u1(u2)
or v1(v2) are enough to determine which qubit has a damping
error, extracting both is necessary for fault-tolerant parity
measurements, as discussed in Sec. IV A. Some of the two-
qubit amplitude-damping errors can also be diagnosed with
the same syndrome measurement procedure, but we ignore
them, as these are higher order than the order-p terms of
interest here.

To understand the syndrome measurement for the damping
errors, consider an input code state a|0L〉 + b|1L〉, with com-
plex coefficients a, b satisfying |a|2 + |b|2 = 1. The damping
error of the form E ( · )E† on different qubits results in the
states,

damping in qubit 1: |01〉 ⊗ |φ〉,
damping in qubit 2: |10〉 ⊗ |φ〉,
damping in qubit 3: |φ〉 ⊗ |01〉,
damping in qubit 4: |φ〉 ⊗ |10〉, (7)

where |φ〉 is the two-qubit state,

|φ〉 ≡ a|11〉 + b|00〉, (8)

with the coefficients a and b carrying the stored information.
Once the error diagnosis is done, we perform recovery to

bring the state back into the code space. The recovery is again
a two-step process:

Step 1. A damping error Fa is detected by the parity mea-
surements and is to be followed by a corresponding recovery
unit. Since this error is of the form E = |0〉〈1| = 1

2 (X +
iY ) = 1

2 (I + Z )X , the recovery amounts to fixing the X error
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first and then the (I + Z ) error. For the X error, when the
damping occurs in qubit 1 or 2, we do a single-qubit bit flip
to obtain the |11〉 state on the first two qubits. A measurement
of the stabilizer XXXX is then done to fix the (I + Z ) error,
simultaneously mapping the states |1111〉 and |1100〉 respec-
tively to |0L〉 and |1L〉 if the measurement outcome is +1, or
Z1,2|0〉L and Z1,2|1〉L if the measurement outcome is −1. A
single-qubit phase flip is applied in the latter case, thereby
bringing the state |11〉 ⊗ |φ〉 to the code state a|0〉L + b|1〉L,
spreading the information back into the four qubits. When the
damping occurs in qubit 3 or 4, the same procedure applies,
but with the roles of qubits 1 & 2 and qubits 3 & 4 swapped.

Step 2. On the other hand, the off-diagonal error Fz is not
detected by the parity measurements [case (s1, s2) = (0, 0)]
and merits a separate recovery circuit. The error Fz can be
corrected by an optimal recovery that maximizes the fidelity
between the recovered state and the original state (see [36]).
However, for simplicity, we choose a p-independent recovery,
namely, a measurement of the stabilizer XXXX . The effect
of the measurement is to kill the off-diagonal error whenever
the measurement outcome is +1, since (I + XXXX )(Ziρ +
ρZi )(I + XXXX ) = 0 for an arbitrary state ρ in the code
space, where Zi denotes a single-qubit Z operation on one of
the four qubits.

The syndrome extraction unit and the recovery procedures
discussed above are not sufficient to construct a fault-tolerant
error correction gadget. The latter requires additional parity
checks and flag qubits, as explained in Sec. IV A below.

The 4-qubit code is an approximate code for amplitude-
damping noise in the sense that there is remnant error after the
syndrome measurement and recovery, even if the fault occurs
only on a single physical qubit, the case the code is designed
to deal with. One can phrase this in terms of violation of
the standard Knill-Laflamme error correction conditions [37]
(see Refs. [26,35]), but for our discussion here, we simply
note that the O(p2) Z—or phase—error terms in EAD [see
Eq. (3)], necessary for ensuring the TP-nature of the channel,
are neither detected nor corrected by the 4-qubit code, even
though it is a single-qubit error. The 4-qubit code only detects
and corrects the order-p error terms, namely, those in F . The
remnant O(p2) uncorrected terms will have consequences on
our fault tolerance threshold discussion later.

In what follows, we develop fault-tolerant gadgets resilient
to faults that occur with probability O(p), neglecting the
higher-order dephasing and multiqubit damping faults. We
emphasize that, in the case of amplitude-damping noise, a
single O(p) fault F at any location or a single O(p) error F in
the state can correspond to a single damping error Fa, a single
off-diagonal error Fz, or combination of both.

IV. BASIC FAULT-TOLERANT GADGETS

In this section, we introduce the basic fault-tolerant gadgets
that constitute the building blocks of our scheme. How these
units are combined to form the logical gadgets is explained in
Sec. V. The fault tolerance of those logical gadgets is auto-
matically ensured by the fault tolerance of the basic gadgets
discussed here. As we will see, we will need the following as

FIG. 1. Circuit for the fault-tolerant EC gadget and the logical
X operation. |�〉 denotes the encoded data state and all the flag
qubits are drawn in dashed lines. S is the syndrome extraction unit
of Fig. 2(d), returning the classical syndrome P. A is the identity gate
for the EC gadget; it is the X gate for the logical X operation. If P
indicates a damping error, M′ is the identity operation; if P indicates
no damping error, M′ is the M1 subunit of Fig. 2(f). The flag qubits
are then decoupled from the data qubits, with extracted classical bits
r ≡ {r1, . . . , r4}. R is the recovery unit of Fig. 2(e). If P indicates a
damping error, R depends only on P. If P indicates no damping error
and if at least one of the two flag bits r1, r2 (r3, r4) is flipped, a parity
measurement P [see Fig. 2(a)] is performed on qubits 1 and 2 (3 and
4) giving syndrome bit s12 (s34). R is then applied, which corrects
errors based on r and s ≡ {s12, s34}. The outcome of M′ unit, c1, is
not necessary to correct for an error in the EC gadget; it is however
useful in the CZ gadget, to detect a propagated error from one block
to the other (see Sec. IV C). The full details of what recovery gates
to apply are given in Table II and Table III in the Appendices.

building blocks:
(1) Preparation of the Bell state |β00〉 = 1√

2
(|00〉 + |11〉);

(2) Logical X and Z measurements;
(3) Error correction (EC) gadget;
(4) Logical X and Z; and
(5) Logical controlled-Z (CZ).
The preparation and measurement gadgets can be con-

structed in a straightforward manner; the details are given in
Appendix B. Here, we focus on the construction of the EC

gadget as well as the logical X , Z , and CZ operations. In every
case, the physical gates come from the elementary set given in
Eq. (1).

A. Error correction gadget

The error correction gadget—henceforth referred to as the
EC gadget—shown in Fig. 1, implements the syndrome extrac-
tion and the recovery procedures described in Sec. III. The
four qubits carrying the encoded information—henceforth re-
ferred to as data qubits to distinguish them from the ancillary
qubits—are in some generic state |�〉.
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FIG. 2. Basic circuit components. (a) Parity measurement P between two data qubits, giving parity bit s. (b) Nondestructive Z measurement
of a qubit, giving classical bit u. (c) Measurement M2 of the XXXX stabilizer on the incoming qubits, giving classical bit c2. (d) The syndrome
extraction unit S is a two-step procedure. Two parity measurements are performed on data qubits 1 & 2 and 3 & 4, giving syndrome bits s1 and
s2, respectively. If s1 = 1(s2 = 1), nondestructive Z measurements are performed on qubits 1 & 2 (3 & 4) to obtain syndrome bits u1, v1(u2, v2).
(e) The recovery circuit R for damping error Fa, for incoming syndrome syndrome bits P ≡ {s1, s2, u1, v1, u2, v2}, r ≡ {r1, r2, r3, r4}, and
s ≡ {s12, s34}. In R, X gates are first applied, as determined by P, r, and s. This is followed by the measurement M2 [shown in (c)], followed
by an application of Z if c2 = 1. (f) Fault-tolerant measurement M1 of the XXXX stabilizer, extended to the flag qubits (drawn in dashed
lines), giving classical bit c1.

The circuits for a parity measurement, denoted as P ,
and for a nondestructive Z measurement, denoted as Z , are
detailed in Figs. 2(a) and 2(b), respectively. Each measure-
ment uses one ancillary qubit initialized to the |0〉 state. The
circuit for the XXXX measurement, denoted as M2 and
shown in Fig. 2(c), uses one ancillary qubit initialized to the
|+〉 state.

The syndrome extraction unit S [see Fig. 2(d)] consists
of two parity measurements, followed by two nondestruc-
tive Z measurements to extract the position of the damped
qubit, in case one of the measurement outcomes of the first
two parity measurements is nontrivial. Note that a fault at
the target of the first CNOT in a parity measurement may
lead to an outcome 1 even though there is no damped data
qubit. Thus, the extraction of syndrome bits from both the
data qubits in case of a nontrivial parity measurement out-
come is necessary to make the syndrome extraction unit fault
tolerant.

The circuit for the recovery from a damping error, follow-
ing the diagnosis of a nontrivial error, is detailed in Figs. 2(e).
It comprises two parts, the first part performing the bit-flip
converting the data-qubit-pair with the amplitude-damping
error to the state |11〉 [see Eq. (7)], and the second part
performing a measurement M2 of the stabilizer XXXX . The
latter measurement, with outcome denoted as c2, projects the
state of the data qubits either into the code space, corre-

sponding to the subspace with eigenvalue +1 (c2 = 0), or
to the subspace with eigenvalue −1 (c2 = 1). The latter case
corresponds to a single-qubit Z error and we apply a suitable
local Z gate from the set {ZIII, IZII, IIZI, IIIZ}, to correct
for it. For example, if the first data qubit is damped and c2 = 1,
we can apply Z to the first data qubit or to the second data
qubit (since ZZII is a stabilizer).

In case no damping error is detected, we proceed to the
recovery for the off-diagonal error Fz, which is simply the
measurement of the stabilizer XXXX . However, this proce-
dure is not fault tolerant due to the following reason. It is
possible that the syndrome extraction unit detects no damping
error (s1 = s2 = 0), but actually there is one in the output
of the syndrome extraction unit due to a faulty CNOT at the
control. If we proceed to measure the XXXX operator, the
damping error Fa becomes either an X or a Y error, which is
uncorrectable by the 4-qubit code. This can be seen by noting
that, the effect of the measurement after the action of a damp-
ing error Fa at the kth data qubit—denoted as Ek—on a state
|�〉 in the code space, is given by 1

2 (1 ± XXXX )Ek|�〉 =
1
2 (Ek ± E†

k )|�〉.
Our solution for this issue is that we just perform the

XXXX measurement anyway at every error correction step,
but with additional flag qubits [38] that are added to detect
faults that lead to uncorrectable errors. The circuit in Fig. 1
implements this strategy with the flag qubits marked in dashed
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lines and represents our fault-tolerant EC gadget. We conclude
this section with a brief description of the inner workings of
our fault-tolerant EC gadget and leave the detailed proofs to
Appendix B 3.

At the beginning of an error correction step, each data qubit
is coupled to an ancillary qubit initialized in the |0〉 state,
referred to as a flag qubit. We then proceed with the usual
error correction procedure, starting with the syndrome extrac-
tion unit. If the syndrome extraction unit detects a nontrivial
error, we decouple the flag qubits from the data qubits and
use the recovery R to correct for damping errors, based on
the extracted syndrome P. In case there is no damping error
detected, we continue with the recovery involving the XXXX
measurement.

However, measuring the XXXX operator on the four data
qubits no longer kills off Fz error, as it was originally sup-
posed to do, because the four data qubits are now coupled
to the four flag qubits. An XXXX measurement on four
data qubits alone before the decoupling step is equivalent to
an XXXXXXXX measurement on all data and flag qubits
after the decoupling step (this can be seen, for example,
by commuting the CNOTs of the measurement step through
the CNOTs of the decoupling step). Since the flag qubits are
initialized in state |0000〉, which is not a stabilized state of
XXXX , the measurement of XXXXXXXX will not kill off
the off-diagonal term Fz. If the flag qubits are initialized in a
stabilized state of XXXX , for example, 1√

2
(|0000〉 + |1111〉),

then the measurement will kill off Fz. However, the prepara-
tion of this state is also not an easy task, therefore, we instead
modify the recovery by measuring XXXXXXXX on all data
and flag qubits before the decoupling step. This is equivalent
to measuring XXXX on the 4 data qubits alone after the
decoupling step, which can kill off Fz errors. The circuit for
the modified measurement, denoted as M1, is shown in detail
in Fig. 2(f). We note that the circuit for M1 is not obviously
fault tolerant because a single fault at the control of one of the
CNOTs may cause multiple errors in the data qubits. However,
with the use of the same set of flag qubits, and CNOT gates
performed in a certain order, this circuit can indeed be made
fault tolerant (see Appendix B 3).

At the end of the recovery procedure, the flag qubits are
decoupled from the data qubits, and then measured in the Z
basis, resulting in the four bits {r1, r2, r3, r4}, denoted as r. If
there is no fault up to this step, the measurement outcomes
will be (0000). Otherwise, if a data qubit is damped, the
corresponding outcome of the flag qubit coupled to it will
be flipped. However, notice that a fault at a flag qubit may
also flip the flag outcomes, hence, we still need to distinguish
between a fault in the data qubits and one in the flag qubits. To
do so, we perform one more round of parity measurements,
denoted as P12 and P34, and correct for the corresponding
errors. Specifically, if the extracted syndrome s ≡ {s12, s34}
is trivial, the fault is in the flag qubits and we only need to
correct for a Z error using the measurement of XXXX on the
data qubits. Otherwise, if the syndrome is nontrivial, the fault
is in the data qubits and we also need to correct for an X error.
The recovery unit R is then performed to correct for the error,
based on the extracted syndrome r and s.

The EC gadget in Fig. 1 is fault-tolerant in the following
sense: A single error F in the incoming data-qubit state, or a
single fault F in the EC gadget results in no more than a single
correctable (by the 4-qubit code) error in the outgoing state of
the data qubits. A detailed proof is presented in Appendix B 3,
but the ideas can be intuitively understood as follows. If there
is one damping error Fa in the incoming state and no fault
in the EC unit, the syndrome extraction unit will detect it and
the recovery unit will correct it, as promised by the 4-qubit
code. If there is one off-diagonal error Fz in the incoming
state or in the syndrome extraction unit, it will be killed off by
the M1 unit even though it is not detected by the syndrome
extraction unit. On the other hand, a single damping error Fa

in the syndrome extraction unit, in the M1 unit, or in the flag
qubits is detected by the set of four flag qubits. A fault in
the ancilla used in the M1 unit propagates X errors to the
data qubits, which are also taken care of by the flag qubits.
The outcome of the M1 unit with c1 = 0 would mean that the
off-diagonal error Fz on the incoming state has been killed.
However, c1 = 1 would mean that a damping error Fa must
have occurred on one of the data qubits, flag qubits or the
ancilla qubit. Depending on which qubit has had the error,
one could have a ZX or X error propagating at the output of
M1 unit. Both of these errors can be identified using the flag
syndrome bits r and corrected in the subsequent recovery unit.
Since the recovery unit involves XXXX measurement, the Z
error gets fixed without any information about the outcome c1

from M1 unit.
We note here that, unlike in standard fault tolerance analy-

sis dealing with Pauli errors where a classical frame-change is
all that is needed to correct the detected errors, here, we need
a nontrivial recovery unit to correct for the single damping er-
rors. This is due to the fact that the elementary gate operations
used in our gadget constructions are not amplitude-damping
preserving: A single damping error propagates through some
of the elementary gates (like X ) into other kinds of errors,
not correctable by the 4-qubit code tailor-made for removing
damping errors. Any damping error thus has to be genuinely
corrected, before the next gadget can be implemented. Note
that, the final local Z gate, controlled by c2 [i.e., Zc2 (P, r, s)],
in the recovery unit does commute with subsequent damping
errors and all gates in our elementary gate set and thus can,
in principle, be fixed by a Pauli frame-change rather than an
actual gate operation. For simplicity, however, we have kept it
as a part of the recovery unit here.

B. Logical Z and X gadgets

In standard fault tolerance schemes making use of Pauli-
based codes, an operator like X = XXII and Z = ZIZI (or
alternatively, IIXX and IZIZ , with the two differing by a sta-
bilizer operator) can be applied simply by performing X or Z
on two of four physical qubits, the fault tolerance guaranteed
by the transversal nature of the operation. In the case of the
amplitude-damping code, however, only the transversal logi-
cal Z is fault tolerant because the off-diagonal error Fz and the
damping error Fa commutes and anticommutes, respectively,
with a physical Z gate. The transversal logical X operation is
no longer fault tolerant, due to the fact that the damping error
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of the form 1
2 (X + iY ) becomes 1

2 (X − iY ) after conjugating
past the X operator.

Instead, to obtain a fault-tolerant logical X , we use the
same technique as in the EC gadget, by making use of flag
qubits. The logical X gadget is given in Fig. 1, with the
same structure as the EC gadget. If the syndrome extraction
unit detects a damping error Fa, we can apply the transversal
X because the single fault allowed for the unit has already
occurred. If no damping error is detected, the transversal,
nonfault-tolerant X is applied first, followed by the error cor-
rection.

The fault-tolerant properties of the logical X gadget are
explained in detail in Appendix B 4, although they mostly
follow from the fault tolerance of the EC gadget. The main
difference between this gadget and the EC gadget is that a
damping error E on a data qubit becomes E† after conjugating
through an X gate. Thus an incoming error to the M1 unit can
be either E or E†. However, these are single-qubit errors and
the set of flag qubits is still enough to detect which qubit has
the error. We also note that the flag syndromes of the logical
X gadget differ from that of the standard EC gadget by two bit
flips on flag qubits 1 and 2, due to the application of two X
gates on data qubits 1 and 2. For example, without any faults,
the flag syndrome is (1100) instead of (0000) as in the case of
the standard EC gadget.

C. Logical CZ gadget

We next demonstrate a fault-tolerant two-qubit logical CZ

operation, an essential ingredient for realising a universal set
of logical gates. We first note that the logical CNOT and the
CZ gadgets for the 4-qubit code both admit transversal con-
structions. However, as noted earlier in the construction of the
X gadget, transversality does not automatically translate into
fault tolerance in the case of amplitude-damping errors and
the 4-qubit code. In fact, the transversal CNOT is not fault-
tolerant to amplitude-damping noise: a single error caused
by the amplitude-damping noise can propagate through the
transversal circuit into an error that is not correctable by the
4-qubit code.

For example, observe that, for two physical qubits con-
nected by a physical CNOT operation, an incoming damping
error E [see Eq. (2)] on the control qubit propagates after the
CNOT into an X error on the target. Meanwhile, a damping
error on the target qubit propagates into 1

2 (IcXt + ZcZt Xt ),
where the subscript c denotes the control qubit and t denotes
the target qubit. By tracing out the control qubit, we get two
types of errors on the target qubit, namely, the damping error
E = 1

2 (1 + Z )X and its conjugate E† = 1
2 (1 − Z )X . We know

that the 4-qubit code cannot correct for both of these errors.
A single fault on one of the qubits can thus result in an uncor-
rectable error, violating the requirements of fault tolerance,
despite the transversal structure.

This suggests the idea of noise-structure preserving gates,
as an important tool for fault-tolerant implementation of
noise-adapted codes. Indeed, unlike the CNOT, it turns out
that the transversal CZ gadget shown in Fig. 3 is fault-tolerant
against amplitude-damping noise. This is explained in detail
in Appendix B 5. The basic idea, however, is easy to under-
stand by contrasting with the CNOT gadget: a damping error at

FIG. 3. Fault-tolerant logical CZ gadget. |�1〉 and |�2〉 are two
blocks of data qubits. The double lines between the two EC gadgets
indicates that if one of them detects a damping error and M1 unit in
the other has outcome +1, then a Z operator is applied to the qubit
of the latter block that is connected to the damped qubit of the first
block by a CZ.

the control (target), after propagating through a physical CZ

gate, propagates as a damping error at the control (target).
However, the damping error at the control (target) of the
CZ, does lead to an additional phase (Z) error in the target
(control). This explains the dependence between two trailing
ECs in the CZ gadget, indicated by the double lines in Fig. 3.
Whenever one of the two EC gadgets detects a damping error
in the incoming state, and the M1 unit in the other unit has
outcome +1, a local Z recovery operator is applied on the
qubit in the latter block corresponding to the damped qubit in
the first EC gadget. For example, if the syndrome extraction
unit in the first data block detects a damping error at the
second qubit and the M1 unit in the EC of the second data
block has outcome +1, a Z operator will be applied to the
third data qubit of the second data block, since the two qubits
are connected by a CZ gate.

Furthermore, we note that the logical CCZ gate can also be
constructed in a fault-tolerant way using sets of transversal
CCZ physical gates, executed in two time-steps (see Ap-
pendix B 6 for the circuit). Similar to a CZ physical gate, a
CCZ physical gate also propagates phase error(s) to the other
two qubits whenever there is an incoming damping error to
one of the controls. However, a faulty control (target) itself
does not propagate any error to the other two qubits. Errors
generated in both the cases mentioned above can be corrected
using a strategy similar to the one adopted in the construction
of a fault-tolerant logical CZ gate.

V. UNIVERSAL SET OF LOGICAL GADGETS

We are now ready to construct a universal set of logi-
cal gadgets, using the basic fault-tolerant components of the
previous section, tailored for amplitude-damping noise. In
particular, our universal set of gadgets comprise

(1) preparation of the |0〉L and |+〉L states;
(2) measurement of logical X and Z;
(3) two-logical-qubit gate CZ;
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FIG. 4. Single-logical-qubit gadget implementing the gate G =
H , S, or T . |�〉 is the incoming state on which G is to be applied. For
G = H , |�〉 = |+〉L , g1 is the identity, and g2 = X ; for G = S, |�〉 =
|�S〉, g1 = H , and g2 = Y = XZ; for G = T , |�〉 = |�T 〉, g1 = H ,
and g2 = SX . The gate g2 is applied conditioned on the outcome of
the X measurement.

(4) single-logical-qubit gate H , S, and T .
Here, the logical H is the Hadamard gate, H ≡ |+〉L〈0| +

|−〉L〈1|; the logical S is the phase gate, S ≡ |0〉L〈0| +
i|1〉L〈1|; and the logical T (or π/8) is the gate T ≡ |0〉L〈0| +
eiπ/4|1〉L〈1|. These gadgets can be strung together to form
fault-tolerant computational circuits. The fault-tolerant con-
structions of the X and Z measurement gadgets are described
in Appendix B, whereas the CZ gadget is already given in
Sec. IV. The preparation gadgets for |0〉L and |+〉L are also
straightforward to construct using a Bell-state preparation
gadget, as described in Appendix C. It remains then to de-
scribe the fault-tolerant construction of the logical H , S, and
T gadgets.

As was the problem with the CNOT gate, the physical H , S
and T gates are not noise-structure preserving: They change
an input damping error into an error not correctable by the 4-
qubit code. We thus do not have transvsersal implementations
of these logical gates; rather, we need a different approach
for getting fault-tolerant logical gate operations. Here, we
make use of the well-known technique of gate teleportation
[11,39] to construct our fault-tolerant logical gadgets. The
resulting logical gadgets are manifestly fault-tolerant against
amplitude-damping noise as we build the teleportation circuits
using the basic encoded gadgets shown to be fault-tolerant in
Sec. IV.

Specifically, all three single-logical-qubit gadgets share the
same teleportation structure shown in Fig. 4. Each require a
resource state—|+〉L for H , |�S〉 ≡ 1√

2
(|0〉L + i|1〉L ) for S,

and |�T 〉 ≡ 1√
2
(|0〉L + eiπ/4|1〉L ) for T —as input, the use of

the logical X measurement gadget, as well as an additional
logical gadget, conditioned on the measurement outcome, to
complete the teleportation. S and T also require the use of the
H gadget. The definition and fault-tolerant preparation of the
resource states |�S〉 and |�T 〉 can be found in Appendix C.
That these gadgets are fault tolerant follows simply from the
fact that their components are the fault-tolerant gadgets of
Sec. IV.

VI. PSEUDOTHRESHOLD CALCULATION

The feasibility of any fault tolerance scheme is partly quan-
tified by its error threshold, which refers to that critical value
of the noise strength, pth, at which the fault tolerance protocol
fails to outperform the unencoded version. In this paper, we
use the infidelity metric IF(., .),

IF(ρ, σ ) ≡ 1 − (tr
√

ρ1/2σρ1/2)
2
, (9)

for a pair of states ρ and σ , to benchmark the performance of
the protocol. For a physical (i.e., unencoded) noise strength
p, if the fault tolerance procedure can correct up to one error,
then (see Appendix D 1) the infidelity of the output state of a
fault-tolerant gadget with respect to the ideal output is upper
bounded by C p2 + Bp3, assuming a pure input state. Here,
C is the number of malignant fault pairs—pairs of faults in
the fault-tolerant gadget that propagate into an uncorrectable
output— while B refers to the number of ways in which the
gadget can have a third-order fault.

The critical noise threshold pth for a given initial state is
then lower-bounded by the p ≡ p(l )

th that solves

C p2 + Bp3 = IFp(ρ, ρ̃ ), (10)

where IFp(ρ, ρ̃ ) is the infidelity, for the unencoded version
of the gadget, between its noisy output state ρ̃ and the ideal
output ρ. The subscript p emphasizes the dependence of the
infidelity on the physical noise strength p. Eq. (10) compares
the encoded scheme to the unencoded one, and we refer to
the resulting threshold pth as a pseudothreshold, following
Refs. [14,40]. This is different from the usual quantum accu-
racy threshold discussed in concatenated-code fault tolerance
treatments, which requires a recursive simulation argument to
go to higher levels of encoding for increased error-removing
power (see, for example, Ref. [9]).

We note that, in general, the pseudothreshold pth as well
as the bound p(l )

th depend on the input state as the unencoded
infidelity IFp(ρ, ρ̃ ) varies with the input state. One reasonable
way to obtain a state-independent measure is then to report
the mean values of the pseudothreshold and pseudothreshold
bounds over all pure states, denoted as pth and p(l )

th , respec-
tively.

We also note that for amplitude damping noise, apart from
malignant fault pairs, one must include in C, order-p2 Z errors
arising from a single fault [see Eq. (3)]. Moreover, one must
be careful in assigning weights to each fault pair in order to
obtain a tight bound. Recall that a fault F can cause two kinds
of errors, Fa and Fz, and not all the combinations of Fa and
Fz lead to an uncorrectable output. For example, two CNOTs in
a parity measurement [see Fig. 2(a)] each can have one fault at
the controls, one with Fa error and the other with Fz error, and
the output is still correctable; however, if the two faults cause
two Fa errors, then the output has a logical error. Moreover,
in case the two faults are both Fz, the multiplicative factor
should be p2/4 [see Eq. (4)] instead of p2. It is also often the
case that a pair of locations with two Fa errors can lead to
an output with an X error or an (I ± Z ) error on one of the
four data qubits. In such cases, we still get a correct state half
of the time when trying to correct the output, and therefore,
the multiplicative factor should be p2/2. Taking all of these
factors into account, we obtain a better estimate of C, leading
to tighter bounds for the pseudothreshold.

An ideal circuit is simulated fault tolerantly by replacing
each unencoded gadget in the circuit with an encoded gadget
followed by an EC gadget. The failure probability of such
a fault-tolerant simulation can be expressed in terms of the
failure probability of overlapping composite objects consti-
tuting the circuit, called extended gadgets, which take into
account both incoming errors and faults occurring within a
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FIG. 5. Extended identity gadget.

given gadget. Therefore, an extended gadget often includes
both the leading EC gadget and the trailing EC gadget with the
encoded gadget sandwiched in between. The fault tolerance
of the simulation circuit is then ensured by the fault tolerance
of the extended gadgets. We refer the readers to Ref. [9] for
a detailed discussion of this argument. In this section, we
obtain the pseudothresholds for two situations, namely, the
memory circuit with no nontrivial computational operations,
and a general computational circuit.

A. Memory pseudothreshold

Suppose we are interested only in storing the quantum
information for a certain period of time. This can be thought
of as a circuit comprising only identity (i.e., trivial) com-
putational gates, with periodic error correction operations to
remove errors and thus preserve the stored information. The
relevant extended gadget comprises a pair of EC gadgets sur-
rounding the identity gate, corresponding to storage for the
time between consecutive error correction cycles, as shown
in the Fig. 5. To obtain the pseudothreshold for this memory
situation, we enumerate the number of malignant pairs of
faults leading to an uncorrectable output, assuming that the
incoming state has no errors. We label the different blocks
that constitute the identity gadget as follows:

(1) EC1 - leading EC,
(2) EC2 - trailing EC,
(3) 4 rest locations.
We can then represent the number of malignant pairs via

a matrix whose rows and columns correspond to each block
in Fig. 5, with the entries of the matrix denoting the total
malignant-pair contributions from the respective blocks [9].
Because of the overlap between two consecutive extended
gadgets when they are strung up into the memory circuit, to
avoid double counting, a fault pair in the leading EC of an
extended gadget is counted as a fault pair in the trailing EC of
the preceding extended gadget:

⎛
⎝

1 2 3
1 0
2 702 5542
3 28 224 6

⎞
⎠

The total number of malignant pairs—6502—is simply the
sum of the entries of the matrix. Apart from the pairs of
damping faults, we also need to keep track of the O(p2)
phase errors, and we argue in Appendix D 2 that there are
29 malignant fault locations for the phase errors. In total, we
obtain C = 6531 and B = 8 171 621, leading to the average

FIG. 6. Extended CZ gadget for computing the pseudothreshold.

bound,

p(l )
th = 5.13 × 10−5. (11)

We refer the reader to Appendix D 2 for the details of the
calculation.

B. Computational pseudothreshold

Next, we consider a general circuit, comprising a sequence
of computational gates, chosen from the universal logical gate
set of Sec. V. Among all the possible extended gadgets con-
structed from our set of basic encoded gadgets, the extended
CZ gadget, shown in Fig. 6, turns out to have the maximum
number of malignant pairs, as verified by exhaustive counting.
This CZ gadget thus determines the pesudothreshold relevant
for this computational situation.

Similar to the extended identity gadget, we label the differ-
ent blocks that constitute the extended CZ as follows:

(1) EC1 - leading EC in block 1,
(2) EC2 - leading EC in block 2,
(3) EC3 - trailing EC in block 1,
(4) EC4 - trailing EC in block 2,
(5) CZ gadget.
We can then represent the number of malignant pairs via

the following matrix. We merely note the final numbers here
and refer to Appendix D 3 for the detailed enumeration of
malignant pairs for every pair of blocks:

⎛
⎜⎜⎜⎝

1 2 3 4 5
1 0
2 48 0
3 718 328 5542
4 328 718 24 5542
5 28 28 230 230 12

⎞
⎟⎟⎟⎠

We obtain C = 13 835 and B = 65 371 138, leading to the
average computational pseudothreshold lower bounded by

p(l )
th = 2.26 × 10−5. (12)

C. Simulating the pseudothreshold

Finally, as a check on our counting analysis of the pre-
vious subsections, we present the memory pseudothreshold
obtained from a computer simulation of the extended memory
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FIG. 7. Histogram of simulated pseudothresholds. The bins are
in intervals of the logarithm of pth, and the vertical axis plots fre-
quencies in hundred thousands (105).

gadget of Fig. 5. For a given initial state ρin and a physical
noise strength p, the EC circuit (Fig. 1) is simulated, with the
amplitude-damping channel applied to every qubit at every
time step. The intermediate measurements and recovery oper-
ations are applied as quantum channels so we obtain a single
density matrix at the end of a simulation. This state is passed
through an ideal decoder (see Sec. III and Appendix D 4) to
strip off O(p) errors and project the state to the code space,
before comparing it with the ideal output state ρ0, which,
for a memory gadget, coincides with the initial state ρin. The
pseudothreshold is determined as the physical noise strength
at which the encoded infidelity between ρ0 and the final output
state starts becoming smaller than the unencoded infidelity
between the same initial state encoded in a single qubit and the
output after passing it through an amplitude-damping channel.

As noted in Sec. VI, this pseudothreshold is very state
dependent, as the infidelity measure itself is state depen-
dent. For example, states close to the fixed state of the
amplitude-damping noise (|0〉) achieve high fidelity even in
the unencoded case. In Fig. 7, we plot the distribution of
pseudothresholds for N = 106 randomly sampled pure initial
states. We indeed see that we get a distribution of the simu-
lated pseudothresholds, and one that is in fact heavily skewed.
The mean pseudothreshold value is 1.56 × 10−4, which is
higher than the bound p(l )

th = 2.98 × 10−5 obtained from the
counting method of Sec. VI A, verifying that our counting
gives a valid lower bound on the infidelity. Note that this
p(	)

th value differs slightly from that in Eq. (11), to account for
differences between the simulation and counting procedures;
see Appendix D 4 for further details.

VII. CONCLUSION

We demonstrate a universal fault tolerance scheme tai-
lored to amplitude-damping noise, using the 4-qubit code.
We construct an error correction gadget, preparation gadgets,
measurement gadgets, and an encoded universal gate set,
all tolerant to single-qubit faults arising due to amplitude-
damping noise. Our construction shows that achieving fault
tolerance using noise-adapted codes for non-Pauli noise mod-

els like amplitude-damping is possible, but poses interesting
challenges, and can lead to counter-intuitive results when
viewed from the standpoint of the well-established principles
of quantum fault tolerance.

For instance, our EC gadget requires a nontrivial recovery
unit to correct for the single-qubit off-diagonal fault Fz, un-
like the standard fault tolerance schemes that only require
a simple classical Pauli frame change. Another significant
departure from the conventional ideas of fault tolerance is the
fact that logical gates such as the CNOT and the logical X ,
which are transversal, are however not fault-tolerant against
single-qubit damping errors. This in turn motivates the need
to identify noise-structure preserving gates while developing
fault-tolerant schemes using noise-adapted codes. Indeed, the
structure of the non-Pauli noise dictates our choice of fault-
tolerant gate gadgets. Thus, the transversal two-qubit CZ gate
turns out to be a more natural choice for a two-qubit gate,
rather than the transversal CNOT gate. When it comes to single-
qubit gates, we do not obtain any transversal constructions for
the 4-qubit code. Rather, we have to rely on gate teleportation
to implement the Hadamard, S and T gates. These additional
complications contribute to the perhaps poorer-than-expected
pseudothreshold for the encoded gadgets.

Our paper presents a first step towards achieving fault
tolerance against specific noise models, and can already be
used as an initial noise-reduction step towards more accurate
computation. A further step would be to investigate possibil-
ities of optimizing the gadget constructions for smaller ones
with fewer fault locations and hence better pseudothreshold.
One could even ask the standard fault tolerance question of
scaling up the code beyond a single layer of encoding, by
concatenation for example, or via the 2D Bacon-Shor code
[41] generalization of the 4-qubit code. Such extensions of our
paper could provide more error correction power even within
a resource-constrained scenario and have the potential to take
us closer to more accurate—and hence more useful—quantum
computers.
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APPENDIX A: PRINCIPLES OF FAULT TOLERANCE

We formally state the properties of fault-tolerant gadgets
here. Specifically, we list the properties that the error correc-
tion gadget and the encoded gadgets must satisfy, in order to
lead to logical operations and circuits that are fault-tolerant
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FIG. 8. Preparation of the Bell state: (a) standard, nonfault-
tolerant circuit for the preparation of the two-qubit Bell state |β̃00〉;
(b) a verification circuit for a fault-tolerant preparation of |β00〉, using
two copies of |β̃00〉 created from the circuit in (a).

against amplitude-damping noise. These properties are used
in the proofs of fault tolerance in Appendix Sec. B.

(P1) If an error correction gadget has no fault, it takes an
input with at most one error to an output with no errors.

(P2) If an error correction gadget contains at most one
fault, it takes an input with no errors to an output with at most
one error.

(P3) A preparation gadget without any fault propagates an
input with up to one error to an output with at most one error.
A preparation gadget with at most one fault propagates an
input with no errors to an output with at most one error.

(P4) A measurement gadget with no faults leads to a cor-
rectable classical outcome for an input with at most one error.
A measurement gadget with at most one fault anywhere leads
to a correctable classical outcome for an input with no errors.

(P5) An encoded gadget without any fault takes an input
with up to a single error to an output in each output block with
at most one error. An encoded gadget with at most one fault
takes an input with no error to an output with at most one error
in each output block.

APPENDIX B: FAULT TOLERANCE ANALYSIS
OF BASIC GADGETS

In this Appendix, we give the full constructions of the
Bell-state preparation gadget and the X and Z measurement
gadgets mentioned in Sec. IV of the main text. In addition,
we provide the details of the fault tolerance analysis of the
EC gadget, as well as of the logical X , Z , and CZ operations
described in Sec. IV.

1. Bell-state preparation

We describe a fault-tolerant preparation of the two-qubit
Bell state,

|β00〉 = 1√
2

(|00〉 + |11〉), (B1)

which serves as the input state to multiple fault-tolerant gad-
gets constructed in Appendix C. The Bell state is first prepared
in a nonfault-tolerant manner, denoted as |β̃00〉 in Fig. 8(a). We
then verify this Bell state using another copy of |β̃00〉 prepared
in a similar fashion, as shown in Fig. 8(b). The Bell state is
accepted for use in further computation if the X measurements
yield even parity, i.e., both are 0 or both are 1, and, the parity

measurement gives a 0 outcome; otherwise, the final state is
rejected and we start over.

That Figs. 8(a) and 8(b) lead to a fault-tolerant preparation
of |β00〉—satisfy property (P3) of Appendix A—can be un-
derstood as follows. First, we consider an Fz error anywhere
in the circuits. An Fz occurring before or at the control of
two CNOTs used for the X measurements is killed of by the
X measurements themselves. An Fz at the target of those two
CNOTs or in the parity measurement leads to at most one Fz

error in the accepted Bell state.
Next, we consider the effect of a damping error Fa.
(i) A faulty Hadamard results in the preparation of the

state |00〉 by the circuit in Fig. 8(a). If this happens to the
first block of |β̃00〉 in the circuit in Fig. 8(b), it has no effect
on the second block but may change the outcomes of two X
measurements. The second Bell state is still rejected if the
outcomes have odd parity. On the other hand, if the faulty
Hadamard is in the second Bell state block, only even parity
outcomes correspond to a correct Bell state; odd parity out-
comes correspond to the state |00〉 − |11〉 in the second block,
which is rejected.

(ii) A fault in the CNOT in Fig. 8(a), at either the control
or target, leads to an odd outcome for the parity measurement
at the end. A fault at the control of the CNOTs in Fig. 8(b)
or a faulty X measurement has the same effect as a faulty
Hadamard in the first block: it may cause odd parity outcomes
of two X measurements but does not affect the second block.
On the other hand, an fault at the target causes an odd outcome
for the parity measurement.

(iii) Finally, a fault in the parity measurement is either
detected by the parity measurement itself, or causes at most
one error to the outgoing Bell state, in case it is accepted.

2. Logical Z and X measurements

Next, we demonstrate fault-tolerant circuits that perform
logical X and Z measurements corresponding to the 4-qubit
code. Recall [property (P4)] that a measurement gadget is
said to be fault-tolerant if the presence of a single fault in
the measurement circuit always leads to a correctable error
in the classical outcome. In other words, distinct faults lead to
distinct classical outcomes, so as to ensure that the faults can
be diagnosed and corrected for, classically.

We first argue that the logical Z , i.e., Z = ZIZI , mea-
surement can be realised simply by performing four local
Z measurements on the encoded (data) qubits. In the ideal,
no-error scenario, the measurement outcomes (which are four
classical bits) have even parity. Specifically, the outcomes
0000 and 1111 correspond to the data qubits projected onto
the |0〉L state, whereas the strings 0011 and 1100 correspond
to the data qubits projected onto |1〉L. A single Fz error has no
effect since it commutes with a Z measurement. However, a
single damping error Fa in one of the local Z measurements,
or in the data qubits, leads to outcomes with odd parity. Fur-
thermore, faults in distinct locations lead to distinct four-bit
classical strings, thus ensuring that the faults can be diagnosed
and corrected for. In particular, if the outcome string has more
1’s, then the correct outcome corresponds to a projection onto
the |0〉L state, whereas if the outcome string has more 0′s
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FIG. 9. Measurement of the logical operator X=XXII on the
data qubits (the bottom 4 qubits) with the use of two additional
ancilla qubits (top 2 qubits) fault-tolerantly prepared in |β00〉.

the correct outcome corresponds to a projection onto the |1〉L

state.
Next, we give a fault-tolerant construction of the logi-

cal X—X = XXII—measurement gadget, by introducing two
additional ancilla qubits prepared in the Bell state |β00〉, as
shown in Fig. 9. The first two qubits are ancilla qubits and the
bottom four are data qubits. We perform three Bell measure-
ments, one on the two ancilla qubits, and two each on each pair
of data qubits. The Bell measurements on an ideal encoded
state (an encoded state with no error) lead to outcomes (0,0) or
(1,0). Outcome (0,0) indicates a projection onto |+〉L, and the
outcome (1,0) indicates a projection onto |−〉L, thus realising
the logical X measurement.

This X measurement gadget can be shown to be fault tol-
erant, that is, it leads to a correctable classical outcome even
when there is a single fault anywhere in the circuit. We do
that next, but as an intuitive reason for fault tolerance, we note
that a single fault in the circuit would lead to a faulty outcome
[(1,1) or (0,1)] for one of the Bell measurements. We simply
ignore the faulty outcome and choose the majority among the
rest of outcome pairs [(0,0) and (1,0)] to decide if the state of
the data qubits is projected onto |+〉L or |−〉L.

We now prove that the X measurement gadget satisfies the
fault tolerance property (P5) stated in Appendix A. Assuming
the initial state of the data qubits is |�〉 = a|+〉L + b|−〉L,
then after the two CNOTs between the ancilla qubits at the top
and the four (data) qubits in Fig. 9, the state is given by,

a |β00 〉⊗3 + b |β10 〉⊗3

where the first pair refers to the ancilla qubits and the other
two pairs refer to the data qubits. Apart from |β00〉, other
Bell states are also labeled according to their outcome in a
Bell measurement, namely, |β10〉 = 1√

2
(|00〉 − |11〉), |β01〉 =

1√
2
(|01〉 + |10〉), |β11〉 = 1√

2
(|01〉 − |10〉).

If there is no error in the incoming state as well as no fault
in the measurement circuit, then the outcomes of three Bell
measurements are either all (0,0) or (1,0), corresponding to
the data qubits projected to |+〉L or |−〉L. However, if there
is error or fault the outcomes may be different. First, note
that an Fz error in any data qubits or ancilla qubits, or an
Fz fault in any location of the measurement circuit is killed
off by at least one of three Bell measurements. This can be

seen by commuting a Z error through the measurement circuit
and noticing that it always meets at least one X measurement.
Therefore, we only need to consider the damping error Fa.

Now, we consider an error at one of the data qubits.
(i) If data qubit 1 or 2 is damped, then the state after being

entangled with the ancilla pair is

( |β00 〉 |β01 〉 ± |β10 〉 |β11 〉)(a |β00 〉 − b |β10 〉).

If the outcomes of the Bell measurements are
{(00), (01), (00)} or {(10), (11), (10)}, we can discard
the invalid outcome (01) and (11) and determine the
correct outcome of the X̄ measurement based on the other
two. However, if the outcomes are {(00), (01), (10)} or
{(10), (11), (00)}, then there is a tie after discarding the
invalid outcome. In this case, we further discard the outcome
of the ancilla block and determine the correct outcome based
on the third Bell measurement. The reason for this is that the
outcomes of the first and second Bell measurements can be
both wrong due to the coupling of two CNOTs, whereas the
third Bell measurement is independent from the other two.

(ii) If data qubit 3 or 4 is damped, then the state after
entangled with the ancilla block is

(a |β00 〉 |β00 〉 − b |β10 〉 |β10 〉)( |β01 〉 ± |β11 〉).

In this case, the outcome of the third Bell measurement is
discarded; the correct outcome is determined based on the
other two Bell measurements.

Next, we consider a fault in the measurement circuit.
(i) If one of two ancilla qubit is faulty, then the state after

entangled with the data qubits is

( |β01 〉 ± |β11 〉)(a |β01 〉 |β00 〉 ± b |β11 〉 |β10 〉).

For this case, after discarding invalid outcomes, the last one
gives the correct result.

(ii) If one of two CNOTs used to entangle the data qubits
with the ancilla qubits is faulty, either at control or target, it
is easily to verify that the state right before the Bell measure-
ments is one of the following states

( |β01 〉 ± |β11 〉)(a |β00 〉 |β00 〉 − b |β10 〉 |β10 〉)

a |β00 〉( |β01 〉 ± |β11 〉) |β00 〉 − b |β10 〉( |β01 〉 ± |β11 〉) |β10 〉.
As the above case, the correct logical outcome is determined
after discarding the invalid Bell measurement outcomes.

(iii) Finally, a fault in one of three Bell measurements
may spoil the outcome of that measurement. However, the
other two are unaffected and we can correctly determine the
outcome of X measurement from those two.

This covers all the possibilities of a single fault in the
measurement circuit in Fig. 9, hence, shows that the X mea-
surement is fault tolerant.

3. EC gadget

We want to show that the EC gadget described in Sec. IV A
of the main text is fault tolerant in that it has properties (P1)
and (P2) of Appendix A. That (P1) holds is ensured by the
fact that the syndrome extraction and recovery, when without
fault, can correct up to one damping error. We notice that an
incoming state without error of the form |�〉 = a|0〉L + b|1〉L
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becomes

|�̃ 〉 = a√
2

( |0000 〉 |0000 〉 f + |1111 〉 |1111 〉 f )

+ b√
2

( |0011 〉 |0011 〉 f + |1100 〉 |1100 〉 f ), (B2)

after entangling with the flag qubits by the first four CNOTs
(see Fig. 1 of the main text), where the subscript f denotes the
set of four flag qubits. When there are no faults, the state right
before the four Z measurements is |�〉|0000〉 f . As a result,
measurement of the flag qubits will give the outcome 0000 and
leave the data qubits in state |�〉. On the other hand, if there
is a damping error in one of the data qubits, either the syn-
drome extraction unit will detect the damping part Fa and the
recovery R will correct for it, or the syndrome extraction unit
will detect no damping, let the off-diagonal part Fz through,
which is then killed off by the M1 unit. The fact that the M1

unit can kill off the Fz error can be seen by noting that the
state in Eq. (B2) is stabilized by XXXXXXXX . Therefore,
the projection on the +1 eigenspace of that state with an
off-diagonal Z is

1
2 (1 + X ⊗8)(Zi |�̃ 〉 〈�̃| ) 1

2 (1 + X ⊗8)

= Zi
1
2 (1 − X ⊗8) |�̃ 〉 〈�̃| 1

2 (1 + X ⊗8) = 0.

In any case, the outgoing state has no error as promised.
To verify (P2), we need to consider faults at different lo-

cations in the EC gadget shown in Fig. 1 of the main text. We
recall that a faulty CNOT is modeled as an ideal CNOT followed
by a fault F on both the control and target qubits; a faulty
measurement is modeled as a fault F followed by an ideal
measurement. Since the off-diagonal part Fz passes through
all the parity measurements and is only killed off by the M1

unit, a Fz error occurring in any location before the M1 unit
will not survive, whereas a Fz occurring inside or after the
M1 unit will lead to one Fz error at the output. Hence, (P2) is
satisfied for the Fz error and from now on, we only consider
the effect of Fa error.

A fault at the control of one of the first four CNOTs is de-
tected by the following syndrome extraction and is corrected
by the recovery unit R. On the other hand, a fault at the target,
denoted as Di (i = 1, 2, 3, 4) (see Table III), causes a flip in
the corresponding flag qubit and possibly propagates a Z error
to the data qubits, depending on the outcome of M1. Note that
the flag syndrome alone is not enough to conclude that the
fault is at the flag qubits because a fault in a data qubit may
cause the same syndrome, as discussed later. Hence, another
parity measurement is performed and we can conclude that the
fault is at the flag qubit if the parity measurement gives trivial
outcome. Now, the Z error is taken care of by a measurement
of XXXX on the data qubits and a Z is applied correspond-
ingly if the outcome is 1.

Next, let us consider the syndrome extraction unit S . Note
that unless the syndrome bits s1 or s2 are triggered, i.e.,
record a 1, neither of the subsequent gates in the syndrome
extraction unit that measures ZIII , IZII , IIZI , or IIIZ , will
be performed. s1 and s2 are not triggered, assuming no in-
coming errors, unless a fault occurs in the gates that perform
those parity measurements, namely, at two CNOT locations in
Fig. 2(a) of the main text. Note that faults can also occur in the

TABLE II. Updated version of Table I of the main text, with
added syndromes and diagnoses for faults in the EC gadget.

s1 s2 u1 v1 u2 v2 Diagnosis

0 0 × × × × No damping error or undetected fault
1 0 0 1 × × Qubit 1 is damped
1 0 1 0 × × Qubit 2 is damped
1 0 1 1 × × Fault in CNOT at location 1 of P1

0 1 × × 0 1 Qubit 3 is damped
0 1 × × 1 0 Qubit 4 is damped
0 1 × × 1 1 Fault in CNOT at location 1 of P2

“resting” locations within the same time-steps, but those can
all be grouped into either incoming errors for this syndrome
extraction unit, or undetected errors that will be fixed only
by the next part of the EC gadget. We list below the possible
faults at different locations in the syndrome unit, and explain
how they are diagnosed.

(i) A faulty CNOT at location 1 in Fig. 2(a) of the main text
involves two cases: (i) fault at control; (ii) fault at target. Case
(i) is not detected in this parity measurement, and will present
as an outgoing damping error, to be dealt with in the next part
of the EC gadget. Case (ii) takes an incoming state without
any error [see Eq. (B2)] to the state |11〉|φ〉 ⊗ (|11〉|φ〉) f [see
Eq. (8) of the main text]. This is detected by giving an odd
parity, s1 = 1, and subsequently, u1 = 1 and v1 = 1, and after
being disentangled with the flag qubits, will be corrected by
the now no-fault recovery unit (since the single allowed fault
in the EC gadget occurred in this parity measurement); see
Table II.

(ii) A faulty CNOT at location 2 involves again two cases:
(i) fault at control; and (ii) fault at target. Case (i) again is
not detected in this parity measurement, and will present as
an outgoing damping error. Case (ii) also results in no error as
the ancilla state is in the state |0〉 right after the CNOT, a state
immune to the effects of F ; s1 remains as 0 in this case.

(iii) A faulty Z measurement on the ancillas introduces no
errors to the syndrome extraction—the ancilla qubits, assum-
ing no incoming errors, remain in the state |0〉, immune to the
damping error.

We now consider the effect of an undetected error due to
a fault in the syndrome extraction unit, which is denoted as
Bi in Table III. For concreteness, consider an error on the first
data qubit, errors on the other qubits can be understood in the
same manner. It can be easily checked that the state after the
damping error, a|0111〉|1111〉 f + b|0100〉|1100〉 f , becomes
the following state after passing through the M1 unit and the
decoupling step(

a√
2

( |0111 〉 ± |1000 〉) + b√
2

( |0100 〉 ± |1011 〉)

)

⊗ |1000〉 f ,

where plus or minus sign depends on the outcome of the
measurement in the M1 unit. We can see that the first flag
qubit is flipped and there is an X or Y error on the first
data qubit. In either case, from the flag syndrome and the
follow-up parity measurement, we know that the first data
qubit is damped and can correct correspondingly. Note that
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TABLE III. Summary of fault locations and the corresponding
error and syndrome for EC gadget in Fig. 1 of the main text. The
first column denotes all the fault locations mentioned in the proof.
The second column is the errors on the data qubits at the point
right after measuring all the flag qubits. The third column is the
corresponding flag syndromes. The fourth column indicates which
parity measurement should be performed in the second syndrome
extraction unit in Fig. 1 of the main text and the expected outcome.
P12 and P34 mean the parity measurements on data qubits 1 & 2 and 3
& 4, respectively. The last column gives the corresponding recovery
gate. Note that a Z correction is applied only if the outcome of the
measurement of XXXX in the R unit is +1.

Fault Error r P12 or P34 R

None I (0000) None None

A1 E1 (1000) P12 → 1 X1/Z1

A2 E2 (0100) P12 → 1 X2/Z2

A3 E3 (0010) P34 → 1 X3/Z3

A4 E4 (0001) P34 → 1 X4/Z4

A( f )
1 I + Z1 (1000) P12 → 0 Z1

A( f )
2 I + Z2 (0100) P12 → 0 Z2

A( f )
3 I + Z3 (0010) P34 → 0 Z3

A( f )
4 I + Z4 (0001) P34 → 0 Z4

B1 X1 or Z1X1 (1000) P12 → 1 X1/Z1

B2 X2 or Z2X2 (0100) P12 → 1 X2/Z2

B3 X3 or Z3X3 (0010) P34 → 1 X3/Z3

B4 X4 or Z4X4 (0001) P34 → 1 X4/Z4

C0 I (0000) None None

C1 X1 (1000) P12 → 1 X1

C2 X3X4 (1100) None X3X4

C3 X4 (1110) None X4

C4 I (1111) None None

C5 I (0111) None None

C6 I (0011) None None

C7 I (0001) P34 → 0 I

C8 I (0000) None None

D1 I or Z1 (1000) P12 → 0 Z1

D2 I or Z2 (0100) P12 → 0 Z2

D3 I or Z3 (0010) P34 → 0 Z3

D4 I or Z4 (0001) P34 → 0 Z4

the syndrome extraction alone cannot distinguish between X
errors on data qubit 1 and 2, therefore, the flag qubits are
necessary in this case to make the EC gadget fault tolerant.

We next move on to the M1 unit that appears in Fig. 1 and
is detailed in Fig. 2(f) of the main text. A fault at the target of
any CNOT coupled to a data qubit, denoted as Ai in Table III,
causes a damping error in the data qubit connected to it. This
error is detected by the flag syndrome bits and corrected by
the recovery R since it flips the flag qubit coupled to the
damped data qubit. On the other hand, a fault at the target of
any CNOT coupled to a flag qubit, denoted as A( f )

i in Table III,
also flips the flag qubit, but propagates (I + Z ) error to the
data qubits. By a parity measurement at the end, we are able
to distinguish this with the previous case, therefore, correctly

recover the encoded state. What is more complicated is a fault
at the ancilla qubit. We consider the possible faults at different
locations in the M1 unit below, and explain how they are
mitigated.

(i) A fault in the preparation of the |+〉 state, denoted as
C0, causes the initial state of the ancilla qubit to be |0〉. This
means that the M1 unit has no effect on the data qubits and
the flag qubits are left in |0000〉 state after being disentangled
with the data qubits. The X measurement at the end will give
random outcome but we never use this outcome to decode
anything.

(ii) A fault at the control of the first CNOT, denoted as C1,
propagates X errors to data qubits 2, 3, 4, and to all flag qubits,
which is equivalent to an X error on data qubit 1, up to a
stabilizer. These X errors on data qubit 2, 3, and 4 in turns
propagate through the CNOTs after the M1 unit and flip flag
qubits 2, 3, and 4. The overall effect is that data qubit 1 and
flag qubit 1 are flipped, hence, the flag syndrome is (1000)
and we are able to correctly apply a bit flip to the first data
qubit.

(iii) A fault at the control of the second CNOT, denoted as
C2, propagates X errors to data qubit 3, 4, and to all flag qubits,
which is equivalent to a logical X error. In this case, the flag
qubits give an unique syndrome (1100), which has two bit flips
instead of single bit flip as in all the other cases.

(iv) A fault at the control of the third CNOT, denoted as C3,
propagates X errors to data qubit 4, and to all flag qubits. After
the decoupling step, the flag syndrome is (1110), the recovery
unit will be able to recognize and correct it.

(v) A fault at the control of the fourth CNOT, denoted as C4,
does not cause any error to the data qubit, but flips all the flag
qubit. Therefore, the flag syndrome is (1111) and we conclude
that no data qubit is damped.

(vi) A fault at the control of the fifth CNOT, denoted as C5,
propagates X errors to flag qubit 2, 3, and 4, hence, makes
the flag syndrome (0111). This is a unique syndrome and we
conclude that there is no data error in this case.

(vii) A fault at the control of the sixth CNOT, denoted as
C6, propagates X errors to flag qubit 3 and 4, hence, makes an
unique flag syndrome (0011) and we also conclude that there
is no error in the data qubits.

(viii) A fault at the control of the seventh CNOT, denoted as
C7, propagates an X error to flag qubit 4, hence, the flag syn-
drome (0001). A parity measurement after that is necessary to
distinguish this with A( f )

1 or D1 fault.
(ix) A fault at the control of the eighth CNOT, denoted as

C8, or a fault at the X measurement does not propagate any
error to data and flag qubits. It may change the measurement
outcome, which has no consequence for us.

Finally, a fault at the control of the CNOTs used to dis-
entangle data and flag qubits causes a damping error that is
undetected by the current EC gadget, appeared as an error in
the outgoing state, to be dealt with by the next EC gadget.
Meanwhile, the target of those CNOTs or Z measurements
cannot be damped since the flag qubits are in state |0000〉 at
this step.

Table III summarizes all the fault locations discussed above
with the corresponding error on the data qubits and syndrome.
The column denoted as “P12 or P34” indicates which parity
measurement should be performed in the second syndrome
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FIG. 10. A damping error E before a CZ gate.

extraction unit, the other parity measurement is not necessary
and always gives a trivial outcome. We note that the syndrome
is not unique for each fault location, but it is enough to deter-
mine the damped qubit, thereby, enough to correct E1, E†

1 , X ,
or Z error on that qubit.

This covers all possibilities for a single fault in the EC

gadget, giving rise either to no more than one damping error
to the outgoing state, i.e., (P2) holds.

4. Logical X gadget

Next, we demonstrate how the logical X gadget described
in Fig. 1 of the main text is tolerant against single faults, as
stated in property (P5) in Appendix A.

First, we note that an Fz error passes through the log-
ical X in the same way as in the EC gadget because Fz

(anti)commutes with a physical X gate. Therefore, it will be
killed off by the M1 unit or result in an Fz in the outgoing
state, as explained in Appendix B 3.

(i) An error in the incoming state or a fault in the en-
tangling step between the data qubits and the flag qubits is
detected by the following syndrome extraction unit S (see
Fig. 1 of the main text). The circuit after that can be assumed
to have no fault, hence, recover for the damping error and
apply the transversal X = XXII correctly.

(ii) An error before one of the physical X gates (due to a
fault in the syndrome extraction unit) conjugates through the
X gate as E†

1 = (1 − Z )X , which in turn becomes an E1 or
an E†

1 after the M1 unit. The flag syndromes are swapped
as compared to the case of Bi faults in Table III, namely,
(r1r2r3r4) = (0111) for an E1 error and (r1r2r3r4) = (1000)
for an E†

1 error. In either case, a bit flip is correctly applied to
the first data qubit.

(iii) A fault at other locations is already covered in the
analysis of the EC gadget, see Appendix B 3.

Thus the logical X gadget is tolerant up to single-qubit er-
rors, thereby satisfying the desired fault tolerance properties.

5. Logical CZ gadget

Finally, we show that the CZ gadget in Fig. 3 of the
main text satisfies the fault tolerance property (P5) stated in
Appendix A.

First, note that an Fz in the incoming state or due to any
faulty CZs passes through the gadget and is killed off by the
EC gadget at the end. A Fz due to a faulty component in the
EC gadgets is either killed off by the EC gadgets themselves or
causes at most one Fz at the outgoing state, as explained in
Appendix B 3.

Next, consider the case of a damping error propagating
through a two-qubit CZ gate, as shown in Fig. 10.

An incoming damping error right before the control (tar-
get), of a physical CZ gate, in Fig. 3 of the main text,
propagates as a damping error E at the control (target) and
a phase error Z at the target (control). This is detected in
the M1 unit of the target (control) block via a nontrivial

TABLE IV. Summary of Z errors propagated to one block due to
an Fa error before CZ in the other block. In all these cases, the M1

unit in the trailing EC of the no-damping block gives outcome +1.

Damped qubit in one block Propagated error to the other block

Qubit 1 Z1

Qubit 2 Z3

Qubit 3 Z2

Qubit 4 Z4

outcome, with c1 = 1. It is then corrected by applying a Z
operator to the appropriate qubit in the control (target) block
(see Table IV). Contrastingly, a damping error after the control
(target) of a physical CZ gate, in Fig. 3 of the main text leads
to a damping error at the output of the same block, without
propagating a Z error in the target (control) of the other block.
This scenario is captured by a trivial outcome, with c1 = 0,
in the M1 unit of the target (control) block. Finally, a fault
anywhere in the control or target block leads to at most one
error in the outgoing state of one of the two blocks, as shown
in Appendix B 3. Therefore, we conclude that our transversal
CZ gadget satisfies the desired fault tolerance properties.

6. Logical CCZ gadget

The transversal logical CCZ is shown in Fig. 11.

APPENDIX C: PREPARATION GADGETS

Here, we explain how to construct the preparation gadgets
for the states |0〉L and |+〉L, which form part of the universal
set of logical gadgets discussed in Sec. V of the main text. In
addition, the fault-tolerant preparations of the resource states

FIG. 11. Transversal fault-tolerant logical CCZ gadget. Similar to
the logical CZ gadget, syndrome bits from different EC gadgets are
combined to catch propagated Z errors.
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FIG. 12. Fault-tolerant preparation of |0〉L . The input Bell state
|β00〉 is assumed to have been prepared fault-tolerantly by the prepa-
ration circuit of Fig. 8.

|�S〉 and |�T 〉, used in the S and T gadgets of Sec. V, are also
given here.

1. Logical states

Armed with the ability to prepare the Bell state fault-
tolerantly, as shown in Appendix B 1, we can obtain
fault-tolerant preparations of the logical states |0〉L and |+〉L.
The |+〉L state is straightforward: |+〉L is simply two copies
of |β00〉, that is,

|+〉L = |β00〉 ⊗ |β00〉.
Here, the preparation unit for the |+〉L state consists of two
preparations of the |β00〉 state. A fault-tolerant preparation re-
quires that if at most one fault occurs in this combined circuit,
the output has at most one error. This is different from, say,
the Hadamard circuit discussed below which consists of CZ,
|+〉L and X units, where one fault is allowed in each of those
components. Here, even though we say that the preparation
of |β00〉 is fault tolerant, we don’t allow one fault in each
preparation of |β00〉 when talking about preparation of |+〉L

because there is no EC gadget attached to the preparation of
|β00〉 and one fault in each preparation of |β00〉 may result in
two errors in the outgoing |+〉L state.

To get the state |0〉L, we start with a single copy of a fault-
tolerantly prepared |β00〉 and make use of the circuit in Fig. 12,
with two additional ancillas initialized to |0〉. The prepared
state is accepted only when both the parity measurements
are even. The fact that the preparation circuit is fault-tolerant
can be seen as follows. The off-diagonal error Fz of a single
fault in the circuit passes through the parity measurements and
causes only one Fz error in the outgoing state. Meanwhile, the
damping error Fa in the preparation of |β00〉 or in two CNOTs
is detected by the parity measurements, and thereby, rejected.
An undetected fault in the parity measurements leads to only
one error in the outgoing state. In any case, the state is either
rejected, or accepted with at most one error.

2. Resources states

Next, we demonstrate fault-tolerant preparation gadgets for
the two-qubit states |�S〉 and |�T 〉, which act as resource
states for constructing the logical S and T gates, respectively:

|�S 〉 = 1√
2

( |0 〉L + i |1 〉L )

and |�T 〉 = 1√
2

( |0 〉L + eiπ/4 |1 〉L

)
. (C1)

FIG. 13. (a) Fault-tolerant preparation of |βS/T 〉 using two copies
of the faulty Bell state |β̃00〉. (b) Fault-tolerant preparation of |�S/T 〉
using states |β00〉 and |βS/T 〉, which are assumed to be fault-tolerantly
prepared.

The resource states |�S〉 and |�T 〉 can be prepared and
verified as shown in Fig. 13, starting with a fault-tolerant
preparation of the states |βS〉 and |βT 〉, which are local-unitary
equivalents of |β00〉:

|βS〉 ≡ 1√
2

(|00〉 + i|11〉)

and |βT 〉 ≡ 1√
2

(|00〉 + eiπ/4|11〉). (C2)

Fault-tolerant preparation units for the states |βS/T 〉 are shown
in Fig. 13(a), using a circuit similar to that for the preparation
of |β00〉 (Fig. 8). In each case, we accept the output state only
when the X -measurement outcomes are of even parity and the
parity measurement provides a trivial outcome. Using |βS/T 〉
states, we then prepare and verify the resource states |�S/T 〉
in Eq. (C1) as shown in Fig. 13(b). We accept the prepared
state only when both the parity measurements show trivial
outcomes. The fault-tolerant property of the preparation of
|�S/T 〉 can be understood in a similar manner to the prepara-
tion of the |0〉L state. A single fault in the circuit in Fig. 13(b)
leads to the state being rejected or accepted with at most one
error.

APPENDIX D: PSEUDOTHRESHOLD CALCULATIONS

We describe here the technical details of our pseudothresh-
old calculation, for the memory gadget and the extended CZ

gadget and its connection with the infidelity between the noisy
and the ideal output. We assume that the inputs to the gadgets
do not have any errors and explicitly count the total number of
malignant faults of O(p2), which will cause a given gadget to
fail. O(p2) faults include phase fault at a single position and
damping faults at two different positions.
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1. Relating fault counts to encoded infidelity

In Secs. VI A and VI B of the main text, we exhaustively
counted the number of malignant fault pairs and all fault
triples that can lead to an erroneous output state even after
the decoder. This has to be connected with an actual figure-
of-merit—the infidelity in our case—for the correctness of the
output state. Here, we provide the proof of that connection as
stated in Sec. VI of the main text [leading to Eq. (10) there].

Recall that, to operationally gauge whether the output state
is correct or not, we pass the output of an extended gadget
through an ideal decoder to strip off the correctable O(p)
terms. The fault tolerance of the EC unit guarantees that no
O(p) terms give an error after the ideal decoder. The final state
ρ from the output of an ideal decoder thus obtained can then
be expanded as

ρ = c0ρ0 + p2
∑

j

ε j + O(p3). (D1)

Here, ρ0 is the ideal output state, occurring with weight c0.
The summation over j explicitly enumerates all malignant
two-fault paths, which contribute second-order [O(p2)] terms.
All the correctable, i.e., benign, second-order terms have
already been absorbed into the coefficient c0. The ε js are
general operators that need not be states, i.e., not necessarily
positive semi-definite nor of trace 1.

We enumerate the different cases of order p2 that can arise
from a fault at a single location or faults at a pair of locations:

(i) Recall from Eq. (4) of the main text that a Z error
of the form Z (·)Z is of O(p2). A Z error could lead to an
output with either no error or a ZL error. A ZL error can occur
since the states after a single Z error on each qubit become
indistinguishable, therefore, one could leave a relative phase
while trying to correct for it.

(ii) A fault pair at locations denoted as A and B has
the form F⊗2 = ( 1

2F (A)
z + F (A)

a ) ⊗ ( 1
2F (B)

z + F (B)
a ). From the

definition of a fault in Eq. (4) of the main text, we can see
that a fault pair leads to the following terms (up to constant
factors):

(a) two Fzs: gives Z (A)Z (B)(·) + (·)Z (B)Z (A) and
Z (A)(·)Z (B) + Z (B)(·)Z (A), which would end up as the
identity or operator of the form ZL(·) + (·)ZL, which
are generally not positive semidefinite. Note that such a
term will survive at the decoder output and does not get
removed by the XXXX measurement.

(b) one Fz and one Fa: gives E (A)Z (B)(·)E†(A) +
E (A)(·)Z (B)E†(A) and another term with the roles of A
and B swapped. An Fa error can be thought of as an X
error once the superposition is restored in the code space.
Therefore, failing to correct for Fa would lead to XL. An
FZ followed by an Fa could lead to applying a relative
phase on the state with a damping error. Trying to correct
for this combination of errors could lead to at most an XL

or ZL(·) + (·)ZL error on the output state.
(c) two Fas: gives E (A)E (B)(·)E†(B)E†(A). Performing

the XXXX measurement in the recovery rebuilds the loss
of superposition due to damping errors. Therefore, trying
to correct for two damping errors is like trying fix for two
X errors, which can lead to an output state with an XL or
(1 + ZL ) error.

Considering these possibilities, we see that the operators ε j

in Eq. (D1) can be written explicitly as

ε j = c jρ j + d j

2
(ZLρ0 + ρ0ZL ), (D2)

for some state ρ j in the code space and some coefficients c j ,
d j ∈ R. Note that the weights c js can be verified, by follow-
ing the error correction procedure, to be positive constants.

The ideal output state ρ0 in Eq. (D1) from an extended unit
is a pure state in the code space, which we can write as ρ0 ≡
|�〉〈�|. The infidelity of the output state ρ in Eq. (D1) with
respect to the ideal output state |�〉 is then

IF(ρ, |� 〉 〈�| ) = 1 − 〈�|ρ |� 〉 = Tr(ρ) − 〈�|ρ |� 〉,
(D3)

where

Tr(ρ) = c0 + p2
∑

j

(c j + d j 〈�|ZL |� 〉) + O(p3),

〈�|ρ|�〉 = c0 + p2
∑

j

(c j〈�|ρ j |�〉 + d j〈�|ZL|�〉)

+ O(p3).

Hence, we have

IF(ρ, |� 〉 〈�| ) = p2
∑

j

c j (1 − 〈�|ρ j |� 〉) + O(p3)

� p2
∑

j

c j + O(p3), (D4)

where, in the last line, we have used the fact that 〈�|ρ j |�〉 �
0, true for any state ρ j . The infidelity is then bounded as

IF(ρ, |� 〉 〈�| ) � C p2 + Bp3, (D5)

where C is the total number of second-order faults or malig-
nant fault pairs (as counted in Secs. VI A and VI B of the
main text), and B is the number of all possible ways that
the gadget can have a third-order fault. Recall from Sec. VI
of the main text that when counting C, we also took care of
additional multiplicative factors, which correspond exactly to
the c j coefficients in Eq. (D4).

2. Memory pseudothreshold

We now calculate the pseudothreshold for the memory gad-
get in Fig. 5 of the main text. We first count the malignant fault
pairs due to two damping faults (assuming a no-error input to
the memory gadget) leading to an output that is uncorrectable.
This could happen in one of three possible ways: (1) two faults
within the EC gadgets, (2) two faults within the rest locations,
or, (3) one fault in the EC gadget and one fault in the rest
locations.

(1) Malignant pairs within an EC gadget: We count the
total number of malignant pairs within an EC gadget, shown
in Fig. 1 of the main text. Depending on the outcomes of the
syndrome extraction unit S , the EC can take different paths.
For easy counting, we further divide the EC unit into smaller
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parts, numbered as follows.
1. Entangling step between data and flag qubits, includ-

ing the first 4 CNOTs.
2. Syndrome extraction unit S .
3. Disentangling step between the data and flag qubits

in case a damping is detected.
4. Recovery unit R in case a damping is detect.
5. M1 unit.
6. Disentangling step between the data and flag qubits

in case no damping is detected.
7. Parity measurements P12 and P34.
8. Recovery unit R in case no damping is detected.

The matrix below represents the number of malignant pairs
with each fault in the corresponding parts.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8
1 112
2 263 61
3 18 4 0
4 50 17 0 0
5 650 617 0 0 1767
6 56 75 0 0 430 25
7 96 70 0 0 618 0 0
8 92 58 0 0 463 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Each entry in the matrix is the number of malignant pairs
with two faults in the parts corresponding to row and column
label. It is counted by choosing any one position in each
part, inserting damping faults and checking if the final state
is correctable or not. In total, there are 5542 malignant pairs
in one EC gadget.

(2) Malignant pairs in the resting locations: There are
4 locations when the qubits rest or there are 4 applications of
Identity gates leading to C(4, 2) = 6 malignant pairs.

(3) 1 fault in the leading EC and 1 fault in the resting
locations: Most of the single faults inside an EC is detected
and corrected by the EC itself. However, there are single faults
that lead to a single error at the outgoing state of the EC.
They include faults at the control of one of four CNOTs at the
disentangling step, which cause Fa or Fz errors, and faults at
the target of one of eight CNOTs in M1 unit, which cause Fz

errors. This error in turn can combine of one error at one of
four rest location, leading to an uncorrectable error. In total,
we have 28 such malignant pairs.

(4) 1 fault in the trailing EC and 1 fault in the rest
location: A fault in one of four rest location can combine with
a fault in the trailing EC to cause an uncorrectable error. In
total, there are 224 pairs. In case the error in the rest location
is Fa, M′ in Fig. 1 of the main text will be the Identity.
Otherwise, if it is a Fz error, M′ will be M1 unit.

(5) 1 fault in each EC: Faults at the control of CNOTs
in part 6 (disentangling step) of the leading EC can combine
with one fault in the trailing EC in the same way as faults in
rest location. There are 448 malignant pairs due to this. In
addition, Fz error due to faults at the target of CNOTs in part
5 (M1 unit) of the leading EC also can combine with faults
in the trailing EC. There are 254 malignant pairs due to this.
Therefore, in total, there are 702 malignant pairs for this case.

Finally, we count the malignant faults leading to Z errors
in the memory gadget in Fig. 5 of the main text. For an

EC gadget, this includes 11 positions in part 1, 6 positions
in part 2, 36 positions in part 5, and 4 positions in part 6.
Hence, 57 positions for an EC gadget. For the whole memory
gadget, there are 29 positions in total, taken into account the
multiplication factor of 1

4 .
Therefore, the total number of malignant pairs due to

damping faults and malignant positions due to Z errors is
given by, C = 6531. Furthermore, there are at most 181 lo-
cations in one EC gadget, therefore B = (366

3

) + (366
2

) + 366 =
8 171 621.

3. Computational pseudothreshold

The computational pseudothreshold, as explained in the
main article, is determined by the extended CZ gadget. The
counting for the extended CZ can be done in very similar man-
ner as for the memory gadget. We show here again the matrix
whose rows and columns correspond to each part in Fig. 6 of
the main text and whose entries are the total malignant pair
contributions from the corresponding parts.

⎛
⎜⎜⎜⎝

1 2 3 4 5
1 0
2 48 0
3 718 328 5542
4 328 718 24 5542
5 28 28 230 230 12

⎞
⎟⎟⎟⎠

(1) Two faults in one EC: We have already counted
the number for this case from the last section of memory
gadget.

(2) One fault in EC1 and one fault in EC3: This is the same
as the case when one fault is in the leading EC and the other
fault is in the trailing EC of the memory unit. By symmetry,
this is also the number for one fault in EC2 and one fault in
EC4.

(3) One fault in EC1 and one fault in EC4: Most of the
faults will be corrected independently. However, if the fault
in EC1 causes Fa error and a Z error is propagated to the
second data block, then a fault in EC4 may miss this Z error.
First of all, faults in M1 unit at the preparation of |+〉, X
measurement, or the control of the last CNOT in M1 unit may
lead to wrong outcome, hence, Z error. Secondly, a Fa error
may cause logical error, for example, if a Z error is propagated
to the first data qubit of the second block, then a Fa error
at data qubit 3 or 4 may cause a logical Z error because
Z1E3 = Z1X3 + ZX3. In total, there are 328 malignant pairs
for this case. By symmetry, this is also the number for ne fault
in EC2 and one fault in EC3.

(4) One fault in EC1 and one fault in EC2: Note that Fz

errors are okay since they are corrected independently by EC3

and EC4. Undetected Fa must be due to a fault at control of one
of four CNOTs in the disentangling step. Fa at qubits connected
by a CZ gate are okay because after a damping, a Z error has
no effect. However, Fa at qubits not connected by any CZ gate
lead to a logical Z error in one or both data blocks. Therefore,
there are 48 pairs.

(5) One fault in EC3 and one fault in EC4: The only
case that can fail is when a fault in EC3 leads to nontrivial
outcomes of syndrome extraction unit and a fault in EC4 leads
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to a wrong outcome of M1 unit, and vice versa. A fault at the
preparation of |+〉, X measurement and the control of the last
CNOT in M1 unit of EC4 may lead to wrong outcome. There
are 8 positions in EC3 that leads to nontrivial outcomes of
syndrome extraction unit: controls in the entangling step and
the target of the first two CNOTs in the syndrome extraction
itself. But note that a redundant Z error at data qubit 1 and 2 is
correctable by an ideal decoder, hence, 4 among those 8 loca-
tions are safe. Therefore, in total, there are (4 × 3) × 2 = 24
pairs.

(6) One fault in CZ gadget and one fault in EC1 or
EC2: The number is the same as one fault in the lead-
ing EC and one fault in the rest location of the memory
gadget.

(7) One fault in CZ gadget and one fault in EC3 or EC4:
The number is the same as one fault in the trailing EC and one
fault in the rest location of memory gadget.

(8) 2 faults in CZ gadget: There are 8 positions, hence,
maximum C(8, 2) = 28 pairs. But if two faults are in different
block then they are corrected independently. Therefore, we
have 12 pairs left.

For a second order Z error, there are 14.25 positions for
one EC unit and 2 positions for the CZ gadget. Therefore we
have a total of 14.25 × 4 + 2 = 59 malignant positions.

Therefore, the total number of malignant pairs due to
damping errors and malignant fault locations due to Z er-
rors is given by, C = 13 835.There are at most 732 locations
in the extended CZ gadget, hence B = (732

3

) + (732
2

) + 732 =
65 371 138.

4. Pseudothreshold Simulation

In the simulation, to recognize uncorrectable output states,
which correspond to a failure of the fault-tolerant computa-
tion, an ideal decoder that applies the perfect error correction
procedure described in Sec. III of the main text is used to
strip off the O(p) errors and project the state back into the
code space. Specifically, it detects a damping error Fa by
the syndrome extraction unit. If an Fa error is detected, the
recovery unit will measure the XXXX stabilizer and apply X
or XZ to the damped qubit, corresponding to the measurement
outcome. If no Fa is detected, the recovery unit will still
perform the XXXX measurement to remove the Fz error. It
might happen that, due to high-order faults, the input to the
ideal decoder has a Z error and it is detected by the recovery
unit. In this case, the ideal decoder will apply a Z always to
the first data qubit, thereby, correctly recovering the state if
the Z error is at data qubit 1 or 2 but leading to a logical Z if
the Z error is at data qubit 3 or 4.

In our analytical counting of Secs. VI A and VI B in the
main text, we could easily exclude malignant pairs in the lead-
ing EC to avoid double counting. This is, however, difficult
implement in the simulation as we apply the full amplitude-
damping channel at every step of the circuit. By doing that, we
in fact include all malignant pairs in the leading EC as well.
Thus, for a fair comparison between the simulation results
and our counting, we included all the malignant pairs in the
leading EC for the analytical counting when comparing with
the simulation. This explains the different values of p(l )

th in
Sec. VI C, as compared with Sec. VI A of the main text.
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