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We develop a field-theoretic approach for the treatment of both the nonlocal and the nonlinear response of
structured liquid dielectrics. Our systems of interest are composed of dipolar solvent molecules and simple salt
cations and anions. We describe them by two independent order parameters, the polarization field for the solvent
and the charge-density field for the ions, including and treating the nonelectrostatic part of the interactions
explicitly and consistently. We show how to derive functionals for the polarization and the electrostatic field of
increasingly finer scales and solve the resulting mean-field saddle-point equations in the linear regime. We derive
criteria for the character of their solutions that depend on the structural lengths and the polarity of the solvent.
Our approach provides a systematic way to derive generalized polarization theories.
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I. INTRODUCTION

Phenomenological functionals of polarization have fea-
tured prominently in the development of the electrostatic
theory of structured dielectrics starting from the seminal
contributions of Marcus in the 1950s on electron transfer the-
ory based on local dielectric response theory [1,2]. Aqueous
dielectrics, de rigueur in soft- and biomatter systems [3],
pose another challenge as the dielectric response of water is
strongly nonlocal and cannot be exhaustively described by a
local dielectric approximation [4]. This has been the driving
force behind the phenomenological nonlocal dielectric func-
tion methodology developed extensively by Kornyshev and
collaborators [4–6] as well as the Landau-Ginzburg-type free-
energy functionals describing the nonlocal dielectric response
in spatially confined dielectrics [7–11], the two approaches
being, of course, equivalent in bulk but differing in systems
with boundaries.

While it would be, of course, desirable to have more micro-
scopic theories, aqueous dielectrics have consistently eluded
descriptions based on more detailed explicit molecular inter-
actions. As a successful example of a microscopic nonlocal
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dielectric theory, one can consider the statistical mechani-
cal formulation of the nonlocal dielectric properties of ice
by Onsager and Dupuis [12,13], later further elaborated and
generalized by Gruen and Marčelja [14,15]. Of all the method-
ologies applied to nonlocal dielectrics, this is the first to be
found in the literature that implements not only the nonlocal
but also the nonlinear dielectric response of a system. It leads
to two coupled equations for the electrostatic field and the
dielectric polarization field and in general cannot be reduced
to either the nonlocal dielectric function methodology or the
local Landau-Ginzburg polarization functional. The coupling
between the polarization and the electrostatic fields is pro-
vided by the structural interaction mediated by the Bjerrum
structural defects in the ideal hydrogen bonded lattice of ice.
In its absence the basic equations reduce to the standard di-
electric response theory. Being based on the crystalline lattice
and hydrogen-bonding defects, there is no simple way to use
Onsager-Dupuis theory straightforwardly for a liquid aqueous
dielectric.

An important area of application for the nonlocal dielectric
response of structured dielectrics was and remains the theory
of hydration forces [16,17], where the dielectric response of
ice [18] as well as the nonlocal electrostatics of liquid water
[6,19] were applied to water confined between substrate sur-
faces with the propensity for local ordering of vicinal water
molecules. This type of water structural interaction modeling
has been applied to solvation of phospholipid membranes
[20], DNA molecules [21], linear polysaccharides [22], or
to the solvation of proteins [23,24]. More recent approaches
extend the ideas of nonlocal dielectric response of confined
water [25] to the order-parameter description beyond the po-
larization [26], which are able to describe additional features
of confined water structuring [27,28]. The order-parameter
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description can be arguably viewed as a generalization of
the Landau-Ginzburg-type free-energy functionals beyond the
polarization formulation [29], describing additional degrees
of freedom pertinent to the complicated hydrogen-bond phe-
nomenology [30]. The hydration force theory also sheds light
on the fact that part of the water polarization is purely non-
electrostatic in nature, being a separate field, independent of
the imposed electrostatic field. This is, in fact, one of the most
important conclusions of the Onsager-Dupuis theory of the
dielectric response of ice [13,14].

Motivated by the Onsager-Dupuis approach we develop
a systematic field theory for the nonlocal as well as the
nonlinear dielectric response of structured liquid dielectrics
based on the electrostatic field and dielectric polarization as
separate order parameters. From the outset, our approach
decouples electrostatic and nonelectrostatic structural contri-
butions to these order parameters, allowing for the consistent
inclusion of the effects that could not be implemented in
previous approaches. On the linear level, our theory reduces
to two equations for the electrostatic and polarization poten-
tials, which are coupled by the nonelectrostatic interaction
potentials and assume a form completely consistent with the
linearized Onsager-Dupuis theory of ice. We explicitly dis-
cuss three examples of linear models differing by the degree
of structural detailed included and show how they relate to
previously studied simplified models.

II. ORDER PARAMETERS AND MICROSCOPIC
INTERACTIONS

The systems we consider are composed of three compo-
nents: A rigid rodlike solvent with a dipolar moment (N),
positive simple salt ions (+), and negative simple salt ions
(-). We first introduce two separate order parameters: Charge
density and polarization (dipolar charge density). For the sol-
vent (N) component, the order parameter is the polarization
field defined as

P̂(x) ≡
∑
(N )

p n δ(x − xn), (1)

where p is the dipolar moment of the molecule, so that the
bound charge-density field of the solvent material is

ρ̂(N )(x) ≡ p
∑

N

n · ∇ δ(x − xn) = ∇ · P̂(x), (2)

with dipoles considered to be pointlike. For the simple salt
component we can define the total charge-density ρ̂(±)(x) as
the sum of cation and anion density fields

ρ̂(±)(x) ≡ e
∑
N+

δ(x − xn) − e
∑
N−

δ(x − xn), (3)

where e is the elementary charge of the salt ions, N is the
number of dipoles, while N± are the numbers of positive and
negative ions, respectively. The total charge-density field is
then

ρ̂(x) = ρ̂(±)(x) + ∇ · P̂(x). (4)

We will now first write the interactions in terms of these
microscopic order parameters and then in the form of macro-
scopic collective coordinates in exactly the same way as

this is done for standard Coulomb fluids and/or for nematic
Coulomb fluids [31]. The interactions in the system have the
following components: The nonelectrostatic interactions in
the harmonic approximation,

HSR = 1

2

∫ ∫
V

dxdx′ P̂i(x)ũi j (x − x′)P̂ j (x′), (5)

where we assumed that the nonelectrostatic tensorial part
ũi j (x − x′) is a short-range, nonelectrostatic potential; the
electrostatic interactions are given by the standard Coulomb
form

HC = 1

2

∫ ∫
V

dxdx′ ρ̂(x)u(x−x′)ρ̂(x′), (6)

with the proviso that we take the Coulomb potential with the
nonconfigurational dielectric constant, or the high-frequency
dielectric constant ε∞ as in the Onsager-Dupuis model, i.e.,

u(x − x′) = (1/4πε∞ε0) |x − x′|−1
, (7)

where ε∞ is associated with all the relaxation mechanisms
apart from the dipolar one; further, we allow for nonelectro-
static interactions due to the hydration shell of the ions, which
generalizes the role played by the ion-bound Bjerrum defects
in the Onsager-Dupuis theory of ice [18]. This effect corre-
sponds to the coupling between the ion density and ρ̂(±)(x)
and P̂ j (x). To the lowest order this coupling can be written via
the hydration energy of the form (for details, see Appendix B)

HHY =
∫ ∫

V
dxdx′ ρ̂(x)ũ(x − x′)∇ · P̂(x′), (8)

where the potential ũ(x − x′) is again a short-range, nonelec-
trostatic potential for the hydration shell interactions. Here
we assume for simplicity that the polarization in the hydration
shell of anions and cations is—apart from its direction—the
same.

The total interaction energy functional is thus composed of
the standard electrostatic Coulomb interaction between all the
charges in the system, but in a medium with high-frequency
dielectric constant and the nonelectrostatic short-range polar-
ization interactions and ion polarization interactions, and is
written as

H = HC[ρ̂(x)] + HSR[P̂(x)] + HHY [ρ̂(x), P̂(x)], (9)

so that the interaction Hamiltonian is H ≡ H[ρ̂(x), P̂(x)]. We
note that the interaction Hamiltonian need not be quadratic
and our approach can easily incorporate higher-order interac-
tions.

III. COLLECTIVE DESCRIPTION AND FIELD THEORY

From here we derive the partition function in terms of
two order parameters and two auxiliary fields (for details, see
Appendix A) as

� ≡
∫

D[Pi(x)]D[Ei(x)]
∫

D[ρ(x)]D[φ(x)]

× e−βH[Pi (x),ρ(x);Ei (x),φ(x)]. (10)

This expression differs from the standard Coulomb fluid field-
theoretical representation of the partition function [32,33]
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by the presence of two additional independent fields Pi(x)
and Ei(x). In what follows, we will not analyze the gen-
eral features of the partition function but will limit ourselves
immediately to its saddle-point evaluation, which is taken
with respect to the auxiliary fields Ei(x) −→ iE∗

i (x) and
φ(x) −→ iφ∗(x). The partition function is then approxi-

mated by − ln � −→ βH[Pi(x), ρ(x); iE∗
i (x), iφ∗(x)] where

the effective-field Hamiltonian is obtained from the partial
trace over coordinate and orientation degrees of freedom for
the ions and dipoles in the partition function interacting via
the interaction energy functional Eq. (9). It can be obtained in
the form

βH[Pi(x), ρ(x); iE∗
i (x), iφ∗(x)] = H[Pi(x), ρ(x)] −

∫
V

dx Pi(x)E∗
i (x) −

∫
V

dx ρ(x)φ∗(x) −
∫

V
d3x v∗(E∗

i (x), φ∗(x)), (11)

where the first term is the interaction Hamiltonian, Eq. (9).
The expression for the effective-field interaction potential

v∗(Ei(x), φ∗(x)) = v(iE∗
i (x), iφ∗(x)) depends crucially on the

model used for the dipolar fluid. We specifically obtain its
form for two models: the case of a dipolar model (DM)
is obtained without any constraints on the summation [34],
while in the case of the dipolar Langevin model (DLM) one
assumes an underlying lattice of spacing a (roughly equal to
the molecular size) [35], imposing the condition that each
site of the lattice is occupied by only one of the species
(incompressibility condition).

For the DM model the effective-field interaction potential
can be written explicitly (see Appendix A) as

v∗
DM (E∗

i (x), φ∗(x)) = λ

(
sinh u

u
+ 2λ̃s cosh w

)
, (12)

where u = βp |E∗(x) − ∇φ∗(x)| and w = βeφ∗(x). The DM
model implies no constraints on the local density of either
ions or dipoles and thus exhibits a form of an ideal van’t Hoff
gas of ions and dipoles [34,36]. For the DLM model we have

v∗
DLM = 1

a3 ln (v∗
DM/λ) .

An important new feature of both models is the dependence
of the effective field interaction potential on the field differ-
ence E∗(x) − ∇φ∗(x). The auxiliary field E∗(x) here plays the
role of a coupling field that quantifies the degree of nonelec-
trostatic coupling between polarization and electrostatic fields
and is a distinct feature of our approach.

IV. MEAN-FIELD (SADDLE-POINT) EQUATIONS

The saddle-point equations can be obtained for all the
variables, i.e., the order parameters as well as the auxiliary

fields. For the two order parameters we obtain

E∗
i (x) = −

∫
V

dx′ũi j (x − x′)P j (x′)

+∇i

∫
V

dx′ ũ(x − x′)ρ(x′),

φ∗(x) =
∫

V
dx′u(x − x′)ρ(x′)

+
∫

V
dx′ũ(x − x′)∇ · P(x′). (13)

Of the two saddle-point field equations, Eq. (13), the first
one contains only nonelectrostatic contributions pertaining
to the polarization ũi j and hydration ũ interaction potentials,
corroborating our previous statement that the auxiliary field
E∗

i (x) quantifies the nonelectrostatic effects. The second equa-
tion contains the combined electrostatic u and nonelectrostatic
ũ contributions, where the latter have their origin in the ion
hydration shell.

After observing that the effective field interaction potential
v∗[E∗

i (x), φ∗(x)] = v∗[u,w], the two coupled saddle-point
equations for the auxiliary fields can be written as

P(x) = −(βp)2

(
1

u

∂v∗

∂u

)
(E∗(x) − ∇φ∗(x))

ρ(x) − ∇ · P(x) = −(βe)
∂v∗

∂w
. (14)

Equation (14) together with Eq. (13) constitute the mean-field
description of the structured dielectric.

In order to fully formulate our field equations, we need to
define the structural potentials. For this we expand the non-
electrostatic potential in terms of its gradients and consider
explicitly the local, second-order, and fourth-order forms,

ũi j (x − x′) = ũP(0)(δi jδ(x − x′) + ξ 2 ∇′
j∇iδ(x − x′) + ζ 4∇′

k∇′
j∇k∇iδ(x − x′)) + . . . (15)

where ũP(0), ξ , and ζ are the material constants in the con-
stitutive relations. The length ξ corresponds to the solvent
particle correlation length and ζ to the solvent molecular size.

Equation (14) for P(x) can be expressed for the DM and
DLM-models as

P(x) = −λ0(βp)2Q(u)(E∗(x) − ∇φ∗(x)), (16)

where λ0 ≡ λ for the DM and λ0 ≡ 1/a3 for the dipolar
Langevin model. Writing

E∗(x) = uP(0)P(x) − F (∇ · P(x)) (17)

we can express the polarization field as

P(x) = λ0(βp)2Q(u)

1 + λ0uP(0)(βp)2Q(u)
(∇φ∗(x) + F (∇ · P)). (18)
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FIG. 1. G∗(u) in the DM model (blue line) and the lowest-order
nonlinear approximation to G∗(u) in an expansion around the mini-
mum (brown line); linear approximation to the central region of the
function (red line)

The function Q(u) for the DM model can be written in the
form

Q(u) = G(u) ≡ 1

u

d

du

(
sinh(u)

u

)
(19)

while for the DLM model it reads as

Q(u) = H(u) ≡ u

sinh(u)
G(u). (20)

The highly nonlinear dependence of the field equations on
the polarization field and the electrostatic field via the function
Q(u) is illustrated in Fig. 1 for the DM model. It shows the
function

G∗(u) = λ(βp)2G(u)

1 + λuP(0)(βp)2G(u)
(21)

together with the lowest-order nonlinear approximation from
its Taylor-expansion around its minimum.

G∗(u) saturates at both small and large arguments and lin-
early interpolates between the two limiting values; see Fig. 1.

V. LINEAR MODEL EQUATIONS

In view of the complexity of the fully nonlinear equations,
we restrict our calculations in the following to the linear case,
identical for the DM and DLM models, corresponding to the
lowest-order term in Eq. (21). Truncating the nonelectrostatic
structural interaction potentials Eq. (15) after the second-order
and fourth-order derivative terms, respectively, we refer to the
resulting expressions as Models 1 and 2. As the energy Eq. (8)
is already first order in the derivatives, the simplest possible
local interaction for the ion density-polarization coupling is

ũ(x − x′) = α δ(x − x′) + . . . (22)

where α can be interpreted as the strength of the hydration
shell of the ions. Considering an ion with effective radius
a, charge e, and polarization of the hydration shell Pn with
a hydration (free) energy FHY , we are led to identify α =
1
3FHY a/(Pne). Including the ion density-polarization nonelec-
trostatic coupling given to the lowest order, we term this

expression Model 3. We now formulate the equations of these
models explicitly.

Model 1. Stopping at the second-order derivative term in
Eq. (15), we have from Eq. (13) for the structural part the
relation

E∗(x) = uP(0)(P(x) − ξ 2∇(∇ · P(x))). (23)

Employing the linearized saddle-point Eq. (14) with

v∗[E∗(x), φ∗(x),∇φ∗(x)] = (βe)2φ∗(x)2 + λ(βp)2

6 u(x)2,

we can eliminate the field E∗(x) and find

uP(0)ξ 2∇(∇ · P(x)) −
(

uP(0) + 3

λp2

)
P(x) = −∇φ∗(x)

∇(ε∞ε0∇φ∗(x)+P(x)) = 2(βe)2λsφ
∗(x). (24)

The coupled equations for φ∗(x) and P(x) correspond to the
equations derived in Ref. [37] with an opposite sign of the
polarization field.

As in Refs. [14,37] we introduce the polarization potential
φ†(x) which can be defined via

P(x) = (ε − ε∞)ε0∇φ†(x), (25)

making use of the identification

εε0 ≡ ε∞ε0 +
1
3λp2

1 + uP(0) 1
3λp2

(26)

that relates the structural coupling uP(0) to the dielectric con-
stants and the strength of the water dipole. Integrating the
equation for P, using the definition Eq. (26) and defining

ξ̂ 2 ≡ (ε − ε∞)ε0uP(0) ξ 2, (27)

the mean-field equations for our Model 1 read as

∇2φ†(x) = ξ̂−2
(
φ†(x) − φ∗(x)

)
, (28)

∇2φ∗(x) = ε
ε∞

κ2
Dφ∗(x)

+ ξ̂−2

(
ε

ε∞
− 1

)(
φ∗(x) − φ†(x)

)
, (29)

in which the inverse square of the Debye length is defined
by κ2

D ≡ 2(βe)2λs/εε0. Except for the sign of φ† these equa-
tions are the same as the Onsager-Dupuis equations [12].

Model 2. Keeping the terms up to the fourth order in
derivatives in Eq. (15), we find, introducing a second redefined
length ζ̂0,

ζ̂0
4 ≡ (ε − ε∞)ε0uP(0) ζ 4 (30)

the set of equations

ζ̂0
4∇2∇2φ†(x) − ξ̂ 2∇2φ†(x) = φ∗(x) − φ†(x),

∇2φ∗(x) +
(

ε

ε∞
− 1

)
∇2φ†(x) = ε

ε∞
κ2

Dφ∗(x), (31)

which depend on three characteristic lengths, 1/κD, ξ , and ζ0.
Model 3. The ion density-polarization coupling is incorpo-

rated via the lowest-order expansion Eq. (22) and gives rise to
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the following equations for the electrostatic and polarization
potentials (for details on the derivation, see Appendix B),

ζ̂ 4∇4φ†(x) − ξ̂ 2∇2φ†(x) + α̂2∇2φ∗(x)

= φ∗(x) − φ†(x),( ε

ε∞
− 1

)
[1 − α̂2∇2]∇2φ† + ∇2φ∗

= ε

ε∞
κ2

Dφ∗ (32)

with the additional length ζ̂

ζ̂ 4 ≡ w(uP(0)ζ 4 − α2ε∞ε0)(ε − ε∞)ε0 = ζ̂ 4
0 − α̂4

(
ε

ε∞
− 1

)
,

(33)
where the definition α̂2 ≡ αε0ε∞ has been introduced. This
model obviously depends on all four characteristic lengths
that we consider in this model catalog.

Finally, we note that the linear saddle-point equations,
coupling the electrostatic and polarization potentials, are gen-
erally of higher than the second order, entailing a nonlocal
dielectric response of the bulk media, as has been observed
already in the analysis of the seminal work of Onsager and
Dupuis on the dielectric response of ice [14,15].

VI. DECOUPLING AND SOLVING THE EQUATIONS

Since we will consider one-dimensional geometries like
a slit geometry −L � z � L or a single-plate geometry 0 �
z < ∞ we assume x ≡ (0, 0, z) and the mean-field equa-
tions reduce to ordinary differential equations. The first step
in solving these equations is then the decoupling of the elec-
trostatic and polarization potentials, φ∗ and φ†, respectively.

Solving the saddle-point equations in a slit or a single
boundary geometries entails the knowledge of appropriate
boundary conditions. Here one can follow two different ap-
proaches. First, since the key feature of our description is the
decoupling of the degrees of freedom of the electrostatic field
and the polarization field, this translates into the requirement
of separate boundary conditions for both fields (see, e.g.,
Refs. [20,27,38]). Second, a more consistent approach would
be to introduce also the appropriate boundary energy terms
into the free energy (see, e.g., Refs. [11,27,39]) and then
derive consistently also the saddle-point boundary conditions.
Note, however, that since the free energy in general contains
higher-order derivatives, this translates into additional higher
derivative boundary conditions [40]. We will not pursue this
approach in what follows but rather postulate a set of bound-
ary conditions for all the fields.

A. Model 1

In the case of Model 1 the equations can be written in ma-
trix form d2

dz2 �1(z) = M1�1(z) with the introduction of the
composite field �1(z) ≡ (φ∗(z), φ†(z)). The coupling matrix
M1 is given by

M1 =
(

ε
ε∞

κ2
D + (

ε
ε∞

− 1
)̂
ξ−2 −(

ε
ε∞

− 1
)̂
ξ−2

−ξ̂−2 ξ̂−2

)
.

FIG. 2. The eigenvalues of the matrix M1, with λ1 � 1, as a
function of dimensionless parameter κDξ̂ . The horizontal line cor-
responds to λ = 1. Insert: The ratio of λ1 and λ2.

Diagonalizing the matrix and rescaling the eigenvalues with
λ −→ λ/̂ξ 2 lead to a quadratic eigenvalue equation given by

λ2 − λ ε
ε∞

(1 + (κDξ̂ )2) + ε
ε∞

(κDξ̂ )2 = 0, (34)

where κ± = √
λ± are then the two inverse decay lengths

corresponding to the two eigenvalues, which are both real
and positive. They correspond to the decay lengths of the
electrostatic and the polarization potentials, respectively, and
coincide with the result of the linearized Onsager-Dupuis the-
ory [15,37]. The decay lengths are shown in Fig. 2 as functions
of κDξ̂ in accord with earlier results; see Ref. [38].

In order to solve the linear model equations in confined
geometries, we also need to specify two separate boundary
conditions for −∇φ∗ · n and P · n at the bounding surface(s)
with normal vector n. Alternatively we can assume that the
bounding surfaces carry “polarization charges” σP

∇ · P(x) = ρP(x) = σPδ(z − z0), (35)

as well as the standard electric charges σ

ε∞ε0∇ · E(x) = ρ(x) = σδ(z − z0), (36)

where z is the coordinate perpendicular to the boundary. Fig-
ure 3 shows a solution of Model 1 for the case of prescribed
electric field and polarization at the boundary of a slit of width
2L, i.e., z0 = ±L. The solutions can be compared with the
results derived in Ref. [38].

B. Model 2

For Model 2 (and later Model 3), we can proceed in a
similar manner. In this case we first have to reduce the order
of the equations from four to two by introducing an auxiliary
potential ψ which in the one-dimensional geometry leads to

d2φ†(z)

dz2
= 1

ξ̂ 2
ψ (z). (37)

In terms of the three-potential composite field �2(z) ≡
(φ∗(z), φ†(z), ψ (z)) we now have the expression d2

dz2 �2(z) =

023033-5
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FIG. 3. Exemplary solutions of Model 1 for φ∗(z) (blue line) and
φ†(z) (yellow line). The boundary conditions are (φ∗)′(−L) = −E0,
(φ∗)′(L) = E0, (φ†)′(−L) = (φ†)′(L) = 0.

M2�2(z), with the coupling matrix

M2 =

⎛⎜⎜⎝
ε

ε∞
κ2

D 0 −(
ε

ε∞
− 1

)̂
ξ−2

0 0 ξ̂−2

ξ̂ 2

ζ̂ 4
0

− ξ̂ 2

ζ̂0
4

ξ̂ 2

ζ̂0
4

⎞⎟⎟⎠. (38)

The corresponding eigenvalue equations are thus of third or-
der, depending on four parameters. One can scale out one of
them, remaining with the ratios. For example, with the sub-
stitution λ −→ λ/ζ̂0

2
the characteristic polynomial is given

by an expression containing only the ratios of the model
parameters

λ3 − λ2

[(
ξ̂

ζ̂0

)2

+ ε
ε∞

(κDζ̂0)2

]
+

+ λ ε
ε∞

(
1 + (κDξ̂ )2

) − ε
ε∞

(κDζ̂0)2 = 0. (39)

In order to see the character of the roots we need to look at the
discriminant � of the cubic polynomial. Since both (κDξ̂ )2 	
1 and (κDζ̂0)2 	 1, the discriminant is approximately given
by the expression

� =
( ε

ε∞

)2
((

ξ̂

ζ̂0

)4

− 4
ε

ε∞

)
(40)

−4

(
ξ̂

ζ̂0

)2( ε

ε∞

)((
ξ̂

ζ̂0

)4

− 4.5
ε

ε∞

)
(κDζ̂0)2

−27
( ε

ε∞

)2
(κDζ̂0)4. (41)

In the limit κDζ̂0 → 0 one sees that the sign of the discrim-
inant depends on the difference ( ξ̂

ζ̂0
)4 − 4 ε

ε∞
i.e., in a highly

nonlinear way on the length-ratio ξ/ζ0 and the polarity of the
solvent.

Figure 4 shows the discriminant, Eq. (44), as a function of
ξ/ζ0 and ε/ε∞. The function is cut by the zero level such that
for positive � there are three real roots, while for negative
� there is one real and two complex conjugate roots. The
discriminant of Model 2 therefore signals a change in the

FIG. 4. The discriminant � for Model 2 as a function of ξ/ζ0 and
ε/ε∞ in relevant parameter ranges; κDζ̂0 = 10−4. For � > 0 there are
three real roots of the eigenvalue equation, while for � < 0, one real
and two complex conjugate roots arise.

character of the solutions from exponential decay to damped
oscillatory behavior.

Figure 5 displays the numerical solution of the equations of
Model 2 for the case of the plate geometry. The boundary
conditions for the fields φ∗ and φ† have been chosen in an
antagonistic fashion, which show that both fields behave as
separate entities near the wall. For distances z 
 0, both fields
merge into each other and fulfill the definition of the polariza-
tion field of Eq. (25) in the bulk.

Neglecting ionic screening altogether, i.e., κD = 0, the
equations for Model 2 can be simplified further and reduced
to a single fourth-order equation for the auxiliary field ψ (z) in

FIG. 5. Solutions to the equations of Model 2. Blue, φ∗(z);
brown, φ†(z); green, auxiliary field ψ (z). For z 
 0, the solutions
of φ∗ and φ† merge, establishing the validity of the standard relation
between the polarization and electric fields in the bulk.
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the form

ζ̂0
4
ψ iv (z) − ξ̂ 2ψ ′′(z) +

(
ε

ε∞

)
ψ (z) = 0. (42)

Apart from the definition of the constants, the basic equa-
tion then reduces to the form introduced in Ref. [11].
We note that fourth-order equations can also be obtained
by considering quadrupole coupling terms pertinent to the
quadrupolarizable solvent models [41,42].

Making the substitution κ −→ κ/ζ̂0, so that the decay
length is in units of ζ̂ , the characteristic polynomial for the
inverse decay length, Eq. (42), can be obtained in the simple
form

κ4 − κ2

(
ξ̂

ζ̂0

)2

+ ε

ε∞
= 0. (43)

The solution for the eigenvalues are then of two types, real
and complex, depending on the sign of the discriminant

� =
(

ξ̂

ζ̂0

)4

− 4
ε

ε∞
, (44)

which amounts to the identical dependence found in the dis-
criminant � of the full system of equations. In the case of
ξ̂ 2 >

√
4ε/ε∞ ζ̂0

2
, the eigenvalues are real and obtained as

κ1,2,3,4 = ± 1√
2

((
ξ̂

ζ̂0

)2

± δ1/2

)1/2

, (45)

while for ξ̂ 2 � √
4ε/ε∞ ζ̂0

2
, the eigenvalues are complex con-

jugate pairs and given by

κ1,2,3,4 = ±(κd ± iκo), (46)

where

κd,o = 1

2

⎛⎝((
ξ̂

ζ̂0

)4

+ (−δ)

)1/2

±
(

ξ̂

ζ̂0

)2
⎞⎠1/2

. (47)

This last case is also the one considered in Ref. [11]. Clearly,
even with the fourth-order derivative polarization functional,
the corresponding characteristic lengths can be real so that
periodic solutions are not universal but depend on the sign of
the discriminant Eq. (44). Since ζ0 is comparable to the size
of the molecule and ξ is the macroscopic correlation length,
the periodic solutions are expected for sufficiently polar media
4ε/ε∞ 
 1.

C. Model 3

A similar, albeit approximate solution can be found for
the case of Model 3 when one neglects the solvent molecular
length ζ compared with the ion density-polarization coupling
α. We then have the coupling matrix for the composite poten-
tial �3(z) ≡ (φ∗(z), φ†(z), ψ (z)) by the expression

M3 =

⎛⎜⎜⎝
α̂−2 −α̂−2 α̂−2

0 0 ξ̂−2

( ξ̂

α̂ )
2− ε

ε∞ (κDξ )2

( ε
ε∞ −1)̂α2 − ( ξ̂

α̂ )
2

( ε
ε∞ −1)̂α2

( ξ̂

α̂ )
2+( ε

ε∞ −1)

( ε
ε∞ −1)̂α2

⎞⎟⎟⎠.

(48)

FIG. 6. The discriminant � for Model 3 as a function of ξ̂ /α̂ and
ε/ε∞ in relevant parameter ranges; κDζ̂ = 10−4. For � > 0 there are
three real roots of the eigenvalue equation, while for � < 0, one real
and two complex conjugate roots arise.

The corresponding characteristic polynomial is again of third
order and contains four model parameters. Choosing one of
them, e.g., α̂, and rescaling the roots by λ −→ λ/α̂2 the
characteristic polynomial comes out as

λ3− λ2

⎡⎢⎣
(

ξ̂

α̂

)2
+ 2

(
ε

ε∞
− 1

)
( ε
ε∞

− 1)

⎤⎥⎦ +

+ λ

ε
ε∞

(1 + (κDξ̂ )2)(
ε

ε∞
− 1

) −
ε

ε∞
(κDα̂51)2(
ε

ε∞
− 1

) = 0. (49)

Comparing this expression with Eq. (39) we see that apart
from the denominator ( ε

ε∞
− 1) there is an almost complete

correspondence between the molecular length ζ and the sec-
ondary hydration structural length α. The discussion of the
discriminant � of the cubic polynomial for Model 3, therefore,
shows the same characteristic behavior as for Model 2. The
criterion for the change of the eigenvalue spectrum from real
to real and complex conjugates is for this model replaced by
the expression(

ξ̂

α̂

)2

< 2
[
1 − ε

ε∞

(
1 − (1 − ε∞

ε
)1/2

)]
, (50)

which in the limit ε 
 ε∞ reduces to ξ 2/α̂2 < 1. Since by
definition α̂2 can be negative, in this case the eigenvalues are
always real and complex conjugates; in the case α̂2 > 0, if the
correlation length is larger than the ion-density polarization
coupling, all eigenvalues are real. The plot of the discriminant
for the case α̂2 > 0 is shown in Fig. 6.

Profiting further from our insights from Model 2, we also
consider the case of a vanishing Debye-screening length in
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FIG. 7. Solutions of the equations of the reduced Model 3,
Eq. (51); φ∗(z) (blue line); φ†(z) (brown line); see Appendix D for
the analytic expressions for φ∗(z) and φ†(z).

Model 3. We then find the expression

ζ̂0
4
(φ†)iv −

(
2α̂2

(
ε

ε∞
− 1

)
+ ξ̂ 2

)
(φ†)′′ + ε

ε∞
φ† = 0.

(51)
Clearly the hydration coupling corresponds to secondary hy-
dration effects with the square of the effective structural
correlation length given by 2α̂2( ε

ε∞
− 1) + ξ̂ 2. Making the

substitution κ −→ κ/(( ε∞
ε

)1/4ζ̂0), the characteristic polyno-
mial of Eq. (58) can be obtained in the simple form

κ4 − κ2
(ε∞

ε

)1/2
(

2

(
α̂

ζ0

)2

(
ε

ε∞
− 1) +

(
ξ̂

ζ̂0

)2)
+ 1 = 0.

(52)

Equivalently, one can choose a different rescaling κ −→
κ/(( ε∞

ε
)(2α̂2( ε

ε∞
− 1) + ξ̂ 2))1/2 which then leads to the char-

acteristic equation(
ε∞
ε

)3

ζ̂0
4
(

2α̂2

(
ε

ε∞
− 1

)
+ ξ̂ 2

)2

κ4 − κ2 + 1 = 0. (53)

The case ( ε∞
ε

)3ζ̂0
4
(2α̂2( ε

ε∞
− 1) + ξ̂ 2)2 > 1/2 has been dis-

cussed in Ref. [43] in the context of ionic liquids but is
formally equivalent to the above case. The exact profile for
the case of a planar charged surface 0 � z < ∞ is given in
Appendix D. The corresponding profiles for φ∗(z) and φ†(z)
are shown in Fig. 7.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have derived a field-theoretic description
of structured liquid dielectrics, taking the Onsager-Dupuis
theory of ice as a motivation. Starting from the introduction
of two separate order parameters for the polarization field of
the solvent and the charge density of the solvated ions, we
provide a general formalism to introduce a family of models of
different degrees of coarse-graining. Considering a harmonic
approximation for the free energy of the polarization field and
a DM for the solvent, we derive novel nonlinear equations that
emerge from the present theory.

As a first application we discuss three models defined in the
linear limit of the theory, which lead to coupled differential

equation systems for the electrostatic and polarization poten-
tials. The generic behavior of the solutions is determined from
a decoupling of these equations. The resulting discriminants
of the eigenvalue equations define the solution behavior as
functions of model structural lengths and solvent polarity.
Since the model equations allow for independent boundary
conditions for the electrostatic and polarization potentials,
they have a high flexibility in the discussion of physical sys-
tems, which we illustrate for plate and slab geometries. In the
case of the ion charge-density-solvent polarization coupling,
our approach allowed us to describe the case of secondary hy-
dration effects where the structural solvent correlation length
has solvent as well as ion contributions.

We believe that, beyond the introduction of our approach
and first results in the linear regime, our theory is capable of
addressing a wide class of continuum models for polarization
phenomena in confined solvents, in particular phenomena per-
tinent to the nano-confined aqueous systems [25,26]. Recent
experimental work has shown that the observed oscillatory
behavior of electrostatic and hydration forces is largely de-
termined by the bulk ion and polarization charges, while the
solution pH essentially determines the boundary conditions
[44]. Our work is straightforwardly amenable to further ex-
tensions, allowing for nonlinear polarization functionals in
the bulk as well as the incorporation of surface polarization
functionals.
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APPENDIX A: COLLECTIVE DESCRIPTION AND FIELD
THEORY

To express the partition function in the form of a field the-
ory, we take the same approach as with anisotropic Coulomb
fluids [31], the outlines of which we briefly reiterate below.

We write the total energy with two collective variables,
the polarization and the charge density, Eqs. (1) and (4), by
introducing the decomposition of unity

1 ≡
∫

D[Pi(x)] �xδ(Pi(x) − P̂i(x))

×
∫

D[ρ(x)] �xδ(ρ(x) − ρ̂(x)) (A1)

together with the functional integral representation of the delta
functions in terms of their respective auxiliary fields Ei(x),
φ(x):

�xδ(Pi(x) − P̂i(x)) −→
∫

D[Ei(x)] e−iEi (x)(Pi (x)−P̂i (x))

�xδ(ρ(x) − ρ̂(x)) −→
∫

D[φ(x)] e−iφ(x)(ρ(x)−ρ̂(x)). (A2)

Notably, we introduce the microscopic polarization as a sepa-
rate order parameter, independently of the ion charge density.
This will eventually lead to a two-order-parameter representa-
tion of the partition function.
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Using these relations in the definition of the grand canoni-
cal partition function

� ≡
∑

N

λN

N!

∑
N+

∑
N−

λ
N+
(+)λ

N−
(−)

N+!N−!

×
∫

D[xN ]D[nN ]
∫

D[xN±] e−βH[xN ,xN± ], (A3)

with λ and λ(±) as the absolute activities of the dipolar and
ionic components, the introduction of collective variables
Pi(x) and ρ(x) leads to the following field-representation of
the partition function

� =
∫

D[Pi(x)]D[Ei(x)]
∫

D[ρ(x)]D[φ(x)]

× e−βH̃[Pi (x), ρ(x);Ei (x),φ(x)]−V [Ei (x),φ(x)]. (A4)

The field action above decouples into two terms, of which the
first one βH̃[Pi(x), ρ(x); Ei(x), φ(x)] depends on the collec-

tive order parameters Pi(x) and ρ(x) as well as the auxiliary
fields

βH̃[Pi(x), ρ(x); Ei(x), φ(x)]

= 1

2

∫ ∫
V

dxdx′ Pi(x)ũi j (x − x′)P j (x′)

+ 1

2

∫ ∫
V

dxdx′ ρ(x)u(x − x′)ρ(x′)

+ i
∫

V
dx Pi(x)Ei(x) + i

∫
V

dx ρ(x)φ(x) (A5)

and is a sum of the interaction Hamiltonian for nonelec-
trostatic polarization interactions and Coulomb interactions
between mobile and bound charges.

The second component, the effective field interaction
potential, corresponding to the integration over the configu-
rational variables xN , nN and xN± of the solvent dipoles and
electrolyte ions, depends only on the auxiliary fields Ei(x) and
φ(x) as

V [Ei(x), φ(x)] ≡ log

( ∑
N

∑
N+

∑
N−

λN

N!

λN+
(+)λ

N−
(−)

N+!N−!

∫
D[xN ]D[nN ]

∫
D[xN±] e−βH̃∗[Ei (xi ),φ(xi )]

)

= λ

∫
V

d3x
∫

�

dn e−ipni

(
Ei (x)−∇iφ(x)

)
+ 2λs

∫
V

d3x cos βeφ(x)

=
∫

V
d3x

(
λ

∫
�

sin θdθ e−ip cos θ |Ei (x)−∇iφ(x)| + 2λs cos βeφ(x)

)

= λ

∫
V

d3x

(
sin p|Ei(x) − ∇iφ(x)|

p|Ei(x) − ∇iφ(x)| + 2λ̃s cos βeφ(x)

)
=

∫
V

d3r v(Ei(x), φ(x)),

(A6)

where the single-particle configurational Hamiltonian is

βH̃∗[Ei(xi ), φ(xi )] = −i p
∑

N

ni
(
Ei(xi ) − ∇iφ(xi )

) −

−i
∑
N+

φ(xi ) + i
∑
N−

φ(xi ). (A7)

We have rescaled all the interaction energies in terms of the
thermal energy and assumed that the salt ion activities are
the same, λ(+) = λ(−) = λs [34,36]. Note that above we also
redefined λs/λ −→ λ̃s.

Equation (A6) describes an ideal van’t Hoff gas of ions
and dipoles, corresponding to the DM. This expression differs
from the standard Coulomb fluid field-theoretical representa-
tion of the partition function [32,33] by the presence of two
additional independent fields Pi(x) and Ei(x). The saddle-
point evaluation of the partition function is taken with respect
to the auxiliary fields Ei(x) −→ iE∗

i (x) and φ(x) −→ iφ∗(x).
The partition function is then approximated by

− ln � −→ βH[Pi(x), ρ(x); iE∗
i (x), iφ∗(x)], (A8)

where the effective-field Hamiltonian is obtained from the par-
tial trace over coordinate and orientation degrees of freedom

for the ions and dipoles in the partition function interacting
via the interaction energy functional Eq. (9).

The expression for the effective field interaction po-
tential V ∗[Ei(x), φ∗(x)] = V [iE∗

i (x), iφ∗(x)] depends cru-
cially on the model used for the dipolar fluid; see the
main text. The saddle-point form of the DM effective
field interaction potential V ∗[iE∗

i (x), iφ∗(x)] can be fi-
nally written explicitly in the form of Eq. (A6) but
with sin βp|E∗(x) − ∇φ∗(x)| −→ sinh βp|E∗(x) − ∇φ∗(x)|
and cos βeφ∗(x) −→ cosh βeφ∗(x).

APPENDIX B: HYDRATION SHELL COUPLING AND THE
DERIVATION OF Model 3

Since it couples the ion density and polarization, the mi-
croscopic hydration energy of Model 3 is actually of the form

HHY = 1

2

∫ ∫
V

dxdx′ ρ̂(±)(x)ũ(x−x′)∇ ·P̂(x′), (B1)

where the potential ũ(x − x′) is a short-range, nonelectrostatic
potential describing the hydration shell interactions. We as-
sumed that the hydration polarization for anions and cations
is—apart from the direction—the same. This could be of
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course elaborated further. Notice, however, that the hydration
energy can be recast as

HHY = 1

2

∫ ∫
V
dxdx′(ρ̂(x) − ∇ ·P̂(x)

)
ũ(x−x′)∇ ·P̂(x′),

(B2)

so that the last term would just rescale the potential ũi j (x − x′)
in Eq. (5)

ũi j (x − x′) −→ ũi j (x − x′) + ũ(x − x′)∇i∇′
j, (B3)

and if we take the nonelectrostatic potential to the second
order in derivatives this simply means a rescaling of the corre-
sponding constants, which is irrelevant. The hydration energy
can thus be simply taken as∫ ∫

V
dxdx′ ρ̂(x)ũ(x − x′)∇ · P̂(x′), (B4)

which is what we use in the main text, Eq. (8). If the hydration
shell of anions and cations differ, the proper Ansatz would
then be ∫ ∫

V
dxdx′ ρ̂(+)(x)ũ+(x − x′)∇ · P̂(x′) +

+
∫ ∫

V
dxdx′ ρ̂(−)(x)ũ−(x − x′)∇ · P̂(x′), (B5)

where the ũ’s are now the nonelectrostatic hydration shell
potentials, different for different types of ions.

In the case of the mean-field approximation, the Model 3
saddle-point equations are reduced to

φ∗(x) =
∫

V
dx′ u(x − x′)ρ(x′)+ (B6)∫

V
dx′ ũ(x − x′)∇ · P(x′) (B7)

and

E∗(x) = −α∇ρ(x) + uP(0)P(x) − F (∇ · P(x)), (B8)

where F is considered up to fourth order. With

ũ(x − x′) = α δ(x − x′) + . . . (B9)

the expression for φ∗(x) simplifies to

φ∗(x) =
∫

V
dx′ u(x − x′)ρ(x′) + α∇ · P(x). (B10)

Applying the Laplacian on the last equation yields

ρ(x) = αε∞ε0∇2∇ · P(x) − ε∞ε0∇2φ∗(x). (B11)

Combining everything together into the final set of saddle-
point equations for the ion density polarization coupling case
we remain with

E∗(x) = uP(0) − F (∇ · P(x)) (B12)

−α2ε∞ε0∇2∇(∇ · P(x)) + αε∞ε0∇2(∇φ∗(x)). (B13)

The α-coupling therefore modifies the fourth-order coefficient
of the expansion of the nonelectrostatic potential.

TABLE I. Model parameters

Symbol Meaning Value

1/κD Debye length ∼ 10 nm
ξ Bulk water correlation length 1–10 nm
ζ Water molecular size 0.3 nm
ε Bulk dielectric constant 5–80
ε∞ Dielectric constant first dispersion 4–10
α Ion density-polarization coupling ± 0.5–5 nm

APPENDIX C: MODEL PARAMETRIZATION

For numerical calculations of the solutions shown in the
paper, we employ parameters chosen according to the ranges
indicated in Table I. The coupling parameter of the structural
interactions, uP(0)ε0, can be obtained from Eq. (26) in the
main text, slightly rewritten in order to make the dimensional
dependencies explicit. It then reads as

( ε

ε0
− ε∞

ε0

)
=

λp2

3ε0

1 + uP(0)ε0
λp2

3ε0

, (C1)

where λ is the fugacity and p the dipole moment in the DM.
The form of this relation would remain unchanged if one
considers the dipolar Langevin model, but the values of the
constants would have a different meaning. We consider these
differences as irrelevant at this stage, since we are mainly
interested here in qualitative features of the theory. By dimen-
sional analysis, one has

[λ] = J−1m−3, [p] = Cm, [ε0] = C2

Jm
. (C2)

In order to connect the value for uP(0)ε0 with a measurable
macroscopic property, we invoke an additional relation

1 + λp2

3ε0
= ε

ε0
, (C3)

which has been used [36]. For the standard values for wa-
ter, ε = 80, ε∞ = 4, we have uP(0)ε0 = 5 · 10−4. The hatted
parameters can then be computed from the bare lengths by
multiplication with a factor ≈0.038.

APPENDIX D: THE ANALYTIC SOLUTION FOR THE
REDUCED Model 3 IN THE PLATE GEOMETRY

The analytic solution for the reduced Model 3 in the slab
geometry can be obtained by making recourse to the SI of
Ref. [43]. Defining

δ2
c ≡

(
ε∞
ε

)3

ζ̂0
4
(

2α̂2

(
ε

ε∞
− 1

)
+ ξ̂ 2

)2

, (D1)

one has, for δc > 1/2, the exact solution in the slab geometry
given by

φ†(z) = Pce−κ1z[cos(κ2z) + A sin(κ2z)] (D2)
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with

κ1 =
√

2δc + 1

2δc
, κ2 =

√
2δc − 1

2δc
(D3)

and

A = −
√

2δc + 1(δc − 1)√
2δc − 1(δc + 1)

. (D4)

From this solution, φ∗(z) follows via the expression

φ∗(z) = −
(

ε

ε∞
− 1

)(
1 − α̂2γ

d2

dz2

)
φ†(z) (D5)

with

γ ≡
(

2α̂2

(
ε

ε∞
− 1

)
+ ζ̂ 2

)−1

. (D6)
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[14] D. W. R. Gruen and S. Marčelja, Spatially varying polarization
in ice, J. Chem. Soc., Faraday Trans. 2 79, 211 (1983).
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