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Learning the crystal structure genome for property classification

Yiqun Wang,1 Xiao-Jie Zhang,2 Fei Xia,3 Elsa A. Olivetti,4 Stephen D. Wilson,5 Ram Seshadri,5 and James M. Rondinelli 1,*

1Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
2Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China

3Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
4Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

5Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, USA

(Received 12 March 2021; revised 15 February 2022; accepted 11 March 2022; published 11 April 2022)

Materials property predictions have improved from advances in machine learning algorithms, delivering
materials discoveries and novel insights through data-driven models of structure-property relationships. Nearly
all available models rely on featurization of materials composition, however, whether the exclusive use of
structural knowledge in such models has the capacity to make comparable predictions remains unknown. Here we
employ a deep neural network model to decode structure-property relationships in crystalline materials without
explicitly considering chemical compositions. The focus is on classification of crystal systems, mechanical
elasticity, electronic band gap, and phase stability. Our model utilizes a three-dimensional (3D) momentum space
representation of structure from elastic x-ray scattering theory that exhibits rotation and permutation invariance.
We perform novel ablation studies to help interpret the model performance by perturbing the physically
meaningful input features (i.e., the diffraction patterns) instead of tuning the architecture of the learning model as
in conventional ablation methods. We find that the spatial symmetry of the 3D diffraction patterns, which reflects
crystalline symmetry operations, is more important than the diffraction intensities contained within for the model
to make a successful classification. Our work showcases the potential of using statistical learning models to
help understand materials physics, rather than performing predictive and generative tasks as in most materials
informatics research. We also argue that learning the crystal structure genome in a chemistry-agnostic manner
demonstrates that some crystal structures inherently host high propensities for optimal materials properties,
which enables the decoupling of structure and composition for future codesign of multifunctionality.
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I. INTRODUCTION

One of the most frequently used phrases in materials
research is “structure-property relationships.” It forms the cor-
nerstone of forward and inverse system-level-based materials
design [1,2], and it is principally used in two modalities: (i) to
exclusively describe relationships for a single material family,
such that the composition is fixed, and dependencies arise
from processing-based microstructural changes, or (ii) to ex-
plicitly describe effects arising from changes in composition,
which inadvertently contracts the full structure-composition-
property relationship phrase despite chemical dependencies
dominating structural changes. Admittedly, both atomic struc-
ture and chemistry mutually determine materials properties
[Fig. 1(a)]. The intimate interwoven description of what
defines a material—the elemental species involved and the
crystallographic structure the atoms adopt once bonded to-
gether given a fixed ratio—and which physical properties can
live in various structures pose a challenge for novel materials
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design and discovery. With the absence of theoretical or sta-
tistical guidance, materials scientists need to search through a
combinatorial space spanned by both chemical compositions
as well as structure types [3].

Despite the key role chemistry plays in physical properties,
condensed-matter physicists have harnessed effective theoret-
ical models, e.g., Hubbard, Heisenberg, and Fu-Kane models,
etc., based on different interactions, orbital symmetries, and
topologies to describe the electronic and magnetic phases of
materials without explicitly encoding material composition.
The premise relies on recognition that the low-energy elec-
trons comprising atoms interact on a lattice, which may be
mapped onto a (portion of a) known crystal structure. Even
with modern computational simulations, e.g., those based
on density functional theory (DFT), chemical information is
only included in the form of atomic orbitals at each crys-
tallographic site and their corresponding atomic numbers to
provide a potential for the electrons to interact. To that end,
we pose the following question: Is it possible to marginal-
ize compositional information and understand to what extent
crystal structure exclusively determines materials properties?

In this work, we address this question using a statistical
learning-based method, leveraging open access to numerous
materials databases [4–7] and recent advances in materials
informatics tools [8–11]. Many machine learning (ML) mod-
els exploiting these data have successfully predicted materials
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FIG. 1. Workflow for constructing a machine learning model to learn (a) structure-property relations without featurization of chemical
composition. The process begins with (b) the real-space crystal structure representation (in either the conventional cell or primitive cell),
which is transformed into a (c) momentum space representation by simulating the three-dimensional (3D) x-ray diffraction pattern, which is
represented as a point cloud. Only diffraction points within the limiting sphere are physically observable. (d) We then construct the model to
learn directly from the point cloud data to accomplish (e) property-classification tasks.

properties: local connectivity-based models [12] and graph
neural networks [13–15] have achieved DFT-level perfor-
mance, and have helped accelerate the discovery of novel
functional materials [16–18]. Here, we learn the materials
structure-property relationship from crystal structure alone,
without use of chemical composition as illustrated in Fig. 1(a),
to make classifications on a variety of properties including
crystal system, elasticity, metallicity, and stability.

Most existing materials informatics models typically uti-
lize both structural and compositional information as features
in order to achieve high predictive performance. In contrast,
the goal of this study is to understand the relative contribution
and significance of crystal structures to materials properties,
which is enabled by learning from incomplete materials struc-
tural descriptors without chemical compositions. Specifically,
we use a momentum-space representation of crystal structures
in the form of simulated x-ray diffraction (XRD) patterns to
generate a three-dimensional (3D) point cloud, which serves
as a unique structural fingerprint of each material. We then
construct and train a deep neural network (DNN), which is
invariant under rotation and permutation operations on the in-
put 3D XRD patterns, to perform property classifications. By
concealing and perturbing information in the 3D point cloud
fed to the DNN, we ascertain that crystal structure plays a de-
cisive role in all aforementioned property prediction tasks, yet
the relative significance is unique to each material property.
We also achieve similar predictive performance using other
machine learning classification models with the same descrip-
tors, from which we argue that our findings are general, so that
one should focus more on the resulting analyses (i.e., physical
interpretations) rather than the model architecture (i.e., open-
ing the black box). Our findings reveal the correlation between
crystal structures and multiple common materials properties,
which could enable codesign of functional materials by pri-
oritizing optimization of crystal structure or composition to
achieve desired performances.

II. METHODOLOGY

A. Materials representation

A perfect crystal under periodic boundary conditions in
real space is mathematically described as the convolution of
its Bravais lattice (BL) and the atomic structure of the asym-

metric unit (motif) within the unit cell [Fig. 1(b)]. Owing to
the periodicity in real space, materials scientists typically use
diffraction-based methods (e.g., x-ray or neutron scattering) to
determine crystal structures. The process of x-ray diffraction
is the mathematical equivalence of a Fourier transform (F); it
converts the real-space crystal structure into momentum space
and forms a new reciprocal-space lattice exhibiting intensities
dependent on the so-called structure factor (F ) as:

F (BL ∗ motif) = F (BL) · F (motif)

= (reciprocal lattice) · Fhkl , (1)

where ∗ and · are the convolution and product operations, re-
spectively, and h k l are integer labels of the reciprocal lattice
points that correspond to the Miller indices for lattice planes
in real space. The aforementioned real-space convolution rela-
tionship then becomes a product between the reciprocal lattice
and structure factor Fhkl based on the convolution theorem.
The physical observable from XRD is the diffraction intensi-
ties Ihkl (real), not the structure factors Fhkl (complex). Rather,
Ihkl is proportional to the square modulus of the structure
factor |F |2 = F ∗

hkl · Fhkl , where ∗ is the complex conjugate.
Fhkl serves as the Fourier series coefficients of the real-space
periodic electron density ρ(r) derived from atoms located at
r j in the unit cell:

Fhkl = 1

Vcell

N∑
j=1

f j (ghkl )e
2π i(ghkl ·r j ) , (2)

where f j (ghkl ) represents the atomic scattering factor for atom
j at reciprocal point ghkl :

f j (ghkl ) =
∫

dr j ρ(r j )e
2π i(ghkl ·r j ) . (3)

Given the intensity Ihkl encodes both atomic structure and
electron density information, we propose to utilize it as a 3D
momentum space representation for predicting physical prop-
erties of crystalline materials without explicit compositional
features. The diffraction intensity values reflect the number
of electrons associated with an ion or element in a material.
Owing to the infamous phase problem in crystallography—
the complex phase factor is lost upon calculating the square
modulus of Fhkl —reconstructing the original electron density
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TABLE I. The machine learning model is trained on the 3D point-cloud representation of materials from the Materials Project database,
but the number of materials used for different classification tasks varies due to data availability. The classification boundary values are chosen
so as to ensure class balance. Eg, B, H , and EH represent the electronic band gap, bulk modulus, shear modulus, and energy above the convex
hull, respectively.

Classification Task Total Compounds Class Distribution

Metallicity 74,108 36,451 with Eg = 0 eV (metal) and 37,657 with Eg > 0 eV (insulator)
Elasticity 13,176 6,582 with B > 85 GPa and 6,472 with G > 34 GPa
Phase Stability 139,029 58,027 stable compounds with EH < 20 meV atom−1

function through a direct inverse Fourier transform, however,
is not feasible. Chemical composition identification/inference
is then nearly impossible for our model. The spatial distri-
bution of diffraction intensities, however, are unique to each
material as they depend on crystal symmetries of the atomic
structure [19]. Therefore, we use the intensity distribution as
the structural signature from which to make classifications on
materials properties. Since the mapping functions from the
diffraction intensity Ihkl to the target materials properties are
unknown [Fig. 1(a), purple arrow], we use machine learning
models to decode the structure-property relationship as they
are ideal candidates for function approximation given enough
training data. Owing to the fact that existing experimental
methods typically access a 2D slice of the full 3D diffraction
patterns, and not all experimental XRD patterns are readily
available in open databases, we simulate the full 3D patterns
using a modified version of the XRD calculator implemented
in PYMATGEN [20], the implementation details are available at
the project GitHub [33].

We retrieved materials data from the Materials Project
database [4]. We obtained a data set comprising 139 367 ma-
terials with the following specified properties: crystal system,
bulk modulus (B), shear modulus (G), electronic band gap
(Eg), and energy above the convex hull (EH ). All materials
properties utilized herein were simulated using DFT by the
Materials Project. Since not all properties are available for
every compound in the database, the total number of mate-
rials for each classification task differs (Table I). We assigned
thresholds as shown in Table I for different classification tasks
to ensure physically meaningful class boundaries (e.g., metals
and insulators), while maintaining a well-balanced data set.
For instance, the median value of bulk modulus (85 GPa) was
used to partition the data set into two classes with different
stiffness for binary classification.

For each material, we first construct its primitive standard
cell using the DFT-relaxed crystal structure reported by the
Materials Project. (A conventional standard cell can also be
used to achieve comparable performance, however, we report
property classification results here using the primitive cell. It
is the physical structural unit for the scattering process. In ad-
dition, using experimental crystal structures should lead to the
same statistical results as reported later.) Then, we simulate
its 3D XRD pattern using Cu Kα radiation (λ = 1.5418 Å).
Under our kinematic approximation, only reciprocal lattice
points (h k l) within the limiting sphere of radius 4π/λ exhibit
finite diffraction intensity while the intensity in the remainder
of momentum space is strictly zero [Fig. 1(c)]. The initial
features for each material then comprise a set of {[hi, ki, li, Ii] |
i ∈ [1, n]} diffraction points, where n is the total number of

points within the limiting sphere. Since the shape and size of
the reciprocal lattice vary from material to material, as they
are dependent on the crystalline symmetry and real-space lat-
tice constants, each compound exhibits unique (i) diffraction
point (ghkl ) density, (ii) configuration of these points within
the limiting sphere, and (iii) intensity values of these points.
In other words, using (h k l ) indices alone may not be a good
descriptor for structures across different crystal systems; the
ordering of basis vectors can be defined arbitrarily. [One could
permute randomly the three reciprocal basis vectors, which
leads to a different (h k l ) indexing, yet the underlying crystal
remains invariant.] Therefore, we further convert the (h k l )
indices of each diffraction pattern to Cartesian coordinates
using the reciprocal lattice vectors. The locations of diffrac-
tion points are thus described explicitly within the reciprocal
space. We also take the natural log of the intensity values,
ln(I + 10−6), and normalize them to bring all features to a
similar scale (i.e., within [0, 1]). Implementation details are
available in Appendix A.

Since each material has a different diffraction point density
within the limiting sphere, we define a fixed number of ghkl

points n to featurize all compounds. We discuss the impact of
n on model performance later. Note that n is a variable from
which we can infer materials physics; it is not a hyperparam-
eter for tuning the machine learning model. Naively, a larger
n contains more information (i.e., lattice planes with smaller
distance, higher structural resolution), and we are interested in
inspecting the model performance as a function of the amount
of information presented to it. To that end, we specifically
consider five different n values, which is determined by the
range of Miller indices included in the feature set:

Reciprocal points (1 0 0), (0 1 0), (0 0 1), n = 3 points;

Reciprocal points (0 0 0), (1 0 0), (0 1 0), (0 0 1), n = 4
points;

Miller indices h k l ∈ {1̄, 0, 1}, n = 27 points;

Miller indices h k l ∈ {2̄, 1̄, 0, 1, 2}, n = 125 points; and

Miller indices h k l ∈ {3̄, 2̄, 1̄, 0, 1, 2, 3}, n = 343 points.

For instance, in the n = 125 case, we include all com-
binations of h k l within {2̄, 1̄, 0, 1, 2}, for a total of 125
points, into the feature set. The point-cloud representa-
tion of some common crystals are shown in Fig. 2, from
which we can see the diversity in point density, shape, and
diffraction intensity across different materials (all exhibiting
centrosymmetry, without considering anomalous scattering,
which breaks Friedel’s law). Note that here we show the
diffraction patterns from conventional standard cells to help
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FIG. 2. The simulated x-ray diffraction patterns of select crystals
with corresponding space group. The gray spheres represent the
limiting sphere of radius 4π

λ
. Only diffraction points with Miller

indices within {2̄, 1̄, 0, 1, 2} are shown here. The intensity of the
origin (0 0 0) is calculated as the squared total electron density
within the cell. This point-cloud representation of crystal struc-
tures simultaneously displays rotation and permutation invariance.
The centrosymmetric bar code patterns are generated by sorting
the diffraction patterns with respect to their corresponding Miller
indices.

visualize the features, while the model learns from diffraction
patterns of the primitive cells. Our preliminary studies con-
firmed the choice of unit cell does not significantly impact
the statistical results. All diffraction points beyond the con-
sidered index range are eliminated, and hence invisible to the
model. After this data preprocessing step, all materials should
have a feature set defined by an n × 4 array, with n rows
and four columns: [x, y, z, I], which represent the Cartesian
coordinates and the log diffraction intensity, respectively.

This 3D crystalline material representation is in the form
of a point cloud, an unordered set of points distributed in
high-dimensional space. Since the orientation of the recipro-
cal lattice basis is arbitrary, and the set of points do not follow
a specific order, rotating the point coordinates or swapping
the order of two points should not have any impact on ma-
terial properties. This behavior is different from pixels in an
image. Therefore, our model should be invariant under both
3D rotation and permutation operations on the input points. In
order to enforce the rotation and permutation invariance of our
model, we apply random 3D rotation and random shuffling
of the point sequence of each material before feeding them
to the model. These data-augmentation transformations are
performed on the fly (i.e., in-memory operation after load-
ing the original features) instead of being precomputed and
stored on a hard drive. Specifically, we use three randomly
and independently generated Euler angles within the range
[− 1

4π, 1
4π ] for the crystal system classification task, while we

use [−π, π ] for all physical property classification tasks. The

justification for selecting different ranges of the Euler angles
is explained later (vide infra). Therefore, the model never
sees the same representation of a material twice, yielding an
effectively infinitely sized data set. In addition, we show later
that the performance of the model for property classifications
on the test data set is independent of the random 3D rotations
and point permutations.

We split the data set into training, validation, and test sets,
with ratios of 70%, 15%, and 15%, respectively. The valida-
tion set is used to select the optimal model hyperparameters.
We report the model performance on the test set containing
materials that the model has never seen. Since our goal is to
understand materials physics using a machine learning model
as an information extractor (rather than achieving the best pre-
dictive performance), we train each model on three randomly
and independently generated training-validation-test data sets,
and report the mean values of performance metric (and their
standard deviations) on the test set to reduce the variance of
results.

B. Model architecture

Learning from 3D point-cloud data is an active area of
computer-vision research. Owing to the rotation and per-
mutation invariance requirements of our Ihkl point-cloud
representation, most conventional ML models cannot be
directly applied to our learning problem. For instance, con-
ventional two-dimensional convolutional neural networks
(CNNs), which are the most prevalent network structure for
2D image classification tasks [22], are robust against object
translations; however, permutation of the input data (e.g.,
swapping pixels of an image) could break down the network.
Existing solutions to this problem include POINTNET-based
models [23–25], multiview CNN [26], and some other CNN
variants [27,28]; however, these tend to focus on object
detection/classification and segmentation learning tasks.

Here we demand more from the neural network model,
which goes beyond the 3D computer vision problem, the ana-
log of which would be identifying the one among seven crystal
systems a material belongs to by knowing how atoms are
arranged in a unit cell. The features we use for the materials-
property classification tasks include not only positional data
(i.e., Cartesian coordinates), but also the diffraction intensity
as the fourth dimension. Thus, the input features together
contain information about the cell shape, cell size, symmetry,
and electron density. This information is all simultaneously
embedded within the sparse distribution of diffraction points
in momentum space. To that end, the DNN needs to learn
the patterns of different material properties (e.g., metals and
insulators) using their structural fingerprints, and not only to
identify structural patterns given structural features [29].

The network architecture capable of solving this problem
is elegant in its simplicity as depicted in Fig. 3. Inspired by
POINTNET, we first extract pointwise features using multilayer
perceptrons (MLPs), where each feature column, i.e., Carte-
sian coordinates and intensity, is treated as one input channel,
and the filters mix over features from different channels. We
apply batch normalization and dropout to the MLP layers as
regularization. After pointwise feature extraction, the model
learns the position-intensity relationship of different points,
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FIG. 3. The neural network architecture. Multiple pointwise filters (multilayer perceptrons) are applied to extract the position-intensity
relationship from the simulated diffraction data. The shape of feature and intermediate tensors are indicated in parenthesis and n is the number
of diffraction points based on the range of Miller indices considered. Operations in this step do not involve point-point communications;
therefore, permutation invariance is preserved. Then, a symmetric function is used to pool the crystal-feature vector from all diffraction points.
Here, the MAX pooling function is used, but others also work. Lastly, multilayer perceptrons are used to eventually make the classification
decision. See Appendix B for details of model hyperparameter selection.

whose output features should be invariant to rotation of the
Cartesian coordinates of input points (e.g., distance to origin).
The aforementioned steps only involve operations within each
individual point, in other words, no point-point communi-
cations are made, hence preserving permutation invariance.
Now, the learned material representation becomes a tensor
of shape (n, m), where m is a hyperparameter indicating the
number of embedding dimension. (We use m = 1024 for all
classification tasks.)

Then, we apply a symmetric function to aggregate infor-
mation from all points. We find that the MAX pooling function
works well in all our tasks, and this operation safely preserves
permutation invariance, because it does not involve point
indexing. Specifically, for each hidden feature column, the
MAX pooling operation only takes the point with the highest
value (i.e., the critical point) and neglects all other points,
which do not contribute to the pooled crystal feature vec-
tor (Fig. 3). In addition, we also tried a self-attention-based
pooling algorithm, and found that the performance gain is
negligibly small (e.g., ROC-AUC value from 0.910–0.915 for
metal-insulator classification) while the model size became
several times larger than using the MAX pooling function.
Therefore, although knowing that MAX pooling is not the
only working method for information aggregation, we use this
pooling function for all our classification tasks. MAX pooling
also enables physically meaningful model interpretation since
it allows us to know which points contribute to the pooled
crystal-feature vector (by taking an ARGMAX operation, as
shown in Sec. III D). After the feature aggregation step, each
material is represented as a one-dimensional array with size
m, which we interpret as the crystal-feature vector containing
learned structure-property relationships. We apply a few fully
connected layers on the crystal-feature vector and eventually
the model will make a multiclass prediction from the input
point cloud representation. Other network structures that can
deal with 3D equivariance [30] are also viable solutions to our
problem, but we find that the performance bottleneck mainly
originates from the input features rather than the network, as
discussed in Sec. III C. To compare the physical knowledge
learned by the network, we use the same network structure

(with different parameters) to learn all target properties. De-
tails of hyperparameter selection are given in Appendix B.
Model performance in all classification tasks is based on aver-
aging over three independent runs with different random data
splits and random seeds.

III. RESULTS AND DISCUSSION

A. Crystal system classification

We begin our initial assessment of the model learning ca-
pability using a simple computer vision task: crystal-system
classification. The objective is to predict the correct crystal
system for a material given only the XRD patterns of its
conventional standard cell. This simple task is an important
prerequisite before we analyze the structure-property relation-
ship data presented in the next section. If the model is unable
to recognize the crystal systems from structural input data,
then we may not trust it in making property classifications
as they are even more challenging than the current task. In
order to ensure the quality of crystal data, we consider only
materials with cross-reference labels in the Inorganic Crystal
Structure Database (ICSD) database [31]. We have a total
of 48524 crystal structures from seven crystal systems for
this classification task. Because hexagonal and trigonal cells
have identical conventional cell shapes, i.e., a = b �= c; α =
β = 90◦ and γ = 120◦, we combine these classes together as
one, which leads to a total of six classes: cubic, tetragonal,
orthorhombic, hexagonal/trigonal, monoclinic, and triclinic.
Since the crystal systems are uniquely defined by the real
space lattice vectors, we only need to provide the model
with n = 3 diffraction points, corresponding to the reciprocal
lattice basis vectors (i.e., the given information is complete
for the crystal system classification task). We also mask the
diffraction intensity information for this task by removing the
fourth dimension of each point, making it invisible to the
model.

Our model achieves excellent performance with an accu-
racy of 0.98 on the test set. We find that many of the misclas-
sifications are caused by the difference in threshold of equiv-
alence. For instance, the model has difficulty differentiating
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tetragonal from orthorhombic cells when the ratio of two
lattice parameters are approximately unity. Furthermore, we
tolerate the less-than-perfect accuracy after recognizing the
network is not fully rotation-invariant for the crystal-system-
classification task. Here, the Euler angles are constrained
between [− 1

4π, 1
4π ] rather than using completely arbitrary

rotation angles spanning 2π , because the network architec-
ture we use works best with certain spatial orientations of
the points. The model has difficulty in finding a principal
axis and canonicalizing the input when utilizing large rotation
angles [23]. Nonetheless, it is able to visualize the shape of
the 3D point-cloud representation regardless of small-angle
3D rotations. Interestingly, the physical properties considered
in the next section are completely immune to random 3D
rotations without any restrictions on Euler angles, which is
reasonable as the properties are scalar quantities independent
of the crystal spatial orientation.

Next, we ask a slightly more challenging question: Is it
possible to distinguish between materials exhibiting trigonal
and hexagonal cells? Since this is a binary classification task,
we use the area under the receiver operating characteristic
curve (ROC-AUC, later referred to as AUC) as the perfor-
mance metric. The AUC is a value between 0.5 and 1.0,
which indicates the model’s ability to distinguish a positive
case from a negative one. We find that given only the three
reciprocal lattice basis vectors without diffraction intensity
values, the model achieves an AUC of 0.87. However, once we
unmask the diffraction intensity of the three points, the AUC
value increases to 0.94. As we further increase the number
of diffraction points (with intensity) from n = 3 → 27, the
model performance significantly improves. It distinguishes
between the trigonal and hexagonal systems with an AUC =
0.97. The results here primarily show that the spatial distribu-
tion of diffraction intensity I could further distinguish crystal
structures with high similarity, which is an advantage of us-
ing 3D features over projected 2D patterns [29]. Therefore,
we include diffraction intensity information in the following
property classification tasks.

B. Property classification

Given the success of the model to visualize the shape
of the crystal structure, we next train our model to classify
materials properties by learning hidden patterns within the 3D
point-cloud data based on crystal structure. The four materials
properties we target are metallicity, bulk modulus, shear mod-
ulus, and thermodynamic stability. The binary classification
tasks involve: (i) separating compounds without (metals, Eg =
0 eV) from those with a 0 K gap Eg > 0 eV (insulators) in the
electronic structure at the DFT level; (ii) distinguishing stiff
compounds with bulk modulus B > 85 GPa or shear modulus
(G > 34 GPa, from flexible compounds; and (iii) identify-
ing thermodynamically stable materials with EH < 20 meV
atom−1, respectively. The fundamental questions that we aim
to explore here are twofold:

Q1: How much information can we extract from the diffrac-
tion patterns for each property classification task?

Q2: Which (physical) factors contribute to the classifica-
tions, and what is their relative significance?

To answer Q1, we first examine the impact of the total
number of diffraction points (n) on model performance for
each classification task [Fig. 4(a)]. For all tasks, we find that
as more diffraction points become visible to the model, the
performance of the classifier initially improves significantly
(from n = 3 → 4 → 27). The performance then plateaus af-
ter 125 points with negligible performance gain using 343
diffraction points. Figure 4(a) also reveals that the electronic
band gap and mechanical property classifications in general
have better quality than the thermodynamic stability classifi-
cation task. This behavior is reasonable given the importance
of composition and chemical identity to material stability
[32], and that the energy above the hull is an extrinsic property
for each phase, whose value is calculated from the energies of
other reference phases.

Next, we focus on analyzing model performance with
smaller n values using the data presented in the inset to
Fig. 4(a) where n = 3, 4, and 27. It is clear that different
properties reveal distinct predictive baselines with only three
reciprocal basis vectors available (n = 3). Specifically, the
metal-insulator classifier achieves an AUC of 0.83, a value
often considered as an effective model performance. Although
we typically compare the AUC value of a binary classifier
with 0.5 as baseline, here we emphasize in the case of metal-
insulator classification, one should be cautious in evaluating
the model performance, since even with very little information
available to the model as in the n = 3 case, we can still achieve
a good AUC value. In fact, by analyzing the distribution of
metals and insulators across different crystal systems (Fig. 6),
we find a high correlation between crystal system and metal-
licity. This explains the high classification performance of
the structure-based model since we previously showed that
it is able to accurately predict the crystal systems from the
diffraction patterns. Moreover, in most materials informatics
work, the baseline (i.e., worst-case model performance) is
rarely discussed, yet it is quite important for researchers to
understand the difficulty of the underlying predictive tasks.
We hope that future materials informatics research could be
done in a more physics-first manner, i.e., providing lower and
upper bounds to the reported statistical results.

We also note that all models show significant performance
gain from n = 3 → 4, where the only difference between
these two cases is the inclusion of the total electron density
information, which is the (0 0 0) diffraction point at the origin
with unit phase factor, i.e., e0 = 1 in Eq. (2) and Eq. (3). In
other words, the performance gain from n = 3 → 4 indicates
the quantitative contribution of the total electron density to
the classification task (since the origin point does not provide
useful spatial information, loosely speaking). Interestingly,
the slopes of performance gain after introducing the origin
point for all four classification tasks are similar, despite their
different baseline predictive powers. This finding shows that
the total electron density makes a significant contribution to
the predictive capability of the model.

Upon including more diffraction points, i.e., n � 27, the
model becomes aware of more symmetry operations in the
crystal structure, thus it is reasonable to observe some perfor-
mance gain as n increases. Notably, among the curves shown
in Fig. 4(a), the metal-insulator classifier exhibits the smallest
performance gain with increasing n, which probably indicates
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FIG. 4. Model performance in multiple classification tasks. (a) ROC-AUC values in four binary classification tasks with a different total
number n of diffraction points visible to the model as described in Sec. II A. ROC curves with n = 343 for the (b) metal-insulator classification,
(c) bulk modulus classification, (d) shear modulus classification, and (e) thermodynamic stability classification. Insets: Model performance
given by ROC-AUC values under various perturbations on input features, with ϕ1 using the original diffraction patterns, ϕ2 using randomly
scaled intensity, ϕ3 using systematic absence information, and ϕ4 using neutron diffraction patterns, respectively.

some simpler decision rules underlie the classification com-
pared to the other properties explored. Although this may
seem counterintuitive since determining the electronic band
gap is nontrivial, the high model performance might be caused
by data clustering within the materials database (Fig. 6) owing
to the nature of our task being classification rather than regres-
sion. In fact, we did preliminary experiments for regression
tasks, e.g., predicting the band gap values using a similar
network, yet the model showed poor predictive capability,
possibly due to the simple network architecture being unable
to resolve the complex functions mapping diffraction patterns
to materials properties.

C. Perturbing the input features

To answer Q2, we focus on understanding the model per-
formance for different classification tasks: What exactly does
the model learn from the diffraction patterns? DNN model
interpretability is a known problem owing to the nonlin-
ear activation functions and complex network structures. To
that end, we choose another route to understand the model
performance. Instead of opening the black box, we make
perturbations to the input features to form new data sets de-
noted as ϕi, and examine the model responses as quantified
with the true and false positive rates and ROC-AUC values
for each classification task using the same DNN architecture
[Figs. 4(b)–4(e)]. We assign the original diffraction data as
ϕ1. It contains information pertaining to the crystal lattice
parameters (position of diffraction points), crystal symmetry

(spatial distribution of relative diffraction intensity), and elec-
tron density (diffraction intensity values). These are the input
features from which we determine the relative contributions
in the final decision-making of the machine learning model.

To separate the diffraction intensity values from their spa-
tial symmetry, we generate a random multiplier uniformly
sampled within the range (0, 1] for each material during
each training iteration, and then scale all of its diffraction
intensity values with this multiplier before feeding them to
the model. In other words, the random scaling factor differs
across different materials as well as each training iteration.
The randomly scaled diffraction patterns correspond to the
data set ϕ2, which preserve the spatial symmetry (i.e., relative
intensities) of the diffraction points, but the model would
not be able to rely on the absolute values of the intensities,
which are related to the electron density and atomic numbers
(i.e., chemistry). In addition, we also examined whether the
model is learning from systematic absence information in the
data set, i.e., h k l combinations that have zero intensity due
to phase cancellation, to make predictions. Data set ϕ3 is
obtained by replacing all nonzero diffraction intensity values
with unit intensity, Ihkl = 1, while all others remain Ihkl = 0.
In short, from ϕ1 to ϕ3, the input features contain a decreasing
amount of physical information. Therefore, by analyzing the
classifier performance from various input features, we could
infer the relative significance of features to different target
properties.

Figures 4(b)–4(e) present the model performance with
different perturbations to the input diffraction patterns. We
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find that the metal-insulator classifier is significantly more
robust against random scaling of the intensity values than
other classifiers, where it is still able to achieve AUC = 0.89
with random intensities [see ϕ2 in Fig. 4(b)]. The perfor-
mance of the bulk modulus and shear modulus classifiers
reduce from 0.95 to 0.87, and from 0.86 to 0.78, respectively.
Notably, we achieve a truly composition-free model after ran-
dom scaling of the materials diffraction intensity values. The
model completely loses information about atomic number and
electron density in this case, but it is still aware of which
ghkl points are symmetric and their spatial distributions. Our
findings here suggest that the metal-insulator classifier relies
mostly on the spatial symmetry of the diffraction patterns,
while the elasticity-property classifiers depend more on the
absolute intensities, which encode the electron density. All
models exhibit inferior performance with only systematic ab-
sence information [ϕ3 in Figs. 4(b)–4(e)]. The results here
are reasonable, because we further lose some symmetry in-
formation as all finite diffraction intensity values become unit
intensity.

To further support our previous findings, we perform the
same series of classification tasks using simulated neutron
diffraction (ND) patterns. Unlike x-rays, neutrons interact
with the nuclei via the nuclear strong force, whose interaction
can be approximated by a short-ranged Fermi pseudopoten-
tial. Since the Fermi pseudopotential is a δ function, whose
strength is parameterized by the scattering length b, the neu-
tron form factor is Q independent in momentum space, which
is the main difference between neutron and x-ray scattering
[Eq. (3)]. In addition, the neutron scattering lengths are non-
monotonic across the periodic table and differ even between
isotopes of the same element. Therefore, the model cannot
learn the total electron density in the same way as from the
XRD patterns.

The model performance using ND are shown as ϕ4 in
Figs. 4(b)–4(e). Interestingly, the model performs slightly
worse than using the original XRD features (ϕ1), yet outper-
forms models with perturbed XRD features (ϕ2 and ϕ3) for
all four classification tasks. By comparing the results from
XRD and ND, we are more confident that crystal structure
alone plays a significant role in determining the electronic
and elastic properties of crystalline materials, while it is less
important for thermodynamic stability.

Interestingly, we also built random forest and extreme
gradient boosting models based on the diffraction intensities
to make metal-insulator classifications for comparison to the
DNN model. In this case, the diffraction intensities are sorted
with respect to their Miller indices (as shown in the bar code
in Fig. 2) and they are used as the features for the classi-
fiers. These ML models are able to achieve quantitatively the
same performance (AUC of 0.91) as the DNN model for the
given task. We therefore emphasize that the main objective of
this work is not to report a novel neural network with high
predictability, but rather to use statistical learning models to
understand the materials structure-property relationships. In
the next section, we perform interpretations using the DNN
model, which is not applicable using the two ML classifiers.
We conclude that both ML and DNN models learn distinct
patterns for different target materials properties, and they are
able to capture physically meaningful features (e.g., spatial

FIG. 5. Distribution of critical diffraction points with normalized
interplanar dhkl spacings of a few common insulators (NaCl, SiO2,
Al2O3) and metals (Cu, Ag, Au). The d spacings are normalized to
facilitate comparison across different materials. The critical points
in the limiting sphere (the gray sphere) are those that contribute to
the final crystal feature vector after MAX pooling, and are marked
with blue for insulators, and red for metals, respectively. Noncritical
points are represented with light gray points.

symmetry of diffraction patterns) to learn the materials struc-
ture genome and make property predictions.

D. Model interpretation

We now partially open the black box of the DNN model
to further understand how it classifies metals from insulators.
We plot the distribution of critical points both with normal-
ized interplanar dhkl spacings and in the limiting sphere that
contribute to the final crystal feature vector of six well-known
materials (Fig. 5). In order to facilitate visualization, we
choose a small model, which uses n = 125 diffraction points
as input and 32-dimensional crystal feature embeddings. This
small model has AUC = 0.89, which is acceptable for use in
model interpretation. Larger models will have better perfor-
mance, yet more complicated classification rules. The model
correctly predicts the metallicity of all six crystals with high
confidence. The complete list of Miller indices of the critical
points are provided in Appendix E.

We consistently find the inclusion of the origin (0 0 0) as
a critical diffraction point in all cases, because it contains
the total electron density information. We also find all six
materials exhibit at least one gap in the d-spacing distribution.
The model relies on lattice planes with large spacings, i.e.,
small h k l points to determine the crystal system, while it
also requires information from the lattice planes with smaller
interplanar distances, i.e., higher h k l indices. This observa-
tion is reasonable since diffraction points with larger Miller
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TABLE II. Model performance for select materials in the
perovskite family. M and I labels indicate metal and insulator,
respectively. The last column is the probability associated with
the predicted class, indicating how confident the model is on that
prediction.

Compound Space group True label Prediction Probability

LiNbO3 R3̄c I I 0.61
LiOsO3 R3̄c M I 0.51
LaNiO3 R3̄c M I 0.56
LaCoO3 R3̄c M M 0.51
LiNbO3 R3c I I 0.64
LiOsO3 R3c M M 0.54
LiTaO3 R3c I I 0.59
NdNiO3 Pnma M I 0.58
YNiO3 Pnma M I 0.59
CaFeO3 Pnma M I 0.84
SrRuO3 Pnma M I 0.89
CaTiO3 Pnma I I 0.91
NdNiO3 P21/c I M 0.51
YNiO3 P21/c I I 0.55
CaFeO3 P21/c I I 0.80
SrFeO3 Pm3̄m M M 0.80
SrTiO3 Pm3̄m I M 0.73

indices provide more information about interplanar inter-
actions, which are governed by orbital hybridization and
attractive and repulsive electrostatic contributions.

We see different critical point distributions for crystals of
highly similar structures with different atomic species (e.g.,
Cu, Ag, and Au). A thorough understanding of the model
prediction mechanism remains difficult at this time owing to
the complicated decision rules underlying the deep neural net-
work. Interestingly, the model learns the operation of spatial
parity. It recognizes inversion symmetry inherent to the XRD
patterns (Friedel’s law), since it only contains an average of
two duplicate points with inversion symmetry in the final
critical point set, e.g., (2 2 2) and (2̄ 2̄ 2̄).

E. Limitations of structure-based learning

Since we do not explicitly have elemental composition
information in the XRD patterns, we expect the model to
have difficulty making predictions on materials from the same
family, i.e., with similar crystal structures yet different com-
positions and various properties. To that end, we examine
the performance of our structure-based model on the ABO3

perovskite family (Table II). All compounds listed here were
removed from the training and validation data set for this
classification task.

Overall the model performs poorly in classifying metals
from insulators in the perovskite family. We find the model
tends to predict all orthorhombic Pnma compounds to be
insulators. However, Fig. 6 shows that metals and insulators
are quite balanced for the orthorhombic crystal system. It is
therefore not clear why our model exhibits such behavior.
The model in general exhibits low confidence scores in pre-
dicting most of the perovskite materials, which is reasonable
since minor structural distortions in these materials could

drive metal-to-insulator transitions [21], while the change in
diffraction patterns might be indistinguishable to the model.
The model performance in the perovskite family is reason-
able since undoubtedly chemistry and interactions among
different microscopic electronic, spin, and orbital degrees of
freedom play a significant role in determining materials prop-
erties. Although the perovskite family poses a challenge to
the structure-based model, the poor performance is expected
since we designed this task to reveal the limitations of only
using structural information to predict materials properties.
The aforementioned model performance across many struc-
ture types still uncovers that metals and insulators exhibit
distinct XRD patterns, and our model is able to capture those
differences effectively.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we use DNN models to show the intimate
correlation between crystal structure and multiple materials
properties. We learn from both XRD and ND patterns that
crystal symmetry plays a significant role in determining elec-
tronic band gaps, while electron density contributes more to
elastic properties. Stability, however, is more composition de-
pendent and therefore our model exhibits poorest performance
in predicting this thermodynamic response. These findings
impart a better understanding of the role of crystal structures
in functional materials properties.

Moreover, if we have the exact Fourier series expansion of
the periodic electron density function in real space, it would
be theoretically possible to construct a sophisticated enough
DNN model to learn the functionals that map ground-state
electron density to materials properties. However, this would
require us to obtain orders of magnitude more number of
points instead of only a few hundred, which is currently
impractical. Based on our current understanding, the neural
network is most likely not learning the functional mapping,
but mainly making predictions based on spatial symmetry and
electron density information hidden in the diffraction patterns.
In other words, it is performing complex pattern recognition
rather than learning the underlying functional relationship and
mathematical structure of materials. This fact may be a result
of performing classification tasks rather than regression mod-
eling. We suspect that learning the density functional mapping
using a regression DNN model is possible, but requires a large
neural network of unknown architecture.

Lastly, our work here not only reveals some interest-
ing correlations between crystal structure and materials
properties, but also demonstrates the capability of sta-
tistical learning models beyond making accurate property
predictions/classifications. We argue that they are also
valuable in advancing our materials-physics understanding
through statistical analysis. With a properly designed learn-
ing model and physically meaningful feature perturbations,
it is possible to utilize machine learning models in a similar
manner to first-principles methods to study system response
upon perturbations. While first-principles models can han-
dle an individual system well, machine learning could reveal
the hidden patterns buried underneath a large amount of
experimental/simulation data. This makes statistical learn-
ing a complementary method to theoretical modeling and
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TABLE III. Hyperparameters explored in construction of the
DNN model.

Hyperparameter Values

number of first MLP layers 3, 4, 5
MLP hidden dimension 64, 128, 256, 512, 1024
dimension of hidden crystal feature vector 256, 512, 1024
number of fully connected layers 3, 4, 5
size of fully connected layers 128, 256, 512, 1024
pooling max, self-attention
number of self-attention layers 0, 2, 4
optimizer SGD, Adam
initial learning rate 0.01, 0.001
dropout 0, 0.2, 0.4

physics-based simulations towards a better understanding of
materials physics.
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TABLE IV. Hyperparameters explored in the random forest and
extreme gradient boosting classifiers using the SCIKIT-LEARN
package.

Hyperparameters Values

number of estimators 50, 100, 150
criterion gini, entropy
maximum depth 6, 12, None
maximum number of features None, sqrt, log2

APPENDIX A: X-RAY AND NEUTRON DIFFRACTION
SIMULATIONS

We use a modified version of the x-ray diffraction (XRD)
simulator as implemented in the open-source software PY-
MATGEN [20] to generate the input features for our model.
Specifically, we consider all diffraction points within the lim-
iting sphere of radius 4π/λ, where λ = 1.5418 Å is the x-ray
wavelength (Cu Kα in this case). The atomic form factors f (s)
are calculated using tabulated data to simulate the Fourier-
transformed real-space atomic electron density function ρ(r):

f (s) = Z − 41.78214 · s2 ·
n∑

i=1

aie
−bis2

, (A1)

where Z is the atomic number, s = sin θ
λ

and sin θ = λ
2dhkl

(Bragg condition). The ai and bi coefficients are n fitting
parameters for each element provided by PYMATGEN. We then
calculate

Fhkl =
N∑

j=1

f je
2π ighkl ·rj (A2)

Ihkl = 1

V 2
cell

F ∗
hkl Fhkl , (A3)

where j runs over all atoms within the unit cell and Vcell is the
unit cell volume (either primitive or conventional). Lorentz
polarization and Debye-Waller factor are not considered in
our simulation. Owing to the large values of the diffraction
intensity, we take the natural logarithm of each Ihkl , i.e., Ĩhkl =
ln(Ihkl + 10−6) and normalize the intensity values to range (0,
1].

For neutron scattering, Eq. (A1) becomes a constant for
each element (more specifically, for each isotope), which
is independent of the momentum space position vector.
The tabulated neutron scattering lengths are obtained from
the PYMATGEN package [20]. We then calculate the neu-
tron diffraction (ND) patterns as before using Eq. (A2) and
Eq. (A3), after obtaining the neutron scattering lengths. The
adapted simulation code can be found on GitHub [33].

APPENDIX B: HYPERPARAMETER OPTIMIZATION

The hyperparameters we considered for the DNN model
are tabulated in Table III. Note that the number of diffraction
points n is considered as a variable instead of a hyperparam-
eter of the model. We use a greedy approach to optimize
each of these hyperparameters and take the average results
from three randomly and independently generated training,
validation, and test data sets. The reported data was gener-
ated using MLPs with dimension [64, 128, 512, 1024], the
MAX pooling function, and then MLPs with hidden dimen-
sion of [1024, 512, 256, 128, k], where k is the number of
output class. However, we find that the model performance
on all classification tasks to be less dependent on the hyper-
parameters than the input perturbations. In other words, the
same neural network architecture could capture most of the
materials information, and increasing the number of model
parameters does not significantly improve the model perfor-
mance.
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TABLE V. Standard deviations from three randomly and inde-
pendently generated training-validation-test data sets for different
property classification tasks.

Classification Task ϕ1 ϕ2 ϕ3 ϕ4

metallicity 0.002 0.001 0.005 0.005
bulk modulus 0.002 0.004 0.011 0.001
shear modulus 0.011 0.017 0.014 0.003
stability 0.003 0.006 0.004 0.004

The hyperparameters for the machine learning models are
tabulated in Table IV. We obtained almost quantitatively
identical results using random forest and extreme gradient
boosting algorithms for the metal-insulator classification task.

APPENDIX C: STANDARD DEVIATION OF PROPERTY
LEARNING TASKS

Table V shows the standard deviations for each property
classification task from three randomly and independently
generated training-validation-test data sets.

APPENDIX D: DATABASE STATISTICS

FIG. 6. The distribution of metals and insulators across various
crystal systems within our data set. The total number of crystal
structures is 74108.

APPENDIX E: CRITICAL POINTS

We use 125 diffraction points (Miller indices within {2̄,
1̄, 0, 1, 2}) for all materials and 32-dimensional crystal fea-
ture embedding for the model interpretation task. The critical
points of each material shown in Fig. 5 are enumerated below.

Since the same point may contribute to more than one hidden
crystal feature, the number of unique critical points could be
less than the embedding dimension.

Critical points of NaCl:

(0 0 0) (0 0 1) (0 0 1̄) (0 1̄ 0) (1 0 0)

(0 1̄ 1̄) (1 0 1) (1̄ 1̄ 0) (1 1 2) (1̄ 1̄ 1̄)

(1̄ 2̄ 1) (2 2 2̄) (2 2̄ 2) (2̄ 2 2̄)

Critical points of Al2O3:

(0 0 0) (0 0 1̄) (0 1 0) (01̄ 0) (1 0 0)
(1 0 1) (1 1 0) (1̄ 1 0) (1̄ 1̄ 0) (2 0 2)

(1 1 1) (2 2̄ 2) (2 2̄ 2̄) (2̄ 2 2̄)

Critical points of SiO2:

(0 0 0) (0 0 1̄) (1 0 0) (1̄ 0 0) (2̄ 0 0)

(0 2 2̄) (0 2̄ 2) (1 0 1) (1 0 1̄) (1̄ 1 0)

(2 0 2) (2 0 2̄) (2̄ 0 2) (1̄ 1̄ 1) (1̄ 1̄ 2̄)

(1̄ 2 1) (1̄ 2̄ 1̄) (2̄ 1̄ 2̄)

Critical points of Ag:

(0 0 0) (0 0 1̄) (0 1̄ 0) (1 0 0) (1̄ 0 0)

(0 1̄ 1̄) (1 1 1) (1̄ 1̄ 1̄) (2 2 2̄) (2 2̄ 1̄)

(2̄ 1̄ 0) (2̄ 2 2̄)

Critical points of Cu:

(0 0 0) (0 1̄ 1) (1 0 1) (1 1̄ 0) (1̄ 0 1)

(2 0 1) (1 1 2) (1 1 2̄) (1 2̄ 1) (1̄ 1̄ 1̄)

(1̄ 1̄ 2̄) (1̄ 2̄ 1̄) (2 1̄ 2) (2̄ 2̄ 2̄)

Critical points of Au:

(0 0 0) (0 0 1̄) (1 0 1) (1̄ 0 1) (1̄ 0 1̄)

(1̄ 1̄ 0) (0 1̄ 1̄) (0 1 1) (0 1 1̄) (1 0 2)

(1 1 0) (1 1̄ 0) (1̄ 1 0) (2̄ 1 0) (1̄ 2 2̄)

(1̄ 2̄ 1̄) (1̄ 2̄ 2̄) (2 2 2̄) (2 2̄ 2) (2̄ 1̄ 1̄)

(2̄ 2 2)

[1] G. B. Olson, Designing a new material world, Science 288, 993
(2000).

[2] W. Xiong and G. B. Olson, Cybermaterials: Materials by design
and accelerated insertion of materials, npj Comput. Mater. 2,
15009 (2016).

[3] J. M. Rondinelli, K. R. Poeppelmeier, and A. Zunger, Research
update: Towards designed functionalities in oxide-based elec-
tronic materials, APL Mater. 3, 080702 (2015).

[4] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and
K. a. Persson, The Materials Project: A materials genome

approach to accelerating materials innovation, APL Mater.
1, 011002 (2013) using data retrieved on October 30,
2021.

[5] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton,
Materials design and discovery with high-throughput
density functional theory: The open quantum materials
database (OQMD), Jom 65, 1501 (2013).

[6] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H.
Taylor, L. J. Nelson, G. L. Hart, S. Sanvito, M. Buongiorno-
Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG:
A distributed materials properties repository from

023029-11

https://doi.org/10.1126/science.288.5468.993
https://doi.org/10.1038/npjcompumats.2015.9
https://doi.org/10.1063/1.4928289
https://doi.org/10.1063/1.4812323
https://doi.org/10.1007/s11837-013-0755-4


YIQUN WANG et al. PHYSICAL REVIEW RESEARCH 4, 023029 (2022)

high-throughput ab initio calculations, Comput. Mater. Sci.
58, 227 (2012).

[7] S. S. Borysov, R. M. Geilhufe, and A. V. Balatsky, Organic
materials database: An open-access online database for data
mining, PLoS One 12, e0171501 (2017).

[8] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A.
Walsh, Machine learning for molecular and materials science,
Nature (London) 559, 547 (2018).

[9] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi,
and C. Kim, Machine learning in materials informatics: recent
applications and prospects, npj Comput. Mater. 3, 54 (2017).

[10] A. Agrawal and A. Choudhary, Perspective: Materials informat-
ics and big data: Realization of the “fourth paradigm” of science
in materials science, APL Mater. 4, 053208 (2016).

[11] C. Chen, Y. Zuo, W. Ye, X. Li, and S. P. Ong, Learning prop-
erties of ordered and disordered materials from multi-fidelity
data, Nature Comput. Sci. 1, 46 (2021).

[12] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A.
Tropsha, Universal fragment descriptors for predicting proper-
ties of inorganic crystals, Nature Commun. 8, 1 (2017).

[13] T. Xie and J. C. Grossman, Crystal Graph Convolutional Neural
Networks for an Accurate and Interpretable Prediction of Mate-
rial Properties, Phys. Rev. Lett. 120, 145301 (2018).

[14] C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong, Graph net-
works as a universal machine learning framework for molecules
and crystals, Chem. Mater. 31, 3564 (2019).

[15] M. Karamad, R. Magar, Y. Shi, S. Siahrostami, I. D. Gates, and
A. Barati Farimani, Orbital graph convolutional neural network
for material property prediction, Phys. Rev. Mater. 4, 093801
(2020).

[16] Z. Ahmad, T. Xie, C. Maheshwari, J. C. Grossman, and V.
Viswanathan, Machine learning enabled computational screen-
ing of inorganic solid electrolytes for suppression of dendrite
formation in lithium metal anodes, ACS Cent. Sci. 4, 996
(2018).

[17] Z. Ren, S. I. P. Tian, J. Noh, F. Oviedo, G. Xing, J. Li, Q. Liang,
R. Zhu, A. G. Aberle, S. Sun et al., An invertible crystallo-
graphic representation for general inverse design of inorganic
crystals with targeted properties, Matter 5, 314 (2021).

[18] A. B. Georgescu, P. Ren, A. R. Toland, S. Zhang, K. D. Miller,
D. W. Apley, E. A. Olivetti, N. Wagner, and J. M. Rondinelli,
Database, features, and machine learning model to identify
thermally driven metal–insulator transition compounds, Chem.
Mater. 33, 5591 (2021).

[19] It is possible to artificially make two materials exhibit identical
diffraction patterns, but we only consider materials in equilib-
rium states.

[20] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S.
Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder,
Python materials genomics (pymatgen): A robust, open-source
python library for materials analysis, Comput. Mater. Sci. 68,
314 (2013).

[21] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transi-
tions, Rev. Mod. Phys. 70, 1039 (1998).

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
Imagenet: A large-scale hierarchical image database, in 2009
IEEE conference on computer vision and pattern recognition
(IEEE, New York, 2009), pp. 248–255.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion, in Proceedings of the IEEE conference on computer
vision and pattern recognition (IEEE, New York, 2017),
pp. 652–660.

[24] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, arXiv:1706.02413.
[25] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F.

Goulette, and L. J. Guibas, Kpconv: Flexible and deformable
convolution for point clouds, in Proceedings of the IEEE/CVF
International Conference on Computer Vision (IEEE, New
York, 2019), pp. 6411–6420.

[26] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
Volumetric and Multi-view CNNs for Object Classification on
3D Data, in Proceedings of the IEEE conference on computer
vision and pattern recognition (IEEE, New York, 2016), pp.
5648–5656.

[27] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao, 3D ShapeNets: A deep representation for volumetric
shapes, in Proceedings of the IEEE conference on computer
vision and pattern recognition (IEEE, New York, 2015), pp.
1912–1920.

[28] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun,
arXiv:1312.6203.

[29] A. Ziletti, D. Kumar, M. Scheffler, and L. M. Ghiringhelli, In-
sightful classification of crystal structures using deep learning,
Nature Commun. 9, 2775 (2018).

[30] F. B. Fuchs, D. E. Worrall, V. Fischer, and M. Welling,
arXiv:2006.10503.

[31] M. Hellenbrandt, The inorganic crystal structure database–
present and future, Crystallogr. Rev. 10, 17 (2004).

[32] W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D.
Richards, A. C. Gamst, K. A. Persson, and G. Ceder, The
thermodynamic scale of inorganic crystalline metastability, Sci.
Adv. 2, e1600225 (2016).

[33] Y. Wang, V. Zhang, and J. M. Rondinelli, deepKNet v1.1.0
(2022).

023029-12

https://doi.org/10.1016/j.commatsci.2012.02.002
https://doi.org/10.1371/journal.pone.0171501
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1063/1.4946894
https://doi.org/10.1038/s43588-020-00002-x
https://doi.org/10.1038/ncomms15679
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1103/PhysRevMaterials.4.093801
https://doi.org/10.1021/acscentsci.8b00229
https://doi.org/10.1016/j.matt.2021.11.032
https://doi.org/10.1021/acs.chemmater.1c00905
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1103/RevModPhys.70.1039
http://arxiv.org/abs/arXiv:1706.02413
http://arxiv.org/abs/arXiv:1312.6203
https://doi.org/10.1038/s41467-018-05169-6
http://arxiv.org/abs/arXiv:2006.10503
https://doi.org/10.1080/08893110410001664882
https://doi.org/10.1126/sciadv.1600225
https://doi.org/10.5281/zenodo.4574231

