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Equivalence between belief propagation instability and transition to replica symmetry
breaking in perceptron learning systems
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The binary perceptron is a fundamental model of supervised learning for nonconvex optimization, which
is a root of the popular deep learning. The binary perceptron is able to achieve a classification of random
high-dimensional data based on the marginal probabilities of binary synapses. The relationship between the
belief propagation instability and the equilibrium analysis of the model remains elusive. Here, we establish the
relationship by showing that the instability condition around the belief propagation fixed point is identical to the
instability for breaking the replica symmetric saddle-point solution of the free-energy function. Therefore our
analysis will hopefully provide insight towards other learning systems in bridging the gap between nonconvex
learning dynamics and statistical mechanics properties of more complex neural networks.
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I. INTRODUCTION

Theoretical studies of neural networks have become in-
creasingly important in recent years [1–3], as deep neural
networks are widely used in various domains of both scien-
tific and industrial communities. One of the most powerful
theoretical tools is the replica method, which is able to de-
rive equilibrium properties of neural networks (systems of
interacting neurons or synapses), such as the phase diagram
[4–7], storage capacity [8–11], and even large-deviation be-
havior of learning algorithms [12–14]. Intuitively, the replica
method introduces n (an integer) copies of the original sys-
tem. Within each copy, there exist strong interactions among
constituent elements (e.g., synaptic or neural states), and these
interactions make the model intractable without any approxi-
mation in most cases. However, the elements would become
decoupled from each other as an overlap (of states) matrix is
introduced, which allows a hierarchical level of approxima-
tion depending on the stability analysis of the saddle points
of the free-energy action. A seminal approximation, namely,
replica symmetry breaking, was introduced by Parisi in the
1980s [15,16].

Overall, the replica method, despite its nonintuitive
physics, could lead to exact results in some models. One
drawback of this method is that it could not be used to de-
sign any efficient algorithms in neural networks. Instead, the
cavity method is constructed in a physically intuitive way,
i.e., a statistical mechanics model of learning can be mapped
onto a graphical model, where interactions are represented by
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factor nodes and synapses are represented by variable nodes
(such as the graphical model representation in unsupervised
learning [17]). Through virtually deleting these two kinds of
nodes, a cavity probability could be defined. Using the treelike
structures of the factor graph, or the weakly-interacting-
element assumption, an iterative equation for these cavity
probabilities can be derived, which leads to self-consistent
evaluations of thermodynamic quantities, such as ground-state
energy, free energy, and entropy [18–20]. Most interest-
ingly, this iterative equation is exactly the same as the belief
propagation developed independently in computer science
[21]. Belief propagation could also be derived for learning
problems with discrete synapses [22]. An open question is
whether the replica symmetry breaking transition corresponds
to the belief propagation instability in the learning of neural
networks.

Here, we provide a proof of this fundamental equivalence
in the seminal model of binary perceptron learning, in which
learning is achieved by adjusting discrete synapses (actually,
the synaptic state takes ±1). This model was first studied
by Gardner and Derrida [10,23]. A follow-up calculation
showed that the storage capacity of this model is given by
Pc � 0.833N [11], where N is the number of neurons and Pc

is the critical number of random patterns being correctly clas-
sified. The binary perceptron belongs to the NP-hard class in
the worst-case complexity. The typical weight configuration is
quite hard to find by any algorithms based on local flips (e.g.,
Monte Carlo dynamics) [24–27]. The first efficient algorithm
was inspired by the cavity method, reaching an algorithmic
threshold Palg � 0.72N [22]. It was then proved by defining
a distance-dependent potential that the entire solution space
is composed of single valleys of vanishing entropy [28]. This
picture was further shown to be mathematically rigorous in
some perceptron learning problems [29]. However, the region
of the solution space accessed by practical algorithms does
not belong to the equilibrium hard-to-reach isolated parts, but
to the subdominant dense parts [12,13]. These dense parts are
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FIG. 1. Sketch of a binary perceptron. The binary perceptron is
composed of N input units (light gray circles) connected to one out-
put unit (dark gray circle). Each input unit receives one pixel of the
input pattern. The output unit computes a weighted sum (indicated
by �), which is passed through a nonlinear sign function (indicated
by “sgn”) to carry out a binary classification. The task of the binary
perceptron is to find a set of weights that can match all the actual
classification ({σμ}) of given patterns with their labels ({σμ

0 }).

further shown to have good generalization properties [14,30],
providing a new paradigm to understand deep learning.

Therefore studying the mathematical foundation of the bi-
nary perceptron problem is fundamentally important to our
understanding of neural networks. To our best knowledge,
studies on the relationship between the replica symmetry
breaking transition and the belief propagation instability along
this line are rare. In this paper, we show how the belief prop-
agation instability is connected to the instability of the replica
symmetric (RS) solution (or replicon mode) of the model.

II. BINARY PERCEPTRON

The binary perceptron is a single-layer neural network that
learns a random input-output mapping by discrete synapses
(see Fig. 1). We assume that there are P uncorrelated
input-output associations, where the μth one consists of an N-
dimensional pattern ξμ and a corresponding label σ

μ
0 , where

ξ
μ
i and σ

μ
0 take ±1 with equal probability. Given a configura-

tion of synaptic weights {Ji}N
i=1 (each entry takes +1 or −1),

the binary perceptron gives the output σμ = sgn (
∑N

i=1 Jiξ
μ
i )

for the input pattern ξμ. If σμ = σ
μ
0 , we say that the synaptic

weight vector J has recognized the μth pattern. The binary
perceptron is able to store an extensive number of random
patterns. Therefore we define a loading rate α = P/N . When
the loading rate is below some threshold, there exists at least a
set of synaptic weights as a solution to correctly classify all the
patterns. However, as α exceeds the threshold, it is impossible
to find a compatible configuration of weights for all patterns
[11]. This threshold is also defined as the storage capacity.
Naturally, we define the energy of this model as the number
of misclassified patterns as follows:

E (J) =
P∑

μ=1

�

(
− σ

μ
0√
N

∑
i

Jiξ
μ
i

)
, (1)

where �(x) is a step function with the convention that �(x) =
0 if x � 0 and �(x) = 1 otherwise. The prefactor 1/

√
N en-

sures that the statistical mechanics analysis leads to extensive
free energy.

In the zero-temperature limit, the flat measure over the
weights realizing the pattern-label associations can be com-
puted as

P(J) = 1

Z

∏
μ

�

(
σ

μ
0√
N

∑
i

Jiξ
μ
i

)
, (2)

where Z is not only the partition function but also the num-
ber of solutions for the learning problem. Equation (2) can
be derived from the finite-temperature Boltzmann measure
P(J) ∝ e−βE (J). Notice that there is a gauge transformation
ξ

μ
i → ξ

μ
i σ

μ
0 to each pixel of the input patterns that does not

affect the Boltzmann measure. We thus assume σ
μ
0 = +1 for

all patterns in the following analysis.

III. MEAN-FIELD MESSAGE-PASSING EQUATIONS
FOR LEARNING

The belief propagation (BP) algorithm is an iterative mean-
field equation to calculate the marginal probabilities of the
synaptic state by passing beliefs between two types of nodes
(function nodes and variable nodes) [3]. In other words, the
beliefs or cavity probabilities can be assumed to be messages,
and thus the BP algorithm is actually a mean-field message-
passing equation. Taking pattern-classification constraints as
function nodes and synaptic weights as variable nodes, we
obtain the iterative equations for learning as follows [22,31]:

mi→ν = tanh

(∑
μ �=ν

uμ→i

)
, (3a)

uμ→i = 1

2

[
ln H

(
−

1√
N
ξ

μ
i + wμ→i
√

σμ→i

)

− ln H

(
−

− 1√
N
ξ

μ
i + wμ→i

√
σμ→i

)]
, (3b)

wμ→i = 1√
N

∑
j �=i

m j→μξ
μ
j , (3c)

σμ→i = 1

N

∑
j �=i

(
1 − m2

j→μ

)
, (3d)

where H (x) = ∫∞
x Dz, Dz is a Gaussian measure, and mi→ν

is a cavity magnetization parameter to parametrize the cavity
probability P(Ji|{ξμ �=ν}) = (1 + mi→νJi )/2. wμ→i and σμ→i

represent the mean and variance of the Gaussian distribution
of Uμ→i ≡ 1√

N

∑
j �=i J jξ

μ
j , respectively. We have applied the

central limit theorem to the sum Uμ→i of weakly correlated
terms. This mean-field approximation must be cross-checked
by numerical experiments. In the following analysis, we use
μ, ν to indicate function nodes or pattern constraints and i, j
to indicate the variable nodes.

We remark that Eqs. (3a)–(3d) can be combined with an
iterative reinforcement to develop an efficient solver. The re-
inforcement is a kind of soft decimation, which progressively
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enhances or weakens current local fields (a summation of
cavity biases uμ→i) with an increasing probability with itera-
tions. The algorithm terminates once a solution is found. This
procedure yields the algorithmic threshold αalg � 0.72 [22].
During the stochastic reinforcement, the BP iteration does not
require convergence, despite a convergence guarantee below
the storage capacity. The algorithmic threshold is later found
to be below a large-deviation threshold αLD � 0.77, after
which the subdominant dense clusters fragment into separate
regions [12,32]. However, our current analysis is restricted
to the original BP iteration [Eqs. (3a)–(3d)], rather than the
dynamics of reinforced BP and the geometric landscape. It
remains challenging to use our framework (without a lengthy
replica computation) to derive the landscape geometry, which
relies heavily on the replica formula. The following analysis
may shed light on this important research line.

IV. TIME EVOLUTION OF MESSAGE DISTRIBUTIONS

In this section, we study the iteration dynamics of the belief
propagation. In the large-N limit, uμ→i can be approximated
by the first-order Taylor expansion

uμ→i = ξ
μ
i√

Nσμ→i

G
(− wμ→i√

σμ→i

)
H
(− wμ→i√

σμ→i

) , (4)

where G(x) = exp(−x2/2)/
√

2π and H (x) ≡ ∫∞
x Dz with the

Gaussian measure Dz ≡ G(z)dz. At the iteration step t , the
macroscopic distributions of messages mt

l→μ and ut
μ→l are

given by

π t
1(x) = 1

NP

N∑
l=1

P∑
μ=1

δ
(
x − mt

l→μ

)
, (5a)

π t
2(x̂) = 1

NP

N∑
l=1

P∑
μ=1

δ
(
x̂ − ut

μ→l

)
. (5b)

According to the Kabashima’s method [33], the time evolution
of π t

1(x) and π t
2(x̂) can be written down in an iterative form as

follows:

π t+1
1 (x) =

∫ P−1∏
μ=1

dx̂μπ t
2(x̂μ)δ

(
x − tanh

(
P−1∑
μ=1

x̂μ

))
, (6a)

π t
2(x̂) =

∫ N−1∏
l=1

dxlπ
t
1(xl )

〈
δ

(
x̂ − ξμ√

Nσμ

G(Xμ)

H (Xμ)

)〉
ξ

, (6b)

Xμ ≡ −
∑N−1

l=1 ξ
μ

l xl/
√

N√
1 −∑N−1

l=1 x2
l /N

= − wμ√
σμ

, (6c)

where 〈· · · 〉 represents the disorder average over ξ. Note that
ξμ is independent of the pattern entries in the sum of Xμ.

We then introduce an auxiliary field ht
l→μ =∑ν �=μ ut

ν→l =
tanh−1(mt

l→μ) and its macroscopic distribution ρ(h). More
precisely,

ρt (h) = 1

NP

N∑
l=1

P∑
μ=1

δ
(
h − ht

l→μ

)
. (7)

When P becomes infinite (e.g., P ∝ N), due to the central
limit theorem, the distribution of the auxiliary field can be
regarded as a Gaussian distribution:

ρt (h) =
∫ P−1∏

μ=1

dx̂μπ t
2(x̂μ)δ

(
h −

P−1∑
μ=1

x̂μ

)

≈ 1√
2πFt

exp

[
− (h − Et )2

2Ft

]
, (8)

where Et and Ft are the mean and variance of the Gaussian
distribution ρ(h), respectively. In fact, Et = 0 because of the
setting that ξμ takes ±1 with equal probability. With the ex-
pression of ρt (h), we get π t+1

1 (x) = ∫ dhρt (h)δ[x − tanh(h)]
for Eq. (6a). Plugging this expression into Eq. (6b) and using
Eq. (8), we obtain a compact expression for the update of Ft

as

Ft+1 = α

1 − Qt

∫
Dz

⎛
⎝G

(−√ Qt

1−Qt z
)

H
(−√ Qt

1−Qt z
)
⎞
⎠

2

, (9a)

Qt =
∫

Dz tanh2(
√

Ft z). (9b)

We leave the technical details of this derivation to
Appendix A. Note that this result is exactly identical to the
saddle-point equation under the replica symmetric assump-
tion, which we shall briefly introduce in Sec. VI.

V. MICROSCOPIC INSTABILITY OF THE BP ITERATION

In this section, we turn to the analysis of the microscopic
stability of the BP equations at a fixed point. Provided that
a field fluctuation δht

l→ν is introduced around the fixed point
mt

l→ν = ml→ν , the time evolution of δht
l→ν is computed as

δht
l→ν =

∑
μ �=ν

δuμ→l =
∑
μ �=ν

ξ
μ

l√
N

[Lδwμ→l + Kδσμ→l ], (10)

where

δwμ→l ≡ 1√
N

∑
i �=l

ξ
μ
i

(
1 − m2

i→μ

)
δhi→μ, (11a)

δσμ→l ≡ − 2

N

∑
i �=l

mi→μ

(
1 − m2

i→μ

)
δhi→μ, (11b)

K ≡
(

w2
μ→l

σμ→l
+ wμ→l√

σμ→l

G(Xμ)

H (Xμ)
− 1

)
G(Xμ)

H (Xμ)

1

2σ
3
2

μ→l

,

(11c)

L ≡ − 1

σμ→l

(
wμ→l√
σμ→l

G(Xμ)

H (Xμ)
+ G2(Xμ)

H2(Xμ)

)
. (11d)

Note that on the right-hand side of Eqs. (11a)–(11d), all mes-
sages or perturbations refer to their values at a previous step
(t − 1). In the following analysis (including Appendix A), we
omit this time index. We then define the macroscopic distribu-
tion of δht

l→ν as f t (y) [33]. Due to the central limit theorem,
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f t (y) can be assumed to be a Gaussian form, i.e.,

f t (y) = 1

NP

N∑
l=1

P∑
μ=1

δ
(
y − δht

l→μ

) ≈ 1√
2πbt

exp

[
− (y − at )2

2bt

]
, (12)

where at and bt are the mean and variance of the distribution, respectively. The time evolution of f t (y) is provided by a functional
equation as follows:

f t+1(y) =
∫ P∏

μ=1

N∏
l=1

dyl→μ f t (yl→μ)

〈
δ

(
y −

P−1∑
μ=1

ξμ

√
N

[Lδwμ + Kδσμ]

)〉
{xl→μ},ξ

. (13)

Following a similar spirit as before, at is zero. We thus only need to focus on the update of bt . We provide details of the
derivation of this update in Appendix A. We finally obtain

bt+1 = α

(1 − Qt )2

∫
Dz

(
G(Z )

H (Z )

)2(
Z − G(Z )

H (Z )

)2 ∫
Dz

1

cosh4(
√

Ft z)
bt ≡ γ bt , (14)

where Z ≡ √
Qt/(1 − Qt )z. When γ < 1, bt converges to zero after iteration, indicating that the initially introduced fluctuation

of the auxiliary field will eventually vanish. In contrast, when γ > 1, bt would grow with iteration, which implies that the
fluctuation will be amplified, leading to the instability of the fixed point. Therefore Eq. (14) provides the critical condition of the
instability with respect to the growth of bt , i.e.,

α

(1 − Q)2

∫
Dz

(
G(Z )

H (Z )

)2(
Z − G(Z )

H (Z )

)2 ∫
Dz

1

cosh4(
√

Fz)
= 1. (15)

VI. EQUILIBRIUM PROPERTIES VIA THE REPLICA TRICK

In this section, we apply the replica trick to analyze the equilibrium properties of the binary perceptron. In the thermodynamic
limit, the free energy has the self-averaging property, i.e., the distribution of the free energy for different realizations of learning
is peaked at the typical value. Thus we can compute the disorder average given by −β f = 〈ln Z〉, where the average is carried
out with respect to independent and identically distributed (i.i.d) random patterns. In fact, this disorder average is very hard to
compute. However, by introducing n replicas of the original learning system and then setting n → 0, we can obtain the free
energy of the system in a mathematically concise way [3]:

−β f = lim
n→0,N→∞

ln 〈Zn〉
nN

= lim
n→0

ln eNFmax

nN
= lim

n→0

Fmax

n
. (16)

Here, we are interested in the zero-temperature limit (focusing on ground states). Therefore Eq. (16) is actually the entropy
counting the number of solutions to the perceptron learning. By introducing replicas (copies of the system), we transfer a direct
intractable treating of complex interactions in learning to handling the overlap matrix of states, which can be tackled by physics
approximations, e.g., the RS ansatz in which the overlap does not depend on the specific replica index (permutation symmetry).
An intuitive picture is that the RS ansatz is consistent with the deltalike distribution of messages on each link of the factor graph,
and the broadening of the distribution (under the message perturbation) leads to the mathematical instability of the saddle point.
We will come back to this point at the end of Sec. VII.

To compute ln 〈Zn〉, we introduce n replicated synaptic weight vectors Ja (a = 1, . . . , n) as follows:

〈Zn〉 =
〈∑

{Ja}

∏
a,μ

�

(
1√
N

∑
i

Ja
i ξ

μ
i

)〉

=
∫ ∏

a<b

dqabdq̂ab

2π i/N
exp

[
−N

∑
a<b

qabq̂ab + NαG0({qab}) + NG1({q̂ab})

]
, (17)

where we have introduced the state overlap qab = 1
N

∑
i Ja

i Jb
i and its associated conjugated counterpart q̂ab. The expressions of

G0({qab}) (energy term) and G1({q̂ab}) (entropy term) are given as follows [11,31]:

G0({qab}) = ln
∫ ∏

a

dλa

2π

∫ ∞

0
dtaei

∑
a λata−∑a<b qabλaλb− 1

2

∑
a(λa )2

, (18a)

G1({q̂ab}) = ln
∑
{Ja}

e
∑

a<b q̂abJaJb
. (18b)
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Plugging Eq. (17) into Eq. (16), we get the entropy

s = lim
n→0

1

n
max

[
−
∑
a<b

qabq̂ab + αG0({qab}) + G1({q̂ab})

]
.

(19)

Under the RS ansatz qab = q, q̂ab = q̂ for a �= b, the extrem-
ization of Eq. (19) gives rise to the following saddle-point
equations:

q =
∫

Dz tanh2(
√

q̂z), (20a)

q̂ = α

1 − q

∫
Dz

⎛
⎝G

(−√ q
1−q z

)
H
(−√ q

1−q z
)
⎞
⎠

2

. (20b)

The technical details are given in Appendix B. These
saddle-point equations are again identical to Eqs. (9a) and (9b)
derived from the BP equation.

VII. INSTABILITY OF THE REPLICA
SYMMETRIC SOLUTION

The stability of the RS solution requires that the eigen-
values of the Hessian matrix (the second-derivative matrix)
of Fmax must be negative. The sign of the eigenvalues of this
matrix evaluated at the RS solution tells us all the information
about the stability [34]. We first introduce ηab and εab as the
fluctuations around the RS solution as

qab = q + ηab, (21a)

q̂ab = q̂ + εab. (21b)

By taking the Taylor expansion, we obtain 1
2� as the

second-order terms of Fmax, where

� ≡ α
∑

αβ,γ δ

∂2G0

∂qαβ∂qγ δ

∣∣∣∣∣
ηαβ ,ηγ δ=0

ηαβηγ δ −
∑

αβ,γ δ

ηαβεγ δ

+
∑

αβ,γ δ

∂2G1

∂ q̂αβ∂ q̂γ δ

∣∣∣∣∣
εαβ ,εγ δ=0

εαβεγ δ, (22)

where the prefactor α in the first term is the loading rate,
the superscript of the order parameters indicates the replica
index, G0 = G0({qαβ}), and G1 = G1({q̂αβ}). In other words,
the Hessian matrix looks like[

αH0 −I
−I H1

]
(23)

composed of four n(n−1)
2 × n(n−1)

2 blocks. H (αβ )(γ δ)
0 = ∂G0

∂qαβ∂qγ δ ,

H (αβ )(γ δ)
1 = ∂G1

∂ q̂αβ∂ q̂γ δ , and I is an identity matrix.
Following the analysis of Gardner and Derrida [23], we

first consider the problem of diagonalizing the matrices of
H0 and H1 separately. We then use the symmetry structure
with respect to permutation of replica indices. The associated
eigenvectors can be divided into three types (see details in
Appendixes C and D). The first type are symmetric for all
indices. The second type are symmetric for all but one specific

index, and the third type are symmetric for all but two specific
indices. In the limit of n → 0, the second type of eigenvectors
coincides with the first type of eigenvectors. The first type
of eigenvectors defines the longitudinal fluctuations within
the RS subspace [23,35]. This stability is already guaranteed
by optimizing the action Fmax. In other words, the sufficient
condition for λ1,2 < 0 is equivalent to the saddle-point equa-
tion [35].

Therefore only the third type of eigenvectors leads to the
instability of the RS solution. This type of eigenvectors corre-
sponds to the instability that is able to take the stationary point
outside the RS subspace, capturing the transverse fluctuations.
Suppose that the eigenvalues of these eigenvectors for H0 and
H1 are γ1 and γ2, respectively. The related eigenvalues that
cause the instability of the RS solution are given by the two
eigenvalues of the following matrix:[

αγ1 −1
−1 γ2

]
. (24)

The sign of the determinant determines the stability of the RS
solution, i.e., the RS solution is stable only when αγ1γ2 < 1.
When α → 0, the determinant of this matrix is given by
αγ1γ2 − 1 = −1, which means that the product of the eigen-
values is negative. Therefore, in this limit, the RS solution is
correct as expected. When α increases above a critical value,
the sign of the determinant changes, which means that one
of these eigenvalues changes its sign, thereby breaking the
stability of the RS solution.

According to the calculation details in Appendix C, we
have

γ1 = 1

(1 − q)2

∫
Dz

(
G(Z )

H (Z )

)2(
Z − G(Z )

H (Z )

)2

, (25a)

γ2 =
∫

Dz
1

cosh4 (
√

q̂z)
, (25b)

where Z = √
q/(1 − q)z. Therefore the critical condition for

the transition to replica symmetry breaking is specified by

αγ1γ2 = α

(1 − q)2

∫
Dz

(
G(Z )

H (Z )

)2(
Z − G(Z )

H (Z )

)2

×
∫

Dz
1

cosh4(
√

q̂z)
= 1. (26)

We thus conclude that Eq. (26) is identical to Eq. (15), which
suggests that the equivalence between the BP instability and
the transition to replica symmetry breaking can be established
in perceptron learning systems. The replica symmetry break-
ing captures a hierarchical organization of replicas. In physics,
this actually corresponds to the decomposition of the Gibbs
measure into (exponentially or subexponentially) many pure
states [36].

We finally carry out a numerical simulation to check
whether the theoretical instability coincides with that obtained
by running the BP in specific instances. As shown in Fig. 2,
we observe the theoretical prediction, namely, that the de
Almeida–Thouless (AT) [34] loading rate αAT matches well
the numerical estimation. The theoretical prediction is com-
puted by solving Eqs. (9a) and (9b) and Eq. (15). During
simulations, we estimate the convergence proportion as the
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FIG. 2. The convergence proportion of the BP algorithm vs load-
ing rate. The red dashed line marks the αAT computed by the stability
condition equation of the RS solution. The three curves for differ-
ent network sizes intersect at a point that coincides with αAT. For
each data point on the curves, we simulate M instances of binary
perceptron. M = 2000 for N = 500; M = 1000 for N = 1000; and
M = 500 for N = 2000.

fraction of instances for which the BP iteration converges
within a prescribed criterion (e.g., all updated messages within
a small deviation from the values at the previous iteration). It
is expected from the plot that in the thermodynamic limit, the
BP iteration does not converge beyond αAT with the probabil-
ity tending to 1.

VIII. CONCLUSION

In this paper, from a physics perspective, we prove that the
stability of the learning algorithm, derived using the physi-
cally intuitive cavity method, is connected to the stability of
the replica symmetric saddle-point solution of the model. The
equivalence between the physically intuitive cavity method
and the mathematically concise replica method has also been
explored in spin interaction systems [33], information trans-
mission systems [37], linear estimation problems such as
compressed sensing [38–40], and spectra estimation of ran-
dom sparse matrices [41]. Our proof adds another piece of
evidence of this equivalence in perceptron learning systems,
by claiming rigorously (in the thermodynamic limit) the one-
to-one correspondence between the BP instability and the AT
instability of the equilibrium saddle point.

Our framework shows that the cumbersome replica anal-
ysis could be avoided in studying learning systems, e.g., the
stability analysis considered in this paper. Therefore this work
will hopefully inspire further studies of landscape analysis
[12,28], unsupervised learning [7,42], and even deep learning,
e.g., the current hot topic of learning in overparametrized
neural networks [14].
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APPENDIX A: INSTABILITY ANALYSIS
OF THE BP ITERATION

The iterative equation for the field distribution reads

ρt+1(h) =
∫ P−1∏

μ=1

N−1∏
l=1

dhl→μρt (hl→μ)

×
〈
δ

(
h −

P−1∑
μ=1

ξμ√
Nσμ

G(Xμ)

H (Xμ)

)〉
ξ

, (A1a)

Xμ = −
∑N−1

l=1 ξ
μ

l tanh(hl→μ)/
√

N√
1 −∑N−1

l=1 tanh2(hl→μ)/N
= − wμ√

σμ

.

(A1b)

Notice that ξμ is independent of ξ
μ

l . We can thus calculate
the average with respect to ξμ and ξ

μ

l separately. Due to the
zero mean of ξμ, Et = ∫ hρt (h)dh = 0. Because ξ

μ

l = ±1,
we introduce a transformation hl→μ → ξ

μ

l hl→μ, which gives
rise to

Xμ = −
∑N−1

l=1 tanh(hl→μ)/
√

N√
1 −∑N−1

l=1 tanh2(hl→μ)/N
. (A2)

Then the variance reads

Ft+1 =
∫

h2ρt+1(h)dh =
∫ P−1∏

μ=1

N−1∏
l=1

dhl→μρt (hl→μ)

×
P−1∑
μ=1

[
1√
Nσμ

G(Xμ)

H (Xμ)

]2

= α

∫ N−1∏
l=1

dhlρ
t (hl )

[
1√
σ

G(X )

H (X )

]2

= αE

[(
1√
σ

G(X )

H (X )

)2]
, (A3)

where we have used the i.i.d. property of random patterns.
When N → ∞, due to the law of large numbers, we have

lim
N→∞

1

N

N−1∑
l=1

tanh2(hl ) = E[tanh2(hl )]

=
∫

Dz tanh2(
√

Ft z) ≡ Qt . (A4)

Due to the central limit theorem, we also have

lim
N→∞

1√
N

N−1∑
l=1

tanh(hl ) =
√
E[tanh2(hl )]z + E[tanh(hl )]

=
√
E[tanh2(hl )]z =

√
Qt z, (A5)
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where z ∼ N (0, 1). Therefore

lim
N→∞

Xμ = − limN→∞
∑N−1

l=1 tanh(hl→μ)/
√

N√
1 − limN→∞

∑N−1
l=1 tanh2(hl→μ)/N

= −
√

Qt

1 − Qt
z ≡ −Z. (A6)

Plugging Eqs. (A4)–(A6) into Eq. (A3), we have

Ft+1 = α

1 − Qt

∫
Dz

⎛
⎝G

(−√ Qt

1−Qt z
)

H
(−√ Qt

1−Qt z
)
⎞
⎠

2

. (A7)

Next, we calculate the time evolution of at and bt . Because of the zero mean of ξμ, it can also be proved that at = 0. In
addition, bt+1 is the second-order moment of f (y), i.e.,

bt+1 =
∫

y2 f t+1(y)dy =
∫ P∏

μ=1

N∏
l=1

dyl→μ f t (yl→μ)

〈(
P−1∑
μ=1

ξμ

√
N

[Lδwμ + Kδσμ]

)2〉
{xl→μ},ξ

= 1

N

∫ P∏
μ=1

N∏
l=1

dyl→μ f t (yl→μ)
P−1∑
μ=1

〈[Lδwμ + Kδσμ]2〉{xl→μ},ξ

= 1

N

∫ P∏
μ=1

N∏
l=1

dyl→μ f t (yl→μ)
P−1∑
μ=1

〈Wμ〉{xl→μ}, (A8)

where

Wμ ≡
〈[

L√
N

N−1∑
l=1

ξ
μ

l

(
1 − x2

l→μ

)
yl→μ − 2K

N

N−1∑
l=1

xl→μ

(
1 − x2

l→μ

)
yl→μ

]2〉
ξ

. (A9)

Performing the distribution-preserved transformation xl→μ → ξ
μ

l xl→μ and neglecting the higher-order small terms in the large-N
limit, we arrive at

Wμ =
〈[

L√
N

N−1∑
l=1

ξ
μ

l

(
1 − x2

l→μ

)
yl→μ − 2K

N

N−1∑
l=1

ξ
μ

l xl→μ

(
1 − x2

l→μ

)
yl→μ

]2〉
ξ

�
N−1∑
l=1

[
L√
N

]2(
1 − x2

l→μ

)2
y2

l→μ, (A10)

and immediately we get

bt+1 = lim
N→∞

btα

〈
N−1∑
l=1

[
L√
N

]2(
1 − x2

l

)2〉
{xl }

. (A11)

Note that

L = − lim
N→∞

1

σ

(
w√
σ

G(X )

H (X )
+ G2(X )

H2(X )

)
= − 1

(1 − Qt )

(
G(−Z )

H (−Z )
Z + G2(−Z )

H2(−Z )

)
(A12)

and

lim
N→∞

1

N

N−1∑
l=1

(
1 − x2

l

)2 = 1 − 2E
[
x2

l

]+ E
[
x4

l

] = 1 − 2
∫

Dz tanh2(
√

Ft z) +
∫

Dz tanh4(
√

Ft z)

=
∫

Dz
1

cosh4(
√

Ft z)
. (A13)

Finally, we get

bt+1 = α

(1 − Qt )2

∫
Dz

(
G(Z )

H (Z )

)2(
Z − G(Z )

H (Z )

)2 ∫
Dz

1

cosh4(
√

Ft z)
bt , (A14)

where a statistically invariant change z → −z has been made.
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APPENDIX B: DERIVATION OF SADDLE-POINT EQUATIONS

In this Appendix, we show explicitly how the replica computation is carried out. Applying the RS ansatz qab = q, q̂ab = q̂ for
a �= b to the energy term, we obtain

G0(q) = ln
∫ ∏

a

dλa

2π

∫ ∞

0
dtaei

∑
a λata− 1

2 q(
∑

a λa )2− 1
2 (1−q)

∑
a (λa )2

= ln
∫

Dz
∫ ∏

a

dλa

2π

∫ ∞

0
dtaei

∑
a λata−i

∑
a λa√qz− 1

2 (1−q)
∑

a(λa )2

= ln
∫

Dz
∫ ∏

a

dλa

2π

∫ ∞

−√
qz

dtaei
∑

a λata− 1
2 (1−q)

∑
a (λa )2

= ln
∫

Dz

[∫
dλ

2π

∫ ∞

−√
qz

dteiλt− 1
2 (1−q)λ2

]n

= ln
∫

Dz

[∫
dλ

2π

∫ ∞

−√ q
1−q z

dteiλt− 1
2 λ2

]n

= ln
∫

Dz

[∫ ∞

−√ q
1−q z

Dt

]n

= ln
∫

Dz

[
H

(
−
√

q

1 − q
z

)]n

, (B1)

where we have rescaled t = t
√

1 − q and λ = λ/
√

1 − q. Then we compute the entropy term G1(q̂) as

G1(q̂) = ln
∑
{Ja}

e
∑

a<b q̂abJaJb = ln
∑
{Ja}

eq̂
∑

a<b JaJb = ln
∑
{Ja}

e
q̂
2 (
∑

a Ja )2− q̂n
2

= ln
∫

Dz
∑
{Ja}

e
√

q̂z
∑

a Ja− q̂n
2 = ln

∫
Dze− q̂n

2

∑
{Ja}

∏
a

e
√

q̂zJa

= − q̂n

2
+ ln

∫
Dz
∏

a

[∑
Ja

e
√

q̂zJa

]
= − q̂n

2
+ ln

∫
Dz[2 cosh

√
q̂z]n. (B2)

Therefore the entropy of the model turns out to be

s = lim
n→0

1

n
max

[
−n(n − 1)

2
qq̂ − n

2
q̂ + ln

∫
Dz

[
H

(
−
√

q

1 − q
z

)]n

+ ln
∫

Dz[2 cosh
√

q̂z]n

]

= qq̂

2
− q̂

2
+
∫

Dz ln

[
H

(
−
√

q

1 − q
z

)]
+
∫

Dz ln[2 cosh
√

q̂z]. (B3)

Finally, we arrive at the saddle-point equations as follows:

∂s

∂ q̂
= 0 ⇒ q =

∫
Dz tanh2(

√
q̂z), (B4)

∂s

∂q
= 0 ⇒ q̂ = α

1 − q

∫
Dt

⎛
⎜⎝G

(
−
√

q
1−q t

)
H
(
−
√

q
1−q t

)
⎞
⎟⎠

2

. (B5)

APPENDIX C: INSTABILITY ANALYSIS OF THE RS SOLUTION

Considering the perturbation on the order parameters, we write the energy term G0 as

G0 = ln
∫ ∏

a

dλa

2π

∫ ∞

0
dtaei

∑
a λata− 1

2 q(
∑

a λa )2− 1
2 (1−q)

∑
a (λa )2−∑a<b ηabλaλb

= ln
∫

Dz
∫ ∏

a

dλa

2π

∫ ∞

0
dtaei

∑
a λata−i

∑
a λa√qz− 1

2 (1−q)
∑

a(λa )2−∑a<b ηabλaλb

= ln
∫

Dz
∫ ∏

a

dλa

2π

∫ ∞

−√
qz

dtaei
∑

a λata− 1
2 (1−q)

∑
a (λa )2−∑a<b ηabλaλb

, (C1)
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where we have shifted the integral variable t a → t a − √
qz. In addition, we define G′

0 as

G′
0 ≡

∫
Dz ln

∫ ∏
a

dλa

2π

∫ ∞

−√
qz

dtaei
∑

a λata− 1
2 (1−q)

∑
a (λa )2−∑a<b ηabλaλb

. (C2)

When n → 0 and ηab → 0, we have

lim
ηab→0

lim
n→0

G0

G′
0

= lim
n→0

ln
∫

Dz
∫ ∏

a
dλa

2π

∫∞
−√

qz dtaei
∑

a λata− 1
2 (1−q)

∑
a(λa )2

∫
Dz ln

∫ ∏
a

dλa

2π

∫∞
−√

qz dtaei
∑

a λata− 1
2 (1−q)

∑
a(λa )2

= lim
n→0

ln
∫

Dz
[ ∫

dλ
2π

∫∞
−√

qz dteiλt− 1
2 (1−q)λ2]n

n
∫

Dz ln
[ ∫

dλ
2π

∫∞
−√

qz dteiλt− 1
2 (1−q)λ2] = 1. (C3)

Therefore we can replace G0 by G′
0 in the above two limits in Eq. (22). We then get

H (αβ )(γ δ)
0 ≡ ∂2G0

∂qαβ∂qγ δ

∣∣∣∣
ηαβ ,ηγ δ=0

= ∂2G′
0

∂ηαβ∂ηγ δ

∣∣∣∣
ηαβ ,ηγ δ=0

= 〈λαλβλγ λδ〉 − 〈λαλβ〉〈λγ λδ〉, (C4)

where

〈 f (λ)〉 ≡
∫

Dz

∫ ∏
a

dλa

2π

∫∞
−√

qz dta f (λ)ei
∑

a λata− 1
2 (1−q)

∑
a (λa )2

∫ ∏
a

dλa

2π

∫∞
−√

qz dtaei
∑

a λata− 1
2 (1−q)

∑
a(λa )2

. (C5)

At the RS saddle point, Eq. (C4) takes three possible values:

P = H (αβ )(αβ )
0 = 〈(λαλβ )2〉 − (〈λαλβ〉)2, (C6a)

Q = H (αβ )(αγ )
0 = 〈(λα )2λβλγ 〉 − 〈λαλβ〉〈λαλγ 〉, (C6b)

R = H (αβ )(γ δ)
0 = 〈λαλβλγ λδ〉 − 〈λαλβ〉〈λγ λδ〉, (C6c)

where α, β, γ , and δ are not equal to each other. We then compute the relevant moment terms as follows:

〈(λαλβ )2〉 =
∫

Dz

∫ ∏
a

dλa

2π

∫∞
−√

qz dta(λα )2(λβ )2ei
∑

a λata− 1
2 (1−q)

∑
a(λa )2

∫ ∏
a

dλa

2π

∫∞
−√

qz dtaei
∑

a λata− 1
2 (1−q)

∑
a(λa )2

=
∫

Dz

∫
dλαdλβ

(2π )2

∫∞
−√

qz dtαdtβ (λα )2(λβ )2ei(λαtα+λβ tβ )− 1
2 (1−q)((λα )2+(λβ )2 )∫

dλαdλβ

(2π )2

∫∞
−√

qz dtαdtβei(λαtα+λβ tβ )− 1
2 (1−q)(((λα )2+(λβ )2 )

=
∫

Dz

∫
dλα

2π

∫∞
−√

qz dtα (λα )2ei(λαtα )− 1
2 (1−q)(λα )2

∫
dλα

2π

∫∞
−√

qz dtαei(λαtα )− 1
2 (1−q)(λα )2

∫
dλβ

2π

∫∞
−√

qz dtβ (λβ )2ei(λβ tβ )− 1
2 (1−q)(λβ )2

∫
dλβ

2π

∫∞
−√

qz dtβei(λβ tβ )− 1
2 (1−q)(λβ )2

=
∫

Dz

⎛
⎝
∫

dλ
2π

∫∞
−√

qz dtλ2eiλt− 1
2 (1−q)λ2

∫
dλ
2π

∫∞
−√

qz dteiλt− 1
2 (1−q)λ2

⎞
⎠

2

=
∫

Dz(λ2[z])2, (C7)

where f (λ)[z] is defined as

f (λ)[z] =
∫

dλ
2π

∫∞
−√

qz dt f (λ)eiλt− 1
2 (1−q)λ2

∫
dλ
2π

∫∞
−√

qz dteiλt− 1
2 (1−q)λ2

. (C8)

Analogously, we obtain

〈(λα )2λβλγ 〉 =
∫

Dz(λ[z])2λ2[z], (C9)

〈λαλβλγ λδ〉 =
∫

Dz(λ[z])4, (C10)
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where λ2[z] and λ[z] are computed as

λ[z] = i√
1 − q

G(−Z )

H (−Z )
, (C11)

λ2[z] = 1

1 − q

G(−Z )

H (−Z )
Z, (C12)

where Z = √
q/(1 − q)z.

Finally, we obtain γ1 as

γ1 = P − 2Q + R =
∫

Dz(λ2[z] − (λ[z]
)2

)2

= 1

(1 − q)2

∫
Dz

(
G(Z )

H (Z )

)2(
Z − G(Z )

H (Z )

)2

. (C13)

To compute γ2, we first define

P′ = H (αβ )(αβ )
1 = 1 − (〈JαJβ〉)2, (C14a)

Q′ = H (αβ )(αγ )
1 = 〈JβJγ 〉 − 〈JαJβ〉〈JαJγ 〉, (C14b)

R′ = H (αβ )(γ δ)
1 = 〈JαJβJγ Jδ〉 − 〈JαJβ〉〈Jγ Jδ

〉
, (C14c)

where 〈 f (J )〉 is defined as

〈 f (J )〉 =
∫

Dz

∑
{Ja} f (J )e

√
q̂z
∑

a Ja∑
{Ja} e

√
q̂z
∑

a Ja
. (C15)

We finally get

γ2 = P′ − 2Q′ + R′ = 1 − 2〈JβJγ 〉 + 〈JαJβJγ Jδ〉

= 1 − 2
∫

Dz tanh2(
√

q̂z) +
∫

Dz tanh4(
√

q̂z)

=
∫

Dz
1

cosh4 (
√

q̂z)
. (C16)

APPENDIX D: EIGENVALUES OF THE HESSIAN MATRIX

Due to the symmetry with respect to permutation of replica
indices, there are three types of eigenvectors for the Hessian
matrix H = {H (αβ )(γ δ)} [34]. The first type of eigenvectors μ1
has the following form:

μαβ = a ∀ α < β. (D1)

For all rows of Hμ1 = λ1μ1, the equations can be generally
written as

Pa + 2(n − 2)Qa + 1
2 (n − 2)(n − 3)Ra = λ1a. (D2)

While n → 0, we obtain

λ1 = P − 4Q + 3R. (D3)

The second type of eigenvectors μ2 has the following form:

μαθ = μθβ = b, α, β �= θ,

μαβ = c, α, β �= θ,
(D4)

where θ is the specific replica index. From Hμ2 = λ2μ2, we
obtain

Pb + (n − 2)Qb + (n − 2)Qc + 1
2 (n − 2)(n − 3)Rc = λ2b.

(D5)
Because H is a symmetric matrix, the eigenvectors corre-
sponding to different eigenvalues are orthogonal to each other.
Therefore μ1 should be orthogonal to μ2, leading to the fol-
lowing equation:

(n − 1)ab + 1
2 (n − 2)(n − 1)ac = 0. (D6)

Using Eq. (D5) and Eq. (D6) and setting n → 0, we get

λ2 = P − 4Q + 3R. (D7)

Due to the choice of one specific replica, this eigenvalue is
(n − 1)-fold degenerate. We thus conclude that the eigenval-
ues of these two types of eigenvectors are the same in the
limit of n → 0. In fact, when n → 0, c will also converge to b,
making the forms of the two types of eigenvectors the same.

The third type of eigenvectors μ3 has the following form:

μθν = d, μαν = μνβ = μαθ = μθβ = e, α, β �= θ, ν,

μαβ = f , α, β �= θ, ν, (D8)

where θ and ν are the two specific replica indices. From
Hμ3 = λ3μ3, we obtain

Pd + 2(n − 2)Qe + 1
2 (n − 2)(n − 3)R f = λ3d. (D9)

The orthogonality property is given by

da + 2(n − 2)ea + 1
2 (n − 2)(n − 3) f a = 0, (D10)

db + (n − 2)eb + (n − 2)ec + 1
2 (n − 2)(n − 3) f c = 0.

(D11)

Using Eqs. (D9)–(D11) and setting n → 0, we get the n(n−3)
2 -

fold degenerate eigenvalue

λ3 = P − 2Q + R. (D12)

The total degeneracy (the number of linearly indepen-
dent eigenvectors) of these three types of eigenvectors is
n(n − 1)/2, which implies that we have exhausted all the
eigenvalues.
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