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Using tools from representation theory, we derive expressions for the coincidence rate of partially-
distinguishable particles in an interferometry experiment. Our expressions are valid for either bosons or fermions,
and for any number of particles. In an experiment with n particles the expressions we derive contain a term for
each partition of the integer n; Gamas’s theorem is used to determine which of these terms are automatically
zero based on the pairwise level of distinguishability between particles. Most sampling schemes (such as “boson
sampling”) are limited to completely indistinguishable particles; our paper aids in the understanding of systems
where an arbitrary level of distinguishability is permitted. As an application of our paper we introduce a sampling
scheme with partially-distinguishable fermions, which we call “generalized fermion sampling”.
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I. INTRODUCTION

In this paper we investigate coincidence rates for n particles
arriving not necessarily simultaneously at n detectors located
at the output of an m × m unitary linear interferometer. We
extend previous work on coincidence rates [1–5] for partially
distinguishable particles, either bosons or fermions; in doing
this we improve on the understanding of the Hong-Ou-Mandel
effect [6] for many-particle systems [7]. Our paper is mo-
tivated by the problem of BOSONSAMPLING [8], which has
thrown new bridges between computational complexity and
linear optics but initially dealt with indistinguishable, simul-
taneous bosons. The boson-sampling computational challenge
is to ascertain, computationally and experimentally, the distri-
bution of coincidence rates as the location of the detectors is
changed. The excitement of boson sampling and its associated
computational problem is that coincidence rates for indis-
tinguishable bosons are given by permanents [9] of (nearly)
Gaussian-random n × n complex matrices; whereas these per-
manents are hard to compute, they are easily accessible
experimentally [10].

Boson sampling has been generalized to nonsimultaneous
arrival times [3] and Gaussian states [11]. A more recent re-
finement of the original boson sampling proposal is the rapidly
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developing study and implementation of Gaussian BosonSam-
pling [12–16], which leverages the transformation properties
of squeezed states to produce an equally hard computational
task via computation of a hafnian rather than a permanent.
Originally regarded as the quickest way to establish quantum
advantage [17], some argue that efficiently solving BOSON-
SAMPLING could yield a practical benefit [18–22].

Whereas the interference of light is a venerable centuries-
old topic [23], fermionic interference is relatively recent,
dating back to electron diffraction [24]. The notion of fermion
interferometry, as a concept for one or more fermions to face
one or more paths, controlled by analogues of beam splitters
and phase shifters, extends the concept of fermion interference
to controlled interferometric processes [25] such as electronic
analogues to Young’s double-slit experiment [26] and fermion
antibunching evident in current fluctuations of partitioned
electrons [27]. The term fermion interferometry has been used
in nuclear physics [28], based on a Hanbury Brown and Twiss
type of two-nucleon correlation measurement [29,30] akin to
fermion antibunching [27], and not fermion interferometry as
we study here. Some recent advances in the coherent control
of electrons, including applications to fermionic interferome-
try, are reviewed in [31].

It is convenient to think of the permanent, which is often
introduced as an “unsigned determinant”, as a group function
on a GLn(C) matrix associated with the fully symmetric rep-
resentation of the permutation group Sn of n objects. From
this perspective, the determinant is also a group function but
associated with the alternating representation of the permuta-
tion group Sn.
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It is well established that the permanent and the determi-
nant are required to evaluate rates for simultaneous bosons and
fermions, respectively. Here, we will show as a first result of
this paper that, for nonsimultaneous arrival times, additional
group functions beyond the permanent and determinant and
associated with other representations of Sn, contribute to the
coincidence rate. The rate can also be expressed in terms of
immanants [32], which generalize matrix determinants and
permanents and in fact interpolate between them. A second
important result of our paper follows as a corollary to Gamas’s
theorem [33,34]: we will show how the mutual partial distin-
guishability of the particles determines which group functions
will have nonzero contributions. To our knowledge, this is the
first time Gamas’s theorem has been applied to a physical sys-
tem. Our third result states that, if at most �n/2� fermions are
indistinguishable, then the exact coincidence rate for fermions
contains computationally expensive group functions, which
require a number of operations that grows exponentially in
the number of fermions. As a fourth result, we show that,
for uniformly random arrival times, the probability of needing
to evaluate these computationally expensive group functions
differs from 1 by a quantity that goes to 0 exponentially
fast in the number of fermions. This last result naturally
leads us to introduce GENFERMIONSAMPLING as the compu-
tational problem of sampling the distribution of coincidence
rates generated by fermions arriving nonsimultaneously at the
detectors.

Before we proceed we need to clarify issues of semantics.
We imagine an operator triggering the release of particles and
opening a detection-time window of some fixed time interval,
long enough for particles to arrive at the interferometer, to be
scattered in the interferometer and counted at the detectors.
The detection-time window then closes and all the detections
during this window are described as coincident detections. By
“arrival time”, we are referring to particles whose temporal
profile (wave-packet shape) is effectively localized in time; we
define the arrival times as the delay between the opening of the
time-detection window and the time taken for the wavepacket
to travel from the source to the detector. Operationally, our
arrival times are effectively controllable delays in the inter-
ferometer input channels. If two or more arrival times are
the same, the relevant particles “arrive simultaneously” at
the detectors; if arrival times are different, the particles are
“nonsimultaneous”. Even if the particles do not arrive simul-
taneously at the detectors, we will speak of coincidence rate in
the sense of particles detected during a single run by detectors
at selected positions. The rate at which they are detected in
coincidence depends on the interferometer, the times of arrival
at the detectors, and positions of the detectors; this rate is
called the coincidence rate throughout this paper.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

A. The scattering matrix and its submatrices

We envisage an m-channel passive interferometer [35] that
receives single particles at n (n � m) of its input ports and
no particles at the rest of the input ports. Mathematically, this
interferometer transformation is described by a unitary linear
transformation U , which is an m × m unitary matrix. We as-

sume that U is a Haar-random matrix to avoid any symmetries
in the matrix entries that would inadvertently simplify the rate
calculations.

For an n-particle input state, with one particle per in-
put port, we label without loss of generality this input by
1 to n as port labels, or, in the Fock basis, as |1〉n =
|1, 1, 1, . . . , 0, 0, 0〉. Detectors are placed at the output ports,
and, although either one or zero particles enter each input,
more than one particle can be registered at an output detector.
For the generic case, we have si particles detected at the ith
channel, and the total number of particles is conserved such
that

∑
i si = n.

Let s ∈ �m,n, where �m,n is the set of m tuples (s1, . . . , sm)
so that s1 + · · · + sm = n. Mathematically we first construct
the m × n submatrix A by keeping only the first n columns
of U . Next, we construct the n × n submatrix A(s) for each
s ∈ �m,n, by replicating side-by-side si times row i of A , and
by deleting all rows for which si = 0.

In the remainder of this paper we focus on and restrict our
presentation and arguments to those strings s with si = 0 or 1
for all i. Practically, this can be achieved by diluting the par-
ticles so that m � n, in which case the probability that s will
contain any si > 1 is small. Alternatively, one may postselect
those events where the above condition holds, ignoring events
where some of the si > 1. As a consequence, all denominator
factors of s1!s2! . . . sm! that would appear in a rate are 1, and
every submatrix A(s) ∈ GLn(C).

B. Enter the permutation group

As mentioned above we envisage a linear lossless interfer-
ometer modelled as a unitary m × m matrix. Suppose that n
(n < m) particles enter in a subset of the possible input ports,
exactly one particle per input port. Without loss of generality
we label these input ports from 1 to n. The effect of the
interferometer is to scatter each single particle so it eventually
reaches one of the detectors; each detector is located at a
different output port, and we assume that the n input particles
reach n different detectors with exactly one particle per detec-
tor. Given a string s ∈ �m,n so that si = 0 or 1, the positions of
the n detectors registering one particle are now simply the list
of those i’s for which si = 1. This list of detector positions we
denote by S, so that Sk is the position of the kth detector that
registers a particle. For example, if s = (0, 1, 1, 0, 1), then we
have S = (2, 3, 5) with S1 = 2, S2 = 3, S3 = 5 as shown in
the example of Fig. 1.

Given s ∈ �m,n and S, the n × n matrix A(s) thus has
elements

A(s)β,α = USβ ,α, α, β = 1, . . . , n. (1)

With s as above, for instance, we have, using A(235) :=
A(01101)

A(235) =
⎛
⎝A(235)11 A(235)12 A(235)13

A(235)21 A(235)22 A(235)23

A(235)31 A(235)32 A(235)33

⎞
⎠

=
⎛
⎝U21 U22 U23

U31 U32 U33

U51 U52 U53

⎞
⎠. (2)
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FIG. 1. An example of an interferometer with m = 5 and 3 par-
ticles, illustrating the labeling and notation for the matrices U and
A(s).

Clearly the matrix A(s) is in general not unitary but rather
A(s) ∈ GLn(C). [Note that, if we allowed more than one par-
ticle per output port, A(s) is no longer in GLn(C).]

During a run of the experiment, the effect of the interfer-
ometer is to scatter a single particle state from i to any one
output port Sk . The data of the n detectors that have registered
a particle is then collected. Figure 1 also shows that particle
1 ends up in detector 2, located at output port 3; particle 2
reaches detector 1 at port 2; and particle 3 reaches detector 3
at port 5. The amplitude for this process is proportional to the
monomial A(s)21A(s)12A(s)33. There are clearly six possible
ways for particles to exit in the three detectors, with exactly
one particle per detector, and each of these six possible ways
is a permutation of (S1, S2, S3). The net amplitude is thus a
sum of 6 terms of the form A(s)k1A(s) j2A(s)�3 f (τ̄1)g(τ̄2)h(τ̄3),
where (k, j, �) is a permutation of (S1, S2, S3) and f , g, h are
functions of the individual arrival times at the detectors.

More generally, as we restrict ourselves to situations where
the n particles are detected in different output ports, the effect
of the interferometer is to shuffle the input (1, . . . , n) so that
particles can exit in n! possible ways at the output, with each
of these indexed by a permutation of (1, . . . , n). Each of these
n! ways is one term to be added to obtain the net scattering
amplitude for this fixed set of detector positions. We see
that the permutation (or symmetric) group Sn [36,37] of n
particles enters into the problem of computing coincidence
rates in a natural way.

C. Partitions, immanants, and group functions

Here we explain matrix immanants which—like the per-
manent or the determinant—are polynomials in the entries of
a matrix, albeit neither fully symmetric nor antisymmetric,
and are thus naturally well suited to understand the structure
of coincidence rates for partially distinguishable particles.
Immanants are closely related to Young diagrams, Young
tableaux, and general irreducible representations of Sn; the
references [38–40] are especially helpful for a longer discus-
sion of these concepts. Additional details on this background
can also be found in [41].

The study of the permutation group is closely tied to the
partitions of n, as these partitions label the irreducible rep-
resentations of Sn. A partition of a positive integer n is a k
tuple λ = (λ1, λ2, . . . , λk ) such that λ1 � λ2 � · · · � λk � 1
and

∑k
i=1 λi = n; we call k the number of parts of a partition,

λ1 the width, and n the size. The notation λ � n means that
λ is a partition of n. A Young diagram is a visual way to
write a partition using boxes. Given a partition λ, we construct
the associated Young diagram by placing a row of λ1 boxes
at the top, then we add a left-justified row of λ2 boxes is
added directly below. This process is repeated for each λi. The
partition λ is referred to as the shape of the Young diagram.

We also need the partition λ∗ conjugate to the partition λ,
which is obtained from λ by exchanging rows and columns
of λ. This is equivalent to reflecting the diagram λ about the
main diagonal.

Example 1: Conjugate partitions for S4:

is conjugate to

is conjugate to

is conjugate to itself

A Young tableau (plural tableaux) on a Young diagram of
size n is a numbering of the boxes using entries from the
set {1, 2, . . . , n}. A standard tableau has its entries strictly
increasing across rows and strictly increasing down the
columns, as a result each integer from 1 to n appears ex-
actly once in the tableau. The conditions for the semistandard
tableaux are relaxed: entries weakly increase along rows, but
still must increase strictly down columns. We use the notation
sλ and dλ for the number of standard and semistandard Young
tableaux of shape λ, respectively.

For an arbitrary n × n matrix B, there is an immanant
defined for every partition of n. The λ-immanant of B is

immλ (B) :=
∑
σ∈Sn

χλ(σ )
n∏

i=1

Bσ (i),i. (3)

The notation χλ(σ ) refers to the character of element σ in
the representation λ of Sn. The permanent and determinant
are special cases of immanants that correspond to the trivial
representation and the alternating representation, respectively.
The simplest nontrivial example is the -immanant of a 3 × 3
matrix

(4)

Kostant provides a connection between certain group func-
tions of GLn(C) and immanants [42]. Let B ∈ GLn(C) and
consider the representation Dλ of GLn(C), namely,

Dλ : GLn(C) → GLdλ
(C)

B → Dλ(B). (5)

A D function is a function of the form

Dλ
i, j (B) = 〈

ψλ
i

∣∣ Dλ(B)
∣∣ψλ

j

〉
, (6)
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where |ψλ
i 〉 is a basis vector of the representation space of the

Dλ representation of GLn(C). Define Dλ(B) to be the matrix
with Dλ

i, j (B) as its i jth entry. We are particularly interested in
the states |ψλ

j 〉 that live in the (1,1,1,. . .,1)-weight subspace of
Dλ (if B ∈ SU (n) this is referred to as the 0-weight subspace).
Recall that a vector v ∈ Cn has weight w = (w1,w2, . . . ,wn)
when

diag(t1, t2, . . . , tn)v = tw1
1 tw2

2 . . . twn
n v. (7)

The following theorem of Kostant shows a deep relationship
between immanants and D functions.

Theorem 1: (Kostant [42]): Given B ∈ GLn(C), it follows
that

immλ(B) =
∑

i

Dλ
i,i(B), (8)

where the sum is over all states of weight (1,1,1,. . .,1).
This connection is important to establish the complexity of

evaluating the coincidence rate equations.

III. RATES FOR CONTINUOUS TIME

We analyze coincidence rates of an experiment where n
particles are modelled by a Gaussian wave packet arriving
in an m × m interferometer at times τ̄1, . . . , τ̄n, and obtain
a compact form for the bosonic and fermonic coincidence
rate equations. The difference between the boson and fermion
cases is a sign of some entries of an n! × n! symmetric matrix
R(τ̄; p) containing information about the level of distinguisha-
bility through the arrival times τ̄ . The species label p can
be either b for bosons or f for fermions. The permutation
group Sn of n particles is an important tool throughout this
discussion. If two or more elements of Sn need to be specified,
we do so with a subscript v.g. σi or γ j etc.

A. Sources, input state, arrival-time vector, detectors

We model a source for input channel k as producing a
temporal Gaussian wave packet in channel k; the wave packet
is described by the one-particle state

|k(τ̄k )〉 := Â†
k (τ̄k ) |0〉 =

∫
dωk φ(ωk )e−iωk τ̄k â†

k (ωk ) |0〉 , (9)

where the spectral profile

φ(ωk ) = 1√
�ω

√
2π

e− (ωk−ω0 )2

4(�ω)2 (10)

is normalized so that
∫

dωk|φ(ωk )|2 = 1. The frequency
spread of the source �ω is sufficiently narrow and assumed
constant, so that one can replace the energy h̄ω of each Fourier
component by the mean excitation energy of the photon [43].
Here, operators such as â†

i (ωk )—they can be either fermionic
or bosonic—create an excitation of frequency ωk in input
channel i.

We assume n independent but identical sources, each de-
livering one wave packet to a separate input channel, with n
smaller than or equal to the total number m of channels. Let

|0〉 = |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ · · · ⊗ |0〉n , (11)

denote the n-particle vacuum state; the n-particle input state is
then the n-fold product state [43]

|ψin(τ̄1, . . . , τ̄n)〉 := Â†
1(τ̄1)Â†

2(τ̄2) . . . Â†
n(τ̄n) |0〉 . (12)

The times of arrival

τ̄ := [τ̄1, . . . , τ̄n] (13)

that appear in Eq. (12) are real numbers in some finite time
interval of duration T and are measured from some common
but otherwise arbitrary reference time.

The detectors are Fourier-limited [44]. They integrate with
frequency response �(��) over the entire interval T so
that long integration times lead to small width ��; they are
modelled as projection operators

�̂k =
∫

d�kâ†
k (�k ) |0〉 〈0| âk (�k )�(��k ), (14)

�̂ = �̂1 ⊗ �̂2 ⊗ · · · ⊗ �̂n. (15)

For simplicity we choose the frequency response of all detec-
tors to be identical Gaussians of the form

�(��) = 1

��
√

2π
e− (�−ω0 )2

2(��)2 (16)

with fixed width ��. A detector does not register arrival
times, but registers only if a particle has entered the detector
at any time during one run of the experiment. The probability
of detection at a particular detector depends on τ̄ and on the
submatrix A(s).

B. Exact coincidence rate equations, continuous time

In this subsection, we obtain a compact form for the
bosonic and fermionic coincidence rate equations, and show
how they are closely related. We also show that the entries
of an n! × n! symmetric matrix R(τ̄; p) are monomials in the
entries of the so-called delay matrix r(τ̄), defined in Eq. (29).
This observation is crucial to our simplifications. In Sec. IV,
we use Gamas’s theorem to deduce the conditions under
which the λ-immanant of r(τ̄) is zero based on the set of
arrival times τ̄.

The effect of the interferometer is to scatter each single
particle state to

|k(τ̄i )〉 → A(s) |k(τ̄i )〉 =
∑

q

|q(τ̄i )〉 A(s)qk, (17)

i.e., the scattering matrix produces superposition of states
from the initial state but does not affect the times of arrival.
The scattered state can be written in expanded form as

|out(τ̄)〉 =
∑
σ∈Sn

A(s)σ (1)1A(s)σ (2)2 . . . A(s)σ (n)n

×
∫

dω1dω2 · · · dωnφ(ω1)φ(ω2) · · · φ(ωn)

× e−iω1 τ̄1 e−iω2 τ̄2 · · · e−iωn τ̄n

× â†
σ (1)(ω1)â†

σ (2)(ω2) · · · â†
σ (n)(ωn) |0〉 . (18)

To simplify the expressions for the rates, choose some or-
dering for the elements γi of Sn and introduce the following
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shorthand notation for monomials. Let M be some n × n ma-
trix, and write for the product

Mγ (1),1Mγ (2),2 . . . Mγ (n),n := Mγ . (19)

To highlight and contrast the boson and fermion cases, we
treat them in quick succession. In the bosonic case, the evalu-
ation of the coincidence rate

rate(τ̄, s; b) := 〈out| �̂ |out〉 , (20)

is best understood when written in the form

〈out| �̂ |out〉 = N n!
∑

σ,γ∈Sn

A(s)∗γ [R(τ̄; b)]γ ,σ A(s)σ , (21)

N = 1√
2π (�ω2 + ��2)

, (22)

where N is a normalization factor, A(s)σ is the monomial
defined in Eq. (19), and where the entries of the n! × n! matrix
R(τ̄; b) [which we call the (bosonic) rate matrix] are evalu-
ated by taking the operators â†

k (ω j ) and âi(ω�) to satisfy the
usual boson commutation relations. Evaluation of the element
(γ , σ ) of the matrix R(τ̄; b) yields

[R(τ̄; b)]γ ,σ = exp

(
−δω2

(
τ̄γ −1(1) − τ̄σ−1(1)

)2

2

)

× exp

(
−δω2

(
τ̄γ −1(2) − τ̄σ−1(2)

)2

2

)

× · · · × exp

(
−δω2

(
τ̄γ −1(n) − τ̄σ−1(n)

)2

2

)
,

(23)
1

δω2
= 1

��2
+ 1

�ω2
. (24)

For fermions the operators â†
k (ω j ) and âi(ω�) satisfy anticom-

mutation relations so an additional negative sign, which comes
from an odd number of permutations of fermionic operators,
multiplies the [R(τ̄; b)]γ ,σ term when the permutation σγ is
odd.

Ignoring the unimportant normalization constant N for
convenience, the coincidence rate is expressed as

rate(τ̄, s; f) =
∑

σ,γ∈Sn

A(s)∗γ [R(τ̄; f)]γ ,σ A(s)σ (25)

[R(τ̄; f)]γ ,σ = sgn(σγ )[R(τ̄; b)]γ ,σ = χ (1n )(σγ )[R(τ̄; b)]γ ,σ

(26)

where χ (1n )(σγ ) is the character of element σγ in the one-
dimensional fully-antisymmetric (alternating) representation
of Sn. Equation (26) shows explicitly how a sign difference
between the fermion and boson case can arise.

We next analyze the rate matrices R(τ̄; b) and R(τ̄; f) by in-
troducing the delay matrix r(τ̄), which is an n × n symmetric
matrix that keeps track of the relative overlaps between pulses.
The (i, j)th entry of r(τ̄) is

ri j := e
−δω2 (τ̄i−τ̄ j )2

2 , (27)

The entries of this matrix are bounded from 0 to 1, and depend
on the level of distinguishability between the particles. In
particular, ri j = 1 when the arrival times τi = τ j .

We observe that the delay matrix r(τ̄) is in fact a Gram
matrix by considering the basis functions

fk (ω; τ̄k ) = e−i(ω−ω0 )τ̄k , k = 1, 2, . . . , n (28)

with the symmetric inner product

ri j (τ̄)= 〈 fi| f j〉= 1

N

∫
dω |φ(ω)|2 �(�ω) f ∗

i (ω; τ̄i ) f j (ω; τ̄k ),

(29)

with φ and � respectively given in Eqs. (10) and (16). Using
the same shorthand notation for the monomials in r as done in
Eq. (19), we find that the i jth entry of the bosonic rate matrix
R(τ̄, b) is

R(τ̄; b)i j := rγ −1
j γi

(τ̄)

= rγ −1
j γi (1),1(τ̄) rγ −1

j γi (2),2(τ̄) . . . rγ −1
j γi (n),n(τ̄). (30)

In the fermionic case, the (i, j)th entry of the rate matrix is

R(τ̄; f)i j = sgn(γiγ j )rγ −1
j γi

(τ̄). (31)

For some fixed ordering {γ1, γ2, . . . γn!} of the elements of Sn,
we conveniently introduce the vector v(s)

v(s) = (A(s)γ1, A(s)γ2 , . . . , A(s)γn! )

. (32)

Equations (21) and (25) can respectively be expressed as

rate(τ̄, s; b) =
∑

σ,γ∈Sn

A(s)∗γ rγ −1σ (τ̄)A(s)σ , (33)

= v†(s)R(τ̄; b)v(s), (34)

and

rate(τ̄, s; f) =
∑

σ,γ∈Sn

sgn(γ σ )A(s)∗γ rγ −1σ (τ̄)A(s)σ , (35)

= v†(s)R(τ̄; f)v(s). (36)

We will refer to Eqs. (34) and (36) as the coincidence rate
equations for bosons and fermions, respectively.

Consider for instance the case n = 3. The scattering matrix
A (dropping s for the moment to avoid clutter) is

A =
⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠. (37)

We choose the ordering of S3 elements

{e, (12), (13), (23), (123), (132)} (38)

and the vector v(s) takes the form

v(s) = (
A11A22A33, A21A12A33, A31A22A13,

A11A32A23, A21A32A13, A31A12A23
)


,

= (
Ae, A(12), A(13), A(23), A(123), A(132)

)

. (39)

with s implied in the argument of each Ai j .
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TABLE I. Entries of the coincidence rate matrices. The arrive-
time vector τ̄ is implicit.

rσ Monomial in ri j entries Simplified monomial

re r11r22r33 1
r(12) r21r12r33 r2

12

r(13) r31r22r13 r2
13

r(23) r11r32r23 r2
23

r(123) r21r32r13 r12r23r13

r(132) r31r12r23 r12r23r13

The bosonic rate matrix R(τ̄; b) takes the form of a Schur
power matrix [45]:

R(τ̄; b) =

⎛
⎜⎜⎜⎜⎜⎝

re r(12) r(13) r(23) r(123) r(132)

r(12) re r(132) r(123) r(23) r(13)

r(13) r(123) re r(132) r(12) r(23)

r(23) r(132) r(123) re r(13) r(12)

r(132) r(23) r(12) r(13) re r(123)

r(123) r(13) r(23) r(12) r(132) re

⎞
⎟⎟⎟⎟⎟⎠,

(40)

with the arrival-time vector τ̄ implicit in r. For the fermionic
case, we add a negative sign to the entries when γiγ j is an odd
permutation; the result is

R(τ̄; f) =

⎛
⎜⎜⎜⎜⎜⎝

re −r(12) −r(13) −r(23) r(123) r(132)

−r(12) re r(132) r(123) −r(23) −r(13)

−r(13) r(123) re r(132) −r(12) −r(23)

−r(23) r(132) r(123) re −r(13) −r(12)

r(132) −r(23) −r(12) −r(13) re r(123)

r(123) −r(13) −r(23) −r(12) r(132) re

⎞
⎟⎟⎟⎟⎟⎠.

(41)

Note that, as ri j (τ̄) = r ji(τ̄), for any permutation σ we
have that rσ (τ̄) = rσ−1 (τ̄), which in turn means that the rate
matrix is symmetric with rii = 1. In Table I each of the rσ (τ̄)
terms is expressed as a monomial in the entries of the delay
matrix.

The expression of Eq. (34) clearly shows that, in general,
the exact expression for the rate involves the multiplication of
1 × n! × n! × n! × n! × 1 quantities. Our job is to cut down
on this in two steps. Anticipating results of Sec. IV, we make
the crucial observation that, if none of the ri j terms are 0, every
permutation occurs exactly once in each row and each column
of the rate matrix R(τ̄; p), hence R(τ̄; p) carries the regular
representation ρreg of the permutation group. (Although we
are here working under the assumption that si = 0 or 1, this
observation on the structure of the rate matrix holds even if
some si > 1.) It is well known that in the decomposition of
the regular representation, each irrep of Sn appears as many
times as its dimension

ρreg =
⊕
λ�n

sλ⊕
ρλ. (42)

It follows there exists a linear transformation T , determined
by the representation theory of Sn, that brings the rate matrix
to its block diagonal form. In Sec. IV B, we use this property
to simplify the coincidence rate equations. Secondly, we show

in Sec. V that, for a given set of arrival times τ̄, certain blocks
of the diagonalized rate matrix are automatically zero as a
consequence of Gamas’s theorem.

IV. BLOCK DIAGONALIZATION AND CONTINUOUS
TIME

We proceed by leveraging the permutation symmetries of
the matrix R(τ̄; p) and decompose this matrix into irreps of
Sn, i.e., we now show how it is possible to transform the
expression of the coincidence rate equations to one where the
rate matrix R(τ̄; b) or R(τ̄; f) has a block-diagonal form. These
symmetries in turn stem from the structure of the matrix r(τ̄).
We assume in Secs. IV A, IV B, and IV C, that for particles
i and j with i �= j, no ri j = 0, i.e., no particle is fully dis-
tinguishable from any of the others. When some ri j = 0, the
matrix R(τ̄; f) will have 0’s and may carry representations of
Sn−p, so the problem is effectively one of n − p partially dis-
tinguishable particles. We will discuss the case where some of
the particles are fully distinguishable from others in Sec. IV D.

An essential point is that, when all ri j �= 0, the block-
diagonalization procedure is independent of the arrival times
and independent of the numerical values of entries in the sub-
matrix A(s): it depends only on the action of the permutation
group Sn on monomials A(s)γ and rσ (τ̄).

A. Schur-Weyl duality and the decomposition of ⊗nCn

We first show that for any string s with si = 0 or 1, an input
state of the type Eq. (12) can be decomposed into pieces,
which transform nicely under the action of the permutation
group. For fixed τ̄, the states {Â†

j (τ̄) |0〉 , j = 1, . . . , n} form
a basis in Cn for the n-dimensional defining representation of
GLn(C):

Â†
1(τ̄) |0〉 →

⎛
⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎠, Â†

2(τ̄) |0〉 →

⎛
⎜⎜⎝

0
1
...

0

⎞
⎟⎟⎠, . . .

Â†
n(τ̄) |0〉 →

⎛
⎜⎜⎝

0
0
...

1

⎞
⎟⎟⎠. (43)

Clearly Â†
j (τ̄) |0〉 has weight (0, 0, . . . , 1 j . . . , 0), with 0 ev-

erywhere except 1 in the jth entry. Thus, the product state of
Eq. (12) is a state of weight (1, 1, . . . , 1) in the n-fold tensor
product of defining representation of GLn(C). Scattering by a
GLn(C) matrix and subsequent arrivals at different detectors
map this product state to a linear combination of states in the
same space of states with weight (1, 1, . . . , 1).

Now, it is well known that this n-fold tensor product de-
composes as

⊗nCn =
∑
λ�n

ρλ ⊗ Dλ (44)

where ρλ and Dλ are irreducible representations of Sn and
GLn(C), respectively. For economy we henceforth write the
partition λ for the irrep ρλ of Sn. When restricted to the
(1, 1, . . . , 1) subspace, the n-fold product ⊗nCn is a carrier
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space for the regular representation of Sn [46]. In other words,
it is possible to decompose the input and output states into
linear combinations of states that transform irreducibly under
Sn ⊗ GLn(C).

B. Block diagonalization of the coincidence rate equations

Since the rate matrix carries the regular representation of
Sn, there exists a linear transformation T that block diagonal-
izes it:

rate(τ, s; p) = v†(s)R(τ̄; p) v(s)

= v†(s)T −1(T R(τ̄; p)T −1)T v(s)

= (T v(s))†(T R(τ̄; p)T −1)(T v(s)), (45)

where the species label p stands for either boson (b) or fermion
(f).

Fraktur letters are used to shorten notation:

v(s) = T v(s) and R(τ̄; p) ≡ T R(τ̄; p)T −1. (46)

We write Rλ(τ̄) to denote the block that corresponds to irrep
λ, which appears sλ times in the block diagonalization. The set
of matrices Rλ(τ̄) are the same for both bosons and fermions;
however, their placement in the block-diagonalized rate ma-
trix R(τ̄; p) depends on the species label p and the choice of
linear transformation T .

In the bosonic case, when the multiplication R(τ̄; b)v(s) is
preformed, the ith copy of the matrix Rλ(τ̄) sees sλ entries of
the vector v(s); we take these entries and construct the vector
vλ;i(s). The notation v

j
λ;i(s) refers to the jth entry of the vector

vλ;i(s). The rate is then written as

(47)

The fermion case has one key difference from the boson case. Recall that characters of conjugate representations of Sn only
differ by a sign in their odd permutations, and that the bosonic and fermionic rate matrices have this symmetry. As a result when
the fermionic rate matrix is block-diagonalized into irreducible representations by T , every matrix representationRλ that appears
in the block-diagonalization for boson is replaced by its conjugate Rλ∗

for fermions. Thus, the coincidence rate equations for the
3-fermion case has the blocks R (τ̄ ) and R (τ̄ ) interchanged:

(48)

When each si = 1 or 0, the vλ,i(s) are group functions of weight (1, 1, 1, . . . , 1) for the irrep λ. Thus for any value of n, the
respective coincidence rate equations for bosons and fermions take the general form:

rate(τ̄, s; b) =
∑
λ�n

sλ∑
i=1

v
†
λ;i(s)Rλ(τ̄) vλ;i(s),

= |per(A(s))|2per(r(τ̄)) + [other Sn irreps] + |det(A(s))|2det(r(τ̄)), (49)
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rate(τ̄, s; f) =
∑
λ�n

sλ∑
i=1

v
†
λ;i(s)Rλ∗

(τ̄) vλ;i(s),

= |det(A(s))|2per(r(τ̄)) + [other Sn irreps] + |per(A(s))|2det(r(τ̄)). (50)

The notation λ � n means that we sum over all partitions of
n, and λ∗ is the conjugate partition of λ. In particular, when all
relative arrival times are identical, i.e., when all particles are
exactly indistinguishable, per(r(τ̄)) = n! and all other terms
in the sums of Eqs. (49) and (50) are 0; in the case of bosons,
Eq. (49) is then truncated to the modulus square of the per-
manent of A(s), and we recover the original BOSONSAMPLING

result; in the fermion case, only |det(A(s))|2 survives.

C. Immanants and D functions for Rλ(τ̄ ) and vλ

In this subsection we again assume s so that si = 0 or 1.
The result holds for any such s and the string label s is implicit
throughout. We show that every entry of the matrix Rλ(τ̄) is
a linear combination of permuted λ-immanants of the delay
matrix r(τ̄); and each vλ;i is a vector where each entry is a
linear combination of permuted λ-immanants of the scattering
matrix A ∈ GLn(C). The elements of the matrix Rλ(τ̄) and the
vector v are also GLn(C) group functions, also referred to in
the physics literature as Wigner D functions [47–49].

Let {|ψλ
i 〉, i = 1, . . . , sλ} denote the set of (1, 1, . . . , 1)

basis states in the GLn(C) irrep λ. For g ∈ GLn(C) the overlap
of Eq. (6) specializes to

Dλ
i j (g) := 〈

ψλ
i

∣∣Dλ(g)
∣∣ψλ

j

〉
(51)

where Dλ(g) is the representation of g by the matrix Dλ in the
irrep λ.

Example 2: For an arbitrary matrix Z ∈ GL3(C), the Di j

functions are given in Table II where:

(52)

(53)

(54)

are the Gelfand-Tsetlin patterns [50–52] for the (1,1,1) states
in the , and subspaces, respectively.

We use Theorem 1 to prove two results about D functions.
Firstly:

Lemma 1: Permuted immanants are linear combinations of
D functions (and vice versa).

Proof: Let Pσ be the permutation matrix corresponding to
the permutation σ . Depending on whether Pσ acts on the left
or the right of a matrix M, either the rows or columns of M get
permuted. In this proof, Pσ acts on the left, which permutes
the rows. To prove this lemma, Theorem 1 is applied to a row-

permuted matrix Pσ M:

immλ (Pσ M ) =
∑

i

Dλ
i,i(Pσ M ) (55)

=
∑

i

〈
ψλ

i

∣∣Dλ(Pσ )Dλ(M )
∣∣ψλ

i

〉
=

∑
i j

Dλ
i, j

(
Pσ

)
Dλ

j,i(M ). (56)

Note that the coefficients Dλ
i j (Pσ ) = 〈ψλ

i | Dλ(Pσ ) |ψλ
j 〉 are the

standard (Yamanouchi) entries [53] for the matrix represen-
tation of Pσ in the representation λ of Sn. From the above
computation, we see that an immanant of Pσ M is a linear
combination of D functions, which in turn means that all
the entries of Dλ(M ) are linear combinations of permuted λ-
immanants. In particular, for an arbitrary matrix, this corollary
shows that of the total n! possible permuted immanants, there
are exactly s2

λ linearly independent permuted immanants of
shape λ, as there are that many D functions. �

We give an example for the 3-fermion case, where the
above lemma implies that every element of Rλ(τ̄) is a linear
combination of permuted immanants of the delay matrix r(τ̄).
To simplify notation, λM

σ is used to denote the λ immanant of
the matrix M whose rows are permuted by σ , that is, row i is

TABLE II. Group functions Dλ
i j (Z ) of Eq. (51) connecting

(1,1,1)- states in GL3(C).
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TABLE III. Explicit expressions of various Rλ
i j (τ̄) for n = 3

particles. The argument τ̄ is implicit in r or ri j .

replaced by row σ (i). There are 3! = 6 permuted immanants,
but as we have shown, only a linear combination of s2

λ of them

are needed to write an entry of Rλ(τ̄); we choose the permu-
tations e, (12), (23), and (132). The entries of R(τ̄; f ) that
appear in Eq. (48) as both a linear combination of permuted
immanants and as a D function are given in Table III.

In Table III, the equality ri j (τ̄) = r ji(τ̄) has been used to

simplify the polynomials. Notice how and

that there are 5 distinct functions that appear in the block-
diagonalized rate matrix. In the general case the rate matrix is
a real symmetric matrix, so its block-diagonal form is also be
symmetric. To determine the number of distinct functions we
simply need to count the number of entries on or above the
main diagonal in Rλ(τ̄) for each λ � n. Each Rλ(τ̄) matrix
is of size sλ, so by summing over all λ � n we find that the
number of distinct functions in the block-diagonalized rate
matrix is ∑

λ�n

s2
λ + sλ

2
∼ n!

2
, (57)

as
∑

λ�n s2
λ = n!.

The same linear transformation T that block-diagonalizes
the rate matrix also acts on the scattering matrix A(s). Simi-
larly, we see that Dλ(A(s)) is the matrix whose ith column is
vλ;i(s). For the column vector v(s), one also easily expresses
the entries in terms of permuted immanants or D functions:

(58)

In general, the entries of vλ;i(s) are group functions multi-
plied by the scaling factor

√
sλ/n!, where sλ = dim(λ) is the

dimension of the irrep λ of Sn.
Lemma 2: Assume s with si = 0 or 1, and let r(τ̄) be the

n × n delay matrix and Rλ(τ̄) be a block that carries the
representation λ of Sn in the block diagonalization of the
rate matrix. If immλ (r(τ̄)) = 0, then every entry of the matrix
Rλ(τ̄) is also 0.

Proof: Begin by assuming that immλ (r(τ̄)) = 0. Applying
Theorem 1 to the delay matrix, it follows that the trace of
Rλ(τ̄) is 0. From Eqs. (29) and (30), the rate matrix R(τ̄; p) is
clearly a Gram matrix, and remains as such under the change
of basis generated by the similarity transformation T that
brings it to block diagonal form. Thus Rλ(τ̄) is a Gram matrix
and has non-negative eigenvalues. Since the trace of a matrix
is the sum of its eigenvalues, the trace of Rλ(τ̄) is 0, and
Rλ(τ̄) has all non-negative eigenvalues, it follows that all the
eigenvalues of Rλ(τ̄) are zero. Since all the eigenvalues of
Rλ(τ̄) are zero, it must be nilpotent; however, Rλ(τ̄) is also

symmetric and it is well known that the only matrix that is
both symmetric and nilpotent is the zero matrix. �

Lemma 2 thus establishes a simple test to determine which
Rλ(τ̄) are 0, thus truncating the sum in Eqs. (49) or (50).

D. Fully distinguishable particles

There remains an important case to examine: the situation
where some particles are fully distinguishable. This occurs
when ri j (τ̄) = r ji(τ̄) = 0 in the matrix r(τ̄). In this section we
first show how this limit can modify our block diagonalization
algorithm to provide significant simplifications, and discuss
next if this limit is realizable within our time-overlap model
to compute ri j for i �= j.

We first investigate the modification to our scheme by sup-
posing one particle is fully distinguishable from all the rest.
For definiteness, take this to the particle number k. Then the
entries rik (τ̄) and rki(τ̄) of the matrix r(τ̄) will be 0 except for
rkk (τ̄) = 1; the matrix r(τ) is thus block diagonal. The matrix
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R(τ̄) will also be block diagonal so that after suitable permu-
tations of rows and columns, it can be brought to a form with
n identical blocks explicitly repeated. Our previous procedure
then amounts to further block diagonalization inside each of
the repeated blocks using representations of Sn−1 rather than
Sn.

If two particles are fully distinguishable—say particle
number k and particle number q—one simply applies the
same observation as previously to particle number q, thereby
reducing the problem to multiple copies of the Sn−2 problem.
Obviously, as the number of fully distinguishable particles
increases, the size of each nontrivial block in the matrix R
decreases, until eventually one reaches the case where all

particles are fully distinguishable: this is a “classical” limit.
In this case, the entries ri j (τ̄) of the matrix r(τ̄) are δi j , and
the rate matrix R(τ̄) is already diagonal: there is thus no need
to block diagonalize R(τ̄).

For instance, if we have n = 3 fermions and the last particle
is fully distinguishable, then

r(τ̄) =
⎛
⎝ 1 r12(τ̄) 0

r21(τ̄) 1 0
0 0 1

⎞
⎠, (59)

and, after suitable rearrangement of rows and columns, we
reach

R(τ̄; f) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −r2
12(τ̄) 0 0 0 0

−r2
12(τ̄) 1 0 0 0 0
0 0 1 −r2

12(τ̄) 0 0
0 0 −r2

12(τ̄) 1 0 0
0 0 0 0 1 −r2

12(τ̄)
0 0 0 0 −r2

12(τ̄) 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (60)

where r21(τ̄) = r∗
12(τ̄) has been used. Eq. (60) is clearly

3 copies of the problem with 2 partially distinguishable
fermions.

If now all particles are fully distinguishable, ri j (τ̄) = δi j so
that r(τ̄) and R(τ̄; p) are both unit matrices: there is no need
for block diagonalization. In this case the rate collapses to∑

i

|vi(s)|2 =
∑
γ∈S3

∣∣A(γ )(s)
∣∣2

=
∑
γ∈S3

∣∣A1γ (1)(s)
∣∣2∣∣A2γ (2)(s)

∣∣2∣∣A3γ (3)(s)
∣∣2

, (61)

which can be seen to be the permanent of the non-negative
n × n matrix with entries |Ai j (s)|2. In this case, one can use
an efficient algorithm [54] to evaluate the permanent of this
type of matrix as long as a small amount of error is allowed.

We now ask if it is possible to obtain ri j = δi j for all
particles in our model when computing ri j as the temporal
overlap e−δω2 (τi−τ j )2/2. For simplicity, we imagine each pulse
separated from the one ahead of it by some fixed interval
�T = τi+1 − τi, independent of i. Thus, under this assump-
tion, we have (τi − τ j )2 = (i − j)2�T 2 We note that, for n
particles, the total integration time is T ∼ n�T , so using
T �� ≈ 2π for Fourier-limited detectors yields

(τi − τ j )
2 = (i − j)2T 2

n2
∼ 4π2(i − j)2

n2(��)2
, (62)

δω2(τi − τ j )
2 ∼ �ω2

�ω2 + ��2

4π2(i − j)2

n2
. (63)

It will be convenient to use 1/�ω, the inverse frequency
width of the pulse, as the timescale for our problem. For long
integration times T ∼ 2π/�� � 1/�ω, or �ω � ��/2π ,
and Eq. (63) becomes

δω2(τi − τ j )
2 ≈ 4π2(i − j)2

n2
, (for T � 1/�ω), (64)

which is appreciable only if |i − j|/n ≈ 1, i.e., for “very
distant” pulses in a sequence of n � 1 pulses. However, for
“nearly neighboring pulses” and sufficiently large number
of fermions, so that |i − j| � n, we have 4π2(i− j)2

n2 � 1 and
hence

e−δω2(τi−τ j )2 ≈ 1 − 4π2(i − j)2

n2
, (for |i − j| � n). (65)

Thus we conclude that we cannot reach the limit where all
ri j = δi j for long integration times even if the pulses are well
separated in time.

Next consider short integration times, for which T �
1/�ω, or �� � 2π�ω. In this case

δω2(τi − τ j )
2 ∼ (2π�ω)2

��2

(i − j)2

n2
� 1,

(for T � 1/�ω, any |i − j|), (66)

always. Here again, it is not possible reach the limit where
ri j = δi j .

Hence, we conclude that, for Fourier-limited detectors, we
cannot reach a regime where all particles are considered fully
distinguishable. Instead we reach this regime by sending par-
ticles one by one at times tn = n�T but detecting after a time
≈ (n + 1

2 )�T ; in this case the particles are detected one by
one, and never detected in coincidence.

One could instead imagine an alternate model where the
ri j’s are not measured by a temporal overlap, but by a po-
larization overlap, i.e., working with polarized fermions. One
then easily shows that ri j = cos2(θi j ), where θi j is the relative
angle of the polarization vectors for particles i and j. In such
a scenario, it is clearly not possible to have more that two
particles, which are pairwise fully distinguishable, and it is
not possible to reach the limit where all ri j = δi j either.
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FIG. 2. The dominance ordering of the partitions of 6.

V. DISCRETIZING TIME AND GAMAS’S THEOREM

Although arrival times are continuous in principle, and
hence range over any real value in some interval, in practice
arrival times are discrete due to resolution limits of delay
lines. In this section, we exploit discretization to write ar-
rival times as a tuple of integers, with each integer in the
tuple denoting the arrival time of the corresponding particle
at the detector. Absolute arrival times are not needed and
we use relative arrival times to introduce the delay partition.
Next we explain how these partitions can be partially ordered,
which sets the stage for introducing and using Gamas’s the-
orem. Finally, we use these rules for partitioning to restrict
sums used for computing the coincidence rate equations. Here
again the discussion applies any s with si = 0 or 1, and we
assume that no one particle is fully distinguishable from any
of the others.

A. Discretizing time and the delay partition

In the remainder of the paper, we use the combinatorics of
Young diagrams to show that when some of the |τ̄i − τ̄ j | ≈ 0,
some of the terms in Eqs. (49) and (50) are in turn auto-
matically 0, thus further simplifying the actual calculation by
truncating the sum.

If the arrival times are controlled to arbitrary precision, the
exact rate is given by Eq. (34). In practice, we envisage a
scenario where, if |τ̄i − τ̄ j | < ε, the incident particles are con-
sidered to arrive simultaneously and thus indistinguishable.
It is then convenient to imagine that the source supplies, for
each run, n particles arriving within some finite time interval
T . This total time interval is divided into a number b � 2 of
discrete identical time bins of with ε = T /b, so that a particle
arriving at time τ̄i is assigned the discrete arrival time τc

τ̄i → τc when
(c − 1)T

b
� τ̄i <

cT

b
, c = 1, . . . , b.

(67)

The next step is construct a delay partition μτ given a
vector τ containing discretized arrival times. This is done by
simply tallying the number of particles in each bin, removing
bins with no particles, and ordering the counts in decreasing
order. Thus, if there are b = 12 bins, there are 12 possible
discrete values of τi for each particle. If additionally there
are n = 4 particles, with particle 1 arriving in bin 1, particle
2 in bin 4, particle 3 in bin 1, and particle 4 in bin 9, the
discrete arrival-time vector is τ = [τ1, τ4, τ1, τ9], we assign to
this arrival-time vector τ the delay partition μτ = (2, 1, 1).

The delay partition is determined only by the tally in each
bin, irrespective of the index of the (discretized) arrival times
τi and irrespective of the actual bin in which τi falls. The
(discrete) arrival-time vectors

[τ2, τ1, τ1, τ6], [τ7, τ3, τ4, τ3], [τ5, τ5, τ2, τ11] (68)

for instance all map to the same delay partition μτ = (2, 1, 1).
In this way a delay partition is an equivalence class of discrete
arrival-time vectors, and all the previous partitions are equiv-
alent to the arrival-time vector [τ1, τ1, τ2, τ3]. For n = 4 and
b � 4, we have the following possible delay partitions:

(69)

B. Dominance ordering and Gamas’s theorem

For a given delay partition, one can obtain a signifi-
cant simplification in the evaluation of the coincidence rate
equations. This simplification is a consequence of Gamas’s
theorem, from which one deduces that some immanants of
a Gram matrix are zero based on dominance ordering of
partitions.

Dominance ordering is a partial ordering of partitions,
given by μ � λ when

μ1 + μ2 + · · · + μi � λ1 + λ2 + · · · + λi (70)

for all i � 1. The notation μ � λ means that λ strictly dom-
inates μ (a partition dominates itself, but it does not strictly
dominate itself). We say that two partitions cannot be com-
pared when neither one dominates the other. An example is
given in Fig. 2, where it can be seen that dominates all

partitions of 6 and that and cannot be compared.
Gamas’s theorem tells us whether the λ-immanant of a

Gram matrix is zero by looking at the shape of the partition
λ. The theorem is stated as follows.

Theorem 2: (Gamas [33]): Let Vi j = 〈 fi| f j〉 be a n × n
Gram matrix formed by the set of basis vectors { fi}, and let
λ � n be a partition. We have that imm λ(V ) �= 0 if and only
if the columns of λ can partition the set of basis vectors { fi}
into linearly independent sets.

In Table IV, a 0 indicates that the immanant, for the
corresponding set of basis functions, is 0. Gamas’s theorem
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TABLE IV. The vanishing behavior of the immanants of 6 × 6
Gram matrices.

is a biconditional statement, so the blank boxes mean the
corresponding immanant is nonzero. For further reading on
Gamas’s theorem see [34].

C. Restricting the sum in the coincidence rate equations

Applying a corollary of Gamas’s theorem [55] to Lemma 2
yields the following:

Proposition 1: Assume s with si = 0 or 1. The matrix
Rλ(τ) is nonzero if and only if λ dominates μτ in the domi-
nance ordering of partitions. Thus, for a given set of discrete
arrival times τ, the coincidence rate equations simplify to

rate(τ, s; b) =
∑
μτ �λ

sλ∑
i=1

v
†
λ;i(s)Rλ(τ) vλ;i(s), (71)

rate(τ, s; f) =
∑
μτ �λ

sλ∑
i=1

v
†
λ;i(s)Rλ∗

(τ) vλ;i(s). (72)

The sum is over all partitions λ � n that dominate μτ .
We note that if every particle arrives in a different time bin,

there is no truncation and we recover the full sums of Eqs. (49)
and (50).

Example 3: Consider the set of discrete arrival times
τ = [τ1, τ1, τ1, τ2, τ2, τ2], corresponding to the delay partition

μτ . It follows that for λ equal to , , , , , , and

the Rλ(τ) terms are equal to zero since these are the

partitions, which do not dominate . The coincidence rate
equations are thus

(73)

(74)

VI. FERMIONIC RATES AND PARTIAL
DISTINGUISHABILITY

For fully indistinguishable fermions, the coincidence rate
is given by the first term in Eq. (50) and contains only the
modulus squared of the determinant of the matrix A(s); for
this case the matrix r(τ̄) is the unit matrix and the permanent
of R(τ) = n!. Since determinants can be evaluated efficiently,
the evaluation of fermionic rates in this case is simple.

As we increase the distinguishability of the fermions, the
expression for the coincidence rate lengthens to contain an
increasing number of group functions, as per Proposition
1. Moreover, which group functions occur is determined by
Gamas’s theorem and the delay partition obtained from the
times of arrival.

In this section we show that, once we reach a situation
where at most � n

2� fermions are pairwise indistinguishable,
the expression for the coincidence rate will contain specific

group functions that are evaluated, using the algorithm of
[56], in a number of operations that grows exponentially with
the number of fermions. We further show that, if the times
of arrival are uniformly random, one must evaluate these
expensive groups functions with probability differing from
1 by a number decreasing exponentially with the number of
fermions. In this section we suppose again that s is such that
si = 0 or 1.

A. The witness partition

We begin this section by defining the witness partition and
proving a lemma.

Definition 1: The witness partition μw is

μw :=
{(

n
2 , n

2

)
for n even,(

n+1
2 , n−1

2

)
for n odd.

(75)
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We will often refer to the conjugate of the witness partition,
which is

μ∗
w =

{
(2, 2, . . . , 2) for n even,

(2, 2, . . . , 2, 1) for n odd.
(76)

Consider the case of fermionic interferometry. We present
the following lemma.

Lemma 3: When n is even, group functions of type μ∗
w of

the matrix A(s) need to be computed to evaluate the fermionic
coincidence rate equation if and only if at most n

2 of the times
of arrival are contained in a single time bin, and we assume
that no one particle is fully distinguishable from any of the
others.

When n is odd, group functions of type μ∗
w of the matrix

A(s) need to be computed to evaluate the fermionic coinci-
dence rate equation if and only if at most n+1

2 of the times of
arrival are contained in a single time bin, and we assume that
no one particle is fully distinguishable from any of the others.

Proof: From Eq. (72), we observe that if μτ � λ, then
group functions of type λ∗ of the matrix A(s) appear in the
fermionic coincidence rate equation; otherwise, we have that
when λ does not dominate μτ (meaning that either λ � μτ or
the two partitions cannot be compared), then group functions
of type λ∗ of the matrix A(s) do not appear in the fermionic
coincidence rate equation.

First, consider the case where n is even and assume that
group functions of type μ∗

w appear in the fermionic rate
equation. It follows that μw dominates the delay partition:
μτ � μw. The partition μw is of the form ( n

2 , n
2 ), thus μw

dominates all partitions of width at most n
2 . By construction,

the partitions of width at most n
2 correspond to the instances

where at most n
2 fermions are in a single time bin. Each

implication in our argument is biconditional, so the result for
even n follows.

In the case where n is odd, μw is now of the form
( n+1

2 , n−1
2 ). It’s clear that μw dominates all of the partitions

of width at most n+1
2 . The rest of the proof is identical to the

even case. �
Note that regardless of whether the number of fermions is

odd or even, if at most � n
2� of the times of arrival are in the

same time bin, then group functions of type μ∗
w of the matrix

A(s) need to be evaluated to determine the fermionic rate.
We proceed by showing that some group functions of type

μ∗
w are computationally expensive to evaluate. Bürgisser [56]

shows that the number of arithmetic operations needed to
evaluate the immanant of Eq. (8) in the λ � n representation of
GLn(C) is O ([mult(λ) + log(n)]n2sλdλ). The sum in Eq. (8)
contains exactly sλ terms, so at least one of the Dλ

i,i(A(s)) must
evaluate in at least

O ([mult(λ) + log(n)]n2dλ). (77)

operations. Here, sλ is both the number of standard Young
tableaux of shape λ and the dimension of the weight
(1, 1, 1, . . . , 1) subspace of the λ-irrep of GLn(C) and dλ is
both the number of semistandard Young tableaux of shape λ

and the dimension of the λ-irrep of GLn(C), mult(λ) is the
multiplicity of the highest weight λ [56]. Furthermore, any
arithmetic algorithm that evaluates group functions of type λ

“requires at least dλ nonscalar operations” according Theorem
5.1 of [56].

We now compute dμ∗
w

to get a lower bound for Eq. (77).
Suppose n is even so that μ∗

w = (2, 2, . . . , 2). Exponents are
used to denote repeated entries, so the partition can be more
compactly written as μ∗

w = (2n/2). Then one easily shows that
s(2n/2 ) is given by the Catalan number

Cn/2 = 1
n
2 + 1

(
n
n
2

)
∼ 2n+3/2

√
πn3

(78)

for large n so the number of terms to evaluate is growing
exponentially with the number of fermions. Moreover, the
dimension of the irrep d(2n/2 ) of GLn(C) is given by

d(2n/2 ) =
(

n
n
2

)(
n + 1

n
2

)
1

n
2 + 1

= Cn/2

(
n + 1

n
2

)
. (79)

The binomial coefficient
(n+1

n
2

) ∼ 2n+3/2e−1/(2n+2)/
√

(n + 1)π
for large n so that, altogether:

d(2n/2 ) ≈ 22n+3

n2π
(80)

also scales exponentially with the number of fermions. Thus,
at least one of the group functions necessary to compute
the fermionic coincidence rate equation requires a number of
arithmetic operations that scales exponentially with the num-
ber of fermions. A similar expression and argument can be
made when n is odd. Thus, combining this with Theorem 5.1
of [56] as discussed above, we have thus shown the following.

Proposition 2: If at most � n
2� of the times of arrival

are contained in any one time bin, and no particle is fully
distinguishable from any other, then our procedure for the
exact computation of the fermionic coincidence rate equa-
tion requires a number of arithmetic operations that scales
exponentially in the number of fermions.

B. Probability of the witness partition appearing
for uniformly-random arrival times

In this subsection, we discuss a simple model where the
discretized arrival times are uniformly random over some
interval T . Fix some string s where si = 0 or 1. Imagine
n possible uniformly random discrete arrival times (one per
particle) distributed over a total of b time bins. The ar-
rival times can be repeated. Given a delay partition μτ =
(μ1, μ2, . . . , μk ), we need to find how many ways we can
distribute the n particles in b bins so that μ1 are in any one
bin, μ2 are in any other bin, which is not the first, etc.

For instance, if n = 6 and b = 8, then the arrival times
could be τ = [1, 5, 8, 5, 8, 3]. For clarity we tabulate the
results in Table V.

This arrival time vector τ is associated to the delay partition
μτ = (2, 2, 1, 1). Let bi denote the number of time bins that
contain exactly i particles. In this example, the fifth and eighth

TABLE V. Tabulated results of a hypothetical experiment.

Particle # 1 2 3 4 5 6
Bin # 1 5 8 5 8 3
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time bins contain two particles each, so b2 = 2; the first and
third time bins contain one particle, so b1 = 2; the second,
fourth, sixth, and seventh time bins contain no particles, so
b0 = 4. In general, the bi terms satisfy the following con-
straints

n∑
i=0

bi = b
n∑

i=0

ibi = n. (81)

With b time bins and n particles there are bn possible
ways for the particles to arrive at the detectors; assuming that
each of these possibilities are equally likely, we present an
expression for the probability that a random input of particles
has a particular delay partition.

Proposition 3: In an experiment with n particles and b time
bins, the probability that a uniformly-random set of arrival
times has delay partition μτ = (μ1, μ2, . . . , μk ) is

P (μτ ; b) = 1

bn

(
n

μ1, μ2, . . . , μk

)(
b

b0, b1, . . . , bn

)
, (82)

where the bi’s are computed from the delay partition μτ as
described above. If b is less than the number of parts k of
a delay partition, then the probability of that delay partition
occurring is 0.

Example 4: Suppose there are 8 time bins, 5 particles,
and we are computing the probability of the delay partition
μτ = (2, 2, 1) occurring. Of the 8 time bins, there is 1 bin
that contains 1 particle, 2 bins that contain 2 particles, and
5 bins that contain 0 particles; thus, b0 = 5, b1 = 1, b2 = 2.
Applying Proposition 3, we get

P ((2, 2, 1); 8) = 1

85

5!

(2!)(2!)(1!)

8!

(5!)(1!)(2!)
= 315

2048
.

(83)

Recall that Proposition 2 states that when at most � n
2� of the

times of arrival are contained in a single time bin, this means
that our method for computing the fermionic coincidence rate
equation requires exponentially many arithmetic operations.
Let P denote the probability of obtaining a delay partition
μτ = (μ1, μ2, . . . ) with μ1 � � n

2�. We show that 1 − P ,

which is the probability of obtaining a delay partition with
μ1 > � n

2�, approaches 0 exponentially fast with n.
We begin with the case where n is even. Let P(B) be

the probability of getting a delay partition with first part
equal to λ1 and the remaining parts are arbitrary, and let
P(A) be the probability of obtaining delay partition λ′ =
(λ2, λ3, . . . , λk ) � n − λ1 for the remaining n − λ1 particles
being sorted into the remaining (b − 1) bins. We get that the
conditional probability P(A|B) is given by

P(A|B) = 1

(b − 1)n−λ1

(
n − λ1

λ2, λ3, . . . , λk

)

×
(

b − 1

b0, b1, . . . , bλ1−1, 1, bλ1+1, . . . bn

)
, (84)

where bλ1 = 1. The probability P(A ∩ B) is simply the prob-
ability of obtaining an arbitrary delay partition λ, which is
given in Eq. (82). The probability P(B) is thus given by the
following quotient:

P(A ∩ B)

P(A|B)
=

1
bn

( n
λ1,λ2,...,λk

)( b
b0,b1,...,bn

)
1

(b−1)n−λ1

( n−λ1

λ2,λ3,...,λk

)( b−1
b0,b1,...,bλ1−1,1,bλ1+1,...bn

) ,

= (b − 1)n−λ1

bn

n!

λ1!(n − λ1)!

b!

(b − 1)!
,

=
(

n

λ1

)
(b − 1)n−λ1

bn−1
. (85)

To obtain 1 − P we need to sum over all partitions λ � n
with λ1 � n

2 + 1,

1 − P = 1

bn−1

n∑
λ1= n

2 +1

(
n

λ1

)
(b − 1)n−λ1 . (86)

We factor out (b − 1)n from each term in the sum to get

1 − P = (b − 1)n

bn−1

n∑
λ1= n

2 +1

(
n

λ1

)(
1

b − 1

)λ1

. (87)

We assume that n and b are large to be able to truncate the
sum. We have

1 − P = (b − 1)n−1

bn−1

((
n

n/2 + 1

)(
1

b − 1

)n/2

+
(

n

n/2 + 2

)(
1

b − 1

)1+n/2

+ . . .

)
,

= (b − 1)n−1

bn−1

(
n

n/2 + 1

)(
1

b − 1

)n/2(
1 + n − 2

n + 4

(
1

b − 1

)
+ . . .

)
,

≈ (b − 1)n−1

bn−1

2n+ 1
2√

nπ

(
1

b − 1

)n/2(
1 + n − 2

n + 4

(
1

b − 1

)
+ . . .

)
. (88)

By assuming again that b − 1 ≈ b and by truncating the sum after the first term, we find that

1 − P ≈
√

2

nπ

(
4

b

) n
2

. (89)

We note that when n is odd there is a near-identical expan-
sion and we get the same estimate for the probability.

Corollary 1: In an experiment with n particles that arrive
uniformly randomly in b discrete time bins, the probability P
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of at most � n
2� particles being in the same time bin is

P ≈ 1 −
√

2

nπ

(
4

b

) n
2

. (90)

This is also the probability of needing the compute the (ex-
pensive) μ∗

w-group functions of A(s). We observe that when
b � 5, then P approaches 1 exponentially fast as n increases.

VII. APPLICATIONS TO SAMPLING PROBLEMS

A. Generalized boson and fermion sampling

Quantum computing focuses on technology and algorithms
for solving certain computational problems more efficiently
than what can be accomplished using nonquantum (i.e.,
“classical”) computing, essentially based on the binary rep-
resentation of information and Boolean logic [57]. Both
universal and specialized quantum computing approaches are
followed. Gate-based quantum computing [58,59] is an exam-
ple of universal quantum computing. Both quantum annealing
[60] and boson sampling [8,61] are examples of specialized,
purposed quantum computing that is not universal. Boson
sampling is about simultaneously firing n single photons so
they arrive simultaneously at detectors behind an m-channel
passive optical interferometer.

BOSONSAMPLING is a hard classical problem and easy
quantum problem in both exact and approximate formulations
subject to assumptions. Recall from Sec. II A that �m,n is
the set of m-tuples (s1, . . . , sm) so that s1 + . . . sm = n. When
the bosons are indistinguishable, the probability distribution
B[A ] over �m,n is given by [8]

Pr[s]
B[A ]

= | per (A(s))|2
s1!s2! . . . sm!

. (91)

Definition 2: Given A as input, the problem of BOSON-
SAMPLING is to sample, either exactly or approximately, from
the distribution B[A ].

The exact BOSONSAMPLING problem is not efficiently solv-
able by a classical computer, unless the polynomial hierarchy
collapses to the third level, which is an unlikely scenario based
on existing results in computational complexity [8]. Despite
the simplicity behind the complexity of BOSONSAMPLING

in theory, experimental BOSONSAMPLING has limitations on
size and on validity of assumptions needed to trust hard-
ness results. For example, the assumptions on the perfectly
indistinguishable photons are impossible to achieve in experi-
ments: Not only are photons distinguishable in their temporal
and frequency profile due to imperfect single-photon source,
experimental optical interferometers also introduce additional
added imperfections due to unequal path length, or unwanted
phase errors. Notice that such experimental imperfections,
are different from the approximate BOSONSAMPLING, which
permits the sampling to deviate from the perfect sampling of
an ideal bosonic interferometer with indistinguishable photon
sources. The computational hardness of imperfect BOSON-
SAMPLING is still an ongoing subject of discussion [62].

When fermions are indistinguishable, the probability dis-
tribution F [A ] over �m,n is given, up to a constant, by [63]

Pr[s]
F [A ]

= |det (A(s))|2. (92)

As a result of the Pauli exclusion principle, two indistin-
guishable fermions cannot exit from the same channel so the
s1!s2! . . . sm! factor in the denominator of Eq. (91) is replaced
here by 1. From the notion of fermion interferometry, we
define the associated problem of fermion sampling.

Definition 3: Given A as input, the problem of FERMION-
SAMPLING is to sample, either exactly or approximately, from
the distribution F [A ].

The key application of FERMIONSAMPLING is solving
the same types of computational problems as for BOSON-
SAMPLING by opening the door to integrated semiconductor
circuitry as an alternative to scaling challenges inherent in
photonic approaches [64,65].

For simultaneous arrival times at the detectors, fermion
coincidence rates are easy to calculate [66,67]. As a result,
fermion interferometry has not been treated as a viable con-
tender for quantum advantage [17] since FERMIONSAMPLING

can be solved in classical polynomial time [63] (unless a
quantum resource is added [65]). Mathematically, the ease
of FERMIONSAMPLING arises because the hard-to-solve ex-
pressions for matrix permanents arising in boson coincidence
calculations are replaced by matrix determinants for fermion
coincidences [4]. The trivial nature of quantum vs classical
algorithms for FERMIONSAMPLING should not discourage ex-
ploiting fermion sampling for quantum computing provided
that we generalize to nonsimultaneous arrival times.

In fact, in view of Proposition 2 the lack of simultaneity
removes, in part or in totality, the argument that fermion
sampling is uninteresting because it is efficiently simulat-
able. Indeed Proposition 2 suggests that, if we are to use the
state-of-the-art algorithm to evaluate group functions and im-
manants, the evaluation of coincidence rates is exponentially
expensive under reasonable conditions as to the maximum
number of indistinguishable fermions. However, while the
series of Eq. (72) for the exact rate will contain expensive
group functions, we cannot guarantee that these function will
have a significant contribution to the final rate.

Heyfron [68,69] and separately Pate [70] have obtained
some results on immanant inequalities, which follow dom-
inance ordering for positive semidefinite matrices, like the
delay matrix r(τ) of Eq. (27), but these results do not encom-
pass the witness partition. Stembridge [71] has also shown
that immanants of totally positive matrices, like our delay
matrix, are necessarily positive (see also the Appendix of [72]
for some immanant inequalities). Nevertheless, to understand
the contribution to the rates from group functions of A(s),
one would also need “anticoncentration”-type results for these
functions or associated immanants for these expensive func-
tions or immanants.

Nevertheless, as a result of Proposition 2, it is natural to
generalize both BOSONSAMPLING and FERMIONSAMPLING by
allowing nonsimultaneous arrival times specified by the vector
τ̄. The set Gm,n ⊂ �m,n contains only the strings s such that
si = 0 or 1 for all i. The distribution B[A ; τ̄] over Gm,n is
defined by

Pr[s]
B[A ;τ̄]

= rate(τ̄, s; b) (93)

where rate(τ̄, s; b) is given in Eq. (34).
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Problem 1: Exact GENBOSONSAMPLING Given the m × n
matrix A and a length n arrival-time vector τ̄ ∈ Rn as inputs,
the problem of GENBOSONSAMPLING is to sample exactly
from the distribution B[A ; τ̄].

In the case of fermions, the distribution F [A ; τ̄] over Gm,n

is defined by

Pr[s]
F [A ;τ̄]

= rate(τ̄, s; f) (94)

where rate(τ̄, s; f) is given in Eq. (36).
Problem 2: Exact GENFERMIONSAMPLING Given the m × n

matrix A and a length n arrival-time vector τ̄ ∈ Rn as inputs,
the problem of GENFERMIONSAMPLING is to sample exactly
from the distribution F [A ; τ̄].

Comparing with the original definition of BOSONSAM-
PLING and FERMIONSAMPLING, the exact generalized defini-
tions above admit, in addition to the inputs n for the number of
fermions, the arrival-time vector τ̄ ∈ Rn but with the restric-
tion of s to strings with si = 1 or 0, and the proviso that real-
and complex-number entries are admitted as floating-point
numbers up to machine precision, which is important to note
because we are focused on exact computation. This definition
differs from the one proposed in [65] where simultaneity
remains but the input state is no longer a single product state.

B. Calibration and fermion sampling

Every interferometry experiment has the problem of non-
simultaneity due to “lengths ...not [being] well-calibrated”
[8]. This problem of calibration is generally regarded as
“just” a technical step. Geometrically, we will refer to the
landscape for a given set of detector positions and a given
interferometer as an (n − 1)-dimensional surface representing
the various coincidence rates in those detectors as a func-
tion of the necessary n − 1 relative arrival times of the n
particles. Calibration is achieved by knowing the functional
form, hence appearance, of this landscape, choosing some
points on the domain by experimental adjustments that control
arrival times, and determining the rate at the chosen points.
When sufficient resolution of the times of arrival are possible,
doing so over approximately n!/2 points [the exact number
is given in Eq. (57)] in the domain, the rate for simultaneity
is then inferred (in the perfect case) because enough infor-
mation is available to shift and rotate the landscape so that
the “zero” element of the domain is known. This way of
calibrating requires the fewest number of points to estimate
the simultaneous-arrival coincidence rate, which is assumed in
most treatments of sampling but unfortunately not completely
justified in practice.

As BOSONSAMPLING is computationally hard, simulat-
ing calibration only adds a smaller computational overhead
so it does not make the computational problem any easier.
FERMIONSAMPLING is another beast altogether. After cali-
bration is completed, FERMIONSAMPLING is computationally
efficient so calibration is now a key theoretical issue, not
“just” technical. If a fermion source ejected particles at
known, definite times and all fermion paths were calibrated,
then nonsimultaneity would be obviated, but fermion interfer-
ometers do not work that way.

We now explain how the input delay channels for the in-
terferometer are calibrated [73]. Intuitively, consider a source

that generates n particles such that only one particle is injected
into each of n channels. Suppose that the source injects all n
particles simultaneously, but the channel length is unknown so
the particles eventually arrive at the n detectors at uniformly
random times despite the promise that all particles are injected
simultaneously into each channel.

Calibration is the exercise of adjusting each channel length
so that they match, and successful calibration ensures that the
simultaneously generated particles are guaranteed to arrive
at the detectors simultaneously. If a coincidence-rate model,
which depends on arrival times, is trusted, then calibration is
achieved by using coincidence-rate data for different choices
of input-channel delay increments and fitting coincidence rate
data to the model. Then, by interpolation, the appropriate
delay-increments can be inferred from the fitted model. In
practice, coincidence rates for simultaneous arrival are ex-
trema so smart search for channel delays that yield a minimum
or maximum coincidence rate, as a function of channel delays,
can calibrate channel delays without having to resort to model
fitting.

For our exact-rate theory, discretized control of delay times
between source and interferometer is accommodated here as
time bins for arrival. For our analysis, time-bin width is fixed
in all channels. Thus, we consider discrete arrival times rather
than treating arrival time as a continuum. The number of time
bins per channel is b, which is the same for each channel, and
b is the ratio of the total run time for the sampling procedure
to the photodetector arrival time.

We can thus think of the arrival time as a digit in base b.
As n particles are in play, the arrival time is a length n string
of digits in base b. For example, if b is 16, a digit could
be expressed in hexadecimal, so an example of an arrival
time for particles in 8 channels could be expressed as the
length 8 hexadecimal number 12B9B0A1, which is the hex-
adecimal representation of 314159265. Total ignorance about
channel delays corresponds to the uniform prior (distribution)
over all hexadecimal numbers from 0 to FFFFFFFF, which is
4294967295 in decimal.

The trusted model computes the expected coincidence rate
for each choice of length-8 hexadecimal strings, and the cal-
ibration task is to adjust each channel’s delay so that particle
arrivals all have the same digit; in our length-8 hexadecimal-
string example, the arrivals are all 00000000 or 11111111 or
22222222 and so on up to FFFFFFFF. All these repeating se-
quences are equivalent because the model prediction is based
only on relative input-channel delays so all digits being the
same yield the same predicted coincidence rate.

For calibration, a difficult question concerns how many
instances of channel-delay choices must be tested to enable
solving of the model parameters. From Eq. (57), we know
that the number of samples must scale as n!/2, and the exact
expression is known. Consequently, to reduce the overhead
required in calibrating the fermionic interferometers, deter-
ministic and on-demand single fermion sources are necessary.

VIII. DISCUSSION

In studying this problem, we have obtained some in-
teresting, instructive results along the way, which we now
summarize. Instead of simultaneity, we showed that comput-

023013-16



GENERALIZED INTERFERENCE OF FERMIONS AND … PHYSICAL REVIEW RESEARCH 4, 023013 (2022)

ing exact multiparticle coincidence rates, whether bosonic
or fermionic, incorporates mutual pairwise particle distin-
guishability, which can be expressed in terms of mode-overlap
fidelity. This mode-overlap fidelity is what is controlled by
channel delays between sources and interferometer, i.e., by
“arrival time”.

Our second claim, obtained in Sec. III B, is the exact
coincidence-rate mathematical expression for any configura-
tion of arrival times, and for any number of particles. By
configuration, we refer to an array of relative arrival times
for the incoming particles, with empty values ∅ for empty
input channels. In deriving the coincidence rate equations we
introduce the delay matrix, which contains all information on
the pairwise levels of distinguishability between particles.

As our third claim, we devised in Sec. IV B an algorithmic
method to simplify the calculation of coincidence rates, given
possibly nonsimultaneous arrival times. For any s ∈ Gm,n our
method first computes irreducible matrix representations of
the submatrix A(s) of a Haar-random unitary matrix U ; we
then compute rates from these irreducible matrix representa-
tions. For n mutually partially distinguishable particles, our
method is computationally elegant and advantageous because
it is independent of the arrival times and of the numerical
entries in A(s), but instead leverages permutation symmetries
to block diagonalize an n! × n! matrix into a sum of smaller
blocks, thereby focusing the computation on the nonzero en-
tries of the block-diagonal form. It is a clear counterpoint
to the more common approach of using only permanents
[74–76].

Our next claim, presented in Sec. V A, is that we use this
notion of controllable delays to formulate discretized-time
coincidence rates in terms of time bins whose temporal width
is the precision of channel time-delay control. Experimentally,
and even philosophically, time steps are not infinitesimally
tunable: a precision limit exists in practice, and this practical
limit determines our coarse-graining scale to establish time
bins. Throughout this paper we have referred to these time
bins as discrete arrival times alluding, somewhat loosely, to
controlled relative (to an arbitrary zero reference) arrival times
of particles at the interferometer. Moreover, for a known set
of discrete arrival times τ, we further established in Sec. V C
that specific blocks in the general sum are automatically 0 as a
result of Gamas’s theorem; this leads to considerable simplifi-
cations when computing coincidence rates for a known set of
discrete arrival times.

The next claim that we highlight in Sec. VI A is our al-
gorithm, which shows that our full exact coincidence-rate
expression contains a configuration instance that requires ex-
ponentially many arithmetic operations with respect to total
fermion number n. We dubbed the partition associated with
this configuration instance the “witness partition”. For n even,
this witness partition is (n/2, n/2) and will appear in experi-
ments when the n fermions are equally distributed over exactly
two distinct time bins, or for any delay partition dominated
by (n/2, n/2), i.e., experimentally when at most n/2 fermions
occupy a single time bin. The group functions or alternatively
immanants associated with the witness partition need to be
evaluated and the cost of the computation scales at least expo-
nentially with n.

For n odd, the witness partition is ((n + 1)/2, (n − 1)/2)
and appears in experiments where (n + 1)/2 fermions arrive
in a single time bin, while the remaining (n − 1)/2 fermions
arrive in a single but distinct time bin; again for any delay
partition dominated by ((n + 1)/2, (n − 1)/2), i.e., experi-
mentally when at most (n + 1)/2 fermions occupy a single
time bin, the group functions or alternatively immanants for
the witness partition need to be evaluated and the cost of the
computation also scales at least exponentially with n, where n
is the number of mutually partially distinguishable particles.

Our sixth claim is that we calculate the probability for
nonzero contribution of the above witness partition to the
exact coincidence-rate calculation given uniformly random
arrival times, as is expected when a calibration procedure is
required. We show that this instance occurs with probability
going to 1 as n increases. This is discussed in Sec. VI B.

Finally, we have formulated the computational problem
of GENFERMIONSAMPLING in Problem 2. This formulation is
simple but important in that simultaneity is not intrinsic to
the definition. By discarding any requirement of simultaneity,
boson sampling becomes meaningfully extendable to general-
ized fermion sampling, and we speculate that hard-to-compute
complexity can now arise in both problems.

IX. CONCLUSIONS

Our study provides a more complete understanding of
the interference of partially-distinguishable particles, but the
motivation for our paper is stronger: Our result provides an
incentive to investigate the actual computational complexity
of the problem defined in this paper. Thus far, the focus
has been on bosons but fermion sampling could extend the
range of possible experiments to reach quantum advantage.
Multipartite fermionic interferometry is conceivable in var-
ious settings [31] such as two-dimensional electron gases,
currently restricted to two-electron interferometry. Perhaps
scaling up fermion interferometry could prove to be more
feasible, for many particles, than for photons, which are the
currently favoured particle experimentally.

Finally, our paper on the n-particle interference of bosons
and fermions immediately raises questions about more exotic
particles. How can our methods be applied to coincidence
rates for anyons, supersymmetric particles or even strings?
We do not broach these challenging topics here; rather we
think that creating a common foundation for fermions and
bosons creates well-posed questions that transcend these types
of particles.
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