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A powerful result of topological band theory is that nontrivial phases manifest obstructions to constructing
localized Wannier functions. In Chern insulators, it is impossible to construct Wannier functions that respect
translational symmetry in both directions. Similarly, Wannier functions that respect time-reversal symmetry
cannot be formed in quantum spin Hall insulators. This molecular orbital interpretation of topology has been
enlightening and was recently extended to topological crystalline insulators which include obstructions tied to
space-group symmetries. In this paper, we introduce a class of two-dimensional topological materials known
as optical N-insulators that possess obstructions to constructing localized molecular polarizabilities. The optical
N-invariant N ∈ Z is the winding number of the atomistic susceptibility tensor χ and counts the number of
singularities in the electromagnetic linear response theory. We decipher these singularities by analyzing the
optical band structure of the material—the eigenvectors of the susceptibility tensor—which constitutes the
collection of optical Bloch functions. The localized basis of these eigenvectors are optical Wannier functions
which characterize the molecular polarizabilities at different lattice sites. We prove that in a nontrivial optical
phase N �= 0, such a localized polarization basis is impossible to construct. Utilizing the mathematical machinery
of K theory, these optical N-phases are refined further to account for the underlying crystalline symmetries of
the material, generating a complete classification of the topological electromagnetic phase of matter.
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I. INTRODUCTION

Upon the discovery of time-reversal invariant topologi-
cal insulators, the past decades have witnessed a revival in
band theory [1,2]. While such topological phases were ini-
tially based on unitary and antiunitary symmetries [3,4], e.g.,
time-reversal (T ) and particle-hole (C) symmetries, recent
developments have illuminated the role of the ever-present
crystalline symmetries [5]. These handles provide a more
direct route for realizing topological phases, as well as giv-
ing rise to different types of band topologies [6–12]. Apart
from these recent pursuits in electronics, topological band
theory has also transformed the bosonic domains [13,14].
Topological properties of photons [15–17], phonons [18,19],
plasmons [20,21], excitons [22,23], Cooper pairs [24,25], and
magnons [26,27] are under active investigation. In fact, crys-
talline symmetries are arguably even more crucial for bosons
because they lack the time-reversal invariant of their fermionic
counterparts. It is therefore critical to classify the possible
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states of matter according to their topological crystalline
phases.

These so-called topological crystalline insulators (TCIs)
can possess surface states protected by geometric symmetries
[28], as opposed to unitary and antiunitary symmetries. One
such TCI is tin telluride (SnTe), which has a Dirac cone sur-
face band protected by mirror symmetry [29]. On the other
hand, the very existence of a surface may break the pro-
tecting symmetry of a TCI phase, denying any possibility
of boundary states. In this scenario, the bulk material bears
all the interesting topological properties—the most important
feature being obstructions to constructing exponentially local-
ized Wannier functions. Topological obstructions to Wannier
functions were discovered in Chern insulators [30], relating
to translational symmetry. A similar realization was made in
quantum spin Hall (QSH) insulators that one cannot construct
Wannier functions that respect time-reversal symmetry [31].
Soon thereafter, this molecular interpretation of topology was
expanded to include TCIs which are connected to space group
symmetries [32,33], bridging the classification principles of K
theory to real space [6]. That is, in nontrivial TCIs, the space
group representations of a topological band structure are not
realizable in a localized molecular basis. The discontinuity
between these two pictures cannot be resolved without closing
the band gap.

Despite such fervent research on TCIs, few works have
considered the polarizability of these peculiar molecular
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FIG. 1. Topological phases in 2D. (a) The Chern phase C ∈ Z is connected to charge transport and generates a Hall voltage VH across the
sample. e± are positive and negative charge carriers. (b) The quantum spin Hall (QSH) phase ν ∈ Z2 is related to spin transport which creates
a spin current IS across the sample. ±S are positive and negative spin carriers. (c) The optical N-phase N ∈ Z is associated with polarization
transport. γ is a photon and ± indicates the induced polarization of the electron cloud. Chern and QSH insulators are dc phases since they are
defined for static electric fields. Optical N-insulators are ac phases as they must be interpreted for time-varying electric fields.

orbitals [34,35]. Indeed, one question that has remained unan-
swered is: If the orbitals cannot be exponentially localized
does that imply their polarization densities cannot either?
The current paradigm in topological condensed matter cannot
answer this question as all electromagnetic fields are assumed
static (dc). Polarizability requires an optical theory of matter
that takes into account fluctuating electromagnetic waves (ac)
and the corresponding electron transitions. In this paper, we
utilize state-of-the-art insights in band theory to formulate a
classification of topological electromagnetic matter: optical
N-insulators (ONIs). The optical N-invariant N ∈ Z is the
winding number of the atomistic susceptibility tensor χ and
counts the number of singularities in the electromagnetic lin-
ear response theory. It was recently shown that graphene’s
viscous Hall fluid possesses these exotic singularities and
hosts topologically protected edge plasmons [21]. However,
the underlying honeycomb crystal structure of graphene was
ignored since the analysis was limited to a long wavelength
continuum theory. We make no such assumption here and
develop a microscopic (ab initio) optical theory of matter
starting from the many-body Schrödinger equation.

Utilizing the crystalline symmetry of the atomistic sus-
ceptibility tensor, we show that its eigenvectors are optical
Bloch functions (OBFs) which constitute the optical band
structure (OBS) of the crystal. We reveal that the N invariant
is interpreted as the geometric phase of the OBFs as they
are parallel transported around the Brillouin zone. We then
study the consequences of a nontrivial phase on molecular
polarizabilities, which are represented by optical Wannier
functions (OWFs). When N �= 0, we prove it is impossible
to construct exponentially localized OWFs that respect all
symmetries of the system. We conclude the paper with a dis-
cussion on optical crystalline phases. Fortunately, the rigorous
mathematical machinery of K theory [36,37] can be exploited
in electromagnetism, which allows us to refine ONIs further
to include the space-group symmetries. Like TCIs, crystalline
optical N-insulators (CONIs) can exhibit topological phases
protected by geometric symmetries rather than unitary and
antiunitary symmetries. After analyzing the irreducible rep-
resentations of the OBFs, we obtain a complete classification
of the topological electromagnetic phase of matter. Figure 1
shows a comparison of 2D topological phases in condensed
matter.

Note that to avoid confusion, we adopt two vector conven-
tions throughout the paper. We denote three-dimensional (3D)
vectors with arrows �A = (Ax,Ay,Az ) and reserve boldface
for two-dimensional (2D) vectors A = (Ax, Ay) which corre-
sponds to strictly in-plane components.

II. ATOMISTIC SUSCEPTIBILITY TENSOR

Fundamentally, the transport of charge or polarization re-
quires minimally coupling the system to an external gauge
field Aμ, which ensures local U(1) gauge symmetry. This is the
foundational postulate of quantum electrodynamics. Assum-
ing the spin response is negligible, the central object in linear
response theory is the susceptibility tensor χ or, equivalently,
the conductivity tensor σ . The susceptibility completely char-
acterizes the transport properties of the material as it computes
the induced polarization density �P due to an arbitrary electric
field �E :

�P (ω, �r) =
∫

d�r′χ (ω; �r, �r′) · �E (ω, �r′). (1)

Note that �P and �E are microscopic fields—no spatial aver-
aging has been implemented. The susceptibility tensor χ is
precisely the Green’s function of the polarization density, and
in a microscopic (ab initio) theory, χ has the symmetry of
the atomic lattice. The general properties of χ are outlined
in Appendix A. At the atomistic level, the susceptibility is
a highly dispersive and nonlocal object as it depends on the
frequency ω and is generally nonzero even when �r �= �r′. The
photon energy ω lies within the electronic band gap of the
insulator 0 < h̄ω < Ebg, so the photon cannot be absorbed in
the bulk—it can only polarize the material. However, absorp-
tion may be permitted on the edge. Among other properties,
the optical invariants of the bulk susceptibility predict whether
gapless high-frequency (ac) edge currents can be stimulated
by photons [21].

Our focus is strongly correlated 2D materials but much
of the formalism can be extended to 3D crystals, particu-
larly the discussion on crystalline phases (Sec. V). From the
Schrödinger equation, we derive the zero temperature T = 0
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susceptibility tensor χ , which represents the dielectric re-
sponse of the many-body ground state ψ0:

χ (ω; �r, �r′) = − 1

ω2
[ζ0(�r)δ(�r − �r′)1 + 
(ω; �r, �r′)]. (2)

1 is the 3 × 3 identity matrix in Cartesian coordinates and δ is
the Dirac delta function. When ω is within the band gap, the
response function is Hermitian and continuous, with continu-
ous inverse. In this case, ζ0 is the instantaneous diamagnetic
response and 
 is the current-current correlation function
that captures the paramagnetic response. These are defined
unambiguously in Appendix B. It is imperative to remember
that the linear response theory is only gauge invariant with ζ0

and 
 taken together.
We deduce that χ is periodic in the x-y plane since the wave

functions satisfy the Bloch condition t̂R|ψnk〉 = eik·R|ψnk〉,
where k is the crystal momentum of the many-body state
[Eq. (B2)]. The translation operator t̂R shifts all particles in the
2D crystal by an atomic lattice vector R which leaves the wave
function unchanged up to a phase eik·R. The susceptibility
tensor is left invariant under a translation of the excitation
point �r and the source point �r′ by a lattice vector R:

χ (ω; �r, �r′) = χ (ω; �r + R, �r′ + R). (3)

As a result, the in-plane photon momentum q is conserved up
to a reciprocal lattice vector G · R ∈ 2πZ. We can therefore
Fourier transform to the momentum space:

χ (ω; �r, �r′) =
∑
qq′

∫∫
dqzdq′

z

(2π )2
χ (ω; �q, �q′)ei �q·�re−i �q′ ·�r′

. (4)

Equation (3) implies χ (ω; �q, �q′) is identically zero unless the
in-plane momentum is conserved q − q′ = G, but the out-
of-plane momenta qz − q′

z is arbitrary because there is no
translational symmetry in this dimension. Hence, the suscep-
tibility can be expressed as a matrix in the basis of G with q
in the first Brillouin zone (FBZ) [38]. Explicitly writing out
all matrix indices with the excitation and source wave vectors
defined as �q = (q + G, qz ) and �q′ = (q + G′, q′

z ):

χi j (ω; �q, �q′) = χi j (ω; q + G, qz, q + G′, q′
z )

= χGG′
i j (ω; q, qz, q′

z ). (5)

Subscripts denote tensor (polarization) degrees of freedom
while superscripts denote lattice degrees of freedom G. Our
expression for the susceptibility in Eq. (4) suppresses this
cumbersome notation and will be adopted for the remainder
of the paper. Converting Eq. (2) to the momentum space gives
the compact expression for the susceptibility matrix:

χ (ω; �q, �q′) = − 1

ω2
[ζ0(�q, �q′)1 + 
(ω; �q, �q′)]. (6)

The momentum space diamagnetic and paramagnetic re-
sponses are defined in Appendix C. The off-diagonal compo-
nents G − G′ �= 0 are termed local-field effects, which reflect
the charge inhomogeneity of the crystal [39]. A consequence
is that long wavelength perturbations also give rise to short
wavelength responses [40]. Local-field effects can be sub-
stantial, such as the corrections to the Coulomb screening in
semiconductors [41] and optical rotatory power in α quartz

[42]. In this paper, we are concerned with the topological
ramifications of these terms.

Components of the susceptibility matrix can be related
to one another through complex conjugation. Regardless of
the crystalline symmetry (Sec. V), any susceptibility matrix
has discrete antiunitary symmetry since electromagnetism is a
real-valued field theory. In the reciprocal space, χ satisfies the
reality condition:

χ (ω; �q, �q′) = χ∗(−ω; −�q,−�q′). (7)

Equation (7) implies electromagnetism belongs to universality
class D—the class of real bosons [4]. In condensed matter, this
is referred to as particle-hole symmetry (C) and is normally as-
sociated with topological superconductors [43,44]. However,
C symmetry is only approximate in superconductors but is
an exact symmetry in electromagnetism. When considering
variations in the eigenvalues ω and q, the susceptibility matrix
represents a mapping from the 2+1D momentum space to the
general real linear group GL(D f ,R). D f denotes the degrees
of freedom—i.e., the total D f × D f matrix dimension of χ ,
which includes both tensor (polarization) and G indices. D f

may be infinite in principle but will usually be cut off at some
suitably large value of G.

III. ATOMISTIC OPTICAL BAND STRUCTURE

A. Optical Bloch functions

The degree of freedom D f is precisely the number of
eigenvectors needed to diagonalize the susceptibility matrix
χ . This collection of eigenvectors �eλ are OBFs which rep-
resent the OBS of the crystal. The concept of an optical (or
dielectric) band structure was proposed many years ago to
understand microscopic electronic screening and its depen-
dence on crystalline symmetries [45–50]. This approach is
tremendously powerful for GW calculations [51,52] and is
also referred to as the projective dielectric eigendecomposi-
tion technique [53,54]. However, the scope has been limited to
the longitudinal response function as the main focus has gen-
erally been Coulomb interactions. In the optical regime ω �= 0
electric fields can be both longitudinal and transverse, so we
must consider the full susceptibility matrix which includes
the longitudinal, transverse, and gyrotropic (Hall) responses
[Eq. (6)]. Our main contribution is showing that these systems
can be optically nontrivial and give rise to new topological
electromagnetic phases of matter.

OBFs are the normal modes of the crystal and satisfy an
eigenvalue equation. Upon an optical perturbation of the form
�E ∝ �eλ, the response of the material is proportional �P ∝ �eλ up
to a screening factor:

λωq�eλ(ω, �q) =
∑
G′

∫
dq′

z

2π
χ (ω; �q, �q′) · �eλ(ω, �q′). (8a)

The screening factors λωq denote the eigenvalues of the sus-
ceptibility matrix at a particular photon energy 0 < h̄ω < Ebg

and momenta q. It is imperative not to confuse the OBF index
λ with the electronic band index n as they refer to fundamen-
tally different quantities. The wave functions ψn represent the
stable atomic configurations of the crystal. The OBFs �eλ, on
the other hand, characterize the collective electric moments
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TABLE I. Three distinct types of optical materials. (a) Di-
electrics are capacitive with strictly positive eigenvalues λ > 0. (b)
Metals are inductive with strictly negative eigenvalues λ < 0. (c)
Hybrid materials have both positive and negative eigenvalues λ ≷ 0.
Only hybrid materials support topological electromagnetic phases.

Material (a) Dielectric (b) Metal (c) Hybrid

Eigenvalues λ > 0 λ < 0 λ ≷ 0
Electric field ← �E ← �E ← �E
Polarization ← �P → �P ↔ �P
Classification trivial trivial nontrivial

due to fluctuations in these configurations. Since the OBFs �eλ

form a complete orthonormal set, we may perform a spectral
decomposition of χ with respect to these modes:

χ (ω; �q, �q′) =
D f∑
λ

λωq�eλ(ω, �q) ⊗ �e∗
λ(ω, �q′). (8b)

⊗ denotes the Cartesian outer product. Positive modes λ > 0
are capacitive because the induced polarization points in the
same direction as an applied field. Negative modes λ < 0
are inductive since the polarization is reversed. Topologically,
the capacitive λ > 0 and inductive λ < 0 modes define two
distinct sectors of χ that cannot be continuously deformed
into one another. We emphasize this point as it is critical
to the topological classification of OBSs. The existence of
inductive modes λ < 0 is fundamentally necessary to achieve
nontrivial topologies. Inductive modes in a passive dielectric
medium would be exotic but can arise from exchange and cor-
relation effects [47]. Moreover, such modes routinely emerge
in time-reversal broken media with Hall responses which is
our main platform for topological electromagnetic phases of
matter. Table I lists the three distinct types of optical materials.

B. Optical Wannier functions

Analogous to Wannier functions for atomic wave functions
ψn, the OBFs �eλ can be expanded in a localized state basis
as opposed to the extended Bloch state basis. This localized
basis is understood as the polarization densities [55,56] at
different lattice sites R, which we refer to as OWFs. Unlike
traditional electronic Wannier functions, the OWFs �fλR are
vector fields that characterize the molecular polarizability of
a localized particle distribution to a fluctuating electric field
�E . Note that our construction of the susceptibility in terms
of atomic polarizabilities goes beyond the classical Clausius-
Mossotti relation [57] since a crystal is neither homogeneous
nor isotropic. In fact, one of the central results of this paper
is that there can be topological obstructions to such a con-
struction. In the following, we only consider 2D OWFs but
the concept is easily extended to 3D.

If there exists a complete set of OWFs �fλR that form a
representation of the space group, then OBFs �eλ can always
be constructed from these localized polarization densities (up
to a gauge transformation):

�eλ(ω, �q) =
∫

cell
d�r

∑
R

�fλR(ω, �r)e−i �q·(�r−R). (9)

The cell subscript implies integration over the primitive unit
cell of the crystal. Since the OWFs �fλR are exponentially
localized, the OBFs �eλ are necessarily analytic and single-
valued throughout the entire Brillouin zone [58]. In the
following Sec. IV, we will understand when OBFs cannot be
made analytic and when the construction of OWFs fails.

IV. OPTICAL N-INSULATORS

In a recent paper [21], we predicted a topological phase
of matter in graphene that is intimately related to polariza-
tion transport. This optical N-phase is fundamentally different
from the conventional Chern [59,60] and spin Hall phases
[61] because it is a manifestation of the response function
χ , not the wave function ψ . Moreover, nontrivial phases only
arose in the many-body electron fluid regime and therefore are
expected in strongly correlated systems. A critical component
of such materials is nonlocal (or viscous) Hall conductivity
[62]. In graphene, Hall viscosity causes the representation
of the chiral electron fluid to change at large momenta [63],
which creates a singularity in the response function. Here,
we generalize this idea to include local-field effects and the
corresponding lattice symmetries.

Since the susceptibility matrix χ is a Green’s function, it
naturally possesses a topological invariant that is conserved
under continuous deformations [64–68]. The homotopy of χ

is encapsulated in the following 2+1D optical N-invariant:

N = εαβγ

24π2

∫∫
d�dq tr

[
χ

∂χ−1

∂qα

χ
∂χ−1

∂qβ

χ
∂χ−1

∂qγ

]
, (10)

where qα = (�, q) denotes the total momentum coordinate
and ω → � has been analytically continued into the complex
frequency plane �. Note that the matrix product and trace
in Eq. (10) involves summation over the tensor and Fourier
elements G, as well as the convolution over the out-of-plane
momenta qz which is formally defined in Appendix C. The
momentum integral dq spans the first Brillouin zone q ∈
FBZ. The temporal integral d�, however, is performed ver-
tically over all imaginary (Matsubara) frequencies � ∈ (ω −
i∞, ω + i∞). As before, the photon energy ω = Re(�) lies
within the electronic band gap 0 < h̄ω < Ebg. Utilizing the
f -sum rule, we have proven that the integral is nondegenerate
and convergent (see Appendix D). We have also shown that
N is immune to perturbations in the optical response χ →
χ + δχ and therefore topologically quantized N ∈ Z. Also, it
should be noted that the optical N-invariant can be calculated
using the susceptibility χ or conductivity σ matrices as they
are homotopy equivalent. A proof is provided in Appendix E.

The existence of the optical N-invariant reflects the fact
that π3[GL(D f ,R)] = Z, which states that the third homo-
topy group of GL(D f ,R) is isomorphic to Z. Nevertheless,
the expression in Eq. (10) has severe disadvantages both prac-
tically and conceptually. It involves inverting a very large
matrix and integrating the dynamical dispersion of χ over
all Matsubara frequencies, which is a formidable task nu-
merically. Utilizing the spectral decomposition of the OBS
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TABLE II. Examples of 2D CONIs for the 17 wallpaper groups. Wallpaper groups Ĝ are denoted in Hermann-Mauguin notation [69]
and designate the spatial symmetry of the crystal. The second row lists the number of integers {Nq

i } that need to be specified to completely
characterize the representation (D) of the capacitive λ > 0 OBFs �eλ within the specific wallpaper group. The third row signifies whether an
optical N-invariant is present and the fourth row is the total number of integers needed to completely classify the topological phase of the OBS.

Ĝ p1 p2 pm pg cm p2mm p2mg p2gg c2mm p4 p4mm p4gm p3 p3m1 p31m p6 p6mm

D Z Z5 Z3 Z Z2 Z9 Z4 Z3 Z6 Z8 Z9 Z6 Z7 Z5 Z5 Z9 Z8

N Z Z 0 0 0 0 0 0 0 Z 0 0 Z 0 0 Z 0
Total Z2 Z6 Z3 Z Z2 Z9 Z4 Z3 Z6 Z9 Z9 Z6 Z8 Z5 Z5 Z10 Z8

[Eq. (8b)], we prove that the N-invariant is equivalently cal-
culated in terms of the geometric phase of the OBFs �eλ,

N = 1

2π

∫
dq F, (11a)

where F = ∑
λ>0 Fλ is the capacitive Berry curvature,

F(ω, q) = −iεi j
∑
λ>0

∑
G

∫
dqz

2π

∂�e∗
λ(ω, �q)

∂qi
· ∂�eλ(ω, �q)

∂q j
.

(11b)

It bears repeating that we may calculate N for any value of
0 < h̄ω < Ebg in the band gap. The proof is presented in
Appendix F. We now have a very intuitive picture; the N-
invariant corresponds to the parallel transport of the internal
electric moments around the Brillouin zone. Notice that the
summation runs over all capacitive modes λ > 0 but the exis-
tence of inductive modes λ < 0 is paramount. If the response
is purely capacitive/inductive then the topology is necessarily
trivial because the sum over all OBFs vanishes:

∑D f

λ Fλ = 0.

A. Topological obstructions to molecular polarizabilities

One of the pioneering results of topological band theory,
first revealed in the Chern phase [30], is that a nontrivial
Chern number implies it is impossible to construct Wannier
functions that respect all symmetries of the crystal. In con-
temporary condensed matter physics, this is often considered
the defining feature of a topological band structure [32,33].
Analogously, the optical N-invariant represents a topologi-
cal obstruction to OWFs and the construction of localized
molecular polarizabilities. To demonstrate this explicitly, we
assume it is possible to construct localized OWFs that from a
representation of the translation group. Substituting the OWF
expansion in Eq. (9) into Eq. (11) gives

N = −i
∑
λ>0

∑
R

εi jRiR j

∫
cell

d�r| �fλR(ω, �r)|2 = 0. (12)

The N invariant is identically zero N = 0, corresponding to
the trivial phase. We arrive at a profound conclusion. If the
OWFs �fλR are constructed from OBFs �eλ with a nontrivial
N-invariant N �= 0, they cannot fall off faster than |r − R|−2

and have long-range extent. This is due to the fact that �eλ

cannot be made an analytic and single-valued function of q
throughout the entire Brillouin zone. Indeed, the condition
that �fλR is exponentially localized requires a vanishing N-
invariant N = 0. Hence, there is an obstruction to constructing
molecular polarizabilities in the atomic limit when N �= 0.

V. CRYSTALLINE OPTICAL N-INSULATORS

We now direct our attention to the ever-present crystalline
symmetries that refine ONIs further. This application of K the-
ory [6] predicts additional topological invariants and imposes
constraints on the N invariant itself. Although we only con-
sider 2D crystalline materials here, the K-theory recipe can
also be extended to 3D crystals. The importance of K theory
is expounded in its ability to predict topological phases when
standard unitary and antiunitary classifications would predict
none. For instance, in space groups with mirror symmetry, the
N invariant vanishes but the material may still be topological
in the sense of lacking an atomic limit. That is, there may still
be obstructions to OWFs. Determining when this is the case
is delicate and currently a matter of contention. Section V C
discusses the current paradigm in great detail. In this section,
we only outline the topological invariants of the OBS that
arise from a rigorous K-theory classification.

For 2D materials, we examine the general layer space
groups that make up all crystals periodic in two dimensions.
The layer group is the 3D extension of the wallpaper group,
which includes reflections in the third spatial dimension z.
There are a total of 80 distinct layer groups Ĝ and the 17
wallpaper groups constitute a subgroup of these, which we
use as instructive examples (Table II). We define an element
g ∈ Ĝ of a particular space group as g = {R, a}, where R is
an orthogonal matrix that describes rotations det(R) = 1 or
reflections det(R) = −1 of the axial crystallographic point
group. a denotes translations in the x-y plane. If the material
belongs to a particular space group, the susceptibility matrix
is invariant under all such elements g:

χ (ω; �q, �q′) = R−1χ (ω; R · �q, R · �q′)R ei(G−G′ )·a. (13a)

Since χ transforms under the little cogroup of q, the OBFs
�eλ are naturally classified according to the irreducible repre-
sentations (irreps) of that group. The action of a space group
element on an OBF �eλ is defined as

R−1 · �eλ(ω, R · �q)eiG·a =
∑
λ′

Dq
λλ′ (g)�eλ′ (ω, �q). (13b)

The point group element R transforms an OBF with mo-
mentum �q to another field with momentum R · �q and the
same eigenvalue λωq = λωR·q, while a translates the mode.
The matrix Dq

λλ′ (g) is a representation of the space group
element g = {R, a} at the in-plane momentum q. Space groups
where a = R is a pure lattice translation are called sym-
morphic and we need only consider ordinary representations
of the point groups in these scenarios. On the other hand,
nonsymmorphic space groups (pg, p2mg, p2gg, and p4gm,
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FIG. 2. Brillouin zone of space group p2mm. The fundamental
domain � is indicated by the cyan region. All other momenta are
related to � by transformations in the dihedral point group D2. This
space group has four HSPs at �, X , Y , and M, connected by four
HSLs l (1,2)

x,y , which spans a rectangle.

for example) contain glide planes where a is a fraction of
a lattice translation. In this case, projective representations
need to be considered since translations cannot be separated
from point group operations. These require special attention
as there is an additional phase factor. The detailed procedure
for nonsymmorphic space groups is outlined in Appendix A
of Ref. [6].

A. High-symmetry points

At generic points in the fundamental domain (aka the irre-
ducible Brillouin zone), D is usually just a phase factor—a
one-dimensional representation. However, at certain high-
symmetry points (HSPs) or high-symmetry lines (HSLs), the
space group may permit higher dimensional representations
(two, three, etc.). At a HSP, the momentum is invariant un-
der a rotation or reflection R · �q = �q. This means R · �q and
�q differ at most by a reciprocal lattice vector G. All OBFs
�eλ connected through matrix D are necessarily degenerate at
q, where the degeneracy equals the dimension of the irrep
dim(D) [70]. The different possible irreps depends on the
little cogroup Gq at momentum q, which is the subgroup of
all symmetry operations that keep a particular HSP or HSL
fixed. In the absence of time-reversal symmetry, there are no
additional constraints on the representations that may cause
extra Kramers degeneracies. The representations can be real
or complex and depend only the space group.

Besides the optical N-invariant, the remaining topological
invariants correspond to a set of integers {Nq

i } ∈ Z that are
related to the representations of the space group.

In the spectral gap 0 < h̄ω < Ebg, each integer Nq
i labels the

number of capacitive λ > 0 OBFs �eλ transforming under the
ith irrep at the HSP q.

The total amount of integers will differ depending on the
space group as the number of irreps and HSPs is a property
of the group itself. Furthermore, not all integers are indepen-
dent as the representations must satisfy compatibility (gluing)
conditions as proposed in Ref. [6]. Since one can traverse the

TABLE III. The little cogroups Gq within space group p2mm.
These subgroups contain all symmetry operations that keep the mo-
mentum of a particular HSP or HSL fixed. The fundamental domain
� consists of the rectangular momentum space 0 � qx,y � π and its
interior is denoted int(�).

High-symmetry point q Little cogroup Gq

� (0,0) D2

M (π, π ) D2

X (π, 0) D2

Y (0, π ) D2

l (1)
x (qx, 0) Z2 = {1, ty}

l (1)
y (0, qy ) Z2 = {1, tx}

l (2)
x (qx, π ) Z2 = {1, ty}

l (2)
y (π, qx ) Z2 = {1, tx}

int(�) (qx, qy ) {1}

Brillouin zone numerous ways, connecting HSPs along dif-
ferent HSLs, the eigenvalues associated with these operations
must be mutually compatible. Thus, the gluing conditions
relate the representations at different HSPs. Knowing the
number of OBFs �eλ transforming under the irreps at a limited
number of HSPs is sufficient to determine all representations.
We reiterate that the set of integers {Nq

i } can be calculated
for any 0 < h̄ω < Ebg within the electronic band gap. Table II
lists the total set of invariants needed to completely specify
the optical crystalline phase in all 17 wallpaper groups.

B. An example: p2mm

We address space group p2mm as a simple but guiding
example [Fig. 2]. A similar pedagogical demonstration is
presented for p4mm in Ref. [6]. Space group p2mm has two
perpendicular planes of reflection symmetry corresponding
to the dihedral point group D2 = Z2 × Z2. The operation of
reflections tx and ty in either plane takes the Bloch momentum
q to

tx · (qx, qy) = (−qx, qy), ty · (qx, qy) = (qx,−qy ). (14)

Inversion is thus the combined operation txty which gives
all the operations of the space group. p2mm is particularly
straightforward as D2 is an Abelian group and therefore only
has one-dimensional representations. p2mm has four HSPs
and a rectangular fundamental domain � that is spanned by
�, X , Y and M. All HSPs feature the full D2 symmetry which
has four irreps (Table III). The character tables of the HSPs
and HSLs are displayed in Tables IV and V, respectively.
Note the optical N-invariant vanishes as the capacitive Berry
curvature F is odd under mirror symmetry. The OBS topology
is governed entirely by the irreps of the capacitive modes at
HSPs. To count the phases, we need to enumerate the number
of unique OBF representations as not all are independent.

We start with a set of 4 × 4 = 16 integers {Nq
i } that label

the number of irreps of the capacitive modes λ > 0 at the four
HSPs. The compatibility relations determine the constraints
on Nq

i as the fields must retain their eigenvalues along the

HSLs l (1,2)
x,y . For instance, the number of even Nl (1)

x+ and odd
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TABLE IV. Character table of the dihedral point group D2 for
HSP �. The irreps are denoted by Di and the columns are labeled by
the conjugacy classes. All HSPs �, X , Y , and M have little co-groups
D2 = Z2 × Z2.

D2 {1} {txty} {tx} {ty}
D0 1 1 1 1
D1 1 1 −1 −1
D2 1 −1 1 −1
D3 1 −1 −1 1

Nl (1)
x− modes along l (1)

x must equal the number of even and odd
ty modes at �:

N�
0 + N�

3 = Nl (1)
x+ , N�

1 + N�
2 = Nl (1)

x− . (15a)

Similarly, Nl (1)
x+ and Nl (1)

x− must equal the number of even and
odd capacitive modes at X . Hence, we obtain a set of com-
patibility conditions that relates the even and odd modes at �

and X :

N�
0 + N�

3 = NX
0 + NX

3 , N�
1 + N�

2 = NX
1 + NX

2 . (15b)

Following a similar procedure for the remaining HSPs, we
obtain six more relations:

NX
0 + NX

2 = NM
0 + NM

2 , NX
1 + NX

3 = NM
1 + NM

3 , (15c)

NM
0 + NM

3 = NY
0 + NY

3 , NM
1 + NM

2 = NY
1 + NY

2 , (15d)

NY
0 + NY

2 = N�
0 + N�

2 , NY
1 + NY

3 = N�
1 + N�

3 . (15e)

There are eight relations but only seven are independent,
which denotes a rank of 7. The total number of integers needed
to completely specify the representations of the capacitive
OBFs is therefore 16 − 7 = 9. We conclude that the optical
crystalline phase of p2mm, is classified by the elements of
Z9. Again, due to mirror symmetry in space group p2mm, an
N invariant is absent: N = 0.

C. General perspective of topological band structures

We can relate our CONIs to recent progress in classifying
band structures through topological obstructions of an atomic
limit [32,33]. The gluing conditions as proposed in Ref. [6]
distinguish topological invariants of a band structure subjected
to the symmetry constraints and in that sense determine all

TABLE V. Character table of Z2 for the HSLs l (1,2)
x.y . Irreps are

denoted by ±, which corresponds to even or odd under reflection
symmetry.

Z2 {1} {ty}
l (1,2)
x,+ 1 1

l (1,2)
x,− 1 −1

Z2 {1} {tx}
l (1,2)
y,+ 1 1

l (1,2)
y,− 1 −1

different possible configurations in momentum space that can-
not be adiabatically deformed into another. This description,
coinciding with K theory, can be refined to determine which
of these classes do not have an atomic limit, meaning that they
do not have a localized Wannier description that maintains
all symmetries and are topological from this point of view.
With respect to CONIs, a topological OBS implies localized
OWFs cannot be constructed. In particular, one can formulate
symmetry indicators [32]. That is, the integers, such as the
nine in the p2mm case, define a vector space once negative
entries are formally allowed, whose dimension dBS is given
by the number of independent relations.

Heuristically, adding a band to an irrep as outlined above
corresponds to moving by one unit along that vector. On the
other hand, one can determine a similar basis for all atomic
insulators (AIs) in real space. Considering a specific space
group, taking into account all possible positions of the or-
bitals, or, formally, Wyckoff positions, results in a similar
description in terms of independent integers. These integers
count how many representations are occupied which subse-
quently associates with a vector space, having dimension dAI.
Upon Fourier transforming, the two cases can be compared
and indicators determining the absence of an atomic limit
are then obtained by considering the quotient of these vector
spaces. Surprisingly, dAI is found to match dBS [32]. Non-
trivial band structures are those that cannot be written as an
integer linear combination in the AI basis. On the other hand,
if there exists a combination with rational coefficients that still
sums up to vector in the band structure space, one concludes
this is nontrivial. For example, in spinless systems with space
group 106, one of the irreps always comes in an even number
in AI space. One can take a rational coefficient for this vector
of 1/2, which still amounts to a vector in band structure space.
This configuration has no atomic limit and is topological in
this sense.

A related point of view is that of topological quantum
chemistry [33]. Here as well, the different band structures
arising from the gluing conditions in momentum space [6] are
compared to AI limits in real space to isolate topological ones.
In this case, one departs from the language of band represen-
tations [71]. Roughly speaking, a band representation consists
of all sets of energy bands related to localized orbitals respect-
ing all symmetries. One can then define so-called elementary
band representations (EBRs) that are the smallest sets of bands
derived from local atomiclike Wannier functions, serving as
building blocks for this space. Contrasting the atomic case
after a Fourier transform, it is then found that topological band
structures, having no atomic limit, correspond to EBRs that
are split in a valence and conduction band. The idea here is
that then, by definition, both cannot form a band representa-
tion as one started from an EBR. It turns out, however, that
with this methodology some nontrivial instances are fragile,
namely, it was uncovered that some bands might split into
a fragile topological and a trivial one [72]. The fragile band
arises by definition as the difference between two Wannier
representable bands, i.e., bands that have an atomic limit. Such
topologies can therefore be trivialized upon the addition of
extra bands and thus do not have stable invariants as captured
by K theory. The physical consequences of such represented
fragile topological phases [73,74], including the discovery of
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new types that cannot be diagnosed by irreducible representa-
tion content, are still the subject of active and intense research.
However, the Wilson loop spectrum [75] will show winding
[76], which provides a direct diagnosis route.

VI. CONCLUSIONS

We have introduced a class of 2D topological matter, ONIs.
The optical N-invariant counts the number of singularities in
the electromagnetic linear response theory and is intimately
connected to polarization transport. We have deciphered the
N invariant by analyzing the OBS of the crystal which are
the eigenvectors of the atomistic susceptibility tensor. We
have shown that these OBFs have obstructed Wannier rep-
resentations in a nontrivial phase N �= 0, thus the molecular
polarizabilities lack an atomic limit. These intriguing opti-
cal N-phases were refined with K theory to account for the
underlying crystalline symmetries, providing a complete clas-
sification of the topological electromagnetic phase of matter.
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APPENDIX A: PROPERTIES OF THE
RESPONSE FUNCTION

Our goal is to completely classify the optical phase of
any 2D material with a full spectral gap Ebg �= 0 and broken
time-reversal symmetry. We first review some fundamental
properties of optical materials that will be essential to the
definition of optical invariants. The bulk material is assumed
insulating and energetically stable, meaning a linear response
theory is well-defined. Gapless materials Ebg = 0 like metals
and semimetals are considered intermediate phases which do
not possess a stable topological classification in this sense.
It is assumed that either a biasing magnetic field �B �= �0 is
present to break time-reversal symmetry or there is some form
of magnetic ordering.

As long as the fluctuations in the electric field are rela-
tively weak, nonlinear effects are negligible. We also ignore
magnetism �M = �0 which is usually insignificant in optical
materials. Hence, the polarization density �P is related to the
electric field �E via the susceptibility tensor χ in Eq. (1),
which defines the linear response theory. We have intrinsically
assumed translational symmetry in time, which means the
photon energy ω is conserved. The susceptibility tensor χ

is the fundamental electromagnetic quantity and completely
characterizes the optical properties of the material at linear
order. Note that we consider all components of the susceptibil-
ity tensor; the longitudinal, transverse, and gyrotropic (Hall)
responses. These components are often associated with the

density-density, current-current, and density-current correla-
tions, respectively. In most cases, it is the coupling between
the longitudinal and transverse fluctuations that is responsible
for nontrivial topologies in electromagnetism [21].

Importantly, since electromagnetism is a real-valued field
theory, the response function must satisfy the reality condi-
tion. This implies

χ (ω; �r, �r′) = χ∗(−ω; �r, �r′), (A1)

which is true for both dissipative and nondissipative systems.
The response function is also causal and therefore satisfies the
Kramers-Kronig (KK) relations:∮

�(�)�0
d�

χ (�; �r, �r′)
� − ω

= 0. (A2)

� is a complex frequency used when we analytically continue
χ into the complex plane. Equation (A2) indicates χ is ana-
lytic in the upper half-plane and is a necessary criterion for
stability of the system. The KK relations correlate Hermitian
and anti-Hermitian components of the susceptibility tensor, as
they cannot be completely independent. If the system is dissi-
pationless, the response function is Hermitian and continuous
(nonsingular) within the spectral gap 0 < h̄ω < Ebg:

χ (ω; �r, �r′) = χ†(ω, �r′, �r). (A3)

This means the photon does not have sufficient energy to in-
duce a transition and the medium is transparent in this region.
We refer to this as the quantum limit or zero temperature limit
T → 0, since spectral lines are pointlike. The internal energy
U > 0 of the material is positive definite,

U (ω) = 1

2
Re

∫∫
d�rd�r′ �E∗(ω, �r) · χ̄ (ω; �r, �r′) · �E (ω, �r′),

(A4)

which requires that χ̄ > 0 is positive definite and defines the
inner-product space,

χ̄ (ω; �r, �r′) = ∂

∂ω
[ωχ (ω; �r, �r′)]. (A5)

When the excitation energy is above the band gap Ebg < h̄ω,
the material can absorb the photon, leading to dissipation. The
energy dissipation rate Q � 0 must be positive semidefinite
for every ω to guarantee causality (absorption):

Q(ω) = ωIm
∫∫

d�rd�r′ �E∗(ω, �r) · χ (ω; �r, �r′) · �E (ω, �r′).

(A6)

Note we only consider passive media so there are no gain
mechanisms present.

APPENDIX B: LINEAR RESPONSE
THEORY (REAL SPACE)

Here we outline the most important steps needed to ex-
tract the atomistic susceptibility tensor χ from the many-body
Schrödinger equation. This method is considered ab initio
since the only parameters that enter the theory are physical
constants. More thorough derivations and computational tech-
niques can be found in quantum transport textbooks [39,77].
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We implement minimal coupling −ih̄∂μ → −ih̄∂μ − eAμ/c
which gauges the Schrödinger equation:

H0 → H0 + HI . (B1)

H0 is the unperturbed crystal Hamiltonian and HI is the
interaction Hamiltonian that accounts for spatiotemporal fluc-
tuations in the electromagnetic field. The crystal Hamiltonian
H0 is assumed to possess a complete set of Bloch states,

H0|ψnk〉 = Enk|ψnk〉, (B2)

where k is the crystal momentum that corresponds to the
center of mass motion [78]. These satisfy the Bloch condition
t̂R|ψnk〉 = eik·R|ψnk〉, where t̂R is the translation operator that
shifts all particles by a lattice vector �rα → �rα + R. The Bloch
states also have the property that |ψnk〉 = |ψnk+G〉, where
G · R ∈ 2πZ is an arbitrary reciprocal vector. Note that n in-
cludes both the band and spin indices—it is a general label for
the quasiparticle excitations of the many-body system. Since
our main focus is 2D materials, we assume R and k represent
in-plane spatial and momentum coordinates, respectively. We
maintain the convention that 2D vectors are described in bold
face while 3D vectors use vector arrows.

In the Weyl gauge φ = 0, also known as the Hamiltonian or
temporal gauge, the interaction Hamiltonian HI is expressed
unambiguously as

HI = −1

c

∫
d�r �̂J (�r) · �A(t, �r) +

∑
α

e2
α

2mαc2
A2(t, �rα ). (B3)

eα and mα are the charge and mass of the α particle, respec-
tively, while �E = −∂t �A/c is the vector potential in the Weyl

gauge. The current density operator �̂J is defined through the
velocity operators �vα as

�̂J (�r) =
∑

α

eα

2
[δ(�r − �rα )�vα + �vαδ(�r − �rα )]. (B4)

Note that the velocity operators �vα = i[H0, �rα]/h̄ may not
commute due to the presence of a biasing magnetic field �B.
Fluctuations in the electric field lead to fluctuations in the
internal energy. The induced current density �Jind quantifies
the response due to these fluctuations:

�Jind(t, �r) = −c tr

{
�(t )

δHI

δ �A(t, �r)

}
. (B5)

�(t ) = �0 + δ�(t ) is the density operator and tr denotes the
trace over the electronic Hilbert space. Here, �0 = |ψ0〉〈ψ0| is
the ground state density operator at zero temperature T = 0
and δ� is the density fluctuation. Note that the many-body
ground state is invariant under all symmetry transformations
of the crystal t̂R|ψ0〉 = |ψ0〉 and therefore possesses no net
momentum.

It is now a fairly straightforward application of first-order
perturbation theory so we will skip directly to the main result.
Due to translational symmetry in time, it is convenient to
utilize the frequency ω space. Noting the relationship between
the induced current and polarization density �Jind = ∂t �P , we
obtain the atomistic susceptibility tensor,

χ (ω; �r, �r′) = − 1

ω2
[ζ0(�r)δ(�r − �r′)1 + 
(ω; �r, �r′)]. (B6)

1 is the 3 × 3 identity in this case. ζ0 is the instantaneous
diamagnetic response, and 
 is the current-current corre-
lation function (paramagnetic response). It is important to
emphasize that only the combined diamagnetic and para-
magnetic response is gauge invariant. The final step is to
evaluate the trace over the electronic Hilbert space. Inserting
an identity 1 = ∑

nk |ψnk〉〈ψnk| and using the definition of the
ground-state density operator �0 = |ψ0〉〈ψ0|, we obtain the
diamagnetic function,

ζ0(�r) =
∑

α

e2
α

mα

〈ψ0|δ(�r − �rα )|ψ0〉, (B7a)

and the current-current correlation function,


(ω; �r, �r′) = 1

h̄

∑
n �=0,k

sgn(ωnk ) �J∗
nk(�r) ⊗ �Jnk(�r′)

×
[

1

ω − ωnk
− iπδ(ω − ωnk )

]
. (B7b)

⊗ denotes the Cartesian outer product. In the last line, we have
included the negative frequency spectrum in the definition of
the sum, such that n runs over both positive ωn and negative
(complex conjugate) oscillations ω−n = −ωn. This is neces-
sary to preserve the reality of the response function [Eq. (A1)].

Here, �Jnk(�r) = 〈ψnk| �̂J (�r)|ψ0〉 is a current density matrix el-
ement and h̄ωnk = Enk − E0 is the transition energy from
the ground state n = 0 to an excited state n > 0. The band
gap corresponds to the minimum energy Ebg = min(h̄ω1k )
between the ground state and the first excited state, which
is nonzero in an insulator. Whether the band gap is direct or
indirect is not particularly important topologically, only that
the spectrum is gapped for all momenta.

It is easy to check that the quantum susceptibility tensor
χ satisfies all the requirements of the linear response theory.
The internal energy is positive definite U > 0, as well as the
dissipation rate Q � 0. We obtain the zero temperature T = 0
fluctuation-dissipation theorem:

Q(ω) = π

h̄

∑
n �=0,k

∣∣∣∣
∫

d�r �Jnk(�r) · �E (ωnk, �r)

∣∣∣∣
2
δ(ω − ωnk )

|ωnk| .

(B8)

We now have a very intuitive physical picture. When Ebg <

h̄ω is above the band gap, fluctuations in the electromagnetic
field �E lead to dissipation Q �= 0 because the photon has
enough energy to be absorbed and produce an electron-hole
pair. However, when 0 < h̄ω < Ebg lies within the band gap,
the system is dissipationless Q = 0. In this regime, the photon
can only polarize the material. As a consequence, the response
function is Hermitian and continuous, with continuous in-
verse. We focus on this transparent region as it is critical for
optics and the topological classification.

APPENDIX C: LINEAR RESPONSE THEORY
(MOMENTUM SPACE)

From Eq. (6), the excitation and source wave vectors are
defined by �q = (q + G, qz ) and �q′ = (q + G′, q′

z ), which con-
serve momentum in the plane, up to a reciprocal lattice vector

023011-9



TODD VAN MECHELEN et al. PHYSICAL REVIEW RESEARCH 4, 023011 (2022)

G. In the reciprocal momentum space, the diamagnetic matrix
is expressed compactly as

ζ0(�q, �q′) =
∑

α

e2
α

Vcmα

〈ψ0|e−i(�q−�q′ )·�rα |ψ0〉. (C1a)

Notice that ζ0(�q, �q′) = ζ0(�q − �q′) is independent of q since it
only depends on the difference of wave vectors whereas the
paramagnetic matrix is


(ω; �q, �q′) = 1

h̄Vc

∑
n �=0

sgn(ωnq)

ω − ωnq
�J∗
n (�q) ⊗ �Jn(�q′). (C1b)

Vc is the 2D unit cell area of the crystal which determines the
particle concentration n0 = V −1

c . The current density matrix

elements are defined as �Jn(�q) = 〈ψnq| �̂J (�q)|ψ0〉, where �̂J (�q) is
the current density operator in the momentum space:

�̂J (�q) =
∑

α

eα

2

(
e−i �q·�rα �vα + �vαe−i �q·�rα

)
. (C2)

Note that summation over both positive ωnq and negative
(complex conjugate) oscillations ω−nq = −ωn−q with all mo-
menta reversed is implicit in Eq. (C1b). The inclusion of both
positive and negative oscillators ensures the reality condition
is satisfied [Eq. (7)].

The momentum space is particularly useful to implement
matrix multiplication and other such operations. For example,
the inverse susceptibility χ−1 in the Fourier basis is defined
by the relation

∑
G′′

∫
dq′′

z

2π
χ−1(ω; �q, �q′′)χ (ω; �q′′, �q′) = 1δG−G′δqz−q′

z
. (C3)

δG−G′ is the Kronecker delta in the Fourier basis. Note that
each instance of a matrix product involves convolution over
the out-of-plane momentum qz since this is not an eigen-
value of the system. Therefore, an element of the homotopy
[Eq. (10)] is evaluated by

χ
∂χ−1

∂qα

=
∑
G′′

∫
dq′′

z

2π
χ (ω; �q, �q′′)

∂

∂qα

χ−1(ω; �q′′, �q′), (C4)

which defines a matrix in �q and �q′. Finally, the trace of some
matrix is the convolution with itself and the summation over
the diagonal:

tr[χ ] =
∑

G

∫
dqz

2π
χ i

i (ω; �q, �q) =
D f∑
λ

λωq. (C5)

Repeated indices implies summation over the polarization
degrees of freedom (Cartesian tensor components).

APPENDIX D: PROOF OF EQ. (10)

An issue still remains: Is the susceptibility matrix nonde-
generate (det χ �= 0) along the entire imaginary line of �?
This feature is guaranteed by the f -sum rule; also known as
the optical, conductivity, or Thomas-Reich-Kuhn sum rule.
We follow a similar proof as Zhou and Liu [79] who outlined
a more generalized version. In the asymptotic limit |�| → ∞,

FIG. 3. Contour in the complex plane to evaluate the optical
N-invariant. ω is the photon energy that determines where the hemi-
spherical contour is centered in the band gap. Ebg is the electronic
band gap energy (magenta). As C → ∞, the integral (cyan) is eval-
uated along the imaginary line and the contribution from the arc
(dotted line) vanishes.

the susceptibility matrix approaches a purely diamagnetic re-
sponse:

lim
|�|→∞

χ (�; �q, �q′) → − 1

�2
ζ0(�q, �q′)1. (D1)

The diamagnetic matrix is positive definite ζ0(�q, �q′) > 0 and
thus χ is always invertible, meaning no eigenvalues λ are
singular along this path. This is proven explicitly by taking
the inner product of ζ0 with an arbitrary function in the Fourier
basis x(�q),∑

GG′

∫∫
dqzdq′

z

(2π )2
x∗(�q)ζ0(�q, �q′)x(�q′)

=
∑

α

e2
α

Vcmα

〈ψ0|
∣∣∣∣∣
∑

G

∫
dqz

2π
ei �q·�rα x(�q)

∣∣∣∣∣
2

|ψ0〉 > 0. (D2)

Hence, the susceptibility matrix is nondegenerate det χ �= 0
for sufficiently large contours. We can now show the integral
is convergent. Applying the residue theorem on the integrand
of Eq. (10) gives

−2π i
∑
�i∈�

res[F (�i)] =
∮

d�F (�)

=
∫ ω+iC

ω−iC
d�F (�) +

∫
arc

d�F (�),

(D3)

where F = εαβγ tr[AαAβAγ ] and Aα = χ∂αχ−1 is an element
of the homotopy. The arc radius C is large enough to encircle
all poles �i ∈ � in the right complex plane, where � is the
set of poles bounded by the contour. An illustration of the
complex contour is shown in Fig. 3.

For large enough contours C → ∞, the temporal compo-
nent A� is proportional to the identity multiplied by a simple
pole A� ∝ 1/� due to the f -sum rule [Eq. (D1)]. As C → ∞,
the arc integral is then proportional to∫

arc
d�F (�) ∝

∫
arc

d�

�
εi j tr[AiAj] → 0, (D4)
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where Ai are the spatial components. The arc integral vanishes
due to antisymmetry in εi j = −ε ji and the cyclic property of
the trace. The imaginary line integral is convergent,

− 2π i
∑
�i∈�

res[F (�i )]

=
∫ ω+i∞

ω−i∞
d�F (�)

=
∫ i∞

−i∞
d�F (� + ω) = i

∫ ∞

−∞
dτF (ω + iτ ), (D5)

which defines the homotopy of a circle S1 when including the
point at |�| = ∞. In the last line, we have shifted the integral
to the imaginary axis τ ∈ (−∞,∞). This property will aid us
for an important proof in Appendix F.

The final step to prove N ∈ Z is quantized requires Bloch
periodicity in q. We consider an arbitrary deformation in the
response function χ → χ + δχ . The corresponding variation
in the invariant N → N + δN is

δN = −εαβγ

8π2

∫∫
d�dq ∂αtr[δχ∂βχ−1χ∂γ χ−1]. (D6)

All variations amount to a total divergence in the integrand.
We have already proven that the temporal boundaries vanish
as a consequence of the f -sum rule. The spatial components
are zero as well due to the periodic boundary condition q →
q + G. Hence, all variations vanish identically—δN = 0 and
N ∈ Z is topologically quantized.

APPENDIX E: HOMOTOPY EQUIVALENCE BETWEEN
SUSCEPTIBILITY AND CONDUCTIVITY MATRICES

It should be emphasized that the topology is not predi-
cated on our choice of the susceptibility tensor χ over the
conductivity tensor σ . The optics community prefers χ while
σ is used more often in condensed matter. Here we prove
that N is unchanged under the substitution of the conductivity
tensor χ = iσ/�, which may be used in place of χ to cal-
culate the optical N-invariant. Under this substitution, we get
N → N + δN ,

δN = −1

8π2

∫ ω+i∞

ω−i∞

d�

�

∫
dq εi j∂itr[σ∂ jσ

−1] = 0, (E1)

where N is equivalently defined through σ :

N = εαβγ

24π2

∫∫
d�dq tr

[
σ

∂σ−1

∂qα

σ
∂σ−1

∂qβ

σ
∂σ−1

∂qγ

]
. (E2)

Since δN is a total derivative, the surface terms vanish due to
the periodic boundary condition in q. Thus, the susceptibility
and conductivity matrices are homotopy equivalent.

APPENDIX F: PROOF OF EQ. (11)

Our goal is to simplify the expression in Eq. (10) to avoid
temporal integration and matrix inversion. We follow a similar
procedure as Wang and Zhang [44,80], which walks through
the main steps of the proof. For consistency, it is useful to de-
fine the Hermitian part of the conductivity tensor ς = −iσ =
�χ since it has purely real eigenvalues along Im(�) = 0

and strictly first-order poles. Indeed, using a partial fraction
decomposition, we express the ς matrix in standard Green’s
function form [66,79]:

ς (�; �q, �q′) = − 1

�
ζ (�q, �q′) − 1

h̄Vc

∑
n �=0

�J∗
n (�q) ⊗ �Jn(�q′)

|ωnq|(� − ωnq)
.

(F1)

ζ is the gauge invariant diamagnetic response that only re-
sponds to transverse fields �q · �E = 0:

ζ (�q, �q′) = ζ0(�q, �q′)1 + 
(0; �q, �q′). (F2)

Note that ζ > 0 is positive definite, which ensures the energy
density [Eq. (A5)] is positive χ̄ = ∂ως > 0 for all ω.

It was proven in Appendix E that the homotopy of ς and
χ are equivalent, so we may use ς in place of χ to calculate
the N invariant. Now consider the continuous deformation in
ς characterized by the smooth homotopy 0 � ε � 1:

ςε (ω, iτ ; �q, �q′) = (1 − ε)ς (ω + iτ ; �q, �q′) + ες̃ (ω, iτ ; �q, �q′).
(F3)

We exploit the shift property in Eq. (D5) to redefine the
integral along the imaginary line τ ∈ (−∞,∞). The unitless
paramater ε interpolates between the true response function ς

at ε = 0 and the modified response function ς̃ at ε = 1:

ς̃ (ω, iτ ; �q, �q′) = [−iτ + ς−1(ω; �q, �q′)]−1. (F4)

ς̃ has nonzero eigenvalue along τ ∈ (−∞,∞) and any suffi-
ciently large contour in the complex plane |�| ∈ C. It is also
clear that ςε (ω, 0; �q, �q′) = ς (ω; �q, �q′), so the deformation is
purely in the complex plane. From Appendix D, we know
that any nondegenerate deformation in ς is permitted. We
only have to prove that the eigenvalues of ςε never cross
zero for every 0 � ε � 1. This is confirmed by contracting ςε

with an arbitrary vector �x(�q) and considering the imaginary
part:

∑
GG′

∫∫
dqzdq′

z

(2π )2
Im[�x∗(�q) · ςε (ω, iτ, �q, �q′) · �x(�q′)]

= (1 − ε)τ

{∑
GG′

∫∫ dqzdq′
z

(2π )2 �x∗(�q) · ζ (�q, �q′) · �x(�q′)

τ 2 + ω2

+
∣∣∑

n �=0,G

∫ dqz

2π
�Jn(�q) · �x(�q)

∣∣2

|ωnq|[τ 2 + (ω − ωnq)2]

}

+ ετ

τ 2 + ∣∣∑
GG′

∫∫ dqzdq′
z

(2π )2 �x∗(�q) · ς−1(ω, �q, �q′) · �x∗(�q′)
∣∣2 .

(F5)

Since ζ > 0, the imaginary part is only zero along the real
line τ = 0. It is always positive or negative in the upper τ > 0
or lower τ < 0 regions, respectively. Hence, the matrix ςε is
never degenerate for every 0 � ε � 1.

As a consequence, the optical N-invariant can be com-
puted from the modified Green’s function ς1 = ς̃ , which
has a much simpler frequency dependence. Utilizing the
spectral decomposition of the OBS [Eq. (8b)], we arrive
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at

N = i

4π2

D f∑
λ

∫
dq

∫ ∞

−∞
dτ

∂

∂τ
ln[−iτ + (ωλωq)−1]Fλ = 1

4π

∫
dq

D f∑
λ

sgn(λωq)Fλ = 1

2π

∫
dq F, (F6)

where Fλ is the Berry curvature of a single OBF �eλ and F = ∑
λ>0 Fλ is the sum over all capacitive modes λ > 0. Note that one

can also calculate the curvature from the inductive modes F = −∑
λ<0 Fλ as the total summation vanishes

∑D f

λ Fλ = 0.
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