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Stabilizing two-qubit entanglement by mimicking a squeezed environment
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It is well known that qubits immersed in a squeezed vacuum environment exhibit many exotic phenomena,
including dissipative entanglement stabilization. Here we show that these effects only require interference
between excitation and decay processes, and can be faithfully mimicked without nonclassical light using a simple
classical temporal modulation. We present schemes that harness this idea to stabilize entanglement between
two remote qubits coupled via a transmission line or waveguide, where either the qubit-waveguide coupling
is modulated, or the qubits are directly driven. We analyze the resilience of these approaches against various
imperfections and also characterize the trade-off between the speed and quality of entanglement stabilization.
Our protocols are compatible with state-of-the-art cavity QED systems.
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I. INTRODUCTION

Squeezed states of electromagnetic radiation [1,2] have
long been of interest, with applications ranging from quantum
metrology and sensing [3–9] to qubit readout [10–14] and en-
hanced quantum gates [15,16]. Driving systems with squeezed
vacuum noise can also lead to interesting dissipative physics.
A single qubit driven by broadband squeezed vacuum noise is
described by the master equation [17]

˙̂ρq = γD[cosh(r)σ̂− + sinh(r)σ̂+]ρ̂q, (1)

where σ̂± are standard qubit raising/lowering operators,
D[x]ρ̂ = xρx† − {x†x, ρ̂}/2 is the usual Lindblad dissipator,
γ is the qubit-bath coupling rate, and r is the standard squeez-
ing parameter. While the steady state of Eq. (1) is mixed,
it generates nontrivial dynamics, with consequences includ-
ing the existence of two distinct transverse relaxation times
[17,18] and modifications of the Mollow triplet fluorescence
spectrum [19–22].

The dissipative dynamics becomes even richer when two
qubits are coupled to a broadband two-mode squeezed vac-
uum (TMSV) environment, as the dynamics can now prepare
and stabilize remote qubit entanglement [23]. The evolution is
described by

˙̂ρq = γ1D[cosh(r)σ̂ (1)
− + sinh(r)σ̂ (2)

+ ]ρ̂q

+ γ2D[sinh(r)σ̂ (1)
+ + cosh(r)σ̂ (2)

− ]ρ̂q, (2)

where γ1/2 are the qubit-bath coupling rates, and r is the
squeezing parameter of the TMSV. The photon-number pair-
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ing correlations of the TMSV environment are inherited by
the qubits, leading to a pure entangled steady state having the
form

|�〉q = 1√
cosh(2r)

[cosh(r) |00〉 − sinh(r) |11〉]. (3)

The dissipative physics of both Eqs. (1) and (2) are often
taken to be hallmarks of the interaction of matter with non-
classical radiation. Unfortunately, realizing these “dissipative
squeezing” ideas experimentally is severely limited by the
difficulty in generating, transporting, and injecting squeezed
states with high efficiency. In this work we point out an
underappreciated fact: The nontrivial dissipative dynamics of
both Eqs. (1) and (2) can be realized without the use of any
nonclassical radiation but instead, by directly engineering
interference between relevant qubit excitation and relaxation
pathways. As we show in detail, these can be achieved in a va-
riety of systems where the qubit frequencies and/or couplings
to a vacuum reservoir can be temporally modulated [depicted
in Fig. 1(a)]. We term these schemes “synthetic squeezing”
and show that they provide a powerful route towards entan-
glement stabilization.

Our work discusses several methods for implementing syn-
thetic squeezing. This is of more than just academic interest: it
also provides a potentially powerful new method for preparing
and stabilizing entangled states between remote qubits using
only classical drives. We discuss two versions of this idea:
a first method that uses time-modulated couplings between
qubits and a photonic link (i.e., a waveguide or transmission
line structure), and a second method that only uses local Rabi
drives on each qubit. Schemes similar to our first approach
were studied in Refs. [24,25], but the equivalence to driving
with squeezed light was not discussed. The second approach
both generalizes and provides intuition for a protocol first
introduced in Ref. [26]. Including the impact of intrinsic
thermal dissipation, we show that two-qubit entanglement

2643-1564/2022/4(2)/023010(15) 023010-1 Published by the American Physical Society

https://orcid.org/0000-0002-3263-648X
https://orcid.org/0000-0002-6458-6122
https://orcid.org/0000-0001-7297-9068
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023010&domain=pdf&date_stamp=2022-04-05
https://doi.org/10.1103/PhysRevResearch.4.023010
https://creativecommons.org/licenses/by/4.0/


GOVIA, LINGENFELTER, AND CLERK PHYSICAL REVIEW RESEARCH 4, 023010 (2022)

Φext Φext

g(Φext) ∼ η + cos [(Ω1 + Ω2) t]

l

(a)

(b)

Squeezed vacuum

FIG. 1. Synthetic squeezing. (a) The qubit dynamics produced
by biharmonic modulation of the qubit-cavity coupling are equiva-
lent to that for injected squeezed vacuum resonant with the cavity.
(b) Circuit QED schematic of two-qubit remote entanglement gener-
ation via synthetic squeezing. SQUID-modulated coupling between
the qubits and a transmission line implements the dynamics of
Eq. (2).

stabilization with concurrence above 90% is achievable in
contemporary circuit QED devices.

While relatively unexplored in the few-qubit case, we
note that the general idea of mimicking squeezed reser-
voirs with parametric or Raman processes has been studied
in the context of stabilizing bosonic states. This includes
schemes for producing bosonic squeezed states in trapped
ions [27], optomechanics [28], and circuit QED [29], and
bosonic optomechanical entanglement [30,31]. Related mas-
ter equations have also been studied in the setting of spin
ensembles [32,33], though the specific equivalence to driving
with squeezed light was not discussed.

The remainder of this paper is organized as follows. In
Secs. II and III we present our synthetic squeezed dissipation
schemes for both the single- and two-qubit cases. In Sec. V we
study the approach to steady state of the two-qubit scheme,
its connections to large-spin entanglement stabilization, and
the robustness of the steady-state entanglement to thermal
dissipation. Finally, in Sec. VI we present our concluding
remarks.

II. SINGLE-QUBIT SYNTHETIC SQUEEZED DISSIPATION
VIA COUPLING MODULATION

We begin by describing our scheme for synthetic dissi-
pative squeezing of a single qubit, i.e., Eq. (1). The starting
point is a cavity-qubit system with a time-dependent coupling,
described by the Hamiltonian

Ĥ = ωcâ†â + �

2
σ̂z + g(t )(â + â†)σ̂x. (4)

This is the usual Rabi Hamiltonian describing a cavity
of frequency ωc coupled to a qubit of frequency �, with
a time-dependent coupling g(t ). We consider phase-locked

double-sideband cosine modulation of the coupling at fre-
quencies ωc ± �, described by

g(t ) = ḡ(α+e−i(ωc+�)t + α−e−i(ωc−�)t ) + H.c., (5)

with α± the complex-valued amplitudes of the modulation. In
circuit QED systems, this parametrically modulated coupling
has been directly demonstrated using a superconducting quan-
tum interference device (SQUID) [34–40] and alternatively
implemented using a dispersive qubit-cavity coupling, a qubit
Rabi drive, and classical cavity displacements [14,41].

After going to the interaction frame for the qubit and cavity,
we make a rotating-wave approximation (RWA) to drop all
time-dependent terms that oscillate faster than 	 = ωc − �,
and obtain the Hamiltonian

Ĥ ′ = ḡâ†(α+σ̂+ + α−σ̂−) + H.c., (6)

where we require that |α±| � 2	/ḡ for the RWA. Assuming
that the cavity decays at a rate κ � |α±|ḡ into a zero-
temperature environment, adiabatic elimination of the cavity
yields a qubit-only master equation:

˙̂ρq = 4ḡ2

κ
D[α+σ̂+ + α−σ̂−]ρ̂q. (7)

With the associations α+ = α sinh(r) and α− = α cosh(r) we
obtain Eq. (1) with decay rate γ = 4ḡ2α2/κ and squeezing
parameter r set by |α+/α−| = tanh(r). We thus have our first
(and simplest) example of how classical time modulation can
be used to simulate the dissipative effects of a squeezed en-
vironment. We stress that this protocol does not require any
input squeezed light, nor does it generate any bosonic squeez-
ing in the cavity mode. Note that modulation of tuneable
couplings to control qubit cooling and heating processes has
been studied previously [36,42], but two-tone modulation and
the connection to squeezing was not discussed.

It is worth emphasizing the heuristic reasons why inter-
fering sidebands mimic the dissipative effects of squeezed
vacuum. For a squeezed vacuum reservoir, the interference of
qubit excitation and relaxation processes encoded in Eq. (1)
is a direct consequence of the photon-number pairing in the
squeezed state. To be explicit, if the reservoir ends up in
a state with an odd number of photons 2M + 1, this could
have resulted from a qubit excitation process starting with
2M + 2 reservoir photons, or from a qubit relaxation process
starting from 2M reservoir photons [see Fig. 2(a)]. In our
synthetic scheme, an identical interference is achieved using
only classical radiation, i.e., the coupling modulation. The
interference is now between the blue-sideband Raman process
(driven by coupling modulation at frequency ωc + �) with
the red-sideband Raman process (driven by the modulation
at frequency ωc − �). Both processes result in the generation
of a cavity photon, as depicted graphically in Fig. 2(b).

III. TWO-QUBIT SYNTHETIC SQUEEZED DISSIPATION
VIA COUPLING MODULATION

The above ideas can easily be extended to two qubits (fre-
quencies �1 and �2), allowing one to mimic the effects of
a two-mode squeezed reservoir; we refer to this general idea
as synthetic two-mode squeezing. We now use phase-locked
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b) Modulated coupling(a) (b)

FIG. 2. Pathways to the dissipative dynamics of Eq. (1). (a) In-
terference in the qubit excitation and decay channels when subject
to a squeezed vacuum environment. (b) The blue and red-sideband
processes driven by coupling modulation at ωc ± � interfere such
that both qubit decay (red sideband) and excitation (blue sideband)
result in an emitted cavity photon at frequency ωc.

coupling modulation between the qubits and two indepen-
dent decay channels (mediated by bosonic modes). As in the
single-qubit case, the key ingredient is interference between
red-/blue-sideband Raman processes that result in photon
emission at the same frequency. However, in the two-qubit
setup the red sideband for one qubit and the blue sideband
for the other interfere, as depicted in Figs. 3(a) and 3(b). This
results in the reduced qubit-only master equation

˙̂ρq = 4ḡ2

κ
(D[Ĵa] + D[Ĵb])ρ̂q, (8)

with

Ĵa = α−σ̂
(1)
− + α+σ̂

(2)
+ , Ĵb = β+σ̂

(1)
+ + β−σ̂

(2)
− (9)

b)
d) Transmission line

(a) (c)

(b)
(d)

FIG. 3. Two-qubit interference. (a), (b) Interference between the
qubit decay and excitation processes mediated by the coupling mod-
ulation that results in the combined dissipators Ĵa/b. (c) For a cavity
with a broad linewidth, the two dissipative qubit channels sample
the cavity density of states at different frequencies and effectively
interact with distinct environments. (d) In the transmission line setup,
due to the modulated coupling both qubit 1 (2) decay and qubit 2 (1)
excitation result in a TL excitation at �1 (�2).

describing the independent qubit dissipative channels medi-
ated by the bosonic modes shown in Figs. 3(a) and 3(b). Here
ḡ and α± (β±) define the qubit-mode coupling modulation for
mode a (b), in direct analogy to Eq. (5). By setting α− = β− =
α cosh(r) and α+ = β+ = α sinh(r) we obtain Eq. (2) with
γ1 = γ2 = 4ḡ2α2/κ . We now present three setups to engineer
Eq. (8), leaving the details of the calculations to Appendix A,.

The first and simplest setup consists of two cavities, each
coupled to both qubits, as described by the coupling Hamilto-
nian

Ĥcoup = [g1(t )(â + â†) + g2(t )(b̂ + b̂†)]
(
σ̂ (1)

x + σ̂ (2)
x

)
. (10)

The coupling g1(t ) is modulated such that the a cavity me-
diates the interference process of Fig. 3(a) described by the
dissipator Ĵa, and similarly, g2(t ) and the b cavity mediate
Fig. 3(b) and Ĵb. The a and b modes need not be spatially
localized: they could, e.g., be the hybridized supermodes
of two tunnel-coupled physical cavities, with the underlying
localized cavity modes coupling to only one qubit each. If
instead we interfere both red-sideband processes and both
blue-sideband processes, as can be done with trivial modifi-
cation of this setup, we would obtain the dissipators

Ĵ f
a = α−σ̂

(1)
− + α+σ̂

(2)
− , Ĵ f

b = β+σ̂
(1)
+ + β−σ̂

(2)
+ , (11)

which leads to Eq. (2) with the state of qubit 2 flipped.
The second setup uses a single cavity with a broad

linewidth (κ) to supply the two distinct dissipative channels
for the qubits, as depicted in Fig. 3(c), with the cavity coupling
to both qubits with the same modulated coupling, given by the
Hamiltonian

Ĥcoup = g(t )(â + â†)
(
σ̂ (1)

x + σ̂ (2)
x

)
. (12)

In this setup, as a result of the modulated coupling, one pair
of sideband processes results in cavity photon emission at
frequency ωa + δ�, and the other pair results in emission
at ωa − δ�, with δ� = (�1 − �2)/2. These two mediated
decay processes are independent and add incoherently, which
leads to Eq. (8). Note that this setup cannot easily be modified
to directly engineer Eq. (11).

Finally, the third setup is two qubits connected to a long
waveguide or transmission line (TL) with static and modu-
lated coupling, as depicted in Figs. 1(b) and 3(d). Modulation
of qubit 1 coupling at the qubit sum-frequency drives a Raman
process where qubit 1 is excited and a photon of frequency
�2 is emitted into the TL. Due to the static coupling, qubit 2
also decays into the TL at frequency �2. These two processes
interfere, as do the analogous processes at emission frequency
�1 when the qubits’ roles are reversed, which results in qubit
evolution described by Eq. (8). While this setup is sensitive
to the distance between the qubits (as we do not want a
waveguide-mediated Hamiltonian qubit-qubit interaction, see
Appendix A 3), it can be used to generate and stabilize steady-
state entanglement between two remote qubits. We note that
several recent circuit QED experiments studied setups with
tuneable qubit–transmission line couplings [37,38], a platform
that could be ideal for the above implementation.
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IV. TWO-QUBIT SYNTHETIC SQUEEZED DISSIPATION
VIA LOCAL LINEAR DRIVING AND COLLECTIVE LOSS

The idea of generating remote entanglement by synthetic
two-mode squeezing is appealing; however, not all archi-
tectures facilitate dynamically modulated qubit-waveguide
couplings. In this section we show that one can still use
synthetic squeezing ideas to stabilize entanglement by simply
combining the passive, collective loss generated by a pho-
tonic link with tailored local qubit Rabi drives. In the correct
reference frame, the physics of this setup is almost directly
analogous to driving two qubits with two-mode squeezed light
[cf. Eq. (2)]. Our discussion here both generalizes and helps
provide intuition for the dissipative entanglement protocol
presented in Ref. [26].

Consider two qubits which are coupled to a common
source of loss at a rate . The dissipation is described by
the master equation ˙̂ρq = D[Ĵ ]ρ̂q with the collective loss
operator

Ĵ = σ̂
(1)
− + ησ̂

(2)
− , (13)

where η allows for an asymmetry between the qubit-bath cou-
plings. For clarity we take η = 1 in what follows; as we show
later, analogous results hold for η �= 1. Ĵ has a two-parameter
family of dark states of the form

|�[α, φ]〉 =
√

1 − α2 |00〉 + eiφα√
2

(|01〉 − |10〉), (14)

where 0 � α � 1. These states are entangled for any α > 0,
whereas for α = 0 we have the trivial dark state |00〉. Any
state (pure or impure) in the span of this dark state manifold
is a possible steady state, making this dissipative evolution of
little use if the goal is entanglement stabilization. As such,
we would like to introduce additional simple dynamics to the
qubits so that there is a unique entangled dark state (for some
α > 0).

We will solve this problem by making a direct mapping
to entanglement via two-mode squeezed dissipation. This is
possible because the dark states in Eq. (14) are unitarily equiv-
alent to the “paired” family of entangled states associated
with two-mode squeezed dissipation, i.e., states of the form
in Eq. (3). Without loss of generality we set φ = 0; in this
case we have the explicit mapping

|�[α]〉q ≡ Û [α] |�[α]〉

= 1√
cosh(2r)

( cosh(r) |00〉 − sinh(r) |11〉 ), (15)

where r[α] is determined via α = √
tanh(2r). Crucially, the

required unitary is local, i.e., Û [α] = Û (1)[α] ⊗ Û (2)[α]. It
corresponds to opposite local rotations of each qubit about the
y axis:

Û ( j)[α] = exp

(
± i

θ

2
σ̂ ( j)

y

)
, (16)

where qubit 1 (2) takes the upper (lower) sign. The rotation
angle θ is a function of α (or equivalently, r) and is given by

cos θ =
√

1 − α2

1 + α2
= e−2r . (17)

Picking out a nontrivial dark state is now mapped in the new
frame to ensure the steady state has a particular nonzero value
of the squeezing parameter r. This latter task is something we
know how to do, namely, by using the synthetic squeezing
master equation in Eq. (2).

In what follows we choose a particular value of r = r0,
corresponding to the entangled state we would like to sta-
bilize; we will also view Û and |�〉q to be functions of r
rather than α. The next step in our mapping to synthetic
two-mode squeezing is to examine the form of the collective
loss dissipator Ĵ in the new frame defined by Û [r0]. We have

Ĵ ′ ≡ Û [r0]Ĵ Û †[r0] = Ĵ ′
1 + Ĵ ′

2 + Ĵ ′
Z . (18)

Here, Ĵ ′
1 and Ĵ ′

2 are precisely the two squeezing dissipators
needed for synthetic squeezing [cf. Eq. (2)]:

Ĵ ′
1 = e−r0 (cosh(r0)σ̂ (1)

− − sinh(r0)σ̂ (2)
+ ), (19)

Ĵ ′
2 = e−r0 (cosh(r0)σ̂ (2)

− − sinh(r0)σ̂ (1)
+ ). (20)

Further, Ĵ ′
Z is a correlated dephasing term

Ĵ ′
Z = 1

2

√
1 − e−4r0

(
σ̂ (1)

z − σ̂ (2)
z

)
. (21)

Hence, in the new frame defined by our chosen value
of r = r0, the original collective loss dissipator has a direct
connection to the synthetic squeezing dissipators in Eq. (2):
J ′ is the sum of these dissipators, plus a dephasing dissipator.
One can easily check that the paired target state |�[r0]〉q is
dark with respect to this sum dissipator. However, it is not
unique, which is to be expected: all we have done at this stage
is rewritten our original problem in a new frame, hence the
transformed version of any dark state from Eq. (14) (including
|00〉) remains a dark state.

However, in our new frame defined by Û [r0], the state
|�[r0]〉q is the only dark state of the dissipator Ĵ ′ that does
not have any single-excitation components, i.e., kets |01〉 or
|10〉. This suggests a very simple strategy to make the paired
state |�[r0]〉q a unique dark state. By adding a Hamiltonian
that (in the new frame) breaks the degeneracy between the
paired and unpaired subspaces, such as

Ĥ ′ = μ

2

(
σ̂ (1)

z − σ̂ (2)
z

)
, (22)

we introduce an energy gap μ between the paired states |00〉
and |11〉 (which have zero energy) and the unpaired states |10〉
and |01〉.

The above extra Hamiltonian dynamics is exactly what we
need to pick out a unique entangled steady state. One can
directly confirm that for any μ > 0, the target entangled state
|�[r0]〉q is the unique steady state of the dynamics generated
by our master equation, which in the new frame has the form

˙̂ρ ′ = −i[Ĥ ′, ρ̂ ′] + D[Ĵ ′
1 + Ĵ ′

2 + Ĵ ′
Z ]ρ̂ ′. (23)

Here, ρ̂ ′ = Û [r0]ρ̂Û −1[r0] is the transformed-frame density
matrix of the two qubits.

Note that for large μ � , the connection to the synthetic
squeezing master equation of Eq. (2) is even more direct. In
this limit, Ĥ ′ will cause Ĵ ′

1/2 to oscillate at frequencies ±μ,

while Ĵ ′
Z remains static. In this case the dynamics is well
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approximated by dropping cross terms in the dissipator (as
they will be fast oscillating), leading to the approximation

˙̂ρ ′ 
 −i[Ĥ ′, ρ̂ ′] + (D[Ĵ ′
1] + D[Ĵ ′

2] + D[Ĵ ′
Z ])ρ̂ ′. (24)

Apart from the last collective dephasing dissipator, the dissi-
pative dynamics is now completely equivalent to the synthetic
two-mode squeezing master equation in Eq. (2). Importantly,
|�[r0]〉q is still the unique steady state of this master equation.
Moreover, as we discuss in Appendix B 2, this additional de-
phasing has little impact on the dynamics in the limit μ � .
In this limit we can also remove the Hamiltonian term by mov-
ing to the interaction frame, ρ̂ ′′ = exp(−iĤ ′t )ρ̂ ′ exp(iĤ ′t ),
where the equivalence to Eq. (2) is more obvious, and |�[r0]〉q
still remains the unique steady state.

Finally, having realized a master equation that is strongly
analogous to synthetic two-mode squeezing in the new frame,
we can move back to the original frame (i.e., via the unitary
Û †[r0]). The master equation in the original frame has the
form

˙̂ρ = −i[Ĥ , ρ̂] + D[Ĵ ]ρ̂, (25)

where Ĵ is the simple collective loss dissipator in Eq. (13),
and the laboratory-frame Hamiltonian Ĥ = Û †[r0]Ĥ ′Û [r0]
has the form

Ĥ = 	

2

(
σ̂ (1)

z − σ̂ (2)
z

) + �
(
σ̂ (1)

x + σ̂ (2)
x

)
, (26)

with

	 = μe−2r0 , � = (μ/2)
√

1 − e−4r0 . (27)

This Hamiltonian describes a two-qubit system subject to
Rabi drives at the same frequency ν and amplitude �, in the
rotating frame determined by the drive frequency. Thus ±	

describes the detuning of the drive from each qubit, such that
ν is the average of the two qubit frequencies. To be explicit,
in the laboratory frame where the drives are time dependent,
the Hamiltonian has the form

Ĥlab = 1
2

(
�1σ̂

(1)
z + �2σ̂

(2)
z

) + �[eiνt (σ̂ (1)
− + σ̂

(2)
− ) + H.c.],

(28)
with ν = (�1 + �2)/2 and 	 = �1 − �2.

We note that the master equation in Eq. (25) was first
presented in Ref. [26]. Our derivation above adds to this work
by showing the connection to squeezed dissipation and by
providing a clear intuitive explanation for why the scheme
stabilizes entanglement. Further, our approach also makes it
easy to generalize to the case where the qubits do not couple
equally to the collective loss channel [i.e., η �= 1 in Eq. (13)],
something not previously considered. The asymmetric case
is presented in detail in Appendix B. The key finding is that
dissipative entanglement stabilization is still possible, but the
parameters in the required driving Hamiltonian are different:

Ĥ = 	 + ε

2
σ̂ (1)

z − 	 − ε

2
σ̂ (2)

z + �
(
ησ̂ (1)

x + σ̂ (2)
x

)
, (29)

where

ε = �2

	
(1 − η2), (30)

and where 	, � are no longer given by Eq. (27) but are
determined via Eqs. (B13) and (B14) in Appendix B.

While the above scheme is attractive as it does not re-
quire the ability to modulate the qubit-waveguide coupling, it
does have other limitations when compared to the modulated-
coupling approach. For the symmetric η = 1 case and a large
squeezing parameter r, the Rabi-drive amplitude scales as
� ∼ e2r (�1 − �1)/2. Hence, for qubits that are far detuned
from one another, one requires extremely large Rabi-drive
amplitudes. In contrast, the modulated-coupled approach of
Sec. III has no analogous limitation.

Finally, we briefly note some of the imperfections of
the above scheme. The collective loss dissipator is typically
realized by coupling the qubits to a waveguide. When the sep-
aration of the qubits along the waveguide is correctly set, only
collective loss dissipation is generated as desired. However, if
the qubit spacing is not equal to one of the special values, the
waveguide will also generate single-qubit loss dissipators, as
well as a coherent tunneling term Ĥwg = J (σ̂ (1)

+ σ̂
(2)
− + H.c.).

As discussed in Ref. [26], single-qubit loss rapidly degrades
the entanglement of the steady state. The coherent tunnel-
ing term will also degrade the steady-state entanglement;
however, one can show numerically that the steady-state en-
tanglement is much more sensitive to single-qubit loss than
to the tunneling term. Intuitively, this is because one of the
eigenstates of Ĥwg is the α = 1 dark state of the family of
Eq. (14) (equivalently, the r → ∞ two-qubit squeezed state).
The modulated-coupling scheme involving a waveguide dis-
cussed in detail in Appendix A 3 shows an analogous result.

V. TWO-QUBIT ENTANGLEMENT STABILIZATION

As we have discussed, the dynamics of Eq. (2) can be en-
gineered without squeezed vacuum, either using our proposed
coupling modulation schemes (see Appendix A for further
details) or the linear driving and correlated loss scheme of
Ref. [26] that we have generalized in the previous section (de-
tails in Appendix B). Thus it is useful to understand the limits
of using Eq. (2) for high-quality entangled-state stabilization,
as it is the generic description of many schemes.

The steady state of this evolution is the entangled state of
Eq. (3), which for r → ∞ tends to a maximally entangled
Bell state. Our implementation of Eq. (8) does not require
increasing modulation amplitudes to increase r, which would
otherwise be an issue given the RWA used to drop fast-
oscillating time-dependent terms from Eq. (8). For increasing
r, α can be decreased to keep α± and β± constant. As in the
single-qubit case, this comes at the cost of reducing the overall
decay rate  ≡ 4ḡ2α2/κ . Keeping the modulation amplitudes
fixed, more entanglement requires a longer preparation time,
and a trade-off is also observed in similar bosonic schemes
[31].

Moreover, saturating the r → ∞ limit leads to a degener-
acy in the steady state of Eq. (2) (see Appendix C for further
details). This degeneracy can be most easily understood by
considering dynamics in the r → ∞ limit of Eq. (11),

˙̂ρq = γ (D[σ̂−
1 + σ̂−

2 ] + D[σ̂+
1 + σ̂+

2 ])ρ̂q, (31)

which is unitarily equivalent to Eq. (2). In this form it is
clear that the steady-state degeneracy is due to the evolu-
tion conserving total angular momentum of the two qubits
(implying the existence of distinct singlet and triplet steady
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states). In light of this, for r large but not infinite, we expect
a slow approach to steady state due to the weak breaking of
total angular momentum conservation. This slow dynamical
rate is intrinsic to Eq. (2), as opposed to the slow decay rate
discussed in the previous paragraph, which is an effect of our
engineering of Eq. (8).

A. Slow dissipation: Liouvillian gap and large-spin mean field

We now focus on the intrinsically slow dynamics of Eq. (2),
which correspond to decay out of the nearly degenerate sub-
space discussed in Appendix C. Writing ˙̂ρq = L(ρ̂q), where
L corresponds to Eq. (8), we can vectorize this equation as
�̇ρq = L̂�ρq, where the superoperator matrix L̂ describes the
dissipative evolution of the qubits. The eigenvalues of this
matrix describe the dynamical timescales of the system evo-
lution, and we find that there is one slow rate, corresponding
to the eigenvalue with the smallest real part, often referred to
as the Liouvillian gap. In the large r limit, it scales inversely
with r as

κslow = 

3 sinh2(r)
+ O

(
1

sinh4(r)

)
. (32)

Note that all other eigenvalues monotonically increase with r,
scaling as sinh2(r) to leading order.

This intrinsically slow rate implies that there is a trade-
off between the stabilization speed limit and the amount of
entanglement in the steady state [cf. Eq. (3)]. The impact on
a specific protocol depends on whether “typical” initial con-
ditions evolve to the steady state via the process described by
this slow rate. We leave this question to future work but note
that prior work has shown that Eq. (2) is quite robust to ad-
ditional sources of qubit decoherence [23], which ultimately
compete with this slow rate and determine the asymptotic
entanglement.

This slow rate is a property of the two-qubit setup and
does not exist for its bosonic analog [31], where σ̂−

1/2 are

replaced by bosonic modes d̂1/2, as the bosonic model has a
unique steady state for balanced dissipators. To understand
the transition between these two extremes, we consider a
system of two spin-S particles, where S � 1/2. The bosonic
model is often used as an approximation to such a large-spin
model via the Holstein-Primakoff (HP) transformation [43],
which connects the spin operator Ŝ+ to a bosonic mode via

Ŝ+ = d̂†
√

2S − d̂†d̂ . In the HP representation, the large-spin
version of Eq. (8) has dissipators

Ĵa = cosh(r)

√
1 − n̂1

2S
d̂1 + sinh(r)d̂†

2

√
1 − n̂2

2S
, (33)

Ĵb = cosh(r)

√
1 − n̂2

2S
d̂2 + sinh(r)d̂†

1

√
1 − n̂1

2S
, (34)

with n̂k = d̂†
k d̂k , and an enhanced dissipative rate S ≡

16Sḡ2α2/κ . In the limit S � 〈n̂k〉 the square-root factors can
be neglected and the bosonic model is obtained.

However, the steady state of the bosonic model has 〈n̂k〉 =
sinh2(r), and the square-root factor of Eqs. (33) and (34)
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FIG. 4. Thermal dissipative squeezing. Concurrence (black solid
line) and purity (red dashed line) of the steady state of thermal
dissipative squeezing, cf. Eq. (36), as a function of the temperature of
the transmission line. The inset shows the concurrence as a function
of the squeezing parameter r for zero temperature, and the dashed
horizontal line indicates the squeezed parameter value used in the
main plot.

cannot be ignored. Treating this factor in the mean-field limit,
we obtain a scalar that can be absorbed into an effective
asymptotic dissipative rate for the large-spin model,

MF
S = 16Sḡ2α2

κ

(
1 − sinh2(r)

2S

)
. (35)

This rate slows as r increases, similar to what was observed
in the two-qubit (S = 1/2) model. Dynamically, MF

S will
decrease as 〈n̂k〉 increases during the protocol. This mean-
field result is a strong indication that any finite spin model
may have a slow rate that results in a trade-off between the
speed and quality of entanglement stabilization. Further study,
beyond mean field, is warranted to confirm this result, but is
outside the scope of this work.

B. Thermal dissipative squeezing

The effect of thermal occupation of the bosonic environ-
ment of Eq. (8) is especially relevant in the transmission-line
version of our scheme and remains unexplored in prior lit-
erature. To study this we consider the thermal dissipative
squeezing master equation,

˙̂ρq = ((1 + n̄th )D[Ĵa] + n̄thD[Ĵ †
a ]

+ (1 + n̄th )D[Ĵb] + n̄thD[Ĵ †
b ])ρ̂q, (36)

with Ĵa and Ĵb as before for α− = β− = α cosh(r), α+ =
β+ = α sinh(r), and where n̄th is the average photon popu-
lation of the modes.

We characterize the effect of thermal occupation by mea-
suring the concurrence of the two-qubit steady state as a
function of transmission line temperature, with the thermal
occupation as a function of temperature given by the Bose-
Einstein distribution. For qubits with a frequency around
6 GHz (as is typical in circuit QED) this is shown in Fig. 4.
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As can be seen, the two-qubit steady state remains highly
entangled (>0.9 concurrence) up to a temperature of around
70 mK. For comparison, we also plot the purity of the
steady state as a function of temperature. While 70 mK
is well above the operating temperature of many cryogenic
circuit QED experiments, the relevant quantity is the ther-
mal occupation of the TL near the qubit frequency, which
includes thermal noise from classical control lines. If this
control line noise is controlled via appropriate filtering [44],
high-quality remote entanglement can be generated by our TL
scheme.

VI. CONCLUSION

In this paper we have presented an overlooked connec-
tion linking the dynamics of a system of qubits immersed
in a squeezed environment, and reservoir engineering using
interference of qubit decay and excitation pathways. We have
shown that both situations result in the exact same dissipa-
tive dynamics, and have proposed schemes which achieve
this interference using parametric coupling modulation of the
Jaynes-Cummings interaction of cavity and waveguide QED.
The latter can be used to remotely entangle qubits coupled to
a transmission line.

Such modulated coupling is readily available in circuit
QED [34–38], and our scheme could immediately be imple-
mented in such architectures. An alternative implementation
of the modulated coupling of our schemes uses a dispersive in-
teraction with classical cavity displacement [14,41]. In either
case, the bare coupling can be very weak, as the amplitude of
the modulation can be used to compensate. Adapting to the
specifics of a particular setup and understanding the impact of
spurious decoherence sources will be the focus of future work.

The results of our work overturn the long-held belief that
the unique effects of qubit-squeezed vacuum interaction were
a feature of the nonclassical nature of the squeezed environ-
ment. In effect, we have traded the nonclassical radiation for a
modulated nonlinear coupling. This combination of nonlinear-
ity and classical modulation can be compared to the operation
of a parametric amplifier, whose nonlinearity is provided by
one or more two-level systems (qubits) coupled to a bosonic
mode, such as in a Josephson parametric amplifier [45,46]. In
the parametric amplifier it is the bosonic field that is squeezed,
while in our scheme, the bosonic mode is never squeezed
but rather the qubit undergoes the dissipative dynamics cor-
responding to a squeezed environment.

We note that schemes for dissipative Bell-state stabilization
involving two qubits, one or more coupled cavities, and classi-
cal qubit-cavity control have been proposed and implemented
in circuit QED [26,40,47–52]. Our work is a scheme to make
explicit connection to dissipative stabilization using squeezed
vacuum, and it remains to be seen if this connection can be
made for other proposals that use classical drives or cou-
pling modulation. We conjecture that this connection holds
approximately for all schemes with an intrinsically slow rate,
as we have shown for the scheme of Ref. [26]. For schemes
with no slow rate, such as Ref. [52], understanding where the
connection to dissipative squeezing breaks is a topic worthy
of future study.
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APPENDIX A: TWO-QUBIT MASTER EQUATION
DERIVATIONS

1. Two qubits and two cavities

An instructive example is to directly extend the single-
qubit setup to two qubits, by considering two qubits and
cavities coupled via the Hamiltonian

Ĥ = ωaâ†â + �1

2
σ̂ (1)

z + g1(t )(â + â†)
(
σ̂ (1)

x + σ̂ (2)
x

)
+ ωbb̂†b̂ + �2

2
σ̂ (2)

z + g2(t )(b̂ + b̂†)
(
σ̂ (1)

x + σ̂ (2)
x

)
,

(A1)

with the modulated couplings

g1(t ) = ḡ(α−e−i(ωa−�1 )t + α+e−i(ωa+�2 )t ) + H.c.,

g2(t ) = ḡ(β−e−i(ωb−�2 )t + β+e−i(ωb+�1 )t ) + H.c.

Both qubits must couple to both cavities to allow for the
interference required by dissipative squeezing. However, the
symmetry in the qubit-cavity couplings shown above is not
required, and can be compensated for by the modulation am-
plitudes. Besides the obvious physical implementation of two
qubits, both coupled to each physical cavity, this setup could
also be implemented in a scheme where each qubit couples to
only one physical cavity, and the cavities are tunnel coupled.
The cavity supermodes would then play the role of the modes
â and b̂ in Eq. (A1).

Following the same procedure as for one qubit, we move to
the interaction frame for Eq. (A1) and drop all fast-oscillating
terms to obtain

Ĥ ′ = ḡâ†(α+σ̂
(2)
+ + α−σ̂

(1)
− ) + H.c.

+ ḡb̂†(β+σ̂
(1)
+ + β−σ̂

(2)
− ) + H.c., (A2)

where we have assumed that |�1 − �2| � ḡ so that all time-
dependent terms are fast oscillating and can be neglected.
We can eliminate the cavities to obtain an effective master
equation for the qubits when κa, κb � |α±|ḡ, |β±|ḡ. In the
case where κa = κb = κ , this gives

˙̂ρq = 4ḡ2

κ
(D[Ĵa] + D[Jb])ρ̂q, (A3)

with

Ĵa = α−σ̂
(1)
− + α+σ̂

(2)
+ , (A4)

Ĵb = β+σ̂
(1)
+ + β−σ̂

(2)
− , (A5)

as depicted in Figs. 3(a) and 3(b). Starting with equal coupling
ḡ and setting κa = κb = κ is a completely general choice, as
differences in the couplings or decay rates can be compen-
sated for by control of the modulation amplitudes.
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We note that if instead we modulate with red-sideband
tones only on mode â and blue-sideband tones on mode b̂,
i.e.,

g1(t ) = ḡ(α−e−i(ωa−�1 )t + α+e−i(ωa−�2 )t ) + H.c.,

g2(t ) = ḡ(β−e−i(ωb+�2 )t + β+e−i(ωb+�1 )t ) + H.c..

Then by a similar procedure we would obtain the dissipators
of Eq. (11). Unfortunately, the other two approaches to en-
gineering Eq. (8) discussed in this Appendix do not have a
similar simple modification that would enable engineering of
Eq. (11).

2. Two qubits and one cavity

For a cavity with sufficiently broad linewidth it is also pos-
sible to synthetically generate two-qubit dissipative squeezing
using our scheme with only one cavity. We start with the
Hamiltonian

Ĥ = ωaâ†â +
2∑

j=1

(
� j

2
σ̂ ( j)

z + g(t )(â + â†)σ̂ ( j)
x

)
, (A6)

with the modulated coupling

g(t ) = ḡ
(
α−e−i(ωa−�̄)t + α+e−i(ωa+�̄)t

) + H.c.,

where �̄ = (�1 + �2)/2 is the average qubit frequency.
We then move to the interaction frame to obtain the Hamil-

tonian

Ĥ ′ = ḡâ†[eiδ�t (α+σ̂
(1)
+ + α−σ̂

(2)
− )

+ e−iδ�t (α+σ̂
(2)
+ + α−σ̂

(1)
− )

+ ei�1tα−σ̂
(1)
+ + e−i�1tα+σ̂

(1)
−

+ ei�2tα−σ̂
(2)
+ + e−i�2tα+σ̂

(2)
−

+ ei(2ωa+δ�)t (α∗
+σ̂

(2)
− + α∗

−σ̂
(1)
+ )

+ ei(2ωa−δ�)t (α∗
+σ̂

(1)
− + α∗

−σ̂
(2)
+ )

+ ei(2ωa+�1 )tα∗
+σ̂

(1)
+ + ei(2ωa+�2 )tα∗

+σ̂
(2)
+

+ ei(2ωa−�1 )tα∗
−σ̂

(1)
− + ei(2ωa−�2 )tα∗

−σ̂
(2)
−

] + H.c., (A7)

where δ� = (�1 − �2)/2 and �1/2 = (3�1/2 + �2/1)/2. If
ḡ > δ�, we cannot ignore terms that oscillate at ±δ�, as they
do not average away over timescales of interest. All other
terms are manifestly fast oscillating and will average away,
except for the terms in the last line at frequencies 2ωa − �1/2.
For these to be fast oscillating, we require that 2ωa − �1/2 �
ḡ. This simply implies that when designing the system, we
must be careful to avoid the “resonance” conditions 2ωa =
�1/2, so as not to activate unwanted qubit evolution.

Having dropped all fast-oscillating terms the Hamiltonian
becomes

Ĥ ′ = ḡâ†[eiδ�t (α+σ̂
(1)
+ + α−σ̂

(2)
− )

+ e−iδ�t (α+σ̂
(2)
+ + α−σ̂

(1)
− )] + H.c. (A8)

Note that ḡ > δ� is the opposite operating condition to the
two-cavity setup, where we require δ� > ḡ.

Assuming the cavity has a sufficiently broad linewidth, i.e.,
δ� � κ , then the qubit processes in Eq. (A8) will interact

with the environment through the cavity’s nonzero density of
states at ±δ�, as depicted in Fig. 3(c). If 2δ� is greater than
the effective qubit linewidths, which are at least 4α2ḡ2/κ , then
the processes at +δ� and −δ� will effectively see indepen-
dent environments. In this case, adiabatically eliminating the
cavity would result in a two-qubit master equation of the form
of Eq. (8).

3. Two qubits and a transmission line

We consider two qubits coupled to a long waveguide or
transmission line (TL) described by the Hamiltonian

Ĥ =
2∑

α=1

�α

2
σ̂ (α)

z + ĤT L + ĤI . (A9)

We consider the general case where the TL may be an engi-
neered metamaterial and hence is described by a general band
structure describing propagating photonic modes (wave vector
k, band index λ),

ĤT L =
∑
kλ

ωkλb̂†
kλ

b̂kλ, (A10)

where we assume the dispersion relations satisfy ωk,λ =
ω−k,λ. The qubit-TL couplings are described by

ĤI =
2∑

α=1

gα (t )σ̂ (α)
x B̂α, (A11)

where

B̂α =
∑
kλ

(
1√
L

eikxα fkλb̂†
kλ

+ H.c.

)
, (A12)

with xα denoting the position of the α qubit along the TL.
fkλ is a wave-vector and band-dependent coupling coefficient
which we assume to satisfy fkλ = f ∗

−kλ. To realize the syn-
thetic squeezing dissipator, the qubit-TL couplings gα (t ) are
modulated at the sum of the qubit splitting frequencies and
also have a static component:

gα (t ) = g(ηα + 2εα cos[(�1 + �2)t]). (A13)

Note that in this description g has units Hz
√

m.
After moving into the interaction picture with respect to

the system Hamiltonian ĤS = ∑2
α=1(�α/2)σ̂ (α)

z and the TL
Hamiltonian ĤT L, the system-TL interaction can be written as

ĤI,int/g = [
η1ei�1t + ε1e−i�2t + ε1ei(2�1+�2 )t

]
σ̂

(1)
+ B̂1(t )

+ [
η2ei�2t + ε2e−i�1t + ε2ei(�1+2�2 )t

]
σ̂

(2)
+ B̂2(t )

+ H.c., (A14)

which is of the form

ĤI,int =
∑
α,ω

e−iωt Âα (ω)B̂α (t ), (A15)

with α ∈ {1, 2} indexing the qubits and ω ∈
{±�1,±�2,±(2�1 + �2),±(�1 + 2�2)} indexing
all of the relevant frequencies. The Âα (ω) are, e.g.,
Â1(�1) = gη1σ̂

(1)
− and Â2(�1) = gε1σ̂

(2)
+ . With ĤI,int written

in this form and following the master equation derivation of
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[53], we find the system density matrix master equation to be

d

dt
ρ̂(t ) =

∑
α,β

∑
ω

αβ (ω)(Âβ (ω)ρ̂(t )Â†
α (ω)

− Â†
α (ω)Âβ (ω)ρ̂(t )) + H.c., (A16)

where we have introduced the bath correlation functions

αβ (ω) ≡
∫ ∞

0
dseiωs〈B̂†

α (s)B̂β (0)〉. (A17)

Here 〈B̂†
α (s)B̂β (0)〉 = TrT L{B̂†

α (s)B̂β (0)ρ̂T L}, and we have as-
sumed the TL state ρ̂T L is stationary so 〈B̂†

α (t )B̂β (t − s)〉 =
〈B̂†

α (s)B̂β (0)〉.
We next decompose the bath correlation functions as

αβ (ω) = 1
2γαβ (ω) + iSαβ (ω), (A18)

for Sαβ (ω) = [αβ (ω) − ∗
βα (ω)]/2i and γαβ (ω) =

αβ (ω) + ∗
βα (ω). This decomposition separates the master

equation into dissipative terms with correlation function
coefficients γαβ (ω) and Hamiltonian terms with correlation
function coefficients Sαβ (ω). The master equation can then be
recast into the form

d

dt
ρ̂(t ) = −i[ĤLS, ρ̂(t )] + D(ρ̂(t )), (A19)

where the coherent evolution of the system due to the trans-
mission line is given by the “Lamb shift” Hamiltonian,

ĤLS =
∑

ω

∑
α,β

Sαβ (ω)Â†
α (ω)Âβ (ω), (A20)

and the dissipation is given by

D(ρ̂(t )) =
∑

ω

∑
α,β

γαβ (ω)

(
Âβ (ω)ρ̂(t )Â†

α (ω)

− 1

2
{Â†

α (ω)Âβ (ω), ρ̂(t )}
)

. (A21)

The Lamb shift Hamiltonian contains two kinds of terms:
local terms that correspond to energy shifts of each qubit, and
more interestingly, a coherent qubit-qubit “pairing” interac-
tion of the form

Ĥqb−qb = �σ̂
(1)
+ σ̂

(2)
+ + H.c. (A22)

The local qubit energy shifts simply renormalize the bare
qubit frequencies and hence do not play any significant role.
In contrast, the pairing interaction can in principle disrupt our
entanglement stabilization scheme; we discuss this more later
in this section. Before doing this, we first analyze the form of
the TL-induced dissipation on the qubits.

The dissipative terms include dissipative processes whose
rates are governed by the TL correlation function γαβ (ω)
for all possible frequencies ω ∈ {±�1,±�2,±(2�1 +
�2),±(�1 + 2�2)}. We let the TL be at zero temperature so
that

γαβ (ω < 0) = 0. (A23)

Thus all negative frequency processes (which correspond to
emission of photons from the TL) vanish. While this is nec-
essary to obtain the exact synthetic squeezing dissipation we

desire, in Sec. V B we investigate the impact of a thermal
environment on entanglement stabilization.

The dissipative processes at frequency 2�1 + �2 (�1 +
2�2) involve both single-qubit loss on qubit 1 (2), due to
the static couplings ηi, as well as single-qubit excitation
on qubit 2 (1), due to the modulated couplings εi. These
dissipative processes destroy the entanglement we seek to
generate. Therefore we must engineer the TL to have a van-
ishing density of states at these frequencies. This could be
arranged through standard filtering or band-gap engineering
techniques. When the TL has zero density of states at these
frequencies, the correlation functions become

γαβ (2�1 + �2) = γαβ (�1 + 2�2) = 0. (A24)

We are thus left with the dissipative processes at �1 and
�2. The �1 processes take the form

D�1 (ρ̂(t ))/g2 = η2
1γ11(�1)D[σ̂ (1)

− ]ρ̂(t )

+ η1ε2γ12(�1)D[σ̂ (2)
+ , σ̂

(1)
− ]ρ̂(t )

+ η1ε2γ21(�1)D[σ̂ (1)
− , σ̂

(2)
+ ]ρ̂(t )

+ ε2
2γ22(�1)D[σ̂ (2)

+ ]ρ̂(t ), (A25)

where D[Ô]ρ̂ is the usual Lindblad dissipator and
D[Ô, P̂]ρ̂ = Ôρ̂P̂† − {P̂†Ô, ρ̂}/2. The �2 process is the
same but with the indices 1 ↔ 2. Note that if the correlation
functions γαβ (�1) = γ1 were all equal, this dissipator would
reduce to the collective dissipator

D�1 (ρ̂(t )) = g2γ1D[η1σ̂
(1)
− + ε2σ̂

(2)
+ ]ρ̂(t ). (A26)

The above correlation functions are readily evaluated in
general (in the continuum limit 1

L

∑
k → ∫

dk
2π

) as

γαβ (ω) =
∑

λ

∑
j

| fλ(k j )|2
vg,λ(k j )

eik j (xβ−xα ), (A27)

where the {k j} are all wave vectors for which ωλ(k) = ω

and vg,λ(k) = |∂ωλ(k)/∂k| is the group velocity at frequency
ωλ(k). Then for the �1 processes, we have

γαβ (�1) = 2

vg(k1)
cos[k1(xβ − xα )], (A28)

where we have dropped the band index λ and absorbed the
coupling coefficient fλ(k) into the group velocity. Here k1 is
the wave vector for which ωλ(k1) = �1 for the correct band
λ. We get a similar result for the �2 processes.

Defining the qubit spacing

l ≡ x2 − x1, (A29)

we can rewrite the �1 dissipation as

D�1 (ρ̂(t )) = 2g2

vg(k1)
cos(k1l )D[η1σ̂

(1)
− + ε2σ̂

(2)
+ ]ρ̂(t )

+ 2g2

vg(k1)
[1 − cos(k1l )]

(
η2

1D[σ̂ (1)
− ]

+ ε2
2D[σ̂ (2)

+ ]
)
ρ̂(t ). (A30)
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In the ideal case where k1l = πn for n ∈ Z, this all reduces to
a single dissipator with collective jump operator

Ĵ1 = η1σ̂
(1)
− ± ε2σ̂

(2)
+ , (A31)

where the sign is set by the parity of n (+ for even n). In
the more general case where k1l �= πn, Eq. (A30) tells us the
dissipation will both have the desired collective dissipator but
also unwanted uncorrelated single-qubit dissipators (loss on
qubit 1, excitation on qubit 2). For a small spacing error k1l =
πn + δ where δ � 1, these additional dissipators are given to
leading order in δ by

D�1,bad(ρ̂(t )) = δ2 2ḡ2

vg(k1)

(
η2

1D[σ̂ (1)
− ] + ε2

2D[σ̂ (2)
+ ]

)
ρ̂(t ).

(A32)

As we discuss further below, our scheme can still perform well
if these terms are nonzero but have a small amplitude (i.e., the
error in the qubit spacing is small).

A similar analysis holds for the dissipative processes in-
volving a frequency �2 in the TL. The dissipation reduces to
a single collective jump operator,

Ĵ2 = ε1σ̂
(1)
+ ± η2σ̂

(2)
− , (A33)

when k2l = πm for m ∈ Z, with the sign set by the
parity of m.

Finally, if the qubit frequencies are chosen such that the
characteristic wave vectors k1, k2 satisfy k1l = πn and k2l =
πm for some spacing l and integers n and m, the final master
equation is

d

dt
ρ̂(t ) = −i[ĤLS, ρ̂] + 1D[Ĵ1]ρ̂ + 2D[Ĵ2]ρ̂. (A34)

Identifying η1 = α−, η2 = β−, ε1 = β+, and ε2 = α+, we ar-
rive at the desired master equation Eq. (8), except with the
additional Lamb shift Hamiltonian. Note that if the qubit spac-
ing is such that k1l = πn and k2l = πm for m, n of opposite
parity, we must flip the modulation phase for one of the qubit-
waveguide couplings Eq. (A13), e.g., ε2 �→ −ε2. The signs in
the dissipators Ĵ1, Ĵ2 must be the same to stabilize the desired
entangled state.

We now consider the Lamb shift Hamiltonian ĤLS . It takes
the general form

ĤLS =
2∑

α=1

�α,LSσ̂
(α)
z + (�σ̂

(1)
+ σ̂

(2)
+ + H.c.), (A35)

where �α,LS are the inconsequential single-qubit frequency
shifts, and the pairing interaction amplitude is

�/g2 = η1ε2[S12(�1) + S21(−�1)]

+ ε1η2[S21(�2) + S12(−�2)]. (A36)

We show below that � is real, and thus the eigenstates of the
pairing interaction are paired states:

|ψ±〉 = 1√
2

(|00〉 ± |11〉). (A37)

Recall that synthetic squeezing generates the paired state
given by Eq. (3), where the relative phase between |00〉 and

|11〉 is ±1. Thus one of the eigenstates of the pairing Hamil-
tonian is always the r → ∞ limit of the synthetic squeezing
steady state, so that as r is made larger the Hamiltonian will
induce less disruption to our entanglement scheme. For any
r < ∞ it will reduce the purity of the steady state, so we now
evaluate � to determine the magnitude of this impact.

Unlike the dissipation correlation functions γαβ (ω) which
are readily evaluated with minimal specification of the TL
band structure, the Sαβ (ω) cannot be evaluated without spec-
ifying the band structure of the TL or the k-dependent
coefficients fkλ of the system-TL coupling. Nevertheless, we
can make some general statements about Sαβ (ω), and thus
about �, given the assumptions we have already made about
the TL. The Sαβ (ω) are given by

Sαβ (ω) =
∑

λ

pv
∫ kc

−kc

dk

2π

eik(xβ−xα )

ω − ωλ(k)
| fλ(k)|2, (A38)

where pv denotes the principal value and kc is the band-edge
cutoff. At the outset we had assumed reciprocity of the TL,
which implies ωλ(k) = ωλ(−k) and fλ(k) = fλ(−k). Thus the
integral can be rewritten as

Sαβ (ω) = 2
∑

λ

pv
∫ kc

0

dk

2π

cos(klαβ )

ω − ωλ(k)
| fλ(k)|2, (A39)

where lαβ ≡ xβ − xα . Therefore we see that Sαβ (ω) are real,
and thus so is �.

We can say little more about the correlation functions
Sαα (ω) in general without more details of the TL, as these
correlation functions are highly dependent on the band struc-
ture of the TL. Fortunately, the pairing amplitude � contains
only Sα �=β (ω) factors which have the oscillating term cos(kl )
in their integrals. If we let the qubit spacing be large, k jl � 1,
then the support of the integrals will be in a narrow region
around the pole ω − ωλ(k). This implies a few things: first,
the negative frequency correlation functions are negligible
|Sαβ (−� j )| � |Sβα (+� j )| since they never encounter a pole.
Second, the contributions to the positive frequency correlation
functions by all bands other than that which contains � j are
similarly negligible. Finally, even in the band that contains � j

the integral is not particularly sensitive to either the band edge
nor the dispersion relation, since the rapid oscillation and 1/k
behavior drastically reduce the integral’s support away from
the pole.

With the above general observations, we evaluate a rough
estimate of � for a typical TL. Suppose the TL has a low-
frequency band (λ = 1) for which ω(k j ) = � j (dropping the
band index). For concreteness let us consider S12(�1). We
linearize the dispersion relation about the pole ω(k) = �1 as
ω(k) ≈ ω(k1) + vg(k1)(k − k1) (for a typical TL far from the
cutoff, this is a reasonable approximation). Then S12(�1) is

S12(�1) ≈ 2

vg(k1)
pv

∫ kc

0

dk

2π

cos(kl )

k1 − k
| f (k)|2. (A40)

Finally, we assume that f (k) ≈ const in the region around
k1 and absorb it into the group velocity. Since the integrand
oscillates rapidly and quickly dies off away from k = k1, we
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extend the integration bounds to ±∞, yielding

S12(�1) ≈ 1

vg(k1)
sin(k1l ). (A41)

A similar result holds for S21(�2). Therefore we find the
pairing amplitude � to be

�/ḡ2 ≈ η1ε2

vg(k1)
sin(k1l ) + η2ε1

vg(k2)
sin(k2l ), (A42)

which vanishes for k jl = πn j (integers n j), exactly the condi-
tions needed to realize synthetic squeezing.

In general, � will not vanish exactly at the synthetic
squeezing conditions. However, numerical evaluation of �

for various ω(k) (examples considered include ω = vg|k|,
ω = (vg/a)| sin ka|, and ω = vg(|k| − αk2)) and for moderate
qubit spacing k jl ∼ 10π shows that, for spacing near the
synthetic squeezing conditions, typically

�/ḡ2 ≈ η1ε2

vg(k1)
[sin(k1l ) + δ1] + η2ε1

vg(k2)
[sin(k2l ) + δ2],

(A43)
where usually |δ j | 
 10−3. Thus � may not exactly vanish at
the synthetic squeezing conditions, but its value is typically
quite suppressed.

To get some sense for how this scheme performs in the
face of qubit spacing imperfections, l = lideal + δl , we con-
sider a simple model system and analyze its performance
numerically. To be concrete, consider two superconducting
qubits with frequencies �1 = 4 GHz and �2 = 6 GHz and a
transmission line with a linear dispersion

ω(k) = vg|k|, (A44)

over the range 0–10 GHz, and with a (sharp) cutoff at 10 GHz
(we require the transmission line to have zero density of states
in a stop band spanning at least 2�1 + �2 = 14 GHz and
�1 + 2�2 = 16 GHz). We choose to space the qubits by a
distance

l = 4π/k1 + δl, (A45)

or approximately two wavelengths at �1 (three wavelengths at
�2). The ideal spacing, δl = 0, satisfies the synthetic squeez-
ing conditions k1l = 4π and k2l = 6π . We let ḡ2/vg ≡ 1 and
set η1 = η2 = cosh(r) and ε1 = ε2 = sinh(r). Then, to a very
good approximation,

� = sinh(r) cosh(r)[sin(k1δl ) + sin(k2δl )]. (A46)

Thus the master equation is given by

˙̂ρ = −i[Ĥ , ρ̂] +
∑

j

2 cos(k jδl )D[Ĵ j]ρ̂

+ 4 sin2

(
k1δ1

2

)
(cosh2(r)D[σ̂ (1)

− ] + sinh2(r)D[σ̂ (2)
+ ])ρ̂

+ 4 sin2

(
k2δl

2

)
(cosh2(r)D[σ̂ (2)

− ] + sinh2(r)D[σ̂ (1)
+ ])ρ̂,

(A47)

with Ĥ = �(σ̂ (1)
− σ̂

(2)
− + H.c.) and Ĵ1/2 = cosh(r)σ̂ (1/2)

− +
sinh(r)σ̂ (2/1)

+ .
We numerically compute the steady state of this master

equation as a function of δl and r. In general, for δl �= 0 the
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FIG. 5. Performance of transmission line scheme with qubit
spacing errors. The purity (red) and optimal concurrence (black) of
the steady state of Eq. (A47) as a function of qubit spacing error δl
(measured as a fraction of the wavelength λ1). The concurrence is
optimized over the squeezing parameter r, and the optimal squeez-
ing (blue) is plotted against the right axis. The optimal squeezing
diverges as δl → 0. The solid curves show the results of the full
master equation, and the dashed curves show the results of the master
equation without the Hamiltonian. The degradation of the entangle-
ment is driven mostly by the single-qubit dissipators.

concurrence of the steady state is less than 1 but varies as a
function of r. Thus we numerically maximize the concurrence
for a given δl by optimizing over r. The results of this opti-
mization are shown in Fig. 5. The concurrence, state purity,
and optimal squeezing parameter are plotted against the spac-
ing error |δl| as a fraction of the wavelength λ1 = 2π/k1. In
the plot we compare the full master equation (solid curves)
to the master equation wherein the Hamiltonian is excluded
(dashed curves) to show that the single-qubit dissipators cause
the bulk of the performance degradation.

APPENDIX B: COLLECTIVE LOSS PLUS LOCAL QUBIT
DRIVING SCHEME: ADDITIONAL DETAILS

1. Asymmetric waveguide couplings

We consider the generalization of the scheme presented in
Sec. IV to the general collective loss dissipator with arbitrary
η > 0. In the main text we sought to provide the intuition for
why this scheme works by exploiting the unitary equivalence
between the family of the collective loss dissipator dark states
Eq. (14) and the family of target entangled states Eq. (15).
Even when the loss dissipator is asymmetric, the local unitary
equivalence still holds, but the local qubit rotations are no
longer of equal angle but opposite sign. As finding the angles
when η �= 1 is nontrivial, we instead take a different approach.
Given that the steady state we seek is simultaneously a dark
state of the collective loss operator and a zero-energy eigen-
state of the Hamiltonian, we can simply find the Hamiltonian
parameters for which a given dark state of Eq. (13) is an eigen-
state. We found that for the symmetric case the Hamiltonian is
simply local Rabi drives on the qubits given by Eq. (26). We

023010-11



GOVIA, LINGENFELTER, AND CLERK PHYSICAL REVIEW RESEARCH 4, 023010 (2022)

allow for a more general Hamiltonian,

Ĥ = 	 + ε

2
σ̂ (1)

z − 	 − ε

2
σ̂ (2)

z + �(1)σ̂ (1)
x + �(2)σ̂ (2)

x , (B1)

wherein we allow for asymmetric Rabi-drive amplitudes �( j)

and asymmetric detunings parameterized by ε.
The dark states of the collective of loss Eq. (13) can be

expressed as

|φ〉 = α |00〉 + β(|01〉 − η |10〉), (B2)

for |α|2 + (1 + η2)|β|2 = 1. We take α, β > 0 real and pos-
itive without loss of generality. Enforcing that |φ〉 is an
eigenstate of Ĥ , i.e., Ĥ |φ〉 = E |φ〉, imposes the following
constraints on the Hamiltonian parameters:

�(1) = η�(2), (B3)

ε = �2

	
(1 − η2), (B4)

where in the latter we have defined � ≡ �(2). Imposing these
conditions yields Eq. (29) as the final Hamiltonian.

The unique steady state expressed in terms of the Hamilto-
nian parameters is given by

|�〉 = 1√
	2 + �2(1 + η2)

[	 |00〉 + �(|01〉 − η |10〉)].

(B5)
For symmetric loss, there is a frame in which this state is an
entangled state of the form of Eq. (3), and we now show this
is also the case for asymmetric loss. As with the symmetric
case, the correct frame will be defined by the eigenbasis of the
Hamiltonian of Eq. (29). This Hamiltonian is diagonalized by
rotating about each qubit’s y axis through the angles

θ1 = arctan

(
2η�

	 + ε

)
, (B6)

θ2 = arctan

( −2�

	 − ε

)
, (B7)

with these angles lying on the principal branch of the arctan-
gent.

In the new frame, Eq. (29) transforms to

Ĥ ′ = μ

2

(
τ̂ (1)

z − τ̂ (2)
z

)
(B8)

for

μ =
√

(	 − ε)2 + 4�2. (B9)

Making this transformation on the state |�〉 yields our target
state

|�〉′ = 1√
β2− + β2+

(β− |00〉′ − β+ |11〉′), (B10)

where β− > β+, and they are given by

β− = μ + 	 + ε, (B11)

β+ = η(μ − 	 + ε). (B12)

|�〉′ can be made to look explicitly like a squeezed state
by introducing the squeezing parameter r = artanh β+/β−.

For the symmetric case (η = 1) this expression reduces to
r = (1/4) ln(1 + 4�2/	2), which is a rewriting of Eq. (27).
In the general case one cannot easily find the expressions for
	 and � in terms of r, μ, and η. Instead one must solve
the following equations for 	 and � in terms of the other
parameters [recalling that ε is defined in terms of 	 and �,
cf. Eq. (B4)]:

	 = −e2r − 1 − η(1 + e2r )

e2r − 1 + η(1 + e2r )
(μ + ε), (B13)

� = 1

2

√
μ2 − (	 − ε)2. (B14)

Finally, in the Rabi eigenbasis the collective loss dissipator
becomes

Ĵ ′ = Ĵ ′
Z + Ĵ ′

1 + Ĵ ′
2, (B15)

Ĵ ′
Z = η�

μ

(
τ̂ (1)

z − τ̂ (2)
z

)
, (B16)

Ĵ ′
1 = 1

2μ
(β−τ̂

(1)
− − β+τ̂

(2)
+ ), (B17)

Ĵ ′
2 = (μ − ε)2 − 	2

8ημ�2
(β−τ̂

(2)
− − β+τ̂

(1)
+ ). (B18)

This has precisely the same operator form as Ĵ ′ given in the
main text for the symmetric case. One difference that appears
in the asymmetric case is that the coefficients of Ĵ ′

1 and Ĵ ′
2

differ. Only when η = 1 do the coefficients coincide. This has
no effect on the steady state, as the dissipation rates do not
change the form of the steady state.

2. Comparing dynamics against the ideal two-qubit squeezed
dissipation master equation

In Sec. IV we showed that with collective loss and local
Rabi drives on two qubits, there is a frame in which the
steady state is a two-qubit entangled state and that the master
equation in this frame is given by

˙̂ρ ′ = −i[Ĥ ′, ρ̂ ′] + D[Ĵ ′
1 + Ĵ ′

2 + Ĵ ′
Z ]ρ̂ ′, (B19)

with the Hamiltonian given by Eq. (22) and the dissipator
terms given by Eqs. (19)–(21). We further showed that when
the Hamiltonian energy μ �  (the collective loss rate), the
three terms in the dissipator can be split into three separate
dissipators, as cross terms between them become fast oscillat-
ing in the interaction frame defined by Ĥ ′.

The resulting master equation, Eq. (24), is nearly identical
to the dynamics of the ideal two-qubit squeezing master equa-
tion, Eq. (2) (with γ1 = γ2 = ). Moving to the interaction
frame of Ĥ ′ in Eq. (24) does not affect the dissipators, so
that the only remaining difference between the two master
equations is the addition of the correlated dephasing Ĵ ′

Z to
Eq. (24). We now show that this additional dissipation has vir-
tually no qualitative or quantitative effect on the stabilization
of the entangled two-qubit state, and thus that Eqs. (B19) and
(2) are essentially the same when μ � .

As we discussed in Sec. V, Eq. (2) has a dissipative gap
κslow, which is exponentially small in the squeezing parameter
r, which is the limiting factor for relaxation to steady state.
The gap is thus the relevant metric for how closely Eq. (24)
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FIG. 6. Comparison of dynamics between collective loss plus
local driving and ideal two-qubit dissipative squeezing. The dis-
sipative gap κslow of Eq. (B19) as a function of the Hamiltonian
energy μ, computed numerically for various squeezing parameters
r. The dashed lines show the dissipative gap of the ideal two-qubit
squeezing master equation, Eq. (2) (with rates γ1 = γ2 = ). For
small μ �  the dissipative gap vanishes as κslow ∼ μ2, and for large
μ �  the gap saturates at a constant which is smaller than the ideal
master equation gap by a factor of e−2r . This further exponential
suppression of the gap is due to the overall prefactors of e−r in the
squeezing dissipators Ĵ ′

1/2 [cf. Eqs. (19) and (20)].

approximates the dynamics of Eq. (2). To compare, we numer-
ically calculate the dissipative gap of Eq. (B19) as a function
of μ/ and compare it to the gap of Eq. (2). The results of
this are shown in Fig. 6, where the solid curves show the gap
for various r and the dashed lines show the gap of Eq. (2).
Recall that the gap closes at μ = 0 (no Hamiltonian) because
the collective loss dissipator has multiple steady states.

A simple perturbative argument suggests that the gap
should open as κslow ∼ μ2, which is precisely what is ob-
served for μ � . When μ �  the gap saturates at a value

e−2r times smaller than the ideal master equation gap. This
factor comes from the prefactors of the jump operators Ĵ ′

1/2
given in Eqs. (19) and (20). This extra suppression of the
dissipative gap, and hence the state stabilization rate, is an-
other important consideration for the practical implementation
of this scheme, in addition to those discussed at the end of
Sec. IV.

APPENDIX C: BALANCED TWO-QUBIT DISSIPATORS

For a setup described by Eq. (2), only in the infinite squeez-
ing limit, r → ∞, is the steady state a maximally entangled
state. However, for our system we have the freedom to choose
the modulation amplitudes, and in particular could choose
α− = β− = α+ = β+ = √

m̄. In this case the master equa-
tion becomes

˙̂ρq = 4m̄ḡ2

κ
(D[σ̂ (1)

− + σ̂
(2)
+ ] + D[σ̂ (1)

+ + σ̂
(2)
− ])ρ̂q. (C1)

As this is the r → ∞ continuation of Eq. (2), one might be
tempted to believe that its steady state is the maximally en-
tangled Bell state |�−〉 = (|00〉 − |11〉)/

√
2, regardless of the

coherent amplitude
√

m̄, which now only controls the speed
of the dissipative dynamics.

However, while the state |�−〉 is indeed a steady state of
the system, it is not the unique steady state, and in fact any
two-qubit state of the form

ρ̂SS = ν|�−〉〈�−| + 1
4 (1 − ν)Î (C2)

is a steady state of Eq. (C1), where −1/3 � ν � 1 to ensure
ρ̂SS is a valid density matrix. This one-parameter family of
states includes the maximally entangled state |�−〉 (ν = 1)
but also the maximally mixed state (ν = 0). As such, for the
purposes of generating steady-state qubit entanglement, it is
important to apply unbalanced drives to preserve the unique-
ness of the steady state and avoid the degeneracy described
above.
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