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Energy transport in Sachdev-Ye-Kitaev networks coupled to thermal baths
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We develop a general framework for studying the equilibrium and non-equilibrium properties of arbitrary
networks of Sachdev-Ye-Kitaev clusters coupled to thermal baths. We proceed to apply this technique to
the problem of energy transport, which is known to be diffusive due to the strange metal behavior of these
models. We use the external baths to impose a temperature gradient in the system and study the emerging
non-equilibrium steady state using the Schwinger-Keldysh formalism. We consider two different configurations
for the baths, implementing either a boundary or bulk driving, and show that the latter leads to a significantly
faster convergence to the steady state. This setup allows us to compute both the temperature and frequency
dependence of the diffusion constant. At low temperatures, our results agree perfectly with the previously known
values for diffusivity in the conformal limit. We also establish a relationship between energy transport and
quantum chaos by showing that the diffusion constant is upper bounded by the chaos propagation rate at all
temperatures. Moreover, we find a simple analytical form for the non-equilibrium Green’s functions in the linear
response regime and use it to derive exact closed-form expressions for the diffusion constant in various limits.
We mostly focus on uniform one-dimensional chains, but we also discuss higher-dimensional generalizations.
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I. INTRODUCTION

The subject of non-equilibrium dynamics spans across
multiple branches of physics, ranging from condensed matter
to quantum gravity. Recently, it has drawn a lot of atten-
tion in an attempt to answer fundamental questions regarding
thermalization, quantum many-body chaos, and transport in
strongly interacting systems. The latter is particularly useful
for unveiling the properties of quantum matter and exploring
the dynamical processes governing the behavior of quantum
systems out of equilibrium. Despite recent efforts, practical
calculations of transport coefficients in quantum many-body
systems remain challenging from both a conceptual and tech-
nical standpoint [1]. On one hand, a general hydrodynamic
description of transport is possible at a macroscopic level,
but relating the parameters of this theory to the microscopic
parameters of the underlying model is difficult except in spe-
cial cases, for example, at weak coupling. On the other hand,
numerical methods for simulating non-equilibrium dynamics
can directly address a wide class of microscopic models,
but their applicability is typically limited to small systems
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and short time scales. Therefore, it would be very useful to
develop a framework that allows us to efficiently extract the
transport properties of small systems, while simultaneously
offering insights about the non-equilibrium dynamics in the
hydrodynamic limit.

In the context of one-dimensional models, open-system
dynamics has shown promising results for bridging the gap
between macroscopic effective theories and microscopic mod-
els, especially when combined with tensor network techniques
[1–3]. Within this framework, the system is coupled to exter-
nal baths that drive the system towards a desired steady state,
from which various transport properties are readily available.
However, for a generic nonintegrable model, these simula-
tions can suffer from entanglement growth and very slow
convergence at low temperatures [4]. Moreover, very little is
known about the structure of the emergent non-equilibrium
states. Our goal is to study a solvable open-system model and
show how one can mitigate the aforementioned convergence
problems, while also developing an analytical understanding
of the non-equilibrium steady state (NESS) and elucidating
the relationship between transport and other many-body phe-
nomena, such as quantum chaos.

Looking more broadly, we expect the results about the
structure of steady states and convergence rates in the solvable
model to generalize to a variety of more physical models.
Combined with tensor network methods, these lessons may
significantly improve our ability to compute transport prop-
erties from microscopic theories. There are also a growing
number of principled numerical techniques [5–10], besides
the open-system approach, which might also benefit from
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additional information about the structure of current carrying
states.

Our solvable model is built from the Sachdev-Ye-Kitaev
(SYK) model [11–20], which in recent years has emerged as
a paradigmatic example of a strongly coupled, yet exactly
solvable quantum many-body system. The model describes
N fermions with random all-to-all q-body interactions and
displays a multitude of remarkable properties. The Hamil-
tonian belongs to a class of systems realizing holographic
quantum matter without quasiparticle excitations [14]. In
the limit of large N and low temperatures, the system has
an emergent approximate time reparameterization conformal
symmetry [11,17]. The SYK model also exhibits many-body
chaos [11,17] and saturates a universal bound on the relevant
Lyapunov exponent [21], a feature shared by black holes in
Einstein gravity. In fact, the SYK model is holographically
dual to gravitational theories of black holes with near-horizon
AdS2 geometry [11,18,22–28]. On the gravity side, this con-
nection can be used to study unsolved questions related to
holography and black holes, such as black hole evapora-
tion [28–31]. On the condensed matter side, the SYK model
presents a valuable platform for studying non-Fermi liquid
behavior [12–14] and thermalization [32–42], among other
phenomena.

Subsequent papers [43–48] extended the SYK model to
higher spatial dimensions by coupling individual SYK clus-
ters to their neighbors with similar SYK interactions, thus
building lattices that exhibit strange metal behavior. The gen-
eralized models remain exactly solvable via a saddle point
expansion and retain many features of the original SYK,
including local criticality and maximal chaos [43,44]. The
spatial locality of the models allows for the investigation of
transport and chaos in these systems. This revealed many
indicative properties of a strange metal, such as diffusive prop-
agation of energy [43–45] and resistivity that scales linearly
with temperature [45]. Moreover, it was shown that the same
time-reparametrization field is responsible for the propagation
of both low-energy modes and quantum chaos in this system
[43], thus leading to a connection between the diffusion con-
stant and the butterfly velocity [49–55].

Alongside these theoretical developments, several exper-
imental proposals for the SYK model have been put for-
ward [56,57], including realizations in ultracold atoms [58],
Majorana modes at the interface of a topological insulator and
superconductor [59], semiconductor wires coupled through a
disordered quantum dot [60], and graphene flakes with irregu-
lar boundaries [61]. These experiments open up the possibility
of directly studying the transport properties of the model.

In this paper, we study energy transport in SYK networks
driven out of equilibrium by coupling to external baths. The
system-reservoir interaction in SYK models has been pre-
viously discussed in the context of thermalization [39–41],
and only recently in the context of transport [62]. Most of
the previous approaches to transport used the explicit form
of the fermion four-point function and relied on the low-
temperature or large q limits to compute the diffusion constant
[43,48,55]. One advantage of coupling the system to baths is
that it allows us to study transport for arbitrary values of q
and inverse temperature β. We consider two configurations
with baths attached either on the boundary or throughout the

bulk, and show that the latter leads to faster convergence.
We study the resulting non-equilibrium dynamics using the
Schwinger-Keldysh formalism [63,64] and derive the asso-
ciated Kadanoff-Baym equations governing the approach to
a steady state. Once we reach the NESS, we compute the
current and energy gradient across the system to determine
the diffusion coefficient.

We rely on this setup to investigate both DC and AC
transport. For the former, the baths are used to impose a
constant temperature imbalance on the system, while for the
latter, we oscillate the temperature of the baths to create a
time-dependent drive. For the DC case, we find that the dif-
fusivity increases with β until it saturates at a constant value
matching exactly the conformal answer [43]. We also show
that the diffusion constant is related to chaos via the inequality
D � v2

B/λL, which holds at all temperatures and becomes an
equality in the conformal limit. This behavior is consistent
with studies of related systems [53–55,65]. For the AC case,
we compute the frequency dependence of the diffusivity and
find that it decreases exponentially at high frequencies.

Additionally, our results indicate that the Green’s functions
in NESS are only slightly perturbed from their equilibrium
values, allowing us to rewrite the equations of motion in terms
of these new non-equilibrium corrections without referencing
the baths. In the case of DC transport, we were able to find
this correction explicitly in terms of the equilibrium Green’s
function and derived analytic formulas for the diffusion con-
stant in the limit of large q, as well as for q = 2. In the
case of AC transport, we found that the NESS contribution
has a more complicated form which can only be estimated
numerically. Our results computed via this formalism agree
well with the ones obtained from coupling the system to baths
and represent one of the first attempts at characterizing the
NESS analytically.

The rest of the paper is structured as follows. In Sec. II
we define our higher-dimensional generalization of the SYK
model coupled to baths. We describe in detail our approach
to non-equilibrium dynamics and show how to compute the
different quantities related to transport. In Sec. III we briefly
review the equilibrium properties of our system. Next, in
Sec. IV we present our results for DC transport on different
lattices, while focusing specifically on the temperature depen-
dence of the diffusion coefficients and the structure of the
emerging NESS. Similarly, Sec. V is devoted to frequency-
dependent transport. Finally, we give a short discussion and
outlook in Sec. VI.

II. SETUP

We begin by introducing our family of models, the
equations governing their equilibrium and non-equilibrium
dynamics, the different approximations, which significantly
simplify these equations, and the general setup and relevant
quantities used to study the transport properties of these
models.

A. SYK models coupled to thermal baths

The SYK model [11–20] is a strongly interacting fermion
model in (0 + 1) dimensions. We consider a generalization of
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this model on arbitrary graphs G = (V, E ). Each vertex u ∈
V is an SYK cluster (quantum dot) of N Majorana fermions
ψu

i with random all-to-all qS-body interactions given by the
Hamiltonian

Hu
0 = iqS/2

∑
{i}

J (0)
i1...iqS

ψu
i1 . . . ψu

iqS
, (1)

where {i} denotes the restricted sum over 1 � i1 < · · · <

iqS � N . The vertices of the graph connected by an edge
(u, v) ∈ E are coupled to each other via an interaction Hamil-
tonian

Huv
1 = iqI /2

∑
{i},{ j}

J (1)
i1...i qI

2
j1... j qI

2

ψu
i1 . . . ψu

i qI
2

ψv
j1 . . . ψv

j qI
2

. (2)

The Majorana fermions obey the standard anticommutation
relations {ψu

i , ψv
j } = δi jδuv . Note that it is not essential that

the interaction term contains the same number of fermions
from both sites and a generalization to more generic interac-
tions should be straightforward. Similar higher-dimensional
SYK models have been previously studied in the context
of transport [43–47,55,66,67], quantum chaos [68–70], and
quantum phase transitions [48,71–74].

In order to study the non-equilibrium properties of our
system, we couple a subset of vertices to thermal baths
[39–41,62,69]. Each bath is modeled as an SYK cluster of
M Majorana fermions χu

i with all-to-all qB-body interactions
given by the Hamiltonian

Hu
B = iqB/2

∑
{i}

J (B)
i1...iqB

χu
i1 . . . χu

iqB
. (3)

The system-bath interaction is of the same form as the inter-
cluster coupling on the graph

Hu
SB = iqI /2

∑
{i},{ j}

V (u)
i1...i qI

2
j1... j qI

2

ψu
i1 . . . ψu

i qI
2

χu
j1 . . . χu

j qI
2

. (4)

Since not all vertices are necessarily coupled to a bath, we use
V (u) �= 0 to indicate the presence of a bath and set V (u) = 0
otherwise. The baths are coupled to the system at time t = 0.

All the SYK couplings are independent Gaussian random
variables with zero mean and variances

〈(
J (0)

i1...iqS

)2〉 = J2
0 (qS − 1)!

NqS−1
, (5)

〈(
J (1)

i1...iqI /2 j1... jqI /2

)2〉 = J2
1 (qI/2)!(qI/2 − 1)!

NqI −1
, (6)

〈(
J (B)

i1...iqB

)2〉 = J2
B (qB − 1)!

MqB−1
, (7)

〈(
V (u)

i1...iqI /2 j1... jqI /2

)2〉 = V 2
u (qI/2)!(qI/2 − 1)!

MqI /2NqI /2−1
. (8)

The numerical coefficients are chosen to cancel additional
factors in the path integral and the powers of N ensure the
correct scaling of extensive thermodynamic variables, such as
the energy.

The total Hamiltonian is simply the sum of all the terms

H =
∑
u∈V

(
Hu

0 + Hu
B + Hu

SB

) +
∑

(u,v)∈E

Huv
1 . (9)

Our model represents a unified framework for studying both
equilibrium and non-equilibrium properties of arbitrary SYK
lattices coupled to baths. We can reproduce many of the
previously studied SYK configurations [39–48,62,66–74] by
adjusting the topology of the graph, the type of intra- and
intercluster interactions, or the nature of the baths in our
model.

B. Equilibrium

The generalized SYK model maintains all the exactly solv-
able properties of the original model in the large-N limit [17].
Strictly speaking, in the presence of quenched disorder, we
would have to introduce replicas in the path integral. However,
in the large-N limit, our model self-averages and the interac-
tion between replicas is suppressed [17,43]. Therefore, it is
sufficient to consider the replica-diagonal partition function
[17,43], for which the Euclidean effective action can be writ-
ten as

S =
∑

(u,v)∈E

Suv +
∑
u∈V

Su, (10)

Suv = −NJ2
1

qI

∫
dτ1dτ2GS

u (τ1, τ2)qI /2GS
v (τ1, τ2)qI /2, (11)

Su = −N

2
log det

(
∂τ − 	S

u (τ1, τ2)
) − M

2
log det

(
∂τ − 	B

u (τ1, τ2)
) − NV 2

u

qI

∫
dτ1dτ2GS

u (τ1, τ2)qI /2GB
u (τ1, τ2)qI /2

+ N

2

∫
dτ1dτ2

(
	S

u (τ1, τ2)GS
u (τ1, τ2) − J2

0

qS
GS

u (τ1, τ2)qS

)
+M

2

∫
dτ1dτ2

(
	B

u (τ1, τ2)GB
u (τ1, τ2) − J2

B

qB
GB

u (τ1, τ2)qB

)
. (12)

For each vertex u, we introduced the Euclidean time-ordered fermion two-point functions

GS
u (τ1, τ2) = 1

N

N∑
i=1

〈T ψi(τ1)ψi(τ2)〉, (13)

GB
u (τ1, τ2) = 1

M

M∑
i=1

〈T χi(τ1)χi(τ2)〉, (14)
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and the fermion self-energies 	S,B
u as the associated Lagrange

multipliers. In the large-N limit, the saddle point of this
effective action produces the Schwinger-Dyson (SD) equa-
tions of motion

1 = (∂τ − 	S,B
u (τ ))GS,B

u (τ ), (15)

	S
u (τ ) = J2

0 GS
u (τ )qS−1 + V 2

u GS
u (τ )qI /2−1GB

u (τ )qI /2

+ J2
1

∑
v∈V

AuvGS
u (τ )qI /2−1GS

v (τ )qI /2, (16)

	B
u (τ ) = J2

BGB
u (τ )qB−1 + N

M
V 2

u GS
u (τ )qI /2GB

u (τ )qI /2−1, (17)

where Auv is the adjacency matrix of the graph and we as-
sumed time-translation symmetry τ = τ1 − τ2 in equilibrium.

If the bath is much larger than the system M � N , we can
neglect the back-reaction on the bath and drop the second term

in Eq. (17). Hence, even though the smaller system is affected
by its coupling to the bath through the term proportional to
V 2

u , the larger bath can be approximated as decoupled [39,40].
As a result, the bath’s Green’s function always matches its
equilibrium value, even when coupled to the system. We will
operate under this assumption in the remainder of the paper.

C. Non-equilibrium

The real-time evolution of a quantum many-body system
coupled to baths can be described using the Schwinger-
Keldysh formalism [63,64]. Following the derivation in
Refs. [37,38], we can write down the terms in the Lorentzian
action

Suv = iNJ2
1

qI

∫
C

dt1dt2GS
u (t2, t1)qI /2GS

v (t1, t2)qI /2, (18)

Su = − iN

2
log det

(
∂tδC (t1, t2) + i	S

u (t1, t2)
) + iN

2

∫
C

dt1dt2

(
J2

0

qS
GS

u (t2, t1)qS/2GS
u (t1, t2)qS/2 − 	S

u (t1, t2)GS
u (t2, t1)

)

− iM

2
log det

(
∂tδC (t1, t2) + i	B

u (t1, t2)
) + iM

2

∫
C

dt1dt2

(
J2

B

qB
GB

u (t2, t1)qB/2GB
u (t1, t2)qB/2 − 	B

u (t1, t2)GB
u (t2, t1)

)

+ iNV 2
u

qI

∫
C

dt1dt2GS
u (t2, t1)qI /2GB

u (t1, t2)qI /2, (19)

where C = C+ ∪ C− is the closed-time Keldysh contour with
the positive (forward) branch C+ going from −∞ to +∞ and
the negative (backward) branch C− going from +∞ to −∞.
Recall that in the Schwinger-Keldysh formalism, the contour-
ordered Green’s functions are actually 2 × 2 matrices

GS
u (t1, t2) =

(
GS

u (t+
1 , t+

2 ) GS
u (t+

1 , t−
2 )

GS
u (t−

1 , t+
2 ) GS

u (t−
1 , t−

2 )

)
, (20)

where t+
i lives on the positive branch and t−

i lives on the
negative branch. We will be mainly interested in the greater
and lesser Green’s functions

G>
u (t1, t2) ≡ GS

u (t−
1 , t+

2 ) = − i

N

N∑
i=1

〈ψi(t
−
1 )ψi(t

+
2 )〉, (21)

G<
u (t1, t2) ≡ GS

u (t+
1 , t−

2 ) = − i

N

N∑
i=1

〈ψi(t
+
1 )ψi(t

−
2 )〉, (22)

through which we can define the other two components

GS
u (t+

1 , t+
2 ) = θ (t1 − t2)G>

u (t1, t2) + θ (t2 − t1)G<
u (t1, t2),

GS
u (t−

1 , t−
2 ) = θ (t1 − t2)G<

u (t1, t2) + θ (t2 − t1)G>
u (t1, t2).

(23)

In practice, it is often more convenient to work with the
retarded, advanced, and Keldysh Green’s functions

GR
u (t1, t2) = �(t1 − t2)(G>

u (t1, t2) − G<
u (t1, t2)), (24)

GA
u (t1, t2) = �(t2 − t1)(G<

u (t1, t2) − G>
u (t1, t2)), (25)

GK
u (t1, t2) = G>

u (t1, t2) + G<
u (t1, t2), (26)

which are related to the contour-ordered Green’s functions
above via a Keldysh rotation [63,64]. The correspond-
ing self-energies are defined in a similar manner. For
Majorana fermions in thermal equilibrium, the greater and
lesser Green’s functions are related via

G>
u (t1, t2) = −G<

u (t2, t1) = −G>
u (t2, t1)∗, (27)

which holds true even out-of-equilibrium as long as the time
evolution starts from thermal equilibrium [75]. Therefore, all
other two-point functions can be computed from G>

u (t1, t2)
and we can focus solely on studying this component of the
Green’s function. Furthermore, due to the Majorana anti-
commutation relations, the greater Green’s function at equal
time reduces to G>

u (t, t ) = −i/2.
To obtain the Schwinger-Dyson equations in real time, we

can use the large-N saddle point equations for the Lorentzian
action [37,38], yielding

	S,B
u (t1, t2) = ∂tδC (t1, t2) − (

GS,B
u (t1, t2)

)−1
, (28)

	>
u (t1, t2) = −iqS J2

0 G>
u (t1, t2)qS−1

− iqIV 2
u G>

u (t1, t2)qI /2−1G>
u,B(t1, t2)qI /2

− iqI J2
1

∑
v∈V

AuvG>
u (t1, t2)qI /2−1G>

v (t1, t2)qI /2,

(29)

	>
u,B(t1, t2) = −iqB J2

BG>
u,B(t1, t2)qB−1. (30)
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Furthermore, one can apply convolutions on either side of
the first SD equation, use the Langreth rules and integration

by parts [37,38,63,64], to obtain the Kadanoff-Baym (KB)
equations for the system’s Green’s functions

i∂t1 G>
u (t1, t2) =

∫ ∞

−∞
dt3

(
	R

u (t1, t3)G>
u (t3, t2) + 	>

u (t1, t3)GA
u (t3, t2)

)
, (31)

−i∂t2 G>
u (t1, t2) =

∫ ∞

−∞
dt3

(
GR

u (t1, t3)	>
u (t3, t2) + G>

u (t1, t3)	A
u (t3, t2)

)
. (32)

In order to make the causal structure of the KB equations more explicit and for future use in our numerical calculations, we use
the definitions of advanced and retarded propagators to write them as

i∂t1 G>
u (t1, t2) =

∫ t1

−∞
dt3(	>

u (t1, t3) + 	>
u (t3, t1))G>

u (t3, t2) −
∫ t2

−∞
dt3	

>
u (t1, t3)(G>

u (t3, t2) + G>
u (t2, t3)),

−i∂t2 G>
u (t1, t2) =

∫ t1

−∞
dt3(G>

u (t1, t3) + G>
u (t3, t1))	>

u (t3, t2) −
∫ t2

−∞
dt3G>

u (t1, t3)(	>
u (t3, t2) + 	>

u (t2, t3)). (33)

Thus the evolution of G>
u (t1, t2) only depends on G>

u (t, t ′)
evaluated at earlier times t < t1 and t ′ < t2, making the causal
structure evident.

These equations are applicable to any non-equilibrium
situations. They describe the generic time evolution of a
Green’s function, with the only information about the phys-
ical system encoded through the definition of self-energy in
Eq. (29). In our case, we couple the system to baths at different
temperatures and observe the steady states that arise at late
times.

The KB equations are generally not tractable analytically
and one typically has to resort to numerical integration. Our
approach is similar to the one used in Refs. [37–42,66].
We begin by solving the SD equations self-consistently in
Lorentzian time for each decoupled cluster [37,66]. This gives
us the initial equilibrium conditions for G>

u (t1, t2) at all times
t1, t2 < 0. Then, at t1 = t2 = 0, we turn on the bath couplings
Vu and solve the KB equations on a discrete grid with spacing
dt = 0.05 (in units of inverse coupling) in the (t1, t2) plane.
The grid size is usually set to 1000L × 1000L, where L is
the size of the system. In the case of frequency-dependent
driving, the time step is further decreased such that ω dt � 1
and the subsampling effects are negligible. The equations are
solved using a predictor-corrector integration scheme [41,76].
Since the Green’s functions typically decay exponentially
away from the diagonal t1 = t2, the calculations can be sped
up by restricting our attention to a strip |t1 − t2| � 10β and
setting all the Green’s functions to zero outside that strip [39].
Furthermore, Eq. (27) reduces the computation time in half
because we only have to solve the KB equations for G>

u (t1, t2)
with t1 > t2.

Although the KB equations do not have a closed-form
solution, they simplify significantly in the conformal and large
q limits, which we discuss next.

D. Conformal limit

At low temperatures βJ0 � 1 and large timescales τJ0 �
1, the system develops an emergent conformal symmetry [17].
In Euclidean time, the Green’s function for an isolated SYK

cluster can be found explicitly

GS
u (τ ) = b

(
π

β sin(πτ/β )

)2/qS

sgn(τ ), (34)

where b is given by the equation

bqS = 1

πJ2
0

(
1

2
− 1

qS

)
tan(π/qS ). (35)

Many properties of the SYK system, such as the fermion
four-point function and the chaos exponent, can be computed
exactly in this limit [17]. We will use the conformal answer
when studying the equilibrium properties of our system in
Sec. III.

E. Large q limit

In order to obtain an analytic approximation for the Green’s
function at both small and large energies, we take the large
q limit [17,77]. For the sake of simplicity, we set qS = qI =
qB = q throughout this section. To leading order in 1/q, the
system’s Green’s function and self-energy are given by

G>
u (t1, t2) = − i

2

(
1 + gu(t1, t2)

q
+ · · ·

)
≈ − i

2
e

gu (t1 ,t2 )
q , (36)

	>
u (t1, t2) = − i

q

(
J 2

0 egu (t1,t2 ) + V2
u e

1
2 (gu (t1,t2 )+gB

u (t1,t2 ))

+ J 2
1 egu(t1,t2 )/2

∑
v

Auvegv (t1,t2 )/2
)
, (37)

where “...” denotes higher order terms in 1/q, gu(t1, t2) is
a function of order one satisfying gu(t, t ) = 0, and J0,1 =
J0,1

√
q21−q, Vu = Vu

√
q21−q are rescaled couplings. The large

q limit is well defined only when we adjust the original cou-
plings (J0, J1,Vu) such that the rescaled couplings (J0,J1,Vu)
are kept fixed as q → ∞.
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We can use these expressions to write the KB equations in
terms of the new functions gu(t1, t2) [37]. To leading order in
1/q, we have

∂t1 gu(t1, t2) = 2iq
∫ t2

−∞
dt3	

>
u (t1, t3)

− iq
∫ t1

−∞
dt3(	>

u (t1, t3) + 	>
u (t3, t1)), (38)

∂t2 gu(t1, t2) = 2iq
∫ t1

−∞
dt3	

>
u (t3, t2)

− iq
∫ t2

−∞
dt3(	>

u (t3, t2) + 	>
u (t2, t3)). (39)

Notice that in the first equation, t2 only appears in the inte-
gration limit on the right-hand side (and similarly for t1 in the
second equation). This is a feature of the large q expansion
and it does not hold more generally. Therefore, the second
time derivative of either equation takes on a simple form

∂2gu(t1, t2)

∂t1∂t2
= 2iq	>

u (t1, t2). (40)

If we additionally assume time translation invariance, then we
have

−∂2gu(t )

∂t2
= 2

(
J 2

0 egu(t ) + V2
u e

1
2 (gu(t )+gB

u (t ))

+ J 2
1 egu (t )/2

∑
v

Auvegv (t )/2

)
. (41)

This results in a system of coupled ODEs that can be solved
numerically. For a single isolated cluster, the solution can be
obtained from the imaginary time formula derived in Ref. [17]
by analytic continuation

eg(0) (t ) = cos2 (πv/2)

cosh2
(

πv
β

( iβ
2 + t

)) , (42)

where v satisfies

βJ0 = πv

cos(πv/2)
. (43)

As shown in Ref. [37], given the symmetries of the KB
equation and equilibrium initial conditions [see Eq. (27)], the
large q solution always obeys

gu(−t ) = gu(t )∗, (44)

which is indeed true for the equilibrium solution g(0)(t ).

F. Observables

Once we have access to the greater Green’s functions, we
can easily compute any observable in our system. We are
interested in the transport of conserved quantities and in the
case of the SYK Hamiltonian only the energy is conserved. It
is convenient to decompose the system Hamiltonian in terms
of bond operators HS = ∑

(u,v)∈E Huv = ∑
(u,v)∈E (Hu

0 /du +
Hv

0 /dv + Huv
1 ) acting on sites (u, v), where du = ∑

u′ Auu′ is
the degree of vertex u. We then define separately the on-site

energy per particle of each cluster

Eu
0 = −iqS+1 J2

0

qS

∫ t

−∞
dt1(G>

u (t, t1)qS − G>
u (t1, t )qS ), (45)

and similarly the interaction energy between clusters

Euv
1 = −iqI +1 2J2

1

qI

∫ t

−∞
dt1(G>

u (t, t1)qI /2G>
v (t, t1)qI /2

− G>
u (t1, t )qI /2G>

v (t1, t )qI /2). (46)

The on-bond energy then becomes Euv ≡ 〈Huv〉 = Eu
0 /du +

E v
0 /dv + Euv

1 . The formula for the associated local energy
current ju per particle flowing from u to v can be derived by
combining the continuity equation at site u with Heisenberg’s
equation of motion [78]

ju = i
∑

u′
Au′u[Hu′u, Huv]. (47)

Computing the expectation value of these commutators in
the Schwinger-Keldysh formalism is more complicated. We
provide a detailed derivation in Appendix A and our general
formula for the current is given by Eq. (A15).

In this paper, we will mainly be interested in regular lattices
(one- and two-dimensional) with baths acting on the bound-
aries (see Fig. 1). The right and left baths are held at different
inverse temperatures βR,L = β ± δβ, where β is the average
bath temperature and δβ is a small temperature imbalance
driving the system out of equilibrium. We typically choose
δβ = 0.1β to make sure we are in the linear response regime.
In the long-time limit, when the system reaches its NESS, the
energy current becomes uniform in the bulk j ≡ 〈 ju〉. For the
particular case of a uniform one-dimensional chain [Fig. 1(a)],
the current reads

j = iqS+qI

2
J2

1 J2Re
(

jx−1,x,x+1
++ + jx−1,x,x+1

+−
)
, (48)

where we labeled the sites by their horizontal coordinate x.
Similarly, the energy gradient is simply the difference in en-
ergy on two consecutive bonds

∇E = Ex,x+1 − Ex−1,x. (49)

For a uniform setup with qS = qI , our model is a diffu-
sive metal [43]. We expect that transport in such a system
is governed by Fourier’s law j = −D∇E = −D�E/L with
a temperature-dependent diffusion constant D. Here �E de-
notes the energy difference across the system and L is the
linear size of the system. More generally, a system can exhibit
nondiffusive transport where the current scales with system
size as j ∼ 1/Lγ with γ �= 1 [1]. We explicitly verify in our
numerical simulations that the transport is indeed diffusive at
all temperatures, except for the case qS < qI , when the system
becomes an insulator at low temperatures (see Sec. IV E).

In order to accurately describe the temperature dependence
of the diffusion constants, we need to introduce an effective
local temperature. This temperature can in principle be very
different from the average bath temperature at which we drive
the system [4,79]. At sufficiently long times after turning
on the bath couplings, the system reaches a nearly-thermal
state where the Green’s functions become time-translation
invariant. This allows us to use the fluctuation-dissipation
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FIG. 1. Schematic diagram of the non-equilibrium setups under study. (a) The boundary-driven SYK chain is connected at both ends to
thermal baths at inverse temperatures βL and βR. Each system site contains N Majorana fermions and the hopping between neighboring sites
is set by J1, while the baths consist of M Majorana fermions coupled to the chain with interaction V . In NESS, a homogeneous current j flows
through the bulk. (b) Same as (a), but with baths attached at every site throughout the chain. The temperature of the baths varies linearly from
left to right. (c) Two-dimensional SYK lattice connected to baths at its two vertical edges, resulting in a net uniform horizontal current jx .

theorem (FDT) [37,63,64] to define an effective temperature
β−1

u similarly to the thermal equilibrium case

iGK
u (ω)

Au(ω)
= tanh

(
βuω

2

)
, (50)

where Au(ω) = −2ImGR
u (ω) is the spectral function and

GK
u (ω) is the Fourier transform of the Keldysh Green’s func-

tion. Note that the FDT holds only for low frequencies, since
high frequencies are affected by the size of the discretiza-
tion step dt . One can extract the local temperature by fitting
Eq. (50) over a small frequency interval [37,38]. Alternatively,
we can access the low-frequency limit directly by taking the
slope of the ratio of Green’s functions at ω = 0 [40,62]

βu = d

dω

(
2iGK

u (ω)

Au(ω)

)∣∣∣∣
ω=0

. (51)

This simple relation unambiguously defines the local tem-
perature of an SYK cluster, in contrast with conventional
spin systems, where defining a non-equilibrium temperature is
more challenging [4]. Since the system is many-body chaotic,
we expect it to reach a nearly-thermal state relatively fast, with
a local temperature closely matching the bath temperature β

[39,40].
Finally, we would like to study how fast we approach the

non-equilibrium steady state. This would allow us to compare
the effectiveness of different driving setups. The convergence
time to NESS can be defined for any of our observables, such
as the current or the diffusion constant. Suppose we measure
an observable zt at each step t during our time evolution after
coupling the system to the baths. To assess the convergence
of a sequence of measurements {zt }T

t=0, we define the con-
vergence time in terms of the error relative to the asymptotic
value z∞ = lim

T →∞
zT of a given observable

ε(t ) =
∣∣∣1 − zt

z∞

∣∣∣. (52)

Note that this metric is invariant under rescaling, but not under
a translation by a constant of the data. At late times, we expect
the convergence to be exponentially fast ε(t ) ∼ e−�t , where �

is the convergence rate [39]. We can also define a convergence
time tNESS as the minimum time such that ε(t ) � η for all

t � tNESS, where η is a set threshold. Notice that the definition
of tNESS does not assume exponential convergence to NESS
and is therefore more general. By comparing convergence
times, we can quantitatively assess whether a certain bath
configuration is more efficient at inducing the non-equilibrium
steady state. In Sec. IV B we will show that this is indeed the
case for bulk driving.

III. EQUILIBRIUM

We begin by studying the equilibrium setup, where all the
bath and system clusters are at the same inverse temperature
β. This will help us understand the changes that a local
Green’s function undergoes by simply connecting to its neigh-
bors and the baths, before even introducing non-equilibrium
effects caused by temperature imbalance. Since there is no
dynamics, we look for solutions of the SD equations in
Euclidean time. We will focus on the case qS = qI = qB =
q, but the more general setup was thoroughly discussed in
Refs. [39,40]. This case corresponds to a marginal interaction,
such that the effective q does not change, while the effective
on-site interaction J0 gets renormalized to Ju. In other words,
the SD equation for an interacting SYK cluster has the exact
same form as that of an isolated (0 + 1) dimensional SYK
model with coupling Ju

	S
u (τ ) = J2

u GS
u (τ )q−1. (53)

We will consider the conformal limit for simplicity, but
the same qualitative results can be obtained by solving the
SD equations numerically using the approach described in
Ref. [17] with minor adjustments to the self-energy formula as
given by Eq. (16). If q is the same throughout the system, then
the time-dependence cancels completely in the SD equations
in the conformal limit. From Eq. (35), it is easy to see that the
Green’s function depends on the coupling as GS

u ∼ J−2/q
u and

	S
u ∼ J2/q

u . Therefore, Eq. (16) simplifies to

J2
0

J2
u

+ J2
1

Ju

∑
v

Auv

Jv

+ V 2
u

JBJu
= 1, (54)
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FIG. 2. Equilibrium properties of an SYK chain of length L =
20. The effective on-site coupling Jx is shown as a function of
system site in the case of boundary driving (dash-dotted line), strong
bulk driving (solid line), and weak bulk driving (dotted line). The
asymptotic values for the coupling deep in the bulk are shown with
dashed lines. We set J0 = J1 = 1.

for each site u. This is a system of quadratic equations for the
effective coupling Ju, whose general solution can always be
found numerically.

We further specialize to the case of a one-dimensional
chain of L SYK clusters, labeled by their lattice position x,
with nearest-neighbor couplings and open boundary condi-
tions (i.e., the only nonzero entries of the adjacency matrix
are Ax,x−1 = Ax,x+1 = 1). We then investigate configurations
in which the baths are either coupled at the two ends of the
chain [boundary driving, see Fig. 1(a)] or at every site of
the chain [bulk driving, Fig. 1(b)]. The system-bath coupling
always has the same value V . This setup is appropriate for
studying the transport properties of a one-dimensional SYK
system [43–47,55,66,67] and can be easily generalized to
higher dimensions [Fig. 1(c)].

Our results for the effective coupling Jx obtained by solv-
ing the system of equations (54) is shown in Fig. 2. In the
case of boundary driving, we see a small edge effect due to
the presence of the baths, but otherwise the effective cou-

pling approaches its site-independent value J =
√

J2
0 + 2J2

1

deep in the bulk. Note that this effective coupling is slightly
different from the one derived in Ref. [43] due to a dis-
tinct choice of normalization for the variance of the coupling
constant J1. When baths are present on every site, their inter-
action with the system will strongly renormalize the coupling
throughout the chain. For example, if we choose JB = J , then
the effective coupling away from the boundaries converges

to J =
√

J2
0 + 2J2

1 + V 2, which is very different from the
boundary-driven case. In non-equilibrium, this bulk driving
would significantly alter the transport coefficients.

We consider two approaches for mitigating the unwanted
effects of bulk driving, while preserving some of its appealing
features, such as fast NESS convergence rates. First, we could
adjust the couplings Ṽ = J̃0 = J0/

√
2 such that the effective

on-site interaction in the bulk becomes the same as in the
case of boundary driving J =

√
J2

0 + 2J2
1 . We refer to this

as strong bulk driving. The issue with this solution is that it

slightly changes the properties of the underlying system by
reducing J0. Alternatively, we could take the limit of weak
bulk driving V � J0, J1, which leaves the effective coupling
mostly unchanged (see Fig. 2). However, the rate at which
energy is exchanged with the baths will also decrease, lead-
ing to slightly longer convergence times. The weak driving
scheme serves as a middle ground between the strong and
boundary drivings. In the next section, we will further explore
the advantages of each setup in the context of non-equilibrium
dynamics.

IV. DC TRANSPORT

We now proceed with our results for the non-equilibrium
case in the presence of time-independent (DC) driving. Fol-
lowing the procedure described in Sec. II, we couple the
system to baths at different temperatures and measure the
energy gradients, local temperatures, and currents that arise
as a result. We first consider the case of boundary driv-
ing and investigate the properties of the emerging NESS.
We then show that bulk driving leads to approximately the
same diffusion constants, but with much faster convergence
times. Based on these findings, we postulate a simple ansatz
for the non-equilibrium Green’s function and show that it
perfectly captures the transport properties of the SYK sys-
tem. Using this ansatz, we derive a closed-form solution
for the temperature-dependent diffusion coefficient in the
large q limit. Throughout these sections, we focus on one-
dimensional chains and set qS = qI = qB = q for simplicity.
We discuss the case with qS �= qI separately in Sec. IV E and
conclude our analysis of DC transport with a generalization to
higher-dimensional lattices. To emphasize that our methods
are applicable to a wide range of parameters, we display
results for various values of β and q. We also fix J0 = J1 = 1
in order to treat the results for different q on equal footing.

A. Boundary-driven SYK chain

In the case of boundary driving, we introduce a small
temperature imbalance δβ at the two ends of the chain. Fig. 3
showcases our findings for q = 4, but similar results hold for
all values of q. We should mention that although the SYK
model with q = 2 corresponds to free fermions, is noninte-
grable, and does not satisfy ETH [35,36,38], it still slowly
thermalizes when coupled to external baths and conducts en-
ergy in the same way as its analogs with higher q. In Fig. 3(a)
we plot the on-bond energy Ex,x+1, normalized by its equi-
librium value E0, as a function of lattice site x. The energy
profiles are linear in the bulk, with small boundary effects that
become more prominent at low temperatures. Moreover, we
find that local Green’s functions obey the FDT with inverse
temperatures that interpolate linearly between β − δβ and
β + δβ at the two ends, as shown in Fig. 3(b). The temperature
in the middle of the chain precisely agrees with the average
bath temperature. This is different from chaotic spin models,
where one usually finds a much higher local temperature in
the bulk [4]. We also find that the current scales linearly
with inverse system size at all temperatures, as displayed in
Fig. 3(c). Notice that the scaling exponent γ is close to one,
which confirms that our model is a diffusive metal.
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FIG. 3. DC NESS transport properties of the boundary-driven
SYK chain with q = 4 at different bath temperatures β. (a) Spatial
energy profiles, rescaled to the equilibrium energy E0 at temperature
β, for a chain of length L = 50. (b) Same as (a), but for the local
inverse temperature. Both energy and temperature profiles are linear
in the bulk. (c) Scaled energy current j/�E as a function of system
size. Symbols denote numerical values and lines represent fits to the
scaling j/�E = −D/Lγ . The values of γ suggest diffusive transport
according to Fourier’s law. (d) Derivative of the equilibrium Green’s
function dG0(t )/ dβ (dashed lines) showing agreement with the non-
equilibrium contribution F (t ) (solid lines) to the Green’s functions
in Eq. (56), as extracted numerically from NESS. Both are scaled to
unit norm.

In addition, we observe a very fast convergence of the
diffusion constant with system size, which is likely due to the
all-to-all nature of the couplings in the SYK model. Therefore,
when computing the temperature dependence of the diffusion
coefficient, we can restrict our attention to moderately-sized
systems with L = 20 sites. Our results for D(β ) at various q
can be found in Fig. 4(a). The transport coefficient increases
with β and approaches a q-dependent constant both in the
limit of zero and infinite temperature. The answer for the
diffusion constant of an SYK chain in the low-temperature
conformal limit has been previously derived in Ref. [43] by
studying the leading order contributions to the fermionic four-
point functions. Their derivation can be generalized to the case
of arbitrary q in a straightforward way and we obtain

D = q

q − 1

π

2αK

J 2
1

J , (55)

where J = J
√

q21−q is the rescaled effective coupling intro-
duced in Sec. III and αK is a numerical constant whose value is
close to 3 (e.g., Fig. 9 in [17]). We recover the original expres-
sion in Ref. [43] by setting q = 4. The conformal answer in
Eq. (55) is indicated by dashed lines in Fig. 4(a). We observe
a striking agreement with our numerical results at large β.

Most importantly, the authors also showed that in the con-
formal limit, the energy diffusion constant D is related to
the butterfly velocity vB via the simple relation D = βv2

B/2π ,
which realises a conjectured bound on diffusion in incoherent
metals [49–54]. We further explore the connections between
transport and many-body chaos in Appendix B, where we

FIG. 4. Temperature dependence of the DC diffusion constant
for different values of q. Filled circles represent numerical values
for the boundary-driven SYK chain in both panels. (a) Empty circles
(shaded diamonds) correspond to the case of weak (strong) bulk
driving. Solid lines represent the diffusion constant computed using
the ansatz F (t ) = dG0(t )/dβ, while the dashed lines indicate the
conformal limit derived in Ref. [43]. (b) Dashed lines show the
diffusion constants in the large q limit.

show that the energy diffusion is upper bounded by chaos
D � v2

B/λL, with λL denoting the Lyapunov exponent. The
same conclusion has been reached for the energy diffusion
constant in inhomogeneous SYK chains [55] and the charge
diffusion constant in a holographic model [65].

B. Bulk-driven SYK chain

Our non-equilibrium driving scheme with baths on the
edges can be used in principle to extract the diffusion constant
of arbitrary models at any temperature. However, in practice,
the times for which we have to numerically evolve the KB
equations until convergence can be quite long, especially at
low temperatures and for the q = 2 case. The main computa-
tional cost comes from the fact that the influence of the bath
has to propagate from the boundary all the way to the middle
of the system. Therefore, it seems natural to search for an
alternative setup, which circumvents this problem.

Motivated by the linearity of the temperature profile along
the chain, we propose to couple each site x to a bath at inverse
temperature βx, which linearly interpolates between βL and
βR, as shown in Fig. 1(b). We have already studied the equi-
librium properties of the system in the presence of this bulk
driving in Sec. III. We identified two scenarios in which the
effective coupling J in the bulk remains mostly unchanged.
In the case of strong bulk driving, we set V = J0 = 1/

√
2

and in the case of weak bulk driving, we choose V = 0.2 and
J0 = 1. We expect that the bulk driving does not significantly
alter the properties of our system even in non-equilibrium and
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FIG. 5. Convergence time of the non-equilibrium dynamics for
boundary (solid circles) and bulk (empty circles) driving at vari-
ous temperatures. The boundary-driven systems exhibit a power-law
scaling tNESS ∼ Lz with system size (solid lines), while both weak
and strong bulk driving lead to nearly-constant convergence times
(dashed lines). The convergence threshold was set to η = 10−3.

its diffusion coefficient remains unchanged as long as J and
J1 stay the same in the bulk. Indeed, in the low-temperature
limit we can confirm this directly using Eq. (55). For the
more general case, we solve the KB equations in the presence
of bulk driving and plot our results in Fig. 4(a). We see
that the diffusion constants for both strong and weak driving
agree well with the results obtained via boundary driving,
with the weak driving showing a slightly better match at low
temperatures.

However, the main appeal of using these alternative driving
schemes is their fast convergence times. We compare the times
required to reach NESS in Fig. 5. For the setup with baths
at the boundaries, we find a clear power-law dependence of
tNESS on system size. Notice that the convergence time scales
superlinearly with L and the exponent is somewhat higher at
low temperatures. On the other hand, tNESS is approximately
constant in the case of weak driving and the advantage over
boundary driving is already noticeable around L ≈ 20. Fur-
thermore, strong bulk driving leads to an even lower size-
and temperature-independent convergence time. These scal-
ings are roughly the same for all q. Hence, there is a clear
computational advantage in adding baths to the bulk with little
to no impact on the transport properties of the system. We
expect that a similar speed-up can be achieved in other spin
models.

It is important to emphasize that using bulk driving to ex-
actly match the results of boundary driving was only possible
due to the simple, predictable nature of the temperature profile
across the system. Moreover, we relied on the fact that the
baths are similar to the system SYK clusters (i.e., same q,
similar β etc.). This may no longer be the case in other, more
complex non-equilibrium scenarios. In fact, we will briefly
discuss this in the context of AC transport in Sec. V C.

C. Non-equilibrium ansatz

Our analysis of the steady-state observables in the previous
sections suggests a relatively simple ansatz for the local non-
equilibrium Green’s function that emerges at late times. In
equilibrium, the Green’s function deep in the bulk takes on

a site-independent and time translation-invariant form G(0)(t ),
which is the solution to the SD equation in Lorentzian time
with an effective coupling J and inverse temperature β. In
the presence of a small uniform bias, we expect the non-
equilibrium Green’s function to have an extra site-dependent
correction proportional to the temperature gradient. Addi-
tionally, we expect the Green’s function to become time
translation-invariant at late times, which we indeed observe
in our simulations. Therefore, we look for a NESS solution to
the KB equations of the form

G>
x (t ) = G(0)(t ) + xF (t ), (56)

where |F (t )| � |G(0)(t )| is the non-equilibrium contribution.
Similarly, we can expand the self-energy as

	>
x (t ) = −iqJ2G(0)(t )q−2(G(0)(t ) + x(q − 1)F (t )). (57)

These expressions already lead to a much simpler version
of the KB equations in (33) for the non-equilibrium contribu-
tion F (t ). However, we can find an explicit solution for F (t )
by exploiting the fact that the inverse temperature gradient
∇β is constant in the bulk [see Fig. 3(b)]. Assuming that the
effective coupling J also remains constant, we can perform a
first-order expansion in the small gradient

G>
x (t ) ≈ G(0)(t ) + x

dG(0)(t )

dβ
∇β, (58)

This is akin to a gradient expansion in hydrodynamics. By
comparing this to Eq. (56), without loss of generality, we can
identify F (t ) ≡ dG(0)(t )/dβ. Notice that the overall magni-
tude of F (t ) does not matter, since to first order, both the
energy gradient and the current will be proportional to F . This
is consistent with the expectation that the exact value of the
temperature bias δβ should not affect the transport properties,
as long as we are within the linear response regime. A com-
parison between F (t ) extracted numerically as the difference
between two consecutive Green’s functions in NESS and the
derivative dG(0)(t )/dβ is presented in Fig. 3(d). As we argued
above, the two functions coincide.

Furthermore, one can easily verify using Eq. (56) and
Eq. (57) that if G(0)(t ) is a solution to the KB equations in (33),
then so is G>

x (t ) in Eq. (58), to first order in the gradient. We
emphasize that F (t ) = dG(0)(t )/dβ is a solution to the KB
equations, but it is not necessarily the unique solution. One
could in principle devise more complicated non-equilibrium
setups and initial conditions where Eq. (56) holds, but the non-
equilibrium correction F (t ) has a more complicated form.
This is why the numerical comparison in Fig. 3(d) is crucial.

Now we can use this ansatz to obtain a numerical solution
for the diffusion constant at arbitrary temperature. To first
order in F , the energy gradient in Eq. (49) becomes

∇E = −2iq+2J2
∫ ∞

0
dt Im[G(0)(t )q−1F (t )] = dE0

dβ
. (59)

where E0 is the equilibrium energy computed from G(0)(t ) and
we have used the identities in Eq. (27) to write the integral
only in terms of functions evaluated at t � 0. Similarly, the
current in Eq. (48) becomes

j = 1
2 J2

1 J2Re( j++ + j+−), (60)
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where

j++ + j+− = −2iq
∫ ∞

0
dt

∫ ∞

t
dt ′G(0)(t ′)q−2G(0)(t ′ − t )(G(0)(t ′) Im[F (t )G(0)(t )q−2] − F (t ′) Im[G(0)(t )q−1])

= − 2iq

q − 1

∫ ∞

0
dt

∫ ∞

t
dt ′G(0)(t ′)2q−2G(0)(t ′ − t )

d

dβ

(
Im[G(0)(t )q−1]

G(0)(t ′)q−1

)
. (61)

Note that both of these quantities are independent of x and we can compute the diffusion constant D = − j/∇E solely in terms
of the equilibrium function G(0)(t ).

In general, the Green’s function does not have a closed-form representation, except for the case of free fermions q = 2, which
we discuss in Appendix C. Therefore, we have to numerically solve the SD equation to get G(0)(t ) [37,66], then perform the
integrals above to obtain D. The final result is shown as the solid lines in Fig. 4(a) and it agrees perfectly with diffusion constants
extracted from solving the full KB equations in the presence of baths [solid circles in Fig. 4(a)].

Our non-equilibrium ansatz significantly reduces the complexity of computing the transport properties of the SYK chain
compared to the boundary- or bulk-driven setups. Moreover, under certain circumstances, such as the large q limit discussed
below, we can use this ansatz to find simple expressions for the diffusion constant.

D. Large q limit

We now apply our construction in the large q limit introduced in Sec. II E. For a 1D chain, Eq. (41) away from the boundary
can be written as

−∂2gx(t )

∂t2
= 2J 2

0 egx (t ) + 2J 2
1 e

gx (t )
2

(
e

gx−1 (t )
2 + e

gx+1(t )
2

)
. (62)

In equilibrium, g(0)(t ) derived in Eq. (42) is a uniform solution. However, in the presence of a small temperature gradient, we
look for a general solution of the form

gx(t ) = g(0)(t ) + x f (t ), (63)

where | f (t )| � |g(0)(t )| is the non-equilibrium correction. Just as before, we identify f (t ) ≡ dg(0)(t )/dβ. In terms of this new
function we have F (t ) = G(0)(t ) f (t )/q. Since f is proportional to the imposed temperature gradient, we can make it arbitrarily
small and only keep terms linear in f . The KB equation becomes

∂2 f (t )

∂t2
= −2J 2eg(0) (t ) f (t ), (64)

where J 2 = J 2
0 + 2J 2

1 and we canceled the equilibrium terms. We supplement this ODE with the initial condition f (0) = 0,
imposed by gx(0) = g(0)(0) = 0. However, since the equation is of second order, we have to also specify f ′(0), on which we
have (almost) no restrictions. This is a consequence of the aforementioned freedom in choosing the overall scale of f . Note that
f (t ) also has to obey the identity in Eq. (44).

Given our guess for f (t ) and Eq. (42), we find the following non-equilibrium contribution

f (t ) = − tan

(
πv

2

)
+

(
1 + iJ t sin

(
πv

2

))
tan

(
πv

2
− iπvt

β

)
(65)

It is easy to check that this is indeed a solution to Eq. (64) and that it satisfies all the conditions mentioned above. In the large q
limit, the energy gradient reads

∇E = J 2

q2

∫ ∞

0
dt Im

[
eg(0) (t ) f (t )

] = − 1

2q2

∫ ∞

0
dt Im

[
∂2 f (t )

∂t2

]

= 1

2q2
Im[ f ′(0) − f ′(∞)] = − J

2q2
cos

(πv

2

)
, (66)

where we used Eq. (64) in the second line. The formula for the current is a bit more involved

j = J 2
1 J 2

2q2

∫ ∞

0
dt

∫ ∞

t
dt ′[ Re

[
e(1− 1

q )g(0) (t ) f (t )
]

Im
[
e(1− 1

q )g(0) (t ′ )+g(0) (t ′−t )/q]
− Re

[
e(1− 1

q )g(0) (t )] Im
[
e(1− 1

q )g(0) (t ′ )+g(0) (t ′−t )/q f (t ′)
]]

. (67)

Unfortunately, this double integral does not have a closed-
form solution for arbitrary q and β. However, we are able to

approximate it in both the q → ∞ limit with arbitrary β and
in the β → 0 and β → ∞ limits with arbitrary q. The details
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of this computation are provided in Appendix C. For example,
the q → ∞ limit yields

D = J 2
1

3J

(
πv

2
sin

(
πv

2

)
+ cos

(
πv

2

))
. (68)

The temperature dependence enters this expression implic-
itly through v [see Eq. (43)]. Note that this equation exactly
matches the one derived in Ref. [54] from the energy density
two-point function, thus providing an independent consis-
tency check for our NESS calculation.

Our non-equilibrium ansatz led to a remarkably simple
formula for the diffusion constant in the limit of infinite q.
We plot this result in Fig. 4(b). In the same figure, we also
show the diffusion constants obtained by numerically integrat-
ing Eq. (67). The large q expansion curves follow the same
trend as the previously obtained exact results. The agreement
between the two is significantly better at higher temperatures
and larger q. The diffusion constant clearly decreases with
q and we expect it to eventually approach the q = ∞ result
[black line in Fig. 4(b)].

E. Models with qS �= qI

In all the examples previously studied in this paper, we
found that our systems behaved like diffusive metals with a
finite energy diffusion constant at both zero and infinite tem-
peratures. However, this is not the case for all SYK chains. In
this section, we will discuss a family of models with qS �= qI ,
which were first introduced in the context of metal to insulator
transitions [48]. First, we consider a model with qI = 2qS =
2q, where q � 2. This model is equivalent to isolated SYK
clusters with qS = q in the IR limit, since the intercluster
coupling becomes irrelevant. Hence, the system should be-
come an insulator at low temperatures [48]. To confirm this
prediction, we compute the diffusion constant as a function of
temperature using the boundary-driven setup for q = 4. The
results are shown in Fig. 6(a). We can see that the diffusion
constant approaches zero in the low-temperature limit. In fact,
we can further observe that D decreases quadratically with
temperature, as depicted in the inset. This agrees with the large
q calculation of Ref. [48], which predicts a decay D ∼ β−2.

Next, we consider the opposite model where qS = 2qI =
2q. In this model, we expect the on-site coupling J0 to be-
come irrelevant in the IR, where the low-temperature transport
should be governed by the intracluster coupling J1. The sys-
tem is expected to behave like a diffusive metal, which we
confirm numerically in Fig. 6(a) for the case q = 4. The diffu-
sion constant approaches a constant both at the high and low
temperatures. According to the large q analysis of Ref. [48],
the diffusion constant should converge to

D = πJ1

3
√

1 + J 2
0 /8J 2

1

≈ 0.99, (69)

for J0 = J1 = 1. Although our results seem to converge to a
somewhat smaller value, this discrepancy is on par with the
one in our other large q predictions in Fig. 4(b).

FIG. 6. Temperature dependence of the diffusion constant for
other SYK systems. (a) One-dimensional chain with qS > qI (red)
and qS < qI (blue). For the latter, the inset shows a quadratic fit D ∼
β−2 in the conformal limit. (b) Two-dimensional uniform square
lattice. Filled circles represent numerical values obtained from the
KB equations, while empty circles denote values inferred from
one-dimensional data. Dashed lines indicate the conformal limit in
Eq. (70).

F. Higher-dimensional generalizations

So far, we have focused on one-dimensional SYK chains,
but our analysis can be easily generalized to higher-
dimensional lattices. For example, we can consider a two-
dimensional Lx × Ly square lattice with baths attached along
the vertical boundaries, as shown in Fig. 1(c). Let the lattice
dimensions be Lx = 15 and Ly = 4, with periodic boundary
conditions in the y direction. The boundary driving will im-
pose a current jx in the x direction, but there will be no net
current in the y direction due to symmetry. We time-evolve the
KB equations in the usual way and use Eq. (A17) to compute
the current by summing contributions from all four neighbors
of a given site.

Our results for the square lattice are given in Fig. 6(b).
We observe the same temperature dependence as in the one-
dimensional case. The asymptotic value at low temperatures
can be compared again to the conformal limit answer in
Ref. [43]. For a translation invariant lattice, we expect the pole
determining the diffusion constant to get equal contributions
from both the p2

x and p2
y momenta, thus doubling the value in

Eq. (55)

D = q

q − 1

π

αK

J 2
1

J , (70)
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where J =
√
J 2

0 + 4J 2
1 is now the effective coupling in 2D.

This conformal answer is depicted by dashed lines in Fig. 6(b)
and it agrees well with our data.

Given the simplicity of the low-temperature answer above,
one could attempt to estimate the two-dimensional diffusion
constant at arbitrary temperatures by appropriately rescaling
the one-dimensional data

D2D = 2

√
J 2

0 + 2J 2
1

J 2
0 + 4J 2

1

D1D, (71)

where we took into account the difference in effective cou-
pling. This guess is represented by empty circles in Fig. 6(b)
and it is in surprisingly good agreement with the actual 2D
data, even though the diffusion constant at high temperatures
has a more complicated dependence on J . This result sug-
gests that diffusion in higher dimensional SYK lattices is very
similar to its one-dimensional counterpart.

V. AC TRANSPORT

We turn our attention to the frequency dependence of the
diffusion coefficient D(ω). This quantity is fundamental, as
it describes the response of the system to an external time-
dependent bias with angular frequency ω. The frequency
dependence is typically computed via the Kubo formula [80],
which relates transport coefficients to current autocorrela-
tion functions. However, our framework is more suitable for
directly measuring the current that emerges as a result of
periodic driving.

In order to induce a time-dependent energy gradient in our
system, we must couple it to baths at inverse temperatures
βR,L = β ± δβ cos(ωt ). Since it is nontrivial to treat a time-
dependent temperature directly within the Schwinger-Keldysh
formalism, we choose instead to oscillate the on-site coupling
of the baths JB ± δJB cos(ωt ), where δJB � JB. Note that the
KB equations remain virtually unchanged in the presence of a
time-dependent coupling [37,38,42], which only changes the
local energy scale for the baths and leads to an oscillating
temperature. In the limit of ω → 0 we exactly recover the
temperature imbalance β ± δβ imposed in the DC case.

We proceed in a manner similar to the DC case. First, we
attach the baths at the boundary of our SYK chain and study
the resulting NESS. We find that all observables oscillate at
frequency ω with an amplitude that becomes more attenuated
the further we measure into the bulk. Based on these insights,
we propose a new ansatz for the non-equilibrium Green’s
function and solve the KB equations numerically using this
functional form. We show that the ansatz describes well the
AC transport in SYK models. Last, we briefly comment on
the setup in the presence of bulk driving. Just as in the case of
DC transport, we set qS = qI = qB = q and J0 = J1 = 1.

A. Boundary-driven SYK chain

In the boundary-driven case, the inverse temperatures of
the two baths at the ends oscillate out of phase by a half-
period, thus always creating an energy gradient and current,
whose direction changes in time. A similar configuration has
been used to study magnetization transport in a quantum

FIG. 7. AC NESS transport properties of a boundary-driven SYK
chain of length L = 11 with q = 4 at β = 1 and ω = 5. Time-
dependent (a) energy, (b) local inverse temperature, and (c) current
for consecutive sites x, showing a uniform amplitude decay c = 0.13
and phase shift δ = 1.74. The means were subtracted for easier
visualization. (d) The non-equilibrium contributions F1,2(t ) to the
Green’s functions extracted directly from the boundary-driven NESS
(solid lines) and computed using the ansatz in Appendix D (dashed
lines).

spin chain subject to an oscillating magnetic field bias at
the boundaries [81]. Our results for a sample chain driven at
ω = 5 are shown in Fig. 7 and similar outcomes are seen for
all regimes of parameters. All local observables experience
an oscillatory time-dependence. In Figs. 7(a)–7(c) we plot
the oscillations of the bond energy, inverse temperature, and
current around their equilibrium values for three consecutive
sites in the bulk. An interesting feature is that the amplitude of
these oscillations is small and decays at a steady rate c as we
approach the middle of the chain from either end. Moreover,
we observe a constant phase shift δ from site to site. This
indicates an attenuation in the bulk of the wave modes created
at the boundary.

Notice that the current and energy gradient oscillate ap-
proximately in phase at every site. Therefore, we can use the
ratio of their amplitudes, which is independent of the damp-
ening c, to define a diffusion constant D(ω) = | j(ω)/∇E (ω)|
at each site. Even though the fast decay prevents us from
numerically studying large systems, we checked that the dif-
fusion constant converges rapidly with system size and is
uniform throughout the chain. We plot our results for D(ω)
at different temperatures in Fig. 8. Note that in the zero-
frequency limit, we recover the DC values of the diffusion
constants from Fig. 4(a). Our simulations are limited by the
time discretization step at large frequencies, where we have to
keep dt small to avoid sub-sampling errors, while also evolv-
ing the KB equations long enough to achieve convergence.
Nonetheless, even in the limited frequency range attainable
numerically we observe a clear exponential decay D ∼ e−νω

at ω � J, β−1. The exponent ν is small and decreases with β.
Moreover, we notice that ν approaches a q-independent value
at low temperatures, suggesting a possible universal scaling in
the IR.
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FIG. 8. Frequency dependence of the AC diffusion constant for
(a) q = 4 and (b) q = 6 at various temperatures. Filled circles repre-
sent numerical values for the boundary-driven SYK chain. Empty
circles correspond to the diffusion constant computed using the
ansatz in Eq. (72). The insets show an exponential scaling D ∼ e−νω

at high frequencies.

The exponential decay of the diffusion constant at large
frequencies can be explained using recent developments in
the theory of periodically-driven many-body systems [82–85].
Intuitively, the energy exchange between the system and the
bath (or its neighbors) becomes inefficient at high frequencies,
since it requires significant changes in the many-body state in
a very short time [42]. The amount of energy outputted by
the bath during periodic driving is on the order of ω, while
the energy that can be absorbed by a local degree of freedom
(fermion) is of order J . At high frequencies, many fermions
(roughly ω/J) would have to work together to absorb this
energy over one period. However, such a many-body effect
is exponentially suppressed for a Hamiltonian with few-body
interactions [85]. Therefore, the rate of energy exchange be-
tween clusters becomes exponentially small, which in turn
leads to an exponentially small diffusion coefficient.

B. Non-equilibrium ansatz

Similarly to the DC case, we use our observations about
the NESS to devise an ansatz for the local non-equilibrium
Green’s function under periodic driving. For convenience, we
perform a change of variables from (t1, t2) to t = t1 − t2 and
T = (t1 + t2)/2. At late times, the Green’s functions are no
longer time-translation invariant and depend on T in addition
to t . However, we find that T only enters the oscillatory
component of the Green’s function. The most general ansatz
consistent with these observations and the symmetries of the

Green’s function [see Eq. (27)] is given by

G>
x (t, T ) = G(0)(t ) + cxF (t ) cos (ωT − xδ + φ(t ))

≡ G(0)(t ) + cx(F1(t ) cos(ωT − xδ)

+ F2(t ) sin(ωT − xδ)), (72)

where we allowed for a time-dependent phase φ(t ) in addition
to the relative phase δ between sites. The parameter c controls
the ratio of amplitudes between neighboring sites. We find it
easier to work directly with the sine and cosine components
F1,2(t ), rather than the phase φ(t ). In the linear response
regime, we have |F1,2(t )| � |G(0)(t )|.

We can use this guess to write a set of KB equations for
the non-equilibrium functions F1,2(t ). However, the additional
factors stemming from the AC driving prevent us from find-
ing an explicit solution in terms of the equilibrium Green’s
functions. Nevertheless, we can solve the system of equa-
tions iteratively to find both F1,2(t ) and (c, δ), as detailed in
Appendix D. A comparison between F1,2(t ) extracted directly
from the NESS Green’s functions and those computed numer-
ically in Appendix D is shown in Fig. 7(d). We see a very
good agreement between the two. Furthermore, we can use the
ansatz to compute D(ω) at various temperatures. We observe
remarkable agreement with the previous data in Fig. 8. The
slight deviations at high frequencies are due to the extremely
small amplitudes of the current and energy gradient in the case
of boundary driving.

C. Bulk-driven SYK chain

Most of the difficulties related to the computation of
D(ω) in the previous two sections arise from the dampen-
ing of the oscillations in the bulk. In particular, this has led
us to introduce two additional parameters, c and δ, in our
non-equilibrium ansatz, which further complicated the calcu-
lations. Therefore, it seems natural to consider adding baths in
the bulk. Indeed, this would lead to more uniform observables
across the chain, corresponding to the limit c → 1 and δ → 0.
Note that a small, but finite δ is still required to have nonzero
current and can be imposed by staggering the baths. However,
a new problem emerges at large frequencies. In this regime,
there will be a significant amplitude decay and phase shift
between the oscillations in the bath and those in the system
at every site. Since the KB equations in the bulk now involve
the bath’s Green’s function, we would have to take into ac-
count both the NESS contributions from the system FS (t ), as
well as those from the bath FB(t ) due to the time-dependent
temperature. The two functions would be related by a new set
of parameters (c′, δ′) that need to be determined numerically.
Therefore, the attenuation problem persists even in the case of
bulk driving and we do not get a clear advantage in this case.
It is worth noting that in the case of time-independent bulk
driving, the bath at fixed temperature did not have a NESS
correction F (t ) to its Green’s function, and hence its influence
could be fully captured through renormalizing the effective
coupling J .
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VI. DISCUSSION

In this paper, we discussed a framework for studying the
non-equilibrium properties of a generalized SYK model on
arbitrary graphs coupled to thermal baths. We then used this
formalism to investigate energy transport in SYK lattices
with various q-body interactions. Our main focus was on
one-dimensional chains, although we also discussed general-
izations to higher dimensions. We showed that the transport
coefficients can be equivalently computed either by applying
a small bias at the boundaries of the system, or by attaching
baths to every site in the bulk. Using this setup, we verified
that all the models feature diffusive transport, and numeri-
cally computed the temperature dependence of the diffusion
constants. At low temperatures, we were able to show that
the diffusivity approaches a constant value, which exactly
matches the conformal limit prediction [43]. We also showed
that energy diffusion is upper bounded by chaos at all tem-
peratures D � v2

B/λL, with equality holding in the conformal
regime. It remains to be seen whether this inequality holds for
other generalizations of the SYK model.

Our analysis of the non-equilibrium Green’s functions that
emerge during transport has revealed that they are only weakly
perturbed from their equilibrium values. Moreover, we were
able to identify the exact functional form of this perturba-
tion for both frequency-independent and frequency-dependent
transport. In the DC case, we were able to derive a series
of analytical results in the large q expansion of the SYK
model. In particular, we obtained a closed-form expression
for the diffusion constant at all temperatures in the q → ∞
limit. In the AC case, we managed to solve for the non-
equilibrium contributions numerically and showed that the
diffusion constant decays exponentially at high frequencies.
In both cases, our non-equilibrium ansatz allowed for a very
efficient computation of the transport properties of an SYK
chain without referencing the specific setup driving the system
out of equilibrium. This result is not surprising, since we
know that the transport coefficients should not depend on the
details of the drive, as long as we are in the linear response
regime. Note that although we focused on linear-response-
like scenarios in this work, nothing in the general formalism
requires this, and it would be interesting to investigate the
nonlinear response of such SYK networks due to strong
driving.

The study of non-equilibrium SYK chains uncovered im-
portant insights about the structure of NESS, which can be
further applied to transport in more conventional spin sys-
tems [1–4]. First, we showed that adding baths in the bulk
dramatically improved the convergence time of our simula-
tions. This could be a key ingredient necessary to reach lower
temperatures in certain spin systems, where convergence time
becomes the limiting factor [4]. Second, we argued that the
NESS can be described locally using the non-equilibrium
contribution F , which acts as a small perturbation on top of
the equilibrium solution. A similar approach could be ap-
plicable to spin systems where the state is represented as a
tensor network [1,4]. One would proceed by expanding the
master equation to first order in F and then solving for the
non-equilibrium contribution, in the spirit of Appendix D.
Finally, it would be interesting to study AC transport in spin

chains using a periodic drive, similar to the one described in
Sec. V, and compare the results to those obtained via the Kubo
formula [1,80,81].

One natural extension of our analysis involves thermo-
electric transport in complex SYK models [14,44,45,62,66].
This variant of the SYK Hamiltonian is written in terms of
complex fermions and features a conserved fermion number
in addition to energy [14,44]. Diffusive charge and energy
transport has been observed in the strongly correlated metals
built from complex SYK clusters [44,45]. They also have
other interesting properties, such as a linear in temperature
resistivity reminiscent of high-Tc cuprates [45]. It would be
instructive to study mixed thermal and electrical transport in
these models by explicitly coupling them to baths in various
ways.

Given the interesting physical properties of the SYK model
and its extensions, multiple experimental realizations [58–61]
and quantum simulations [86,87] of SYK have been pro-
posed. However, there are a few limitations that experiments
must overcome. First, all-to-all interactions and the large-N
limit, which are crucial for exactly solving the SYK model,
are hard to achieve in real materials. Second, depending on
the Hamiltonian under study, one has to suppress the free-
fermion hopping terms, while enhancing the higher-order
q-body random interactions between the fermions [56,57].
To circumvent these issues, experimental setups in solid-
state systems that rely on approximate symmetries to forbid
two-body interactions, but allow higher-order couplings, have
been proposed. For example, implementations with Majo-
rana modes on the surface of a topological insulator [59]
and semiconductor quantum wires coupled to a quantum
dot [60] have been discussed. Additionally, graphene flakes
with irregular boundaries in the presence of strong magnetic
fields have been suggested as realizations of the complex
SYK model [42,61]. These experiments provide a promis-
ing path towards studying out-of-equilibrium dynamics in
SYK models. Actual measurements of the diffusion constants
could potentially be performed on these devices in the near
future.
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APPENDIX A: ENERGY CURRENT

The current flowing from u to v across the edge (u, v) is
given by

ju = i
∑

u′
Au′u[Hu′u, Huv], (A1)
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where Huv = Hu
0 /du + Hv

0 /dv + Huv
1 is the on-bond Hamilto-

nian. The commutator simplifies to

ju = i
∑
u′ �=v

Au′u

(
1

du

([
Hu

0 , Huv
1

] − [
Hu

0 , Huu′
1

]) + [
Hu′u

1 , Huv
1

])
.

(A2)

One can easily check using the anticommutation relations that
the commutator between a product of m Majorana fermions
and a product of n Majorana fermions is proportional to
1 − (−1)mn−l , where l is the number of identical fermions
in common between the two terms. Hence the commutator
vanishes unless l is odd. Furthermore, in the large-N limit,
the leading order contribution comes from the commutator
where the terms have a single fermion in common, with other
contributions suppressed by factors of 1/N .

To compute the non-equilibrium expectation value of
any operator O we employ the generating functional

[63]

〈O(t )〉 = lim
η→0

i

2

δZ[η]

δη(t )
= lim

η→0

i

2

δ ln(Z[η])

δη(t )
= lim

η→0

i

2

δiSη

δη(t )
,

(A3)

where Z[η] is the generating functional with an additional
source term η(t )O(t ). We also used the fact that Z[η → 0] =
1 in the Keldysh formalism [63], and denoted by Sη the part of
the action that depends on the source term. The factor of 1/2
accounts for the fact that t can belong to either the positive
C+ or negative C− branch of the contour. Without loss of
generality, we will assume that t lives on C+ and ignore the
factor of 1/2.

Let us focus on the first commutator in Eq. (A2). In order
to find Sη, we have to perform the disorder averaging over
couplings in the path integral, which results in a standard
Gaussian integral [19]. Its contribution to the action is given
by

iSη = − iqS+qI

2
NJ2

0 J2
1

∫
C

dt1dt2Gu(t1, t2)Gu(t1, t )qS−1Gu(t2, t )
qI
2 −1Gv (t2, t )

qI
2 η(t ). (A4)

Note that due to the causal structure, we only have to consider times t1, t2 � t . However, they can belong to either of the two
contour branches, resulting in eight different orderings, which we group into four terms as follows:

juv
++ =

∫ t

−∞
dt2

∫ t2

−∞
dt1G<

u (t1, t2)(G<
u (t1, t )G<

u (t2, t ))
qI
2 −1(G<

u (t1, t )qS− qI
2 G<

v (t2, t )
qI
2 − G<

v (t1, t )
qI
2 G<

u (t2, t )qS− qI
2
)
, (A5)

juv
+− =

∫ t

−∞
dt2

∫ t2

−∞
dt1G<

u (t1, t2)(G<
u (t1, t )G>

u (t2, t ))
qI
2 −1(G<

v (t1, t )
qI
2 G>

u (t2, t )qS− qI
2 − G<

u (t1, t )qS− qI
2 G>

v (t2, t )
qI
2
)
, (A6)

juv
−+ =

∫ t

−∞
dt2

∫ t2

−∞
dt1G>

u (t1, t2)(G>
u (t1, t )G<

u (t2, t ))
qI
2 −1(G>

v (t1, t )
qI
2 G<

u (t2, t )qS− qI
2 − G>

u (t1, t )qS− qI
2 G<

v (t2, t )
qI
2
)
, (A7)

juv
−− =

∫ t

−∞
dt2

∫ t2

−∞
dt1G>

u (t1, t2)(G>
u (t1, t )G>

u (t2, t ))
qI
2 −1(G>

u (t1, t )qS− qI
2 G>

v (t2, t )
qI
2 − G>

v (t1, t )
qI
2 G>

u (t2, t )qS− qI
2
)
. (A8)

Notice that we used the identities in Eq. (23) to write the answers exclusively in terms of greater or lesser Green’s functions.
Additionally, using Eq. (27), we obtain that juv

++ = ( juv
−−)∗ and juv

+− = ( juv
−+)∗. The expectation value of the commutator is given

by the sum of the four terms above, with the appropriate proportionality constant

〈[
Hu

0 , Huv
1

]〉 = − iqS+qI +1

2
J2

0 J2
1 ( juv

++ + juv
+− + juv

−+ + juv
−−) = −iqS+qI +1J2

0 J2
1 Re( juv

++ + juv
+−). (A9)

A similar expression can be obtained for [Hu′u
1 , Huv

1 ] if we define

ju′uv
++ =

∫ t

−∞
dt2

∫ t2

−∞
dt1G<

u (t1, t2)(G<
u (t1, t )G<

u (t2, t ))
qI
2 −1(G<

u′ (t1, t )
qI
2 G<

v (t2, t )
qI
2 − G<

v (t1, t )
qI
2 G<

u′ (t2, t )
qI
2
)
, (A10)

ju′uv
+− =

∫ t

−∞
dt2

∫ t2

−∞
dt1G<

u (t1, t2)(G<
u (t1, t )G>

u (t2, t ))
qI
2 −1(G<

v (t1, t )
qI
2 G>

u′ (t2, t )
qI
2 − G<

u′ (t1, t )
qI
2 G>

v (t2, t )
qI
2
)
, (A11)

ju′uv
−+ =

∫ t

−∞
dt2

∫ t2

−∞
dt1G>

u (t1, t2)(G>
u (t1, t )G<

u (t2, t ))
qI
2 −1(G>

v (t1, t )
qI
2 G<

u′ (t2, t )
qI
2 − G>

u′ (t1, t )
qI
2 G<

v (t2, t )
qI
2
)
, (A12)

ju′uv
−− =

∫ t

−∞
dt2

∫ t2

−∞
dt1G>

u (t1, t2)(G>
u (t1, t )G>

u (t2, t ))
qI
2 −1(G>

u′ (t1, t )
qI
2 G>

v (t2, t )
qI
2 − G>

v (t1, t )
qI
2 G>

u′ (t2, t )
qI
2
)
, (A13)

where only the index of the terms in brackets changed from u to u′ and qS was changed to qI . The expectation value of the
commutator is now given by

〈[
Hu′u

1 , Huv
1

]〉 = − i

2
J4

1 ( ju′uv
++ + ju′uv

+− + ju′uv
−+ + ju′uv

−− ) = −iJ4
1 Re( ju′uv

++ + ju′uv
+− ) (A14)
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Putting everything together using Eq. (A2), we arrive at the following expression for the current:

〈 ju〉 = J2
1

∑
u′ �=v

Au′u

(
iqS+qI

J2
0

du
Re( juv

++ + juv
+−) − iqS+qI

J2
0

du
Re( juu′

++ + juu′
+−) + J2

1 Re( ju′uv
++ + ju′uv

+− )

)
. (A15)

It is important to mention that in non-equilibrium situations
where the Green’s functions are only weakly perturb from
their equilibrium values G>

u = G(0) + Fu with |Fu| � |G(0)|
and qS = qI , there are significant simplifications to the for-
mula above

ju′uv
+± = juv

+± − juu′
+±, (A16)

〈 ju〉 = J2
1

(
J2

0 + duJ2
1

)
du

∑
u′ �=v

Au′uRe( ju′uv
++ + ju′uv

+− ). (A17)

We verified numerically that this condition applies to all the
non-equilibrium setups studied in this paper and therefore use
Eq. (A17) throughout, except for the cases when qS �= qI ,
where the more general Eq. (A15) applies.

APPENDIX B: CHAOS BOUND ON DIFFUSION

In this section, we review the many-body chaos properties
of the SYK model. Chaos is fundamentally related to energy
fluctuations and diffusion, since the local energy character-
izes the rate of change of the quantum phase, and phase
decoherence leads to chaos [44]. We begin by introducing
the out-of-time-order correlation function (OTOC), which has
been widely used as a measure of chaos in quantum systems
[17,21,88–91]. Following [17,43], we define the regularized
OTOC in real time

C(x, t1, t2) = 1

N2

N∑
i, j=1

Tr
[
yψx

j (t1)yψ0
i (0)yψx

j (t2)yψ0
i (0)

]
,

(B1)
where y = e−βH/4/Z1/4 evenly spaces the fermionic fields
along the thermal circle. The OTOC measures how sensitive
the system is to an initial local perturbation created by the
operator ψ0

i (0), thus characterizing a quantum analog for
the butterfly effect [89]. The leading order contribution to the
OTOC comes from a time independent constant equal to the
disconnected correlator Fd [92]. The next-order contribution
comes from contracting ψi with ψ j and is of order 1/N at early
times

C(x, t1, t2) = Fd − F (x, t1, t2)

N
. (B2)

For chaotic systems with a large hierarchy between thermal-
ization and scrambling, we expect F to grow exponentially
as eλLt , where t1 = t2 = t is in the Lyapunov regime β � t �
β ln N [92]. Here λL is the Lyapunov exponent determining
the scrambling rate [90]. For a single SYK cluster (with no
spatial dependence), F (t1, t2) is determined by summing over
a set of ladder diagrams [17], leading to the self-consistency
equation

F (t1, t2) =
∫ ∞

−∞
dt3dt4KR(t1, t2, t3, t4)F (t3, t4), (B3)

where KR is the retarded kernel

KR(t1, t2, t3, t4) = −(q − 1)J2GR(t1 − t3)GR(t2 − t4)

× GW (t3 − t4)q−2. (B4)

The functions GR and GW are the retarded and Wightman
Green’s functions. The Wightman propagator is related to the
spectral function in frequency space [66]

GW (ω) = A(ω)

2 cosh(βω/2)
. (B5)

To determine the Lyapunov exponent, we follow the pre-
scription introduced in Ref. [93]. We define a variant of the
kernel with a parameter α < 0

KR
α (t, t ′) =

∫ ∞

−∞
dseαsKR

(
s + t

2
, s − t

2
,

t ′

2
,− t ′

2

)
. (B6)

We can view this operator as a matrix with its largest eigen-
value denoted by kR(α). Then the Lyapunov exponent is
determined by the equation kR(−λL ) = 1. This is equivalent
to solving for F as an eigenvector of the kernel KR with
eigenvalue one. The (0 + 1)-d SYK model is known to sat-
urate a bound on the Lyapunov exponent at low temperatures
λL = 2π/β [17,21].

The one-dimensional SYK chain allows us to study the
chaos dynamics in space. To characterize the spatial prop-
agation in a translation-invariant system, it is convenient to
first introduce the Fourier transform F (p, ω). As derived in
Ref. [66] using the ladder identity, the OTOC has a pole in
both frequency and momentum space

F (p, ω) ∼ 1

cos(λL(p)β/4)

1

ω − iλL(p)
, (B7)

where λL(p) is the momentum-dependent Lyapunov expo-
nent. By performing an inverse Fourier transform back to real
space, we find [66]

F (x, t ) ∼
∫ ∞

−∞

d p

2π

eλL (p)t+ipx

cos (λL(p)β/4)
. (B8)

At large distances and times, this integral can be evaluated
using a saddle point approximation. Depending on the pa-
rameters of our model, the integral can either pick up a
contribution solely from the saddle point ps, or from both
the saddle point and the momentum-space pole p1, both of
which are located on the imaginary axis ps,1 = i|ps,1| [66,93].
If |ps| < |p1|, the OTOC receives a contribution only from the
saddle point

F (x, t ) ∼ eλL (ps )t+ips|x| = eλL (ps )(t−|x|/vs ), (B9)

where vs ≡ λL(ps)/|ps|. Conversely, if |ps| > |p1|, the OTOC
receives a dominant contribution from the pole, resulting
in a wave-front that propagates with a maximal chaos rate
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FIG. 9. Temperature dependence of the energy diffusion con-
stants (circles) and the chaos bounds βv2

B/2π (solid lines) and v2
B/λL

(dashed lines) for different values of q. All three quantities agree in
the conformal limit.

λL(p1) = 2π/β

F (x, t ) ∼ eλL (p1 )t+ip1|x| = e
2π
β

(t−|x|/v1 )
, (B10)

where v1 = 2π/β|p1|. We can now define the butterfly veloc-
ity [54,66,93]

vB =
{
vs if |ps| < |p1|
v1 if |ps| > |p1| (B11)

Physically, vB represents the growth rate of the region where
operators have large anticommutators with the initial ψ0

i (0).
We can use the butterfly velocity to define two chaos diffusion
constants, βv2

B/2π and v2
B/λL, which are known to be closely

related to the energy diffusion constant in strange metals
[43,44,49–55,66].

In the remainder of this section, we will compute the
value of vB and show that although βv2

B/2π closely follows
the energy diffusion coefficient D at low temperatures, the
larger quantity v2

B/λL provides a true upper bound on energy
transport. Note that we only have to find the momenta ps,1.
We follow the procedure in Ref. [93]. For the SYK chain,
the retarded kernel factorizes in momentum space KR(p) =
s(p)KR, where s(p) = 1 + qJ2

1
2(q−1)J2 ( cos(p) − 1) is the spatial

kernel [43] and KR is the kernel for a single cluster with ef-
fective coupling J defined in Eq. (B4). Hence the eigenvalues
of the kernel simply get rescaled kR(p, α) = s(p)kR(α). The
momentum-dependent Lyapunov exponent can be obtained by
solving the equation kR(p,−λL (p)) = 1. The location of the
saddle can be found by solving λL(ps) = psλ

′
L(ps), while p1

is given by λL(p1) = 2π/β. Note that for q = 2, the model is
nonchaotic and the Lyapunov exponent vanishes [35,36].

We numerically diagonalize the kernel and compute
βv2

B/2π and v2
B/λL as a function of temperature. Our results

are shown in Fig. 9. At infinite temperature, both vB and λL

approach a constant. Therefore, their ratio v2
B/λL also ap-

proaches a constant, while βv2
B/2π decays to zero. At high

temperatures, we have D > βv2
B/2π , which was previously

observed in a large q expansion of this model [54]. At low
temperatures, on the other hand, we find λL = 2π/β and all
three quantities converge to the same diffusion constant D =
v2

B/λL = βv2
B/2π , as was previously shown analytically [43].

This indicates that the SYK chain is maximally chaotic in the
conformal limit. This remarkable result is a consequence of
the fact that the same reparameterization degrees of freedom

TABLE I. Diffusion constant computed exactly in various limits.

Limit q = 2 large q q = ∞

β → 0 32
15π

J2
1
J

q
q−2

J 2
1

3J
J 2

1
3J

β → ∞ J 2
1

J
q

q−2
π

6
J 2

1
J

π

6
J 2

1
J

are responsible both for energy diffusion and the OTOC chaos
dynamics [17,43].

Our results also show that D � v2
B/λL at all temperatures,

suggesting that chaos upper bounds energy diffusion.
Moreover, we see that the weaker bound D � βv2

B/2π

is violated at high temperatures [54]. It was previously
conjectured that there is a fundamental lower bound on
transport in incoherent metals D � v2τ , where v and τ are the
characteristic velocity and relaxation time respectively [49]. It
was later suggested that many-body chaos provides a natural
choice for these quantities: v = vB and τ = 1/λL [50–52].
However, we see that the inequality is precisely reversed in
our case, as was also found in other systems [44,54,55,65].
This indicates that vB and λL are not always the appropriate
scales, and there is no simple bound relating transport and
chaos in all incoherent metals [53].

APPENDIX C: EXACT CALCULATIONS OF THE
DIFFUSION CONSTANT

In Sec. IV C we introduced a simple ansatz for the
non-equilibrium contribution to the Green’s function F (t ) =
dG(0)(t )/dβ. Both the current and energy gradient have a
relatively simple form in terms of F (t ). In what follows, we
will consider the special cases where it is possible to compute
the equilibrium Green’s function G(0)(t ), and hence F (t ),
analytically. This will lead to closed-form expressions for the
diffusion constant D in various limits. In particular, we will
consider the case of q = 2, as well as the large q approxi-
mation, in the limit of zero and infinite temperatures. For the
zero-temperature limit, we will recover precisely the confor-
mal answer in Eq. (55). Our results are summarized in Table I.

1. q = 2 limit

The SYK Hamiltonian for q = 2 is equivalent to a ran-
dom hopping model of free Majorana fermions, which can be
solved exactly [17,37]. The spectral function is given by

A(ω) = 2

J

√
1 −

( ω

2J

)2
for|ω| < 2J. (C1)

In equilibrium, the greater Green’s function can be obtained
from the fluctuation-dissipation theorem

G(0)(ω) = A(ω)

1 + e−βω
, (C2)

followed by an inverse Fourier transform

G(0)(t ) =
∫ ∞

−∞

dω

2π
e−iωt G(0)(ω)

= − i

2Jt
B(2Jt ) − 1

πJ

∫ 2J

−2J
dω

sin(ωt )

1 + e−βω

√
1 −

( ω

2J

)2
,

(C3)
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where B is the Bessel function of the first kind. Finally, we
arrive at

F (t ) = − 2

πJ

∫ 2J

0
dω

ω sin(ωt )e−βω

(1 + e−βω )2

√
1 −

( ω

2J

)2
. (C4)

For q = 2, the energy gradient in Eq. (59) takes the form

∇E = J
∫ ∞

0
dt

F (t )

t
B(2Jt ), (C5)

and the current in Eq. (61) becomes

j = −J2
1

∫ ∞

0
dt

∫ ∞

t
dt ′ F (t ′)

t (t ′ − t )
B(2Jt )B(2J (t ′ − t )). (C6)

These integrals can be performed analytically in the β →
∞ limit. To leading order in 1/β, we find ∇E = −π/(6Jβ3)
and j = πJ2

1 /(6J2β3), concluding that

D = J2
1

J
(q = 2, β → ∞). (C7)

This matches exactly the conformal answer in Eq. (55), since
αK = π for the q = 2 theory [17].

On the other hand, in the β → 0 limit, we find ∇E =
−J2/8 and j = 4J2

1 J/15π . This leads to

D = 32

15π

J2
1

J
(q = 2, β → 0), (C8)

in agreement with the results presented in Fig. 4(a).

2. q → ∞ limit

We now return to the large q analysis of Sec. IV D and take
the limit of infinite q, while keeping β arbitrary. We already
have an expression for ∇E in Eq. (66), so we only have to
compute the current. When we take q → ∞, while keeping
J0 and J1 constant, Eq. (67) simplifies to

j = J 2
1 J 2

2q2

∫ ∞

0
dt

∫ ∞

t
dt ′( Re

[
eg(0) (t ) f (t )

]
Im

[
eg(0) (t ′ )] − Re

[
eg(0) (t )] Im

[
eg(0) (t ′ ) f (t ′)

])
. (C9)

We will use the ODE for f (t ) [Eq. (64)] and the explicit form of g(0)(t ) [Eq. (42)] repeatedly to simplify the equation above.
First, using the differential equation, we find∫ ∞

t
dt ′ Im

[
eg(0) (t ′ )] = − 1

2J 2

∫ ∞

t
dt ′ Im

[
g(0)(t ′)′′

] = Im[g(0)(t )′]
2J 2

, (C10)

∫ ∞

t
dt ′ Im

[
eg(0) (t ′ ) f (t ′)

] = − 1

2J 2

∫ ∞

t
dt ′ Im[ f ′′(t ′)] = Im[ f ′(t )]

2J 2
. (C11)

Next, we perform an integration by parts using the fact that Re[g(0)(0)′] = 0 and Im[ f ′(0)] = 0∫ ∞

0
dt Re

[
eg(0) (t )

]
Im[ f ′(t )] = − 1

2J 2

∫ ∞

0
dt Re

[
g(0)(t )′′

]
Im[ f ′(t )] = −

∫ ∞

0
dt Re

[
g(0)(t )′

]
Im

[
eg(0) (t ) f (t )

]
. (C12)

Plugging this back into Eq. (C9) we get

j = J 2
1

4q2

∫ ∞

0
dt

(
Re

[
eg(0) (t ) f (t )

]
Im

[
g(0)(t )′

] + Re
[
g(0)(t )′

]
Im

[
eg(0) (t ) f (t )

])

= J 2
1

4q2

∫ ∞

0
dt Im

[
eg(0) (t )g(0)(t )′ f (t )

] = −J 2
1

4q2

∫ ∞

0
dt Im

[
eg(0) (t ) f ′(t )

]
, (C13)

where in the last step we used integration by parts and
eg(0) (∞) = f (0) = 0. The last integral can be evaluated by sub-
stituting the explicit formula for f (t ) from Eq. (65)

j = J 2
1

12q2

(πv

2
sin (πv) + 2 cos2

(πv

2

))
. (C14)

Finally, combining this with Eq. (66) yields

D = J 2
1

3J

(
πv

2
sin

(πv

2

)
+ cos

(
πv

2

))
(q → ∞).

(C15)
Furthermore, we can investigate the different temperature lim-
its. If β → 0, then v → 0 and

D = J 2
1

3J (q → ∞, β → 0). (C16)

On the other hand, if β → ∞, then v → 1 and

D = π

6

J 2
1

J (q → ∞, β → ∞). (C17)

This again agrees with the conformal limit in Eq. (55), since
αK = 3 at infinite q [17].

3. Finite q corrections

In our derivation above, we took the infinite q limit first,
followed by a temperature limit. However, we can also reverse
the order to find finite q corrections to the zero- and infinite-
temperature diffusion constants. For instance, consider taking
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the limit β → 0 first. In this case, v → 0 as well, but their
ratio approaches a constant v/β → J /π . To leading order,
we approximate

eg(0) (t ) = 1

cosh2(J t )
, (C18)

f (t ) = −i tanh(J t ). (C19)

We now have an elementary solution for f (t ), which allows
us to directly evaluate the integral in Eq. (67)

j = J 2
1

2q(q − 2)

(
1 −

√
π

2

�(2 − 2/q)

�(5/2 − 2/q)

)
, (C20)

where � denotes the gamma function. Combining this with
∇E = J /2q2, we arrive at

D = q

q − 2

J 2
1

3J (β → 0), (C21)

to leading order in 1/q. A similar calculation for the β → ∞
limit results in the same prefactor

D = q

q − 2

π

6

J 2
1

J (β → ∞). (C22)

These results match the numerical values in Fig. 4(b).

APPENDIX D: SOLUTION OF THE KB EQUATIONS WITH
NON-EQUILIBRIUM AC ANSATZ

In this section, we present the KB equations for the non-
equilibrium contributions to the Green’s functions in the case
of AC transport and discuss how to solve them numerically.
We start by substituting the ansatz in Eq. (72) into Eq. (33),
and expanding to first order in F1,2(t ). All the functions can be
written in terms of the new time variables t and T . Moreover,
after a change of variables, all the dependence on T factors
out into cos(ωT ) and sin(ωT ) terms. Since the KB equa-
tions hold for arbitrary T , the prefactors in front of cos(ωT )
and sin(ωT ) must vanish independently. Therefore, each KB
equation leads to a set of two new equations as follows:

∂t F1(t ) + ω

2
F2(t ) = 2iqJ2I1(F1, F2), (D1)

∂t F2(t ) − ω

2
F1(t ) = 2iqJ2I1(F2,−F1), (D2)

−∂t F1(t ) + ω

2
F2(t ) = 2iqJ2I2(F1, F2), (D3)

−∂t F2(t ) − ω

2
F1(t ) = 2iqJ2I2(F2,−F1), (D4)

where we define the integrals

I1(F1, F2) = −
∫ t

0
dt ′(a cos(ωt ′/2) + b sin(ωt ′/2))G(0)(t ′) Im

[
G(0)(t − t ′)q−2F1(t − t ′)

]

+
∫ ∞

0
dt ′(a cos(ωt ′/2) − b sin(ωt ′/2)) Im

[
G(0)(t ′)G(0)(t + t ′)q−2F1(t + t ′)

]

−
∫ t

0
dt ′ cos(ωt ′/2)F1(t − t ′) Im

[
G(0)(t ′)q−1

] +
∫ ∞

t
dt ′ cos(ωt ′/2) Im

[
G(0)(t ′)q−1F1(t ′ − t )

]

−
∫ t

0
dt ′(a sin(ωt ′/2) − b cos(ωt ′/2))G(0)(t ′) Im

[
G(0)(t − t ′)q−2F2(t − t ′)

]

−
∫ ∞

0
dt ′(a sin(ωt ′/2) + b cos(ωt ′/2)) Im

[
G(0)(t ′)G(0)(t + t ′)q−2F2(t + t ′)

]

+
∫ t

0
dt ′ sin(ωt ′/2)F2(t − t ′) Im

[
G(0)(t ′)q−1

] −
∫ ∞

t
dt ′ sin(ωt ′/2) Im

[
G(0)(t ′)q−1F2(t ′ − t )

]
, (D5)

I2(F1, F2) =
∫ t

0
dt ′(a cos(ωt ′/2) − b sin(ωt ′/2))G(0)(t − t ′)q−2F1(t − t ′) Im

[
G(0)(t ′)

]

−
∫ ∞

t
dt ′(a cos(ωt ′/2) − b sin(ωt ′/2)) Im

[
G(0)(t ′)G(0)(t ′ − t )q−2F1(t ′ − t )

]

+
∫ t

0
dt ′ cos(ωt ′/2)G(0)(t ′)q−1 Im[F1(t − t ′)] −

∫ ∞

0
dt ′ cos(ωt ′/2) Im

[
G(0)(t ′)q−1F1(t + t ′)

]

−
∫ t

0
dt ′(a sin(ωt ′/2) + b cos(ωt ′/2))G(0)(t − t ′)q−2F2(t − t ′) Im

[
G(0)(t ′)

]

+
∫ ∞

t
dt ′(a sin(ωt ′/2) + b cos(ωt ′/2)) Im

[
G(0)(t ′)G(0)(t ′ − t )q−2F2(t ′ − t )

]

+
∫ t

0
dt ′ sin(ωt ′/2)G(0)(t ′)q−1 Im[F2(t − t ′)] +

∫ ∞

0
dt ′ sin(ωt ′/2) Im

[
G(0)(t ′)q−1F2(t + t ′)

]
. (D6)
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FIG. 10. Frequency dependence of the (a) amplitude decay and
(b) phase shift for the AC NESS solution. Filled circles represent
numerical values extracted directly from the boundary-driven NESS.
Empty circles are obtained by iteratively solving the system of equa-
tions in Appendix D. The insets show high-frequency power-law fits
to c ∼ ω−2 and δ ∼ ω−1, respectively.

Note that the second equation in each set can be obtained from
the first by changing F1 → F2 and F2 → −F1. To shorten the
notation, we also introduced the constants

a = (q − 1) + q
J2

1

J2

(
1

2

(
c + 1

c

)
cos δ − 1

)
, (D7)

b = q

2

J2
1

J2

(
c − 1

c

)
sin δ. (D8)

We solve this system of equations iteratively. Recall that
the parameters (c, δ) are not known a priori and have to be cal-
culated during each iteration. In order to achieve convergence,
we group the equations in a specific way. Our algorithm can
be summarized as follows:

(i) Solve the linear system of equations for a and b (or
equivalently c and δ)

ωF1(t ) = −2iqJ2(I1(F2,−F1) + I2(F2,−F1)), (D9)

ωF2(t ) = 2iqJ2((I1(F1, F2) + I2(F1, F2)). (D10)

(ii) Solve the integral-differential equations for F1,2(t )

∂t F1(t ) = iqJ2(I1(F1, F2) − I2(F1, F2)), (D11)

∂t F2(t ) = iqJ2(I1(F2,−F1) − I2(F2,−F1)). (D12)

We start with an initial guess for F1,2(t ) and (c, δ), and
repeat the procedure above with a weighted update at each
iteration until convergence (usually within 300 iterations). It is
worth mentioning that we can exactly recover the DC solution
F (t ) = F1(t ) = F2(t ) by setting ω = δ = 0 and c = 1 in the
previous equations.

The iterative procedure is a lot faster to compute than the
full time evolution of a boundary-driven chain and the results
are more accurate. A sample solution for ω = 5 is shown
in Fig. 7(d). The values of c and δ at different frequencies
are plotted in Fig. 10. We see a good agreement with the
numerical results extracted from the boundary-driven NESS.
Surprisingly, we find these parameters to be independent of
q. At high frequencies, we find a quadratic dependence for
the amplitude decay c ∼ ω−2. This can be easily deduced
from the scaling properties of Eq. (D1); the left-hand side
scales as ω, while the right-hand side scales as 1/ωc after
integration. For the two sides to match, we must have c ∼
ω−2. The phase scales as δ ∼ ω−1. At infinite frequency, we
expect the consecutive sites to oscillate exactly out of phase
with δ = π .
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