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We determine the spin and charge orders in the ground state of the doped two-dimensional (2D) Hubbard
model in its simplest form, namely with only nearest-neighbor hopping and on-site repulsion. At half-filling, the
ground state is known to be an antiferromagnetic Mott insulator. Doping Mott insulators is believed to be relevant
to the superconductivity observed in cuprates. A variety of candidates have been proposed for the ground state
of the doped 2D Hubbard model. A recent work employing a combination of several state-of-the-art numerical
many-body methods established the stripe order as the ground state near 1/8 doping at strong interactions. In this
paper, we apply one of these methods, the cutting-edge constrained-path auxiliary field quantum Monte Carlo
(AFQMC) method with self-consistently optimized gauge constraints, to systematically study the model as a
function of doping and interaction strength. With careful finite size scaling based on large-scale computations,
we map out the ground state phase diagram in terms of its spin and charge order. We find that modulated
antiferromagnetic order persists from near half-filling to about 1/5 doping. At lower interaction strengths or
larger doping, these ordered states are best described as spin-density waves, with essentially delocalized holes
and modest oscillations in charge correlations. When the charge correlations are stronger (large interaction
or small doping), they are best described as stripe states, with the holes more localized near the node in the
antiferromagnetic spin order. In both cases, we find that the wavelength in the charge correlations is consistent
with so-called filled stripes.
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I. INTRODUCTION

The Hubbard model [1] is one of the most studied quantum
many-body systems in condensed matter physics. With a very
simple form, it plays a crucial role in the exploration of cor-
relation effects in electronic systems. It is a “paradigmatic”
model in the realm of condensed matter physics, like the
Ising model in statistical physics. The Hubbard model hosts
rich physics with the variation of interaction strength, doping
level, temperature, and lattice geometry [2,3]. On a square
lattice, the doped Hubbard model is widely believed to be
relevant to high-Tc superconductivity in cuprates [4]. Despite
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the formal simplicity of the Hamiltonian, the Hubbard model
cannot be solved analytically, except for a few special cases in
the parameter space [5,6]. Numerical methods play a key role
in the study of the Hubbard model [2,7].

At half-filling, it is now established that the Hubbard model
has an antiferromagnetic Mott insulating ground state for any
finite value of the interaction strength [8]. What happens
when holes are added to the antiferromagnetic state may
have a crucial role to understanding the mechanism of high-
Tc superconductors [9]. Previously, a variety of ground-state
candidates were obtained with different methods, including
stripe order/spin density waves [10–13] and superconductiv-
ity [14,15]. A study in 2017 involving four state-of-the-art
numerical many-body methods concluded that, near 1/8 dop-
ing, a filled (i.e., with wavelength equal to inverse doping)
stripe state was the ground state. More evidence since then,
from other numerical methods studying systems with sizes
sufficient to accommodate the wavelength of the stripe state,
has confirmed the existence of stripe order [16–19] in the
doped Hubbard model.

The study of stripe order in the Hubbard model can be
traced back to 1980s in Hartree-Fock [20–22] and 1990s in
density matrix renormalization group (DMRG) [10] calcula-
tions. Work to study stripes in cuprate superconductors was
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also performed on the two-dimensional Hubbard model using
dynamical mean-field theory [23,24] and slave boson methods
[25]. Constrained-path auxiliary-field quantum Monte Carlo
(AFQMC) calculations showed spin-density wave states at
intermediate interaction strengths, which turned into stripe
states with increasing interaction, and determined the wave-
length of the collective modes [12]. In both the SDW and
stripe states, a unidirectional order is established with the
antiferromagnetic correlations displaying a π phase flip across
nodes. In the SDW state, the hole density variation is small.
In the stripe phase, the doped holes concentrate in the nodal
region of the spin modulation.

Stripe order is commonly observed in cuprates [26]. There
is evidence suggesting that the stripe order might be the origin
of pseudogap phase of cuprates [27] at finite temperatures
above the superconducting transition temperature. As a result
there exists a very large body of work, which focuses on mod-
eling and understanding stripe states on different models using
various analytical and numerical approaches. Even within the
Hubbard model, the connection with cuprates is still not fully
established (e.g., filled stripes vs half-filled stripes in real
materials), and there remain many questions to be addressed,
for example, many finite-temperature properties, the role of
t ′ and other terms, the presence/absence of superconductiv-
ity and its relation to stripes, etc (see, e.g., Refs. [2,3] for
recent reviews). In this paper we focus on the ground state
of the pure (t ′ = 0) Hubbard model as a fundamental model,
in particular, on the nature of the magnetic and charge or-
ders as a function of doping and interaction strength in this
model.

The Hubbard model has presented a long-standing chal-
lenge to condensed matter physics and beyond. A major
reason for this challenge is that there is often such a small
energy scale separating different types of orders (filled stripes,
half-filled stripes, spin-density waves, phase separation, su-
perconductivity, etc.) that the outcome depends delicately on
the particular system (cluster size, supercell size and shape,
boundary condition, etc.) and the particular approximation of
the applied methodology and its accuracy/convergence in the
calculations. This makes reliable predictions of the ground
state in the thermodynamic limit (TDL) very difficult and is
reflected by the wide varieties of results (often conflicting)
in the literature. As mentioned, recent work involving careful
benchmark and multimethod comparisons has led to signif-
icant progress. In this paper, we present a systematic study
to determine the ground state phase diagram of the doped
Hubbard model by scanning the doping level and interaction
strength U , with a particular focus on spin and charge orders.
We use the constrained path auxiliary field quantum Monte
Carlo (CP AFQMC) method [11,28] with self-consistently
optimized constraint [29], which is one of the methods used to
establish the stripe phase near 1/8 doping [30]. Spin and hole
density patterns are computed in very large supercell sizes to
explore possible phase transitions in the system and to deter-
mine the phase boundaries. With careful finite size scaling,
we map out the phase diagram as a function of doping level
and interaction strength U in the TDL. We find that, when
the interaction is sufficiently strong, the spin-density wave
and stripe orders persist from small doping near half-filling
to about 1/5 doping.

The rest of the paper is organized as follows. In Sec. II
we introduce the Hubbard model and the method we use. In
Sec. III we discuss the details on how to determine the pres-
ence or absence of order and the wavelength of the collective
mode in the TDL. The phase diagram is shown in Sec. IV. We
then summarize the work with a conclusion and perspective in
Sec. V.

II. MODEL AND METHODOLOGY

A. model

The Hamiltonian of the Hubbard model is as follows:

H = −t
∑

〈i, j〉;σ
c†

iσ c jσ + U
∑

i

ni↑ni↓ +
∑

i

viσ niσ (1)

where the coordinates of the lattice site labeled i are given
by ri = (ix, iy). c†

iσ (ciσ ) represents the creation (annihilation)
operator on site i, with σ = ↑,↓ being the spin of the election.
The operator niσ = c†

iσ ciσ measures the number of electrons
with spin σ on site i. We set t as the energy unit in this paper.
The first (second) term in the Hubbard model represents the
kinetic (interaction) energy. The last term is a spin-dependent
potential from an external field, which is applied to explicitly
break the SU(2) symmetry. We use the external field as a
pinning field, applied to the edges, in such a way that the
symmetry breaking allows us to measure local densities as
opposed to the more demanding correlation functions [31]. As
we illustrate below (Fig. 3), the effects of the pinning field are
negligible in the bulk of the system. So the details of the field
does not affect the characterization of the ground state. We
have also tested the cases with charge pinning field alone and
simultaneous spin and charge pinning field, and the results are
consistent with those obtained with spin pinning field only.

To characterize the spin order, we measure the staggered
spin density Si = 1

2 (−1)(ix+iy )〈ni↑ − ni↓〉 in the presence of the
symmetry-breaking pinning field mentioned above. To char-
acterize the charge order, we measure the local hole density
hi = 〈1 − ni↑ − ni↓〉. We denote the average hole density, or
doping, in the system as δ = 1 − Ne/Nsite where Ne is the
total number of electrons and Nsite = Lx × Ly the number of
sites of the lattice. In most calculations, a cylindrical geome-
try is adopted to accommodate the pinning fields. We study
rectangular lattices with either open or periodic boundary
conditions on the longer direction (x), and either periodic or
twist boundary condition on the shorter one (y). Below when
we present the results, unless otherwise specified, the default
will be cylindrical cells, namely open along x and periodic
along y. This allows us to study systems with sizes which
can accommodate one or multiple periods of density waves or
stripe order. We vary the aspect ratio of the simulation cells to
confirm the robustness of the results, as discussed in Sec. III.

B. AFQMC method and self-consistent constraint

We employ the constrained-path auxiliary field quantum
Monte Carlo (CP AFQMC) method [11,28] to calculate the
ground state of the doped 2D Hubbard model in this work.
In CP AFQMC, a trial wave function is used to control
the fermion sign problem [32,33]. In this work we employ
trial wave functions of an unrestricted Hartree-Fock form.
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FIG. 1. The spin density for 20 × 4 system with 1/10 doping
and U = 6. Upper: Staggered spin density (−1)ix+iy Sz(i) along x
direction in the self-consistent CP AFQMC calculation. Results are
averaged over different rows (iy values). The converged CP AFQMC
result agrees well with the accurate DMRG results (black line).
Lower: A color map of the converged CP AFQMC spin density,
where we can clearly see two π phase flips. Ueff is the effective
interaction strength used to generate the next step trial wave function
in the self-consistent procedure [29].

Recently, we developed a strategy to optimize the trial wave
function self-consistently to reduce the constraint error and to
minimize the dependence of results on the trial wave function
[29]. CP AFQMC has proved to be highly accurate in several
key benchmarks and, with its latest algorithmic advances, has
played an important role in the recent advances in the Hubbard
model [7,30,34].

III. DETERMINING SPIN AND CHARGE ORDERS

A. Benchmark and the effect of pinning fields

We first take the 20 × 4 cylinder with U = 6 and δ = 0.1
as an example to illustrate the method and provide a sense of
its procedure and accuracy. For a narrow cylindrical system
such as this one, DMRG [35,36] can provide highly accurate
results for benchmark. A pinning field is applied at the edges
of the cylinder to induce local antiferromagnetic order: vi↓ =
−vi↑ = 1

2 (−1)ix+iyvp for ix = 1 and ix = Lx. The strength of
the pinning field is vp = 0.5 here.

The result for the staggered spin density is shown in Fig. 1.
We start the self-consistent iteration with the free-electron
(Ueff = 0) trial wave function. The energy from the free-
electron trial wave function is −66.82(1), which is very close
to the exact (DMRG) energy of −66.74(1). (Note that the
energy computed from CP AFQMC with the so-called mixed
estimate is not variational [37]). However, the staggered spin
density from the free-electron trial wave function displays
some significant discrepancies with respect to the exact result

FIG. 2. The corresponding hole density in the same system as in
Fig. 1: 20 × 4 cylinder with 1/10 doping and U = 6. There is notice-
able discrepancy in the self-consistent CP AFQMC hole density from
the accurate DMRG result (black line). However the stripe structure
is the same.

as seen in Fig. 1. As detailed in [29], we set up a self-
consistent loop, using the CP AFQMC solution to determine a
mean-field solution with an effective U , Ueff , which minimizes
the difference between its density (or density matrix) and that
from AFQMC. This solution (which has broken spin symme-
try) is used as the new trial wave function, and the process
is iterated to convergence. After 6 iterations, the CP AFQMC
results are indistinguishable from the exact results, consistent

FIG. 3. Insensitivity of the long-range order to the strength of
the local pinning field. Staggered spin density (up) and hole density
(down) are shown for a 32 × 6 cylinder with 1/8 doping and U = 6.
The strengths of the pinning field ranges from 0.2 to 0.8. Converged
results from self-consistent CP AFQMC are shown for each system.
The pinning field has little effect on the spin and hole density,
especially in the “bulk” of the system.
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FIG. 4. Presence and absence of long-range order with supercell
system size. The staggered spin density is shown for two interaction
strengths, U = 2 (top) and U = 4 (bottom), at δ = 1/12 doping,
each for a sequence of supercell sizes. All results are for cylinders
with width 8, and the staggered spin densities are plotted along the
long (x) direction. As the length of the cylinder is increased, the
staggered spin density vanishes for U = 2 but remains a constant
for U = 4.

with previous studies [29]. The result for hole density is shown
in Fig. 2. There is still noticeable discrepancy in the converged
local hole densities, but the pattern is the same as the exact
DMRG results.

In Fig. 3, we study the effect of the strength of the pin-
ning field on the results. The system is a 32 × 6 cylinder
with U = 6 and δ = 1/8. Pinning fields are applied on the
two edges, similar to the setup in the previous example. The
strength of the pinning field, vp, is now varied by a factor
of 4, from 0.2 to 0.8. We see that both the staggered spin
density and hole density remain essentially unchanged in the
“bulk” of the system. This validation shows the viability of
probing long-range order with local pinning fields (provided
that sufficiently large system sizes can be studied).

B. Finite size scaling

At each set of system parameters (U , δ), we probe the order
in a range of (large) lattice sizes. A true ground-state long-
range order will persist with increasing system size, while a
short-range correlation induced by the local pinning field will
die out as the system size grows. This is shown in Fig. 4,
in which the spin orders are computed in width-8 cylinders
at δ = 1/12 doping, with U = 2 and U = 4, respectively. At
U = 2 the spin density in the “bulk” of the system tends
to zero as the length of the system is increased, while it is
almost unchanged at U = 4 for Lx from 24 to 72, displaying a
spin-density wave (SDW) with a consistent wavelength.

As a more quantitative probe of the order, we calcu-
late the spin structure factor Ss(k) = 1

N

∑
ri

ei k·ri〈ni↑ − ni↓〉,
where k = (kx, ky), with kx = nx 2π/Lx and ky = ny 2π/Ly

(nx ∈ [0, Lx ) and ny ∈ [0, Ly) are integers). The results are
shown in Fig. 5. At U = 4, a peak is seen in the spin structure
factor at kp = ((1 − δ)π, π ), i.e., ( 11

12π, π ) in this case, which

FIG. 5. Spin structure factor Ss(kx, π ) for a variety of simula-
tion cell sizes, at two interaction strengths, U = 2 (top) and U = 4
(bottom). All systems are at δ = 1/12 doping. A peak is seen at
kx = 11

12 π . With the increase of Lx , the peak decreases and vanishes
at U = 2 but saturates at U = 4. Note the different vertical scales in
the two panels.

agrees with the wavelength of the SDW in Fig. 4. The height
of the peak saturates among the larger supercells. At U = 2,
a smaller peak is also present at kp. However, the value of the
peak decays as system size Lx is increased.

We next perform a finite size scaling of the values of the
spin structure factor at kp (the peak position). In order to
reach the TDL, we extrapolate Ss(kp), first as a function of
the width (Ly) of the system, followed by an extrapolation
as a function of the length (Lx ). This procedure is shown
in Fig. 6. At U = 2 (left panel), the extrapolated values for
Lx = 24, 48, and 72 are 0.060(1), 0.029(5), and 0.018(3) re-
spectively, while at U = 4 (middle panel), the corresponding
values are 0.120(5), 0.117(6), and 0.125(3). Extrapolations
of these results with Lx yield the following values of the
spin structure factor at the TDL: −0.003(5) at U = 2 and
0.123(9) at U = 4. From these results we conclude that, for
doping δ = 1/12, a spin order is absent at U = 2 but present
at U = 4. (These two points are indicated as points A and
B in the phase diagram in Fig. 9.) We systematically apply
this procedure to determine the presence of order for each set
of Hamiltonian parameters, hence an estimate of the critical
interaction strength Uc for the appearance of an SDW or stripe
order, and map out a phase diagram for U � 12.

C. Determining the wavelength of the collective modes

We find that a modulated spin order appears for doping
values up to about δ ∼ 1/5, often accompanied by charge or-
ders. We will further discuss the properties of these collective
modes and provide a detailed phase diagram below.

Here we describe our investigation of the wavelength of
the collective mode in the spin and charge order in the ground
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FIG. 6. Finite size scaling of the spin structure factors in Fig. 5. An extrapolation with Ly is performed for each set of cylinders with the
same length, shown in the left panel for U = 2 and middle panel for U = 4. This is followed by an extrapolation with respect to the length of
the cylinders,Lx shown in the right panel for both U values. At the TDL, the peak value of the spin structure factor vanishes for U = 2, while
it reaches a finite value for U = 4.

state. We first illustrate the procedure using the case of δ =
1/12 and U = 4 as an example. In Fig. 7, we vary the length
of the cylinder (hence also Ne, in order to maintain the same
δ) while keeping the width fixed at Ly = 6. A pinning field of
strength vp = 0.5 is applied only at the left edge (ix = 1) and
periodic boundary condition (PBC) is used along x direction.
For y direction, twist average boundary condition (TABC) is
used to further reduce the finite size effects [38]. From Fig. 7,
we see that the staggered spin density becomes strongest, and
frustration is minimized when Lx = 24. The corresponding
charge order also forms a regular wave with hole density peaks
at the nodal position of the spin order. This is consistent with
a wavelength of 2/δ for the SDW and 1/δ for the CDW. At
larger interaction strengths, the SDW evolves into a stripe

FIG. 7. Staggered spin (top panel) and hole (bottom) densities
at δ = 1/12 doping and U = 4, in width-6 cylinders as the length
Lx is varied. Results are omitted at the left edge (ix = 1), where
the pinning field is applied. When Lx is commensurate with the
expected wavelengths for spin and charge orders (2/δ and 1/δ), the
spin and charge density waves are least frustrated and have the largest
amplitude.

order [12], and our results suggest that the stripes are filled.
We use this procedure, combined with finite-size scaling as
discussed in Sec. III B, to establish the order in the TDL and
determine its wavelength. More examples are shown in the
Appendix.

Recent studies from DMRG [39] and the minimally en-
tangled typical thermal states (METTS) [27] methods have
found half-filled stripes in width-4 cylinders. For example, at
U = 12 half-filled stripes are identified as the ground state
for all doping values below ∼1/9 [39], while from METTS
δ = 1/16 at U = 10 is seen to exhibit half-filled stripe or-
der at very low temperatures [27]. Our calculations suggest
that, in the pure Hubbard model, the half-filled stripe state
appears to be special to width-4 cylinders, and filled stripes
become the ground state in wider cylinders. In Fig. 8, we
show an example of δ = 1/12 and U = 12, in four different
simulation cells—two with-4 cylinders, 24 × 4 and 48 × 4,

FIG. 8. Different behaviors in width-4 (top panel) and width-8
(bottom) cylinders. Staggered spin densities are shown for δ = 1/12
doping with U = 12. The red curves show results for cylinders of
length Lx = 24, while the blue curves show those with Lx = 48.
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TABLE I. Comparison of the computed energies per site in the
half-filled and filled stripe states at U = 12 and δ = 1/12, in cylin-
ders with widths 4 and 8, and lengths 24 and 48. The system setup
is the same as in Fig. 8. Half-filled stripe state has lower energy in
width-4 systems but higher energy in width-8 systems. A correction
has been applied to the energies to account for finite Trotter step size
[28].

Lattice Half-filled stripe Filled stripe

24 × 4 –0.5639(1) –0.5630(1)
48 × 4 –0.5583(2) –0.5569(2)
24 × 8 –0.5596(2) –0.5613(2)
48 × 8 –0.5532(2) –0.5541(2)

and two width-8 cylinders 24 × 8 and 48 × 8. Each calcu-
lation is performed following the same procedure that we
have outlined. We see that the half-filled stripe is indeed
the ground state for width-4 cylinders upon convergence of
the self-consistent AFQMC. For width-8 cylinders, however,
the ground state corresponds to filled stripes. We also com-
pare the computed energies of half-filled and filled stripes at
U = 12 and δ = 1/12 in Table I. We find that the energy for
half-filled stripe is lower than that of the filled stripe in width-
4 systems but this trend is reversed in width-8 systems. These
results indicate that the half-filled stripes in width-4 cylinder
are affected by finite size effects, and the stripes become filled
at the TDL.

Recent studies in larger cells, for example using variational
Monte Carlo [16], have suggested that the spin order might
show wavelengths of α/δ, where α is neither 1 (half-filled)
nor 2 (filled), for instance displaying a metallic state with α

being a fraction. We searched in a few such cases but did
not find a stripe state with fractional α. Below we show an
example at U = 8 and δ = 1/12. We computed the energies
using trial wave functions with several different wavelengths,
without invoking the self-consistency loop in the constraint.
(In these cases the QMC results turned out to stay with the
same wavelength, indicating that such a state is close in energy
to the true ground state, as seen from the results below.)
PBC is applied along both directions and the pinning field is
removed, in order to allow direct comparison of the energies.
As seen in Table II, in the 48 × 6 lattice, the energy from the

TABLE II. Comparison of the energy per site in the half-filled
(λ = 6), 2/3 filled (λ = 8), and filled (λ = 12) stripe states at U = 8
and δ = 1/12 in two different lattice sizes. Fully periodic supercells
are studied here, with no pinning fields. Half-filled stripe state has
the highest energy in both systems. The 2/3-filled stripe state has the
lowest energy in the width-6 supercell, while its energy is indistin-
guishable from that of the filled stripe state in the width-8 supercell.
Both self-consistency and the use of a linear combination of trial
wave functions with different stripe fillings lead to the filled stripe
state as the ground state.

Lattice λ = 6 λ = 8 λ = 12

48 × 6 –0.6820(2) –0.6862(2) –0.6855(2)
48 × 8 –0.6821(2) –0.6854(2) –0.6852(2)

FIG. 9. Phase diagram of spin and charge orders in the pure
Hubbard model. The black curve gives a rough estimation of the
phase boundary based on the green squares representing parame-
ters with modulated AFM spin order and red cycles representing
those without. The black dashed curve is the phase boundary
from unrestricted Hartree-Fock [40] for reference. A (U = 2, δ =
1/12) and B (U = 4, δ = 1/12) denote the two examples shown in
Figs. 4–6.

2/3 filled stripe state (λ = 8) is slightly lower than filled stripe
state (λ = 12), and both state are lower than half-filled stripe
state (λ = 6), which is consistent with the result obtained in
Ref. [16]. (Note that the best variational wave function gives
an energy that is ∼0.013t per site higher.) In the 48 × 8 lattice,
the energies of the filled and 2/3 filled stripe state are al-
most degenerate. We next performed a calculation with a trial
wave function constructed from a linear combination of all
three states, and the result is a filled stripe state. We thus
conclude that, to within our resolution, the ground state is a
filled stripe state.

IV. PHASE DIAGRAM

Using the procedure described in the previous section, we
map out the phase diagram of the spin and charge orders in
the ground state of the pure two-dimensional Hubbard model
(t ′ = 0) in the TDL, from weak (U ∼ 0) to fairly strong
(U ∼ 12). The results are summarized in Fig. 9. We find
that, up to a doping value of δ ∼ 0.2, there exists a critical
interaction strength Uc(δ), above which the system exhibits a
collective mode of a modulated AFM order. The spin order
has wavelength 2/δ, and is accompanied by a charge order of
wavelength 1/δ, in which the hole density tends to be higher
at the nodes of the spin order.

At weaker U [above Uc(δ)] or larger doping, the charge
order is weak. In these states the hole density is not van-
ishingly small away from the nodes of spin order; in fact
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FIG. 10. Similar as Fig. 7. The staggered spin and charge densities are shown for 1/10 doping (U = 5), 1/8 doping (U = 6) and 1/6
doping (U = 8).

the hole density remains substantial throughout space and
is either constant or only shows a slow-varying wave with
modest peaks at the nodes of the modulated AFM. We have
referred to such states as SDWs (which can have charge or-
der). As the interaction strength is increased and the doping
is reduced, the SDW states evolve into stripe states, where
the holes become more and more localized at the nodes.
The distinction between the SDW and stripe states is not
absolute, but it is important to emphasize that a modulated
AFM order can exist with two different kinds of behav-
iors for the holes: mobile and wave-like vs localized and
particle-like [12].

In Fig. 9, green squares represent parameters which lead
to a ground state with SDW or stripe order in the TDL, while
red circles represent those which do not. Within Hartree-Fock
diagonal stripes are found to be more stable than linear (along

FIG. 11. Staggered spin (up) and hole (down) density at 1/12
doping for different U values. The stripe order develops with U � 4.

x- or y direction) stripes at large U [40]; diagonal stripes
were also found to be close in energy with linear stripe state
in the doped t-J model [13,41]. We searched for diagonal
stripes in the Hubbard model in the parameter regime studied
here, but did not find them to be the ground state. (More
details are given in the Appendix.) Note that results from an
inhomogeneous dynamical mean-field theory (iDMFT) study
[42] are in reasonable agreement with our results.

Based on our results, we show an estimate for the phase
boundary as a solid black line in Fig. 9, whose position is not
to be taken literally but which is bracketed by the data points
around it. (In the Appendix, we show two example scans, one
fixed at U = 6 varying δ, and the other at δ = 1/12 varying U ,
to illustrate how the waves evolve across the transition line.)

From the results, we see that the critical interaction
strength Uc(δ) increase with the doping level δ. Nothing spe-
cial is seen around the doping value of δ = 1/8. The SDW
or stripe order persists from small doping near half-filling to
doping levels as large as 1/5.

As discussed in more detail in Sec. III C, we did not
find phase separation or non-filled SDW/stripe orders which
survived in our finite-size scaling procedure. This of course
does not completely rule out such phases, because of the
delicate nature of the different competing states and sensitivity
to finite-size and other effects, as well as possible systematic
errors in the calculation. However, it does provide a rather
stringent screening of other possible states, given the high
accuracy and extensive nature of these calculations.

V. CONCLUSION AND PERSPECTIVE

Employing state-of-the-art AFQMC methods with self-
consistent constraint and performing finite-size scaling to
large simulation cell sizes, we map out the ground-state phase
diagram of the doped 2D Hubbard model regarding the spin
and charge orders as a function of doping δ and interaction
strength U . Modulated SDW or stripe orders are found to exist
for doping as large as ∼1/5 with sufficiently large U . The
period of the spin (charge) density wave was found to be 2/δ

(1/δ), which implies that the ground state stripes (at larger U )
are filled. Our results show that stripe/SDW exists not only

013239-7
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FIG. 12. Staggered spin (up) and hole (down) density at U = 6
for different dopings. Order only develops with δ � 1/8.

in the vicinity of 1/8 doping, but also extends to very small
doping near half-filling and to the overdoped region. Recent
experiments in cuprate [43] found that stripe order exists with
doping beyond the superconducting dome, remaining observ-
able for as large as δ ≈ 0.21. In the future, it will be interesting
to study how the phase diagram changes with the inclusion of
a small next-nearest hoping t ′. The inclusion of t ′ frustrates
the antiferromagnetic order at half-filling and we anticipate
that it will cause the critical interaction Uc to increase for a
given doping level, and potentially change the properties of
the orders. Superconductivity is found to be absent in the pure
Hubbard model [34] and very recent results indicate that a
small positive t ′ can induce superconductivity in the doped
t-J model [44–46]. The relationship between stripe and su-
perconductivity is an important topic for future investigation.
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APPENDIX A: FILLING OF STRIPES

In Fig. 10, we show additional results for the spin and
hole densities in three other systems to supplement Fig. 7:
δ = 1/10 and U = 5, δ = 1/8 and U = 6, and δ = 1/6 and
U = 8.

APPENDIX B: EXAMPLES OF PARAMETER SCANS
IN THE PHASE DIAGRAM

In Fig. 11, we show how the spin and charge orders evolve
as a function of U at fixed doping δ = 1/12. The system is a
cylinder with size 8 × 48. A modulated AFM order develops
only when U � 4. Similarly, in Fig. 12, we show the results
of a scan at fixed interaction strength U = 6, in systems of
size Lx × 6, with Lx from 32 to 48 to accommodate 1/4, 1/8
1/10, and 1/12 doping. As can be seen, no order is present
until δ � 1/8.

APPENDIX C: DIAGONAL VS. LINEAR STRIPES

In Hartree-Fock calculations, stripe states in the diagonal
direction were observed at small doping and large U [40].
Studies using dynamical mean-field theory (DMFT) with ex-
act diagonalization solvers also predicted diagonal stripes for
δ < 0.05 [23]. In Table III, we present energy comparison for
linear and diagonal stripe state at U = 12 for 1/16, 1/24, and
1/32 dopings. The energies are calculated with TABC to min-
imize finite size effect [38]. As we can see in Table III, in our
calculations the linear stripe order always has a lower energy
than the diagonal stripe for doping as low as δ = 1/32. Our
systematic calculations at δ = 1/32, U = 2 and δ = 1/24,
U = 5 also yielded a linear SDW or stripe state.
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