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Self-bound dipolar droplets and supersolids in molecular Bose-Einstein condensates

Matthias Schmidt ,1 Lucas Lassablière ,2 Goulven Quéméner,2 and Tim Langen 1,*

15. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart,
Pfaffenwaldring 57, Stuttgart 70569, Germany

2Université Paris-Saclay, CNRS, Laboratoire Aimé Cotton, Orsay 91405, France

(Received 15 November 2021; accepted 24 February 2022; published 28 March 2022)

We numerically study the many-body physics of molecular Bose-Einstein condensates with strong dipole-
dipole interactions. We observe the formation of self-bound droplets, and explore phase diagrams that feature a
variety of exotic supersolid states. In all of these cases, the large and tunable molecular dipole moments enable
the study of unexplored regimes and phenomena, including liquidlike density saturation and universal stability
scaling laws for droplets, as well as pattern formation and the limits of droplet supersolidity. We discuss a
realistic experimental approach to realize both the required collisional stability of the molecular gases and the
independent tunability of their contact and dipolar interaction strengths. Our work provides both a blueprint and
a benchmark for near-future experiments with bulk molecular Bose-Einstein condensates.
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I. INTRODUCTION

Quantum fluctuations can stabilize dipolar Bose-Einstein
condensates against their mean-field collapse [1–4]. This
counterintuitive behavior leads to a rich phase diagram that
contains, for example, self-bound quantum droplets [5,6] and
supersolid states [7–10]. While many aspects like rotonic
excitation spectra [11–19], anisotropic superfluidity [20,21],
droplet formation [1,6,22], crystallization in one dimension
(1D) [23–28], two dimension (2D) [3,18,19,29,30], and into
more exotic patterns [31,32] have been extensively discussed
for weakly dipolar magnetic atoms, systematic studies for
molecules, with their much larger and tunable electric dipole
moments, have so far remained scarce. Here we show that
Bose-Einstein condensates of ground-state molecules are
ideal candidates to further explore the rich phase diagrams of
dipolar Bose gases in experiments [33].

Our work is motivated by the recent extraordinary progress
in the preparation of molecular ensembles at ultracold tem-
peratures. This includes progress in magnetoassociation from
ultracold atoms [34], which has recently led to the creation
of a collisionally stable degenerate Fermi gas [35–37]. It also
includes progress in direct laser cooling of molecules, where
the achievable phase space densities have increased by almost
ten orders of magnitude over the last few years [38–43].
Further cooling for various molecular species is expected
to be possible through loss shielding [44–47] and colli-
sional cooling [45,47–51]. With this progress, a Bose-Einstein
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condensate (BEC) of strongly dipolar ground state molecules
is now within experimental reach.

Previous theoretical studies have investigated molecular
Bose gases with dipolar interactions in various scenarios from
the weakly to the strongly interacting limit in lattices and in
bulk systems [52–61]. Purely dipolar systems have also been
used to study crystallization [62–64], localization [65], and
topological states [66].

In this work we apply the extensive toolkit pioneered for
the understanding of magnetic BECs to explore the many-
body physics that can be observed with a future molecular
BEC. Moreover, we discuss in detail how to achieve colli-
sional stability of the molecules, such that molecular losses
can be neglected in our simulations. We further demonstrate
how the required interaction parameters for contact and dipo-
lar interactions can realistically be achieved in experiments.

In the following we will focus on NaRb molecules, which
have a permanent electric dipole moment of dp = 3.2 D
[67–69]. This value corresponds to a dipolar interaction
strength that is up to three orders of magnitude larger than the
one in magnetic atoms like dysprosium or erbium. We empha-
size that, given the universal nature of the collisional processes
on the one hand [70,71] and the the scaling properties of the
extended Gross-Pitaevskii equation on the other hand [32], the
results presented in the following can easily be generalized to
other molecules, including typical laser-coolable species.

II. EXTENDED GROSS-PITAEVSKII THEORY

We model the molecular BEC using the extended Gross-
Pitaevskii equation (eGPE) [1,4,72]

ih̄ ∂tψ = (Ĥ0 + g|ψ |2 + �dd + gqf |ψ |3)ψ, (1)

where the wave function ψ ≡ ψ (r, t ) is normalized to the
molecule number N = ∫ |ψ |2d3r and Ĥ0 = − h̄2�

2m + Vext (r)
describes the motion of a single molecule in an external
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harmonic trapping potential Vext (r)= m
2 (ω2

x x2+ω2
y y2+ω2

z z2).
Here m denotes the molecular mass of the molecules and
ωx,y,z are the trapping frequencies in the spatial directions
r = (x, y, z).

The short-range contact interaction between the molecules
is characterized by the coupling constant g = 4π h̄2as/m,
where as is the s-wave scattering length. As molecules can
be lost from two-body processes, as is in general a complex
quantity, with the imaginary part related to the losses. We
consider here the case with no losses so that the imaginary
part of as is set to zero. We will see in Sec. V how to do so.

The mean-field potential �dd of the dipole-dipole interac-
tion (DDI) is given by �dd = gdd

∫
d3r′|ψ (r′)|2U (r − r′) with

gdd = 4π h̄2add/m being the DDI coupling constant [72]. Here
we have introduced the dipolar length add = d2m/12π h̄2ε0 to
characterize the strength of the dipolar interaction, with ε0 the
vacuum dielectric constant. For molecules, the dipolar length
is mediated by the induced dipole moment d , which depends
on the value of an applied static electric field Edc that polarizes
the molecules. This induced dipole moment represents the
expectation value of the permanent dipole moment dp in a
given rotational state along the electric field axis, taken as
the quantization axis in the z direction. In this configuration,
the geometric part of the interaction potential is given by
U (r) = (3/4π )(1 − 3z2/r2)/r3, with r = |r|.

Typical values for add realized in magnetic atoms are
16 a0 for chromium [72], 65 a0 for erbium [22], and 130 a0

for dysprosium [73], with the Bohr radius a0. For NaRb
molecules, add can, in principle, be tuned to any value between
zero (unpolarized molecules) and 1.1×105 a0 (fully polarized
molecules), depending on the value of the applied external
electric field.

We further consider beyond mean-field contributions from
quantum fluctuations, which play a crucial role in dipolar
systems [2,74]. We include them in the mean-field description
using a local density approximation. The corresponding Lee-
Huang-Yang (LHY) correction is given by gqf |ψ |3, with gqf =
(32/3

√
π )ga3/2

s (1 + 3ε2
dd/2), and εdd = add/as denoting the

relative dipolar strength.
We find the ground states of this system, both in free space

and in the presence of an external trapping potential, using
imaginary time evolution. Details of our numerical procedure
to solve Eq. (1) have been discussed in detail in previous
works [16,19,75].

The richness of this system is a result of the different
scaling of the individual terms in Eq. (1) with density. This
leads to a complex interplay of mean-field contact and dipo-
lar interactions, and their respective beyond mean-field LHY
corrections. In particular, fine-tuned situations can arise where
the small repulsive beyond-mean-field contributions dominate
over large attractive mean-field terms, leading to a stabiliza-
tion of systems that would collapse on the pure mean-field
level. Naturally the resulting stability and phase diagrams
depend crucially on the exact magnitude of the beyond mean-
field LHY contributions. The validity of approximations made
to incorporate these contributions is a topic of ongoing investi-
gations [1]. Our study is thus not only motivated by the search
for novel states of matter inaccessible to existing experiments,

but also by the need to identify situations where the validity
of the eGPE can be benchmarked systematically.

III. SELF-BOUND DROPLETS

We start by investigating a molecular BEC in free space
without the presence of an external trapping potential. In this
configuration a regular BEC is an unstable solution of the
eGPE, since the overall mean-field energy is positive. How-
ever, for suitable interaction strengths and molecule numbers
above a certain critical number Ncrit a self-bound droplet can
emerge, which is stabilized by the repulsive LHY contribu-
tions [1,2,5,6,22].

In a first step we investigate the influence of the dipolar
length add on Ncrit . To find Ncrit numerically we follow the
established procedure to first compute the droplet ground state
at a molecule number of N = 15×103, which is much larger
than Ncrit for all parameters considered [73]. In a second
step, we temporarily include three-body losses by adding the
term ĤL3 = −ih̄L3|ψ |4/2 to the Hamiltonian of Eq. (1), with
L3 a three-body loss coefficient. We then simulate the time
evolution of the system under the influence of these losses to
identify the molecule number where the droplet is no longer
stable.

Apart from this numerical procedure, and in analogy with
the absence of two-body losses, we will assume that three-
body losses are zero. This assumption is supported by recent
experiments with KRb molecules [44,51] and will be further
discussed in Sec. VI.

In Fig. 1(a) we present the results for several moderately
large values of add up to 600 a0. While these values signifi-
cantly exceed the values realized in the most magnetic atoms,
they are easily achievable in many molecules.

For a specific dipolar length add the critical molecule num-
ber increases as a function of scattering length, and higher
values of add require higher scattering lengths for stabiliza-
tion. This can intuitively be understood as larger values of add

lead to larger dipolar attraction within the elongated droplets.
In order to achieve stability for a fixed molecule number, this
attraction needs to be compensated by a higher repulsion from
the contact interaction. As an example, for N = 2000 and the
values of add considered, values of the scattering length on the
order of as ∼ 0.6 add are required for stability.

Our results highlight how independent tuning of the dipolar
strength and the s-wave scattering length will be imperative
for the realization of molecular droplets. However, while the
critical molecule number changes with both add and as, it is
expected to be a universal function of their ratio εdd within
eGPE theory. This behavior is known since the early work
on quantum droplets [5] and is reproduced well by our simu-
lations, as shown in Fig. 1(b). Molecular BECs, despite being
much more strongly dipolar than magnetic BECs, will thus al-
low the exploration of a similar region of this universal curve.
This provides an interesting setting to cross-validate results.
In particular, previous experiments with magnetic dysprosium
BECs have shown indications of a systematic shift from the
universal prediction [73]. This shift has been attributed, for
example, to finite temperature corrections to the scattering
problem [77] and to approximations in the derivation of the
LHY term in the eGPE [1]. Performing similar experiments
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FIG. 1. Stability of self-bound molecular droplets. (a) Critical
molecule number Ncrit for several values of the dipolar length. For
a fixed dipolar length the critical molecule number increases as a
function of the scattering length as. The first value, add = 130 a0,
coincides with the value in dysprosium, the most magnetic atomic
species. For larger add, the required scattering length as for stabiliza-
tion increases. (b) Rescaling shows that Ncrit is a universal function
of the dipolar strength εdd [5]. As Ncrit scales strongly with εdd,
measurements of this universal function can be a sensitive test of
the microscopic collisional processes and the underlying many-body
physics.

with molecules over a large range of different add will thus
be a powerful benchmark both for the underlying collisional
theories and the LHY term in the eGPE.

Next, we investigate the density distribution of the droplets.
A striking feature of quantum droplets is the liquidlike
saturation of their central density, in analogy to the behav-
ior of water or helium droplets [78–80], but at orders of
magnitude lower density. In magnetic quantum gases, reach-
ing this saturation limit requires atom numbers significantly
beyond current experimental capabilities [81]. As a conse-
quence, density saturation has so far not been observed in
equilibrium.

In Fig. 2(a) we show the density distribution of droplets for
various dipolar lengths and molecule numbers. The droplet
size increases strongly with increasing dipolar length add

and molecule number N . The increase along the polarization
axes of the dipoles is larger than for the radial size of the
droplets. Such large droplets constitute an ideal platform to
study questions of elementary excitations [2,82], self-bound
vortex droplets [83], and thermalization [84]. These questions
are well studied for helium droplets [78,79], but remain ex-
perimentally unexplored for dipolar droplets.

The characteristic saturation of the density is clearly vis-
ible as a plateau that emerges in the density distribution in

FIG. 2. Droplet density saturation. (a)–(c) Density distributions
n(r, z) of self-bound droplets for several molecule numbers N and
dipolar lengths add, plotted along the droplets’ radial (r) and axial
(z) directions. The droplets are strongly elongated, with the axial
size being an order of magnitude larger than the radial size. In
these plots εdd = 2, and the axial direction is along the polarization
direction of the molecules. The density in the center of the droplet
increases for larger N , until a saturation density nsat is reached and
the incompressibility of the droplet prevents a further increase of the
density. This leads to a characteristic flat-top density distribution. For
increasing add (b) and (c) the saturation density is reached already
for smaller molecule numbers and the density distribution develops
larger saturated regions in the center. (d) We study the decrease
of the saturation density nsat with increasing dipolar strength up to
large values exceeding add ∼ 20×103 a0. Notably, this decrease can
qualitatively also be understood by a variational model (solid line)
[76].

the center of the droplet. In particular, for increasing add

one observes that the saturation density is reached already at
much lower molecule numbers. We have confirmed that this
behavior continues up to much stronger dipolar interactions
exceeding add = 2×104 a0. As shown in Fig. 2(d), this can
also qualitatively be explained using a variational ansatz [76].
Notably, from further simulations including also a weak trap-
ping potential, we find that once in the saturated regime, the
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FIG. 3. Supersolid states of trapped molecular BECs. (a) Phase diagrams for various dipolar lengths add. For each add, bloodcell-shaped
BECs (b) can be transformed into various symmetry-broken states including droplet arrays (c), honeycomb (d), stripe and labyrinth (e) and (f),
and pumpkin patterns (g), in which each exhibit different sizes and shapes depending on the parameters. Note how the example honeycomb
pattern in (d) exhibits a density distribution that is the exact inverse of the droplet state (c). The parameters required to realize the individual
patterns shift towards smaller molecule numbers N with increasing dipolar length add, bringing the corresponding states within realistic
experimental reach.

peak density only depends on as and add, but not significantly
on the trapping geometry.

The limitation of the density to values that are significantly
below the ones typically encountered in magnetic atoms has
several practical consequences. First, it guarantees that the
quantum depletion remains small, na3

s � 1 and na3
dd � 1,

throughout the parameters studied here. While the gases stud-
ied are strongly dipolar, they thus remain in a regime, where
the description with the eGPE is expected to be valid. It
will be interesting to explore experimentally for how large
values of add this is actually still the case. Second, even for
moderately large values of add, reaching the saturation limit
will require much lower particle numbers. This brings an
observation of this characteristic property of quantum droplets
within experimental reach. Third, due to the significantly
lower densities, we expect that long-lived droplets could more
easily be formed and studied using dipolar molecules, even if
residual losses are present.

IV. SUPERSOLID STATES

We now move from single droplets in free space to
supersolid arrays of multiple droplets in trapped samples.
A supersolid is a counterintuitive state, where matter self-
assembles into a crystal-like arrangement, but at the same
time, still flows without friction. Such a state is thus char-
acterized by a simultaneous breaking of gauge invariance
and translation symmetry. Following an ongoing, decade-long
search for supersolids in solid helium 4He [85,86], they have
recently been observed in magnetically dipolar quantum gases
[1,8–10].

In addition to the experimentally observed droplet su-
persolids, it has been shown theoretically that approaching
the saturation density limit is connected to the emergence
of other exotic supersolid states [31,32,87]. Rather than be-
ing formed by droplet arrays, these states are characterized
by more complex density patterns. This behavior is closely
related to pattern formation dynamics in other nonlinear
systems, ranging from classical ferrofluids and biological sys-
tems to geological structures and the physics of neutron stars
[88].

However, as for the saturation of individual droplets, these
more complex states are so far out of reach for experiments
with magnetic atoms, due to limited atom numbers. As the
decrease of the saturation density observed above in free space
should approximately translate into trapped systems, we intu-
itively expect these states to be more accessible in molecular
systems.

In the following we confirm this intuition by studying the
possible ground states of a molecular BEC in a harmonic
trapping potential. We consider an oblate potential with trap
frequencies ωx,y,z = 2π×(100, 100, 200) Hz, and map out the
phase diagrams for various dipolar lengths add. Scaling rela-
tions allow us to easily generalize the results for this trap to
other sets of parameters [32].

The results of our simulations are shown in Fig. 3. We
find a wide variety of different phases, which include the
well-known droplet arrays, but also honeycomb and pumpkin
phases, as well as nearly degenerate ring and labyrinth states,
which have recently gained significant interest [31,32,87]. The
latter all show strong density links between the individual
crystal sites, which highlights their supersolid nature. Notably,
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we find that these more exotic phases become more dominant
as add is increased, hence increasing the size of the supersolid
region in the phase diagram.

More specifically, for sufficiently large scattering lengths
as the system is in the BEC phase for all add. Reducing as leads
to a softening of rotonic modes that triggers the breaking of
the translational symmetry [19]. Still within the BEC regime
this yields bloodcell-like ground states [89], where molecules
accumulate on the outer rim of the BEC [Fig. 3(b)]. For even
lower as, crystalline patterns with length scales associated
with the inverse roton momentum appear. Interestingly, the
critical scattering length required to form these symmetry-
broken states decreases with higher molecule number, which
is due to the more dominant role played by quantum fluctua-
tions at higher densities [32].

For small values of add that are comparable to the situation
in magnetic quantum gases, the phase diagram is largely dom-
inated by supersolid and isolated arrays of droplets arranged in
triangular patterns. An example density distribution is shown
in Fig. 3(c). Details of the transition from BEC to supersolid
to isolated droplet arrays [9,16] are discussed further in the
Appendix. At these small values of add, honeycomb patterns
[Fig. 3(d)] emerge only at very high molecule numbers and
scattering lengths. The emergence of these patterns can in-
tuitively be connected to the density saturation of the droplets
forming a droplet array. Once saturated, they can only respond
to an increase in particle number by growing in size. For
a sufficiently high particle number, it becomes energetically
favorable for the system to invert its density distribution, accu-
mulate density in between the original droplet locations, and
thus form a honeycomb pattern instead.

In between these two extremes, the system can form a
pattern that consists of elongated density stripes [Figs. 3(e)
and 3(f)]. Depending on the exact parameters, these stripes
can be straight or curved, forming labyrinth structures, rings,
or pumpkins [Fig. 3(g)]. As previously discussed, we find that
the different morphologies of the labyrinth patterns are near
degenerate in energy [32], and only slightly lower in energy
than the stripe patterns. A particular interesting question to
address experimentally in this case is thus, whether the large
scale degeneracies between different labyrinth patterns are ro-
bust, i.e., whether the labyrinths really exist, or whether more
symmetric stripe states with slightly higher energy dominate.

As add increases, the transitions to the various patterns shift
towards significantly smaller N , from initially over several
hundred thousand particles to a few thousand particles. This
brings them within the realm of realistically achievable parti-
cle numbers. We anticipate that experiments mapping out the
phase diagrams would, beyond being of fundamental interest,
constitute another sensitive test of LHY beyond mean-field
effects.

The systematic reduction of the peak density in the trapped
system for larger add is further highlighted in Fig. 4, where
we study it for two different example molecule numbers (20×
and 200×103, respectively). In the BEC regime an increase
in molecule number leads to an increase in peak density,
as expected for a gas. Moreover, there is only a weak de-
pendence of the peak density on εdd. Both observations are
well captured also by a variational approach for dipolar BECs
(see the Appendix).

FIG. 4. Transition from BEC to symmetry-broken states.
(a) Peak density nmax of the states in the phase diagrams from Fig. 3.
The circles (squares) denote states with N = 20×103 (200×103),
respectively, and correspond to vertical cuts through the phase di-
agrams. The kink in the curves determines the transition between
BEC and symmetry-broken states. While the density increases for a
larger molecule number in the BEC, the difference between states
with different N vanishes for the symmetry-broken states, indicating
the presence of density saturation. (b) The scattering length required
for the transition from a BEC to the symmetry-broken states shows
a nonmonotonous behavior with a maximum at add ∼ 1000 a0. The
inset shows the corresponding required εdd. (c) The peak density at
the transition point decreases strongly with add for both molecule
numbers. The solid lines are power-law fits, revealing a so far un-
known scaling property of the eGPE. The inset is a double-log plot
of the same data, further highlighting the power-law behavior. All
dashed lines are a guide to the eye.

As the transition to the symmetry-broken states is crossed,
the peak densities start to increase significantly and the differ-
ence between states with different N quickly approaches zero,
indicating—again—a liquidlike saturation of the density. We
find that the values for nmax in this saturated regime are within
a factor of 2 of the saturation density nsat predicted from
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the variational ansatz [76], which we previously discussed
for free droplets in Fig. 2(d). The residual difference can be
attributed to the presence of the confinement and the different
geometries of the various symmetry-broken states, which are
not taken into account in this simple ansatz. Remarkably,
despite the vastly different patterns formed by the individ-
ual states, there thus appears to exist one almost universal
nsat (as, add, ωx,y,z ) (see the Appendix).

The scattering length as and dipolar parameter εdd required
for the transition are plotted in Fig. 4(b) as a function of
add. For both molecule numbers studied, we observe first an
increase of the required as, which approaches a maximum
value at add ∼ 1000 a0, followed by a decrease for larger
add. In these three regimes, different contributions to the total
energy govern the behavior of the system. For small add, re-
pulsive contact interactions (Econ ∼ as) dominate. Their peak
coincides with the peak observed for as in Fig. 4(b). For large
add repulsive quantum fluctuations (Eqf ∼ a2

dd) take over as
the dominant energy contribution, such that the required as

for the transition decreases again.
The peak density nmax at the transition point is shown in

Fig. 4(c). We observe a continuous decrease with increasing
add, which is described well by power-law decays of the form
nmax = A a−B

dd over the whole range of add studied, with A =
(11.99 ± 0.18) and B = (0.66 ± 0.01) for N = 200×103, and
A = (6.78 ± 0.72) and B = (0.69 ± 0.02) for N = 20×103,
respectively. This behavior indicates the presence of a pre-
viously unknown scaling property of the eGPE. Once the
critical scattering lengths for the transition [see Fig. 4(b)] are
known, this density scaling can be reproduced by a variational
approach for a dipolar BEC (see the Appendix).

Extrapolating this decay to larger values beyond add =
2×104 a0 one approaches a limit where the peak density
decreases to values in the 1018 m−3 range, three orders of
magnitude lower than in magnetic quantum gases. In this case,
the corresponding mean particle spacing becomes comparable
to the characteristic length scale of the crystal structure, in-
dicating that a situation with only one molecule per unit cell
may be reached. The precise value of add required to reach this
limit depends on the details of the trapping potential, which
sets the characteristic length scale of the symmetry-broken
states [32].

This behavior is reminiscent of the transition from droplet
to defect-induced supersolidity, which has so far only been
identified and studied in the idealized theoretical model sys-
tem of soft-core bosons [90]. It will be interesting to study
further whether a similar transition takes place here as well
and whether the states at large add show genuine supersolid
behavior [52,53,59–62]. As the eGPE may not be a reliable
description of the molecular BEC anymore in this strongly
correlated limit, and the allowed peak densities may even
decrease to values that are below the critical density re-
quired for Bose-Einstein condensation, this question needs to
be addressed using complementary systematic Monte Carlo
simulations. Conceptionally, such a defect-induced supersolid
would be similar to solid 4He, where the search for supersolid-
ity has been ongoing for decades [85,86]. However, in contrast
to helium, single-particle-sensitive imaging and manipulation
of ultracold molecular gases [91,92] could facilitate the study
of the influence of defects, doping, dimensionality, and disor-

der on the formation and dynamics of such a supersolid on the
most fundamental level.

V. CONTROLLING THE SCATTERING PROPERTIES
OF A MOLECULAR GAS

All of the physics investigated above strongly depends on
the capacity to fine tune the dipolar length add and the two-
body s-wave scattering length as of an ultracold molecular
gas. In addition, in contrast to atoms, ground-state molecules
can also lead to two-body collisional losses, no matter if
the molecules are chemically reactive or not [93,94]. As a
result, the scattering length associated with molecular colli-
sions becomes a complex quantity, with an imaginary part
directly linked to the magnitude of the molecular losses [95].
Therefore, tuning the scattering length of a gas of molecules
implies to control both of its real and imaginary part.

A. Choice of shielding mechanism

Molecular losses are an undesired outcome of a collision
as they will decrease the lifetime of the molecular gas. This
can be seen in Eq. (1), where the eGPE becomes in general
complex due to the complex scattering length, which will
provide the wave function an imaginary part associated with
a decay process. In a first step, it is then of crucial importance
to prevent molecular losses to occur for the physics described
above to prevail.

For that purpose, different theoretical and experimental
studies have investigated the important question of shielding
molecules against losses.

For example, the use of a dc electric field in a confined
geometry can protect dipolar molecules in their ground rota-
tional state j = 0 from losses [96–99]. The field polarizes the
molecules such that they can, given the confined geometry,
only interact through the repulsive part of the long-range dipo-
lar interaction, which shields them from short-range losses.
This was observed experimentally in a one-dimensional op-
tical lattice for KRb molecules [100], and later also for
magnetic Feshbach molecules of Er2, where the electric field
is replaced by a magnetic field [101].

However, this method is restricted to confined geometries
only. In order to facilitate shielding also in more general ge-
ometries, such as the ones considered in Secs. III and IV, one
can, counterintuitively, prepare molecules not in their j = 0
ground state but in their j = 1 first excited rotational state. At
a particular dc electric field, the molecules are protected from
short-range losses via the creation of a long-range repulsive
barrier in the entrance channel [70,102–104]. This was suc-
cessfully observed in recent experiments with ultracold KRb
molecules, increasing the lifetime of the gas to several seconds
[44] and enabling evaporative cooling to take place [51].

Another example of efficient shielding in arbitrary geome-
tries consists of using appropriately circular, blue-detuned mi-
crowaves [71,105–108] on ground rotational state molecules.
In addition to shielding, this method enables the desired con-
trol of both the real and imaginary parts of the scattering
length [71]. A recent experiment using CaF molecules in
optical tweezers [45] and NaK molecules in an optical trap
[46] observed loss suppression with this method.
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FIG. 5. Collisional shielding and tuning of interactions. (a) The
combination of a dc field Edc, and a circularly polarized microwave
ac field Eac with frequency ωphot can be used to shield against
collisional losses and independently control the dipolar length add

and the scattering length as between two ultracold molecules. The
ac field and microwave frequency control as, including the values
Re(as ) and Im(as ), while the dc field controls add. (b) The microwave
field is slightly blue detuned with respect to the transition between
the ground rotational state j = 0 and the first excited state j = 1
of a molecule. Here 2B denotes the rotational level splitting and
� = h̄ωphot − 2B is the detuning. If the molecules in j = 0 are
dressed by the microwave, a repulsive barrier is created when they
approach each other, as sketched by the red upper curve. Access
to the short-range region where molecules form a tetramer complex
becomes forbidden, suppressing losses.

Finally, an optical shielding method was proposed [109]
based on similar grounds, except that the microwave is re-
placed by an optical field and the mechanism relies on excited
electronic rather than excited rotational states.

There are thus various established ways to shield molecular
gases against losses and to tune their interactions. For the
purpose of the study, we choose microwave shielding, as both
parts of as can be tuned by two independent knobs, namely the
photon energy ωphot and the amplitude of the ac field Eac. In
addition, we will reserve a dc field to induce a dipole moment
d in the laboratory frame [103]. This creates a dipole-dipole
interaction between the molecules characterized by add.

The experimental setup is then a combination of these two
fields, as sketched in Fig. 5. Based on this setup, we will
illustrate in the following how to tune the dipolar length and
the scattering length in an ultracold molecular gas, taking
rotational ground state NaRb molecules in j = 0 [67–69] as
an example.

B. Suppression of molecular losses with ωphot

As discussed above, the molecular losses are directly
linked to Im(as). To control this property we apply a mi-
crowave with circular polarization [Fig. 5(b)], slightly blue
detuned between the ground rotational state j = 0 and the
first excited state j = 1, with a detuning � = h̄ωphot − 2B ∼

0.034 B, B/h̄ = 2π×2.089 GHz being the rotational con-
stant for NaRb [110]. This value for the detuning is large
enough to prevent collisions efficiently, but also sufficiently
small not to influence the potential in which the molecules
are trapped [71]. The microwave frequency corresponds
to ωphot ∼ 2π×4.25 GHz. For these parameters, microwave
dressing leads to a repulsive barrier that effectively suppresses
losses for strong enough dressing. The suppression occurs
typically for Eac ∼ 40 V/cm or larger, corresponding to Rabi
frequencies 
 = d Eac/h̄ ∼ 2π×64 MHz. This value is on the
same order of magnitude as values that have already been
reached in recent experiments [45,46].

The resulting Im(as) is plotted in Fig. 6(a) as a function
of Eac. One can see that it remains close to zero, as expected
for efficient microwave shielding. We have checked that the
residual value of Im(as) ∼ 0.04 a0 in the region of interest
does not significantly affect the numerical results presented in
the previous sections (see the Appendix).

C. Tuning the scattering length with Eac

Now that Im(as) → 0, we focus on the real part of the
scattering length. Depending on the value of Eac, it was shown
in [71] that Re(as) can be controlled at will to a desired value,
positive or negative, small or large. This is possible due to
scattering resonances that arise from the formation of bound
states in the long-range wells of two molecules [111,112]
that are created and controlled by the microwave dressing
amplitude Eac.

This tunability is illustrated in Fig. 6(a). For the particular
values of the real part of the scattering length considered in
our study, we focus on the ac field range Eac = [60–85] V/cm,
which corresponds to scattering length values between −4000
and +4000 a0. The value of Eac then sets directly the specific
value of the scattering length. In Table I we summarize exam-
ple values of Eac required to cover the range of values of as

that were considered in the previous sections.

D. Tuning the dipolar length with Edc

The third knob is the dc field Edc. It is used to induce an
electric dipole moment d in the laboratory frame, which sets
the value of the dipolar length add.

In previous work [71], microwave shielding was studied
in the absence of Edc, such that there is no induced dipole
moment and the dipolar length is zero. In this work we extend
this approach to also allow for finite values of Edc using the
theoretical formalism developed in Ref. [103].

The maximum value of Edc for which the shielding mech-
anism is active, and hence the maximum achievable dipolar
interaction strength, is set by the Stark shifts of the rotational
states involved. Usually the j = 0 + j = 0 channel has a
stronger Stark shift than the j = 1 + j = 0 channel. Shielding
using Eac is possible until these two channels cross each other.
In our example for NaRb, this occurs for Edc ∼ 0.5 kV/cm,
corresponding to add ∼ 1200 a0. The precise maximum value
of add that can be reached depends on the specific molecular
species and the applied fields. It will be an interesting problem
to identify appropriate combinations of Edc, Eac, and ωphot

that create—at the same time—arbitrary large values of add,
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FIG. 6. Independent tuning of contact and dipolar interactions
via Edc and Eac. (a) Tuning of as with Eac for Re(as ) (solid line)
and for Im(as ) (dotted line, 1000-fold magnification) at Edc = 0. The
background values for Eac = 0 are Re(as ) ∼ Im(as ) ∼ 345 a0. For
larger Eac, pronounced scattering resonances can be observed, which
are the result of bound states that form in the long-range wells of
molecules dressed by the microwaves. The inset provides a detailed
view of the range Eac = [60–85] V/cm, which covers all values of
Re(as ) used in this study. The corresponding values of Im(as ) in this
field range are ∼0.04 a0, meaning that molecular two-body losses
are effectively suppressed on relevant timescales (see the Appendix).
The different solid lines show the effect of different values of the dc
field Edc used in (b) on the scattering length Re(as ). This effect is
weak, demonstrating that the tuning parameters Edc and Eac can be
considered as almost independent. (b) Tuning of add with Edc. The
value of Eac is set to 71 V/cm. The arrows indicate the dc fields
needed to obtain the values of add used in this study. All highlighted
parameters are summarized in Table I.

arbitrary corresponding values of Re(as), while still maintain-
ing efficient shielding with vanishing Im(as).

Figure 6(b) shows the dipolar length as a function of Edc,
calculated for an example of value Eac = 71 V/cm. Other
values of Eac provide similar curves. Conversely, the effect
of the dc field on the scattering length is highlighted in the

TABLE I. Example values for the tuning of add and as. The
values correspond to those required to stabilize self-bound droplets
with 2000 molecules (see Fig. 1). The microwave frequency used is
ωphot ∼ 2π×4.25 GHz.

d (D) add (a0) as (a0) Edc (V/cm) Eac (V/cm)

0.111 130 78 151.3 72.16
0.155 250 150 211.3 71.98
0.196 400 240 270.2 71.50
0.240 600 360 336.6 70.40

inset of Fig. 6(a), where we plot Re(as) as a function of Eac

for different values of Edc. It can be seen that changing Edc

does not affect Re(as) in a significant way, such that one
can consider the tuning parameters Edc and Eac as almost
independent. In other words, in an experiment, one can first set
the dc field to fix the value of add, then one can set the ac field
to fix the value of Re(as). This enables a degree of tunability
of the interactions that goes far beyond the possibilities in
magnetic atoms. As summarized in Table I, the values of Edc

and Eac required to explore new regimes of dipolar physics are
well within the reach of current experiments.

VI. CONCLUSION AND OUTLOOK

We have demonstrated that BECs of dipolar molecules
allow us to address a large variety of open questions regarding
the conditions for the existence of dipolar droplets, super-
solids, and the properties of these states. In comparison to
magnetic atoms, this is due to the much larger and tunable
electric dipole moments of the molecules.

By combining dc and ac fields, we obtained the appropriate
parameters to stabilize molecular BECs against losses and set
the ideal conditions needed for the emergence of self-bound
droplets and supersolids. We are thus now at a turning point
where—after decades of efforts—experiments with ultracold
molecules are reaching a level of maturity that brings the
exploration of supersolidity and other dipolar quantum matter
within reach. We anticipate these results to serve as a blueprint
for near-future experiments and expect them to become an
important benchmark when being systematically compared to
the results of these experiments.

In the same spirit of the two-body shielding mechanisms
employed in this study, three-body shielding of molecules
would be an additional remarkable feature compared to atoms.
If three-body losses were also suppressed with similar mecha-
nisms, then exceptionally long-lived systems could be formed.
First experiments on the static electric field shielding of ultra-
cold KRb molecules have already suggested that this indeed
appears to be the case [44,51]. Theoretical investigations to
further elucidate this question are currently in progress.

As classical ferrofluids are model systems for pattern for-
mation in equilibrium, it will be interesting to explore whether
strongly dipolar BECs can play a similar role in the quantum
world. Moreover, our results in the strongly dipolar limit bring
up questions regarding the role of discreteness in the pattern
formation dynamics. Is dipolar supersolidity only possible
in the many-body limit of a droplet supersolid or is there a
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transition to defect-induced supersolidity? In this context it
will also be interesting to explore similarities with the re-
cently observed structured states in confined fermionic 3He
[113] and 4He films on graphite substrates [114], in order to
establish a comprehensive understanding of supersolidity.
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APPENDIX

1. Density saturation in trapped systems

The density distribution of dipolar BECs can be well
described by a variational ansatz using a Thomas-Fermi ap-
proximation [72]. For the range of the parameters as and add

studied, the BEC is close to the transition to the symmetry-
broken states, and the LHY correction has to be included in
the description [74]. Without doing so, no stable BEC solu-
tion exists in this parameter range. In Fig. 7(a) we compare
peak densities obtained via this procedure for N = 20×103

and N = 200×103, respectively, to the results of our eGPE
simulation, showing very good agreement. As discussed in
the main text, there is a strong increase of the density with
increasing molecule number, as expected for a gas.

In order to recover the power laws observed in Fig. 4(c)
of the main text, an evaluation of the peak densities exactly
at the individual transition points is required. The variational
ansatz is not capable of reproducing these points to high pre-
cision and analytical results are highly challenging, due to the
anisotropic nature of the dipole-dipole interaction. However,
using the interaction parameters obtained from our full eGPE
simulation [see Fig. 4(b)], the power laws can be recovered
with high accuracy from the variational ansatz [Fig. 7(b)].
Moreover, given a single known solution at the transition point
(obtained either from the eGPE or through measurements in
an experiment) other solutions can again be found through the
known scaling properties of the eGPE [19,32].

Finally, we compare the saturation density of a single
droplet in free space with the peak densities observed for the
various symmetry-broken states, as discussed in Fig. 4(a) of
the main text. We find that a simple variational ansatz for the
droplets [76] yields densities that are remarkably close to the
ones observed for the much more complex symmetry-broken
states. We interpret this as an indication for the existence of a
general saturation density for dipolar quantum liquids.

FIG. 7. (a) Peak densities nmax across the transition from the BEC
to the symmetry-broken states (see also Fig. 4). The circles (squares)
denote states with N = 20×103 (200×103), respectively. The solid
black lines are obtained from a variational ansatz for dipolar BECs.
The dashed black lines are derived from the variational result for
free space droplets [76]. For the latter, we have used fdip = 1, with
fdip being the function appearing in the calculation of the dipolar
mean-field energy [72]. (b) The power-law behavior of the density
at the transition point, including the corresponding exponents, is
well reproduced by the variational ansatz, if the correct values for
as and add, as obtained from eGPE simulations, are used as input
parameters.

2. Energy contributions at the transition

In this section we discuss how the individual contribu-
tions of the contact and dipolar mean-field energy, as well
as of the quantum fluctuations, influence the transition to the
symmetry-broken states and, more specifically, the interaction
parameters discussed in Fig. 4(b).

We use the energy functional corresponding to the eGPE
in Eq. (1) and replace the wave function by ψ = √

Nψ ′, with
ψ ′ normalized to unity. With this we find that the energy per
particle is given by

E [ψ ′]
N

=
∫

d3r

[
h̄2

2m
|∇ψ ′|2 + Vext|ψ ′|2 + 1

2
Ng|ψ ′|4

+1

2
�dd[ψ ′]|ψ ′|2 + 2

5
gqf N

3/2|ψ ′|5
]
. (A1)

The key contributions to this energy are the contact interac-
tion energy Econ ∼ gn2 ∼ asn2, the dipolar interaction energy
Edip ∼ gddn2, and the LHY beyond mean-field energy due to
quantum fluctuations Eqf ∼ gqf n5/2. For the latter, Eqf ∼ a2

dd
for large add [32]. As discussed in the main text, the individ-
ual energy contributions scale differently with the molecular
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FIG. 8. Contributions to the total energy of the system for the
parameters (add, as ) discussed in Fig. 4(b). The total energy of the
system increases for increasing add, with the trivial largest contribu-
tion due to the external trapping potential not shown here. Mean-field
contact interactions dominate for small values of add, leading to an
increase of the value of as required for the transition. For very large
add, quantum fluctuations dominate and the required as decreases
again.

density n, leading to a rich interplay of the mean-field and
beyond mean-field terms.

In Fig. 8 we compare the energy contributions for various
states along the transition from a BEC to the symmetry-broken
states as a function of the dipole length add for N = 200×103.
All other parameters are the same as in Fig. 4(b).

FIG. 9. Loss dynamics in terms of (a) molecule number N and
(b) peak density nmax for a droplet state, with Re(as ) = 100 a0 and
add = 130 a0. The solid and dashed lines correspond to the expected
value Im(as ) = 0.04 a0 and a ten times larger value Im(as ) = 0.4 a0,
respectively.

FIG. 10. Density overlap Os plotted as a function of as (a) and
ε−1

dd (b), across the transition from a BEC (with Os = 100%) via su-
persolid droplets (finite Os, i.e., finite superfluid fraction) to isolated
droplets (negligible Os).

At small dipolar lengths add ≈ 130 a0, comparable to those
of experiments with magnetic quantum gases, we find that the
contact interaction Econ dominate. This behavior is observed
up to add ≈ 1000 a0, where Econ peaks. This point coincides
with the maximum of as in Fig. 4(b). Moreover, Eqf is almost
equal to Econ and continues to increase for larger add. Beyond
the intersection of Eqf and Econ, Eqf becomes the dominant
energy contribution. The dipolar energy Edip increases con-
tinuously over the whole parameter range, but remains of
intermediate magnitude throughout.

Taken together, this provides an intuitive picture of the
behavior observed in Fig. 4(b). The transition always hap-
pens at a certain, fine-tuned balance between repulsive and
attractive interactions. Initially, only contact interactions can
provide this repulsion. The required amount of repulsion and
thus the required as increase as add increases. As the repulsive
quantum fluctuations increase for higher add, they replace the
repulsion from the contact interactions required for the tran-
sition, and thus the required as first peaks, and then decreases
again subsequently.

3. Two-body loss dynamics

In order to reveal the influence of the residual Im(as) =
0.04 a0 we include an imaginary scattering length in the de-
scription of the mean-field interaction in Eq. (1) and study the
resulting dynamics for a single, self-bound droplet state with
add = 130 a0 and Re(as) = 100 a0. Such a droplet has a peak
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density of around 0.5×1021 m−3 and thus constitutes a worst-
case scenario, in which the high density leads to particularly
fast losses. All other states considered, in particular for higher
values of add, will be characterized by lower densities and thus
exhibit slower, less significant losses.

The results of these simulations are shown in Fig. 9. We
observe a loss of less than 5% of the molecules over 300 ms,
consistent with efficient shielding. Even assuming less effi-
cient shielding with a ten times higher value Im(as) = 0.4 a0,
the timescale for the decay remains above 100 ms. It is thus
still significantly longer than observed in similar droplets
formed from dysprosium atoms, where the lifetime is limited
by three-body losses [73]. From this we conclude that the
residual two-body losses will play a minor role in the obser-
vation of the states discussed in the main text.

4. Density overlap across the transition

For a more detailed investigation of the transition from
supersolid to isolated droplet arrays, we analyze the the den-
sity overlap Os between neighboring droplets as a function of
the scattering length as for various increasing values of add.
Here we define Os as the ratio between the minimum and
maximum density along the line from one droplet to another.

This definition of the density overlap is closely related to the
superfluid fraction, but is more easily extracted in trapped
samples. A similar analysis has previously been performed for
supersolid droplet crystals formed from magnetic atoms [9].

The results of our analysis using parameters that corre-
spond to a vertical line in the phase diagrams, close to the
critical point where droplets, stripes/labyrinths, and BEC
meet, are plotted in Fig. 10. They show that the range of
as values, for which a finite superfluid fraction exists in the
droplet crystals, increases for larger add. Furthermore, plotting
the same data as a function of ε−1

dd reveals a very similar
behavior for all four values of add studied, i.e., as the phase
transition is crossed, superfluidity is lost on the same scale
as a function of ε−1

dd . In the future we plan to extend this
analysis to the full diagram, to reveal, e.g. potential universal
behavior.

Overall, the observed behavior is very similar to the one
observed in atomic supersolids [9]. This is due to the fact
that the underlying mechanism of the phase transition—a
roton instability triggered by a fine-tuned balance of con-
tact and dipolar interactions—remains the same, no matter
whether we are dealing with a molecular or an atomic dipolar
supersolid.
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