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Two-step phantom relaxation of out-of-time-ordered correlations in random circuits
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We study out-of-time-ordered correlation (OTOC) functions in various random quantum circuits and show that
the average dynamics is governed by a Markovian propagator. This is then used to study relaxation of OTOC
to its long-time average value in circuits with random single-qubit unitaries, finding that relaxation in general
proceeds in two steps: In the first phase that lasts upto an extensively long time the relaxation rate is given by
a phantom eigenvalue of a nonsymmetric propagator, whereas in the second phase the rate is determined by the
true 2nd largest propagator eigenvalue. We also obtain exact OTOC dynamics on the lightcone and an expression
for the average OTOC in finite random circuits with random two-qubit gates.
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I. INTRODUCTION

Complexity of quantum evolution is of wide theoreti-
cal and practical interest. It can be captured in different
ways, one common idea is to quantify what is colloquially
called scrambling of quantum information [1,2]. Details of
what scrambling means depend on a particular situation, but
broadly speaking one can quantify it in two ways: either
by properties of the evolved state, for instance its entangle-
ment under random circuit evolution [3], or by complexity of
time-evolved operators as measured for instance by the out-
of-time-ordered correlation (OTOC) functions [4–6]. In the
present paper we shall study dynamics of OTOC Oβ (i, j, t ),
being equal to the Hilbert-Schmidt norm of the commutator,
Oβ (i, j, t ) = 1

2 〈AA†〉 = 1
2n+1 tr(AA†), where A = [σα

i (t ), σ β
j ]

is a commutator between two local traceless operators, one
of them being evolved in time. It therefore measures how fast
correlations spread from the spatial position i to j, and, more
importantly for our discussion, also how fast σα

i (t ) becomes
“random”.

Due to its relative simplicity and relevance for quantum
information OTOCs have been studied in very many different
contexts. Limiting just to homogeneous systems, these include
field theory [7,8], Luttinger liquids [9], and (chaotic) many-
body systems [10–15]. In studies of quantum many-body
systems one has to usually resort to numerics and that is why
any exact results are greatly appreciated. Simplification that
allows for analytical results often comes due to symmetries,
either exact ones (e.g., integrable systems) or for instance ef-
fectively increasing symmetry by some averaging procedure.
One such case when averaging brings simplification is that
of random circuits where it has been shown that the average
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dynamics can be described by a Markov chain [16], leading
to exact entanglement generation speeds for specific circuits
[17]. Today many other theoretical approaches to random
circuits are known. A prominent example is generic hydrody-
namic description of operator spreading and OTOC dynamics
[18,19], explicitly verified by exact results for random U(4)
circuits. For a slightly different Brownian Hamiltonian evo-
lution see Ref. [20]. Another powerful example of exactly
solvable dynamics are so called dual-unitary circuits [21],
among them also random dual-unitary circuits [22]. One of the
distinguished features of dual-unitary circuits is that 2-point
spatio-temporal correlations are nonzero only on the lightcone
boundary [21], and one can use a powerful finite transfer
matrix formalism. Similar is the case in integrable circuits
[23] in which the gates satisfy the Yang-Baxter equation. For
dual-unitary circuits OTOC decay exponentially with time
close to the lightcone boundary [24]. Some simplification is
possible also for certain small perturbations to dual unitarity
[25].

Many studies try to find some indication of chaoticity.
Remembering that the notion of chaos is in classical systems
defined as a property of the long-time limit, one might ask if
such long-time complexity is somehow reflected also in the
OTOC dynamics. The answer is not clear, what one can say
however is that for lattice systems with finite local Hilbert
space dimension it is not clear how to distinguish chaoticity
from integrability via OTOCs. A possible approach is to get
some measure of instability, like “quantum” Lyapunov expo-
nents, from OTOCs dynamics. However, this is bound to fail
for several reasons. One is that one might get an exponential
behavior that is unrelated to chaos, for instance simply due
to unstable fixed points [26–28]. Hydrodynamic behavior of
the operator front might also look the same in chaotic and
integrable systems [29] (for free systems see Ref. [30]). On
top of it, in lattice models with finite local dimension, like
chains of qubits, there is no obvious small parameter and so
any possible exponential Lyapunov-like growth of OTOCs can
hold only upto finite (short) times [31,32].
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FIG. 1. Phantom relaxation of OTOCs. (a) In the thermodynamic
limit OTOC relaxes to its long-time value as λt

ph, instead of |λ2|t ,
where |λ2| is the 2nd largest eigenvalue of the OTOC transfer matrix
M, and λph is a phantom eigenvalue (which is not an eigenvalue of
M). (b) Spatio-temporal plot of OTOCs O(1, k, t ) for n = 34 where
one can see regions of relaxation with λph, and the asymptotic region
with λ2. White-vertical line marks the cross section shown in (a).
All is for a random circuit with the XXZ gate with az = 0.2 and the
brick-wall protocol with periodic boundary conditions.

We are going to study OTOC dynamics in random quantum
circuits, mostly in one-dimensional geometry and for qubits.
In random circuits there is no dichotomy between integrability
and chaos—random circuits can be thought of as being models
of chaotic systems—and so we are not aiming at coming
up with some chaoticity criterion. What we shall focus on
is the long-time dynamics of OTOCs, specifically on how
fast OTOC relaxes to its asymptotic value reached at long
times that corresponds to a completely scrambled evolution.
As we shall see, this will reveal interesting mathematical and
physical properties.

Deriving a Markovian description of the average OTOC
dynamics in random circuits we shall show that the relaxation
rate typically exhibits a discontinuity at a specific time linear
in the number of qubits. What is more, the relaxation time
in this first phase, which is dominant in the thermodynamic
limit, is not given by the gap of the Markovian matrix. In-
stead, it is given by a so-called phantom eigenvalue—a fake
“eigenvalue” that is not in the spectrum. Illustration of such
phantom relaxation is in Fig. 1. Looking at a particular OTOC
O(1, 4, t ) [see Eqs. (2) and (11) for definitions], whose dy-
namics is given by a particular Markovian matrix M, we study
its relaxation towards O(1, 4, t → ∞) ≈ 1. One can see that

FIG. 2. Illustration of a brick-wall (BW) protocol (a) and a stair-
case (S) protocol (b) on a qubit chain of size n = 8 with periodic
boundary conditions. Blue boxes represent elementary steps Ui, j . Red
dotted lines represent integer times, which are measured so that one
unit corresponds to the action of one period of the random quantum
circuit. One period of a BW protocol consists of local operators Ui,i+1

where we first act on qubits with odd i, then on qubits with even i.
In a S protocol in one period we subsequently act with elementary
steps Ui,i+1 starting from i = 1 and increasing i by one for each local
operator.

the relaxation proceeds in two steps: asymptotically at large
t > tc ≈ n/2 one has the expected exponential decay ∼|λ2|t ,
where λ2 is the second largest eigenvalue of M; however, for
t < tc exponential relaxation goes as ∼λt

ph, where λph is a
“phantom” eigenvalue that is larger than any true eigenvalue
of M. Because in the thermodynamic limit tc diverges, the
correct relaxation rate that one will observe at any finite time
is not given by the spectrum of M, but instead by the phantom
λph. Curiously, it turns out that in some cases λph is equal to
the 2nd largest eigenvalue of a different circuit not related in
any obvious way to M.

Similar phenomenon of phantom relaxation has been re-
cently observed also in purity dynamics [33]. Perhaps also
related is an observation that in nonequilibrium dynamics
described by the Lindblad equation the gap does not nec-
essarily give the correct relaxation time [34,35], and of
non-Hermiticity of transfer matrix describing integrable cir-
cuits [23].

II. RANDOM QUANTUM CIRCUITS

In this paper we deal with random quantum circuits defined
on a system of n qubits. The unitary propagator U is a product
of local elementary gates Ui, j acting on qubit pairs (i, j), that
is U = ∏

i, j Ui, j . Every elementary step is, in turn, defined as
a product of two independent one-site random unitaries Vi and
Vj and a two-site unitary gate Wi, j ; namely Ui, j = Wi, jViVj .
Two examples of random quantum circuits, where the product
of elementary gates is ordered in a brick-wall (BW) pattern
and in a staircase (S) pattern, can be seen in Fig. 2. As can
be deduced from the name, the BW protocol is defined as
a configuration where in each unit of time we first couple
nearest-neighbor qubits (i, i + 1) with an odd i, then all pairs
with even i. Apart from being widely studied for its simplicity,
we mainly focus on this protocol because it turned out to
be the fastest possible local scrambler of entanglement [33].
Another configuration that we will encounter in this paper is
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the S configuration. The S configuration consists of operators
Ui,i+1, where at each step we increase i by 1. In the main part
we shall mostly focus on random quantum circuits acting on
1-dimensional (1D) chains of qubits with either open bound-
ary conditions (OBC) or periodic boundary conditions (PBC);
that is, qubits are distributed on a line (OBC) or on a circle
(PBC).

One obtains various random circuits by different choices of
a fixed two-site gate Wi, j and the ordering of elementary steps.
To distinguish various choices of Wi, j we shall parametrize it
in the following canonical form [36–38]:

Wj,k = V (1)
j V (2)

k w j,k (a)V (2)
j V (3)

k

w j,k (a) = exp

[
i
π

4

(
axσ

x
j σ

x
k + ayσ

y
j σ

y
k + azσ

z
j σ

z
k

)]
, (1)

where V α
k are one-site unitary operators, σ x,y,z are Pauli ma-

trices and a = (ax, ay, az) are three real parameters, which
can be constrained to 0 � az � ay � ax � 1. In this paper,
we will be interested in the average dynamics of OTOCs
generated by random quantum circuits. Due to randomness
on single qubits (at every elementary step we act with random
unitaries Vi and Vj) the choice of local operators V α

k does
not affect our averaged dynamics, so only the choice of the
three real parameters (ax, ay, az) is what matters. To conclude,
without loss of generality we can take our fixed two-site
unitary to be wi, j , which is in turn parametrized by only three
constrained real parameters 0 � az � ay � ax � 1.

III. OTOC MARKOV CHAIN

We shall study out-of-time-order correlations defined as

Oβ (i, j, t ) = 1

2n+1
tr

∣∣ [σα
i (t ), σ β

j

]∣∣ 2

= 1 − 1

2n
tr
(
σα

i (t )σβ
j σα

i (t )σβ
j

)
, (2)

with σ
γ

k denoting the Pauli matrix at position k, and
γ ∈ {x, y, z}. The time-evolved Pauli matrix is obtained as
σα

i (t ) = U †σα
i U . OTOC thus measures how correlations be-

tween two initially localized operators spread in the system.
Its minimal value is 0 for operators that commute, i.e., until
σα

i (t ) begins to overlap with σ
β
j , whereas its maximal value

is 2 reached for e.g., σ
β
j = σ x

j and σα
i (t ) = σ

y
j . If σα

i (t ) at
large times randomly spreads over all available operator space
the average OTOC will converge towards its thermal value
O∞ ≈ 1 (see Appendix A 1). We are going to study how
OTOCs converge to this long-time stationary value. Note that
often the name OTOC is used just for the 2nd term in Eq. (2),
whose asymptotic value goes towards 0. Because we will be
interested in relaxation we will in fact study this 2nd term.

It has been shown that averaging over one-site random
unitaries leads to a Markov chain description of the evolution
of the average purity [39,40]. Because OTOCs are, similarly
as purity, also quadratic in the time-evolved operator, their
average evolution can also be written in terms of a Markov
chain. This has been done for the special case of a random
U(4) elementary step Ui, j in Ref. [18], whereas we derive
the Markovian matrix description for a protocol consisting of

an arbitrary two-qubit Wi, j conjugated by independent single-
qubit unitaries.

The derivation relies on the fact that it is possible to express
OTOCs as a linear combination of all possible purities of a
system of n qubits. Writing the operator σα

i (t ) in the basis of
Pauli strings with coefficients aσ (t )

σα
i (t ) =

∑
σ

aσ (t ) 	σ, (3)

where we use the label σ = (σ1, σ2, . . . , σn) while the product
of Pauli matrices on all sites is denoted by 	σ = σ1σ2 · · · σn,
and σi ∈ {1, σ x, σ y, σ z}i, we obtain

Oβ (i, j, t ) = 2
∑

σ;σ j∈S1\σβ
j

a2
σ (t ), (4)

where for brevity we defined two sets

S0 = {1}, S1 = {σ x, σ y, σ z} (5)

that will be useful in specifying various summations. For
instance the sum in Eq. (4) runs over all Pauli strings σ =
(σ1, σ2, . . . , σn) except for those having σ

β
j or 1 at the site j.

We wish to relate a vector containing all possible OTOCs
O(i, j, t ) for every position j to a vector of purities through
a linear transformation. To obtain purity we write the den-
sity operator in terms of Pauli strings coefficients cσ , ρ(t ) =

1√
2n

∑
σ cσ 	σ. Purity IA, which measures pure-state entangle-

ment between two complementary subsets of qubits denoted
by A and B (consisting of nA and nB qubits, respectively), is
then

IA = trA(trBρ)2 = 2nB
∑

σ;∀i∈B,σi=1

c2
σ . (6)

Expression (6) is invariant with respect to an arbitrary permu-
tation of the three Pauli matrices at any site. In other words,
it is only the totally symmetric sum of c2

σ for all three Pauli
matrices that matters for purity. For instance, for a system
of two qubits with subsystem A being the 1st qubit, we
have IA = 2c2

(1,1) + 2(c2
(σ x,1) + c2

(σ y,1) + c2
(σ z,1) ). So instead

of bookkeeping all 42 coefficients c2
(σ1.σ2 ) it is enough to keep

track of only 22 combinations of them, which we can neatly
pack into a two-site vector [for definition of S1 see Eq. (5)]

	 =

⎛
⎜⎜⎝

c2
(1,1)∑

σ1∈S1
c2

(σ1,1)∑
σ2∈S1

c2
(1, σ2 )∑

σ1,σ2∈S1
c2

(σ1,σ2 )

⎞
⎟⎟⎠. (7)

We can obtain purities for all possible bipartitions of two
qubits from components of 	, specifically, if the 1st qubit is in
A we have IA = 2	0 + 2	1, whereas if the 2nd qubit is in A
one has IA = 2	0 + 2	2, where we labeled the 4 components
in Eq. (7) by 	0,1,2,3. Generalizing 	 to n qubits it will have
2n components that we label by bit strings s = (s1, . . . , sn),
where s j ∈ {0, 1}, with the components being

	s =
∑

σ;σ j∈Ss j

c2
σ . (8)

To shorten the notation we shall occasionally also use the
integer value of the bit string s instead of specifying the full
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s = (s1, . . . , sn), as s ≡ ∑n
j=1 2 j−1s j . Purity for an arbitrary

bipartition is now given by a particular component of vector
	I obtained as

	I := AI	, AI =
(

1 1
2 0

)⊗n

, (9)

Specifically, the component [	I ]s is equal to the purity for a
bipartition in which the subsystem A consists of qubits for
which s j = 0, i.e., the bit s j encodes the subsystem in which
the jth qubit is.

Reference [39] showed that it is possible to write the
evolution of purities 	I averaged over one-site Haar random
unitaries as a Markov chain. Abusing notation and from now
on using 	I (t ) to denote the average purity after t steps of our
random circuits (2), one has

	I (t ) = M ′	I (t − 1). (10)

The transfer matrix M ′ describing one period of our circuit
is a product of matrices M ′

i, j , one for each elementary step
Ui, j [39]. For example, a transfer matrix describing t2 periods
of a BW PBC circuit on n = 4 qubits would be (M ′)t2 =
(M ′

4,1M ′
2,3M ′

3,4M ′
1,2)t2 . Note that because the two-site gates

Wi, j are the same for all steps all transfer matrices are inde-
pendent of time.

Looking at the expressions for OTOC in Eq. (4) and 	 in
Eq. (8) we can see that they look rather similar. Because we
know how average purities are evolved (10), we also know
how to evolve 	(t ), namely defining 	(t ) = A−1

I 	I (t ) gives
us 	(t ) = A−1

I M ′AI	(t − 1). This will in turn lead us to the
evolution of OTOC.

To achieve that let us rather look at the OTOC averaged
over three possible σ

β
j ,

O(i, j, t ) := 1

3

∑
β∈{x,y,z}

Oβ (i, j, t ) = 4

3

∑
σ;σ j∈S1

a2
σ (t ). (11)

Note that the dependence on site index i is implicitly hidden
in the expansion coefficients aσ (t ) (3) of the initial σα

i . Using
	 for a vector defined as in Eq. (8) but for coefficients aσ , and
formally defining a vector 	O by

	O := AO	, AO =
(

1 1
0 4

3

)⊗n

, (12)

one can verify that O(i, j, t ) is equal to the 2 j−1th component
of the vector 	O. That is, O(i, j, t ) = [	O]s, where s j = 1
and sk �= j = 0. Therefore, n components of 	O are equal to
OTOCs while the other 2n − n components are some other
combinations of a2

s not related to OTOCs. Note that the choice
of AO is not unique; the two 1 in the top row take care of
summing over both sets S0 and S1 for sites k �= j in Eq. (11),
while the 4

3 in the 2nd row accounts for an overall prefactor
accounted by a single bit s j being 1, ie., summation only over
S1 at site j. The initial value of OTOC O(i, j, 0) is easily
computed from the initial value of aσ = δσ,(1,...,1,σ α

i ,1,...,1)

(δσ,σ ′ = �kδσk ,σ
′
k

is a Kronecker multi-delta), which in turn
gives (8) [	(t = 0)]s = δs,(0,...,0,1i,0,...,0) = δs,2i−1 , which then
through (12) results in the initial condition

	O(t = 0) = 4
3 e2i−1 + e0, (13)

where the vector ek has components [ek]s = δs,k . The vector
	 containing coefficients of σα

i (t ), instead of ρ(t ), is prop-
agated in exactly the same way as for average purity [41],
that is, because 	 = A−1

I 	I , we have 	O = AOA−1
I 	I . The

OTOC vector 	O averaged over single-site random unitaries
is therefore propagated as

	O(t ) = M	O(t − 1), M = AOA−1
I M ′AI A

−1
O , (14)

where M ′ is the transfer matrix propagating purities.
Using M ′ calculated for random circuits and an arbitrary

Wi, j parameterized by (ax, ay, az), Eq. (13) from Ref. [33],
we immediately get the transfer matrix M describing the evo-
lution of average OTOC under one elementary step,

Mi, j =

⎛
⎜⎝

1 0 0 0
0 c+ c− d
0 c− c+ d
0 −4d/3 −4d/3 (2d + v)/3

⎞
⎟⎠. (15)

Here c±= 1
12 (9 ± 2u−v) and d= 1

6 (v−3), with u = cos
(πax) + cos(πay) + cos(πaz) and v = cos(πax) cos(πay) +
cos(πax) cos(πaz) + cos(πay) cos(πaz). Note that e0 is a
trivial eigenvector of M corresponding to the eigenvalue 1,
i.e., is a stationary state. However, M has another nontrivial
eigenvector with λ = 1 containing the asymptotic stationary
values of OTOC O∞.

Summarizing, the matrix Mi, j (15) acts nontrivially only
on 2 sites i and j and is written in the basis of bit strings
ordered as {0i0 j, 1i0 j, 0i1 j, 1i1 j}. To get the matrix propa-
gating OTOCs for the complete circuit for one unit of time
one must multiply appropriate 2-site Mi, j in the same order
as the gates are applied in the protocol, for instance, for a
n = 4 site BW PBC circuit one has M = M4,1M2,3M3,4M1,2.
The state 	O on which full M acts has 2n components. Fixing
the site i in the initial OTOCs O(i, j, 0), the initial vector (13)
is equal to 	O(0) = (10, 01, . . . , 0k−1,

4
3 k

, 0k+1, . . . , 02n−1),
where k = 2i−1 and we number components of 	O starting
with 0. OTOC O(i, j, t ) is then equal to 2 j−1th component of
the iterated vector, that is O(i, j, t ) = [Mt	O(0)]2 j−1 .

The transfer matrix description of the average OTOC
dynamics (14) that we obtained offers several advantages.
First, it gives a neat analytical description on which one can
use standard tools of analyzing Markov chains, like for in-
stance trying to connect the spectral properties of M to the
asymptotic relaxation of OTOC to its infinite-time values.
Second, it also greatly simplifies numerical simulations of
OTOCs—instead of, e.g., explicitly simulating the dynamics
of operators, averaging over different realizations, one can
directly simulate the average OTOCs dynamics.

IV. EXACT DYNAMICS ON THE LIGHTCONE

In this section we will obtain the exact dynamics of OTOCs
on the lightcone, from which we will be able to determine in a
very simple way the set of two-site W that result in maximum
velocity circuits. Maximum velocity quantum circuits were
defined in Ref. [24] as circuits where the butterfly velocity
vB [7,42–44] equals the Lieb-Robinson velocity vLR [45]. The
Lieb-Robinson velocity determines the causality lightone of
which boundaries are at positions k = i ± vLRt [i is the lo-
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FIG. 3. Operator spreading in a random quantum circuit with
the brick-wall configuration and the two-qubit gate W with ax =
0.5, ay = 0.3 and az = 0.1 (1). Background colors represent val-
ues of O(i, j, t )—light gray denotes O(i, j, t ) ≈ 0 and red colors
O(i, j, t ) ≈ 1. The operator σα

i is initially located on the 14th qubit
marked by a circle and horizontal dashed red lines are at integer t .

cation of σα
i (t = 0)], so that OTOC O(i, j, t ) with parameters

( j, t ) outside the lightcone vanish. In a random circuit its value
is determined solely by the circuit geometry and is for instance
vLR = 2 for the BW configuration. The butterfly velocity on
the other hand is determined as vB = | j − i|/tmin, where tmin

is the minimal time when O(i, j, t ) ∼ 1 at fixed large | j − i|.
Contrary to vLR the butterfly velocity depends both on the
geometry and on the choice of the gate W . For most random
quantum circuits, vB �= vLR. An illustration of these two ve-
locities can be found in Fig. 3. Let us focus on a random
quantum circuit with a brick-wall configuration of gates acting
on an infinite system, n → ∞. We would like to compute
quantities O(i, i ± vLRt, t ). Due to symmetry it is enough to
consider OTOC only at the right lightcone. We also limit our-
selves to odd i such that the lightcone edge is at k(t ) = i + 2t
[for even i one would have O(i, i + 2t, t ) = 0 while O(i, i +
2t − 1, t ) �= 0]. Remember that in our Markov chain picture
O(i, k(t ), t ) is equal to the 2k(t )−1 ≡ (0, . . . , 0, 1k, 0, . . . , 0)th
component of 	O(t ). We can get such O(i, k(t ), t ) by acting
with the relevant Mk(t )−1,k(t ) (red boxes in Fig. 3) on a previous
half-step 	O(t − 1/2). Taking into account that Mk(t )−1,k(t )

can change only bits at site k(i) and k(i) − 1, the 3rd row of
M (15) gets us

O(i, k(t ), t ) = c−[	O(t − 1/2)]2k(t )−1 +
+ c+[	O(t − 1/2)]2k(t ) + d[	O(t − 1/2)]2k(t )−1+2k(t ) . (16)

It is important to note that due to causality all values [	O(t )]p

with p � 2k(t ) vanish, therefore only one term in Eq. (16)
is nonzero, resulting in O(i, k(t ), t ) = c−O(i, k(t ) − 1, t −
1/2). Iterating this by half-steps to smaller times until we
reach O(i, i, 0) = 4/3 one obtains the OTOC on the right
lightcone. Similar procedure works also on the left lightcone
and even i, resulting in

O(i, i ± 2t, t ) = 4
3 (c−)2t . (17)

Looking at the left lightcone at odd i, or the right lightcone
and even i, one instead gets

O(i, i ± (2t − 1), t ) = 4
3 c+(c−)2t−1. (18)

The additional term c+ in Eq. (18) comes from the interaction
at time t = 1/2, namely O(i, i, 1/2) = c+O(i, i, 0).

OTOC on the lightcone therefore decay exponentially with
the rate 2 ln c−, hence one gets vB = vLR = 2 iff c− = 1.
Solving c− = 1 for ax, ay, az we obtain ax = ay = 1 and an
arbitrary az, which corresponds to dual-unitary circuits [21]
and for which one can explicitly calculate all 2-point cor-
relations which are nonzero only on the lightcone boundary
[21]. This means that taking W from the dual-unitary set of
gates (i.e., so-called XXZ gates) is the only choice leading to
the maximum velocity random circuits (of the type studied in
this paper), i.e., circuits for which OTOC do not decay along
the lightcone. The same set of maximum velocity gates was
also obtained in Ref. [24] for circuits without one-site random
unitaries. Besides identifying maximum velocity gates our
simple derivation also gets us the exact dynamics of OTOC
on the lightcone for arbitrary gates W . Note that for circuits
with a dual-unitary two-qubit gate W one can also get a
closed expression for the OTOC decay in the vicinity of the
lightcone, for nonrandom circuits see [24], for random [22].

We also observe that the same set of gates, except at az =
1, results in the maximal possible entanglement scrambling
speed [33]. The gate with az = 1 is the SWAP gate and is
special. The OTOC dynamics for a random circuit with the
SWAP gate is trivial because the transfer matrix Mi, j itself
(15) is equal to a SWAP gate resulting in O(i, j, t ) that is
nonzero only on the lightcone, while at the same time such
W produces no entanglement.

V. CONVERGENCE RATE

Under the application of a random quantum circuit the ini-
tially localized operator will spread in space, causing OTOC
to increase from being zero outside of a lightcone to a nonzero
value inside it. Often one is interested in this ramp-up of
OTOC as for instance measured by the butterfly velocity.
We shall instead investigate the late-time convergence rate
of OTOC O(i, j, t ). That is, we are interested in how fast
O(i, j, t ) at some fixed i and j relaxes towards its final value,
see Fig. 4 for an illustration.

The asymptotic value O∞ is reached at long times when
the time evolved operator σα

i (t ) becomes a uniform mixture
of all possible Pauli strings (identity excluded) on n qubits,
i.e., when the propagator U resembles a random unitary. A
derivation of O∞ can be found [46] in Appendix A 1 and gives
us

O∞ = 1 + 1

4n − 1
. (19)

If the eigenvalues of the transfer matrix M are gapped away
from 1, which indeed is the case, we expect that OTOC expo-
nentially relax to their asymptotic value O∞ as

|O(i, j, t ) − O∞| � e−rt . (20)
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FIG. 4. Average OTOC for the BW random circuit with PBC
and the XY gate [a = (1, 1, 0)], n = 28. Operator relaxation towards
long-time thermal asymptotics will be studied by observing how a
fixed-position O(i = 1, j = 6, t ) converges towards O∞ with time
(inset).

Our main object of study is the convergence rate r. Consid-
ering that OTOC are propagated by Mt one might think that
the convergence rate will be determined by the 2nd largest
eigenvalue λ2 of M. However, as we shall see, this is not
always the case.

In Sec. V A we shall first discuss protocols in which at
each step we randomly pick a pair of qubits on which we act,
that is protocols with a random ordering of gates. For those
we will see that indeed OTOC decay exponentially with the
convergence rate r given by the second largest eigenvalue of
the transfer matrix r = − ln |λ2|.

In Secs. V B and V C we shall on the other hand study
protocols with a nearest-neighbor deterministic order of gates,
mostly the BW or the S configuration (Fig. 2), and find,
similarly as for purity [33], that the convergence rate can
be either equal or smaller than − ln |λ2|. In Appendix C
we also numerically demonstrate that in the thermodynamic
limit one does not need explicit averaging over single-
qubit unitaries, i.e., dynamics is self-averaging and therefore
one will obtain the same results also for a single circuit real-
ization.

Relying on a map from OTOC to a partition function of
an Ising-like model found in [18] we analytically compute
OTOC for the BW PBC and BW OBC in the case where every
elementary step of the circuit is independently drawn from the
Haar measure on U(4). Contrary to previous literature, where
the analytic expression for OTOC was obtained in the TDL
[18,22,24], in Appendix B we present new results in finite
systems with either OBC or PBC.

A. Random protocols

Random protocols studied here are defined as random
quantum circuit where at every elementary step we couple two
qubits chosen randomly. We have two different possibilities:
(a) at each step we uniformly choose one of the all possible n
qubits, for example the ith one, and we act with gates Mi,i+1,
and (b) at each step we randomly choose two qubits i and
j and we act with Mi, j . We call the former case the random
nearest-neighbor protocol (r.n.n.) and the latter scenario the
all-to-all coupling.

In the r.n.n. case, the average elementary step can be writ-
ten as the average over all possible choices of i, namely

M̄ = 1

L

L∑
i=1

Mi,i+1, (21)

with L = n − 1 or L = n, depending on the boundary condi-
tions. Similarly, for the all-to-all case we obtain

M̄ = 1

L

∑
i< j

Mi, j, (22)

with L = n(n − 1)/2. The transfer matrix propagating OTOC
for one unit of time is M = M̄L.

Because each Mi, j is just a similarity transform of the
purity M ′

i, j , Eq. (14), the spectrum of M is identical to the
spectrum of purities transfer matrix M ′. Furthermore, as was
shown in [33], the average elementary steps M ′

i, j propagat-
ing purity can be linearly transformed to a real symmetric
matrix. Therefore the spectrum of M is equal to the spec-
trum of a symmetric purity matrix. This is important because
the spectrum is real with orthogonal eigenvectors. The spec-
tral decomposition of a Hermitian M takes the form M =∑

k λk|vk〉〈vk|, and we can expand |	〉 as |	〉 = ∑
k ck|vk〉

with ck = 〈vk|	〉 being bounded by |ck|2 � 〈	|	〉. The time
iteration is 	(t ) = Mt	 from which it follows that |	(t ) −
	(t → ∞)| � |λ2|t with 	(t → ∞) = v1.

For a Hermitian M there are therefore no surprises; if
the 2nd largest eigenvalue λ2 is gapped away from other
eigenvalues the asymptotic decay rate will be given by λ2

and will kick-in at a system size independent time. For the
r.n.n. protocol the 2nd largest eigenvalue has been computed
numerically for arbitrary gates [47] and analytically for a few
Clifford gates [17]. For λ2 in the all-to-all case and Clifford
W see Ref. [17], for arbitrary W Ref. [33].

B. Brick-wall protocol with PBC

For protocols with a deterministic order of gates things
can and will be completely different. The decay rate will not
necessarily be given by λ2. Remember that for a deterministic
order of gates the transfer matrix is just a product of corre-
sponding two-site Mi, j , for instance, for a 4 qubit BW protocol
it is M = M4,1M2,3M3,4M1,2. The difference compared to ran-
dom protocols is that a product of symmetric matrices needs
not to be symmetric. As a consequence, the eigenvectors of
such M are not orthogonal, ck are not upper bounded, and, as
has been seen in purity evolution [33], the relevant decay can
differ from |λ2|t .

In the following we shall plot how the value O(1, j, t ) be-
haves for a fixed position j. We will always fix i = 1, because
OTOC in PBC circuits depend only on | j − i|. We will plot
values of |O(1, j, t ) − O∞| and the time derivative

r(t ) := − d

dt
ln |O(1, j, t ) − O∞| (23)

in order to investigate OTOC convergence rate [note that
r(t → ∞) = r from Eq. (20)].

Let us start with a generic two-qubit gate

Wg = W (a), a = (0.5, 0.3, 0.1). (24)
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FIG. 5. Convergence rate of O(1, j = 7, t ) for a BW PBC circuit
with the gate Wg [Eq. (24)]. There is a phantom eigenvalue: Initially,
the rate is given by λ2 for a BW OBC circuit (red-dashed line for
n = 30). At late times the rate is instead equal to − ln |λ2| for a BW
PBC circuit (green-dashed line for n = 20). The inline plot shows a
transition in the exponential decay of the same data, including red
and green dashed exponential functions corresponding to red and
green rates in the main plot.

Data for O(1, j = 7, t ) is shown in Fig. 5 and demonstrates
that OTOC converge to their final value with a rate different
than − ln |λ2| (for Wg one has |λ2| ≈ 0.72 for n = 20). The
rate is (initially) smaller, as if there would be an eigenvalue
larger than λ2—a phantom eigenvalue. Such slower decay
persists up to times that are proportional to the system size.
The value of the phantom eigenvalue is equal to the second
largest eigenvalue of the transfer matrix for the BW OBC
circuit. Remember that we are looking at a circuit with PBC,
not OBC, nevertheless, it is perhaps expected that for initially
localized quantities and until the boundary conditions (PBC)
influence OTOC dynamics, the convergence rate is given by
λ2 of BW OBC (see also next section). Namely, choosing
the initial vector localized roughly equally far from the left
and right boundary (i ≈ n/2), the dynamics generated by BW
PBC or OBC circuit is identical up to times t ≈ n/4. There-
fore, what might be surprising is that λ2 of M for BW with
PBC and OBC are different. Looking at OTOC on a different
site, j �= 7, one might observe a slightly different graph from
Fig. 5, however the behavior remains qualitatively the same:
At early times that scale as ∼n the dynamics is always deter-
mined by a phantom eigenvalue, which is the same for every
j, whereas at late time the dynamics is given by the second
largest eigenvalue of M.

Of special interest are gates with canonical parameters a =
(1, 1, az), az < 1 (dual unitary W ). We purposely skip az = 1
because of its trivial dynamics. Contrary to the generic gates
Wg, for dual unitary gates we will see that early-time dynamics
is always determined by λ2 of an S PBC circuit [shown in
Fig. 2(b)], which though is always larger than λ2 for BW PBC.
One will therefore again have a situation where the relevant
relaxation rate is not given by λ2 of the BW PBC circuit.

We will first take a look at a circuit with the dual-unitary
gate with az = 0.2. Because there are some differences be-
tween even and odd j at later times, essentially due to

FIG. 6. Convergence rate r for the BW PBC circuit with a =
(1, 1, 0.2). Dynamics up to times t ∼ n is determined by the second
largest eigenvalue of the transfer matrix for the S PBC configuration
(red-dashed line), whereas the late time dynamic is determined by
|λ2| of the BW PBC (green-dashed line).

even/odd effects of the lightcone boundary position (see
Sec. IV), we show in Fig. 6 how O(1, j, t ) converge for j = 7
in (a) and (b), as well as for j = 8 in (c) and (d). Looking
at Fig. 6(c) that focuses on short times we can see that r is
zero until the right lightcone boundary hits the site j = 8. We
assume that j − i is odd and j − i < n − ( j − i), i.e., the first
information that hits the site j comes from the right lightcone
boundary, not from the wrapped-around (PBC) left lightcone
boundary. OTOC and the rate are therefore zero until t ≈
( j − i)/2. After that r stays at a value that is not given by
|λ2| of the BW PBC transfer matrix, but rather by λ2 of the
transfer matrix for the S PBC (red-dashed line) and for which
we have a conjectured analytical form, see Ref. [48]). At
the time tc = (n + 1)/2 − ( j − i)/2, determined by the time
when the left lightcone boundary hits the site j, the rate sud-
denly transitions to its ultimate asymptotic value given by λ2

of the BW PBC (green line). In Fig. 6(d) we can see that this
rate stays roughly constant upto small modulations at times
larger than tc, e.g., at t ≈ 20 for n = 34. They happen at times
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of successive lightcone boundary wrappings (for more details
see next paragraph). There are some interesting differences
for odd j [Figs. 6(a) and 6(b)]. Specifically, because for odd
i = 1 the left lightcone boundary is at even sites and therefore
never overlaps with an odd j, the rate has a transition to its
asymptotic form only when the right lightcone boundary hits
the odd site j = 7 for the 2nd time (due to PBC). This happens
at tc = ( j − i)/2 + n/2, e.g., tc = 20 for shown n = 34 and
j = 7. As one can see from O in Fig. 6(b), the rate itself does
not change; rather the OTOC exhibits a jump. As we shall
see in the next paragraph, the ultimate asymptotic decay is
nevertheless still determined by λ2 of the BW PBC circuit.

In order to be able to better explore those spikes we
shall next look at a dual unitary gate with az = 0.6, because
OTOC decay slower and we are able to simulate longer
times (rounding errors of double precision floating point
numbers ultimately limit the smallest O we can calculate).
Results are shown in Fig. 7. From the figure we learn that
the convergence of the initial rate to that given by the
eigenvalue of the S PBC protocol is rather slow with n;
smaller system sizes have rates that do not yet converge
to − ln |λ2|S−PBC. There are also small kinks in the decay
of |O(1, j, t ) − O∞| that are due to lightcone wrapping
boundaries. Overall though the rate changes only once from
the initial one to the asymptotic − ln |λ2|BW−PBC at the
already discussed time that is proportional to n [see frames
(b) and (d)]. We can now also clearly see several spikes at
times when the lightcone boundary wraps around the system
multiple times. Specifically, starting with an odd i = 1 the
right lightcone boundary will hit a site at odd j at times
t = ( j − i)/2 + kn/2, where k in an integer (blue vertical
lines in the figure), whereas the left lightcone boundary
will hit it at times t = kn/2 − ( j − i − 1)/2 (black vertical
lines). There is a slight asymmetry between the effects of
left and right lightcone boundary: spikes due to the left
one are prominent only for even j, which comes due to
an asymmetry in the behavior of OTOC on the lightcone
boundary, Eqs.(17) and (18)—for even j the left lightcone
has an additional factor c+ = 1

3 (1 + cos (πaz)) =
1 − |λ2|S−PBC.

We also observe that r decreases with increasing az ([48]).
This means that the fastest relaxation of OTOC among dual-
unitary gates is obtained for the circuit with the XY gate, i.e.,
a = (1, 1, 0), when one has r = log 3 at t � n.

We have seen that in all BW circuits with PBC, for generic
gates as well as dual unitary gates, the relevant relaxation rate
of OTOC that holds upto times of order ∼n, i.e., until OTOC
become exponentially small in system size, is not given by the
2nd largest eigenvalue of the BW PBC transfer matrix. For the
generic gate Wg the rate was given by |λ2|BW−OBC which is
larger than |λ2|BW−PBC—a phantom eigenvalue phenomenon.
One might be inclined to justify this result based on a trivial
fact that the choice of boundary conditions of course does not
matter up to times that are proportional to ∼n. Until boundary
effects kick in OTOC evolve as they would in a BW OBC
system (if the Pauli matrix at time t = 0 is positioned “far
enough” from the boundaries). This however is not really a
full explanation; remember also that for dual unitary gates

FIG. 7. Time evolution of OTOC convergence rate for BW PBC
circuits with a = (1, 1, 0.6). Red and green-dotted lines represent the
convergence rate determined by λ2 of S PBC and BW PBC circuits
respectively. When j is odd [(a),(b)] spikes in r are found at times
when the right lightcone boundary hits site j, i + 2t = j (mod n)
(blue-vertical-dashed lines plotted for n = 34). For even j [(c),(d)]
these spikes can be found also at i − 2t + 1 = j (mod n) when the
left lightcone boundary hits site j (black-vertical-dashed lines for
n = 34).

the rate (phantom eigenvalue) was given by |λ2|S−PBC and not
|λ2|BW−OBC, despite the evolution still being the same as it
would be in the BW OBC circuit.

In the next section we shall study circuits with OBC. Based
on results presented so far we can predict that for BW OBC
with generic gates one will have no phantoms, whereas we
expect to see a phantom rate given by |λ2|PBC−S for BW OBC
circuits with dual unitary gates.

C. OBC protocols

Let us first stress one important property of a family of
OBC protocols that comes about due to the locality of the
initial vector 	O(t = 0) [Eq. (13)]. We conjecture that OTOC
dynamics is not influenced by permutations of elementary
gates in one period of the BW OBC circuit. For example,
looking at a BW OBC protocol one could permute the order
of elementary steps in one period and obtain an S OBC circuit
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FIG. 8. Comparison between O(6, 8, t ) obtained using 5 itera-
tions of a S OBC circuit and using a BW OBC circuit. Operators
in the same period of the S OBC circuit are represented with the
same color, meanwhile operators in the same period of BW OBC are
labeled by the same parameter t (see Fig. 2). Due to causality, all
gates outside the future lightcone starting from i = 6, and the past
lightcone originating from j = 8, do not matter (crossed-out gates).
By stacking together S OBC protocols one obtains the same set of
gates as for BW OBC.

without affecting the average OTOC dynamics, e.g., its decay
rate.

To support this claim, we will show that for a fixed W
the BW OBC protocol generates the same OTOC dynamics
as the S OBC protocol upto a constant time-shift. We will
rely on Fig. 8 to explain the equivalence. One can easily see
that stacking together S protocols one obtains a circuit of the
form shown in Fig. 8, i.e., a brick wall protocol in the middle
(between t = 2 and t = 3 in the figure), and two “triangles”,
one at the top right (gates after time t = 3 in Fig. 8) and one
at bottom left (gates before time t = 2 in Fig. 8). Let us focus
on the calculation of O(i, j, t ). Due to causality the evolved
local operator vanishes outside the lightcone starting from
the ith qubit. We are interested in the component of 	O(t )
representing O(i, j, t ), i.e., the 2 j−1th one, this means that
also operators in the past lightcone starting from the qubit
j vanish. The relevant gates are therefore those inside the
two lightcones, i.e., in Fig. 8 the gates that are not crossed.

FIG. 9. Comparison of OTOC relaxation for different protocols
and a = (1, 1, 0.5), i = 1, j = 8 and n = 26. BW OBC and S OBC
are equivalent up to a time-shift (equal to 3 in this case). For PBC on
the other hand S and BW, while having the same initial decay, exhibit
different relaxation rate at long times. The asymptotic decay of BW
PBC is given by |λ2| of the BW PBC (green-dashed line), while that
of S PBC it is given by |λ2| of the S PBC (red-dashed line).

The same set of relevant gates would be obtained acting with
a BW OBC protocol. The only difference between S OBC
and BW OBC circuits is a time-shift that comes from the
difference between vLR of the two circuits. This is reflected in
the fact that O(i, j, 1) �= 0 for arbitrary j in S OBC circuits,
whereas using a BW OBC protocol we have O(i, j, t ) = 0
at all times smaller than �t ≈ | j − i|/2, which is equal to
the time-shift between the two protocols. For instance, by
counting the number of BW layers of relevant gates in Fig. 8
one can see that OS(6, 8, 5) = OBW(6, 8, 6). The time-shift is
constant and depends only on the value j − i (and can be a
half-integer). This can be seen also in explicit numerical data
in Fig. 9 where O(1, 8, t ) for BW OBC circuit (triangles) is
the same as O(1, 8, t − 3) (squares) obtained for the S OBC.

Using similar arguments one can see that if one iterates
an arbitrary OBC configuration, that is a protocol in which
each nearest-neighbor gate is applied exactly once per unit of
time, one always gets a brickwall pattern of gates. Therefore
one can show that the OTOC of local operators and any OBC
protocol is upto a time-shift equal to the one in say BW OBC
circuit. We have also checked numerically on a few examples
of random gate permutations that this is indeed the case. We
remark that in Ref. [33] it has been shown that the spectra of
transfer matrices M for a single iteration are the same for all
OBC protocols.

This equivalence though holds only for OBC. For instance,
for the XXZ gate S PBC and BW PBC protocols can behave
rather differently, see circles and stars in Fig. 9, what is more,
the BW PBC circuit exhibits a phantom relaxation. On the
other hand, the S PBC with the XXZ gate does not exhibit a
phantom relaxation, while the S PBC with the generic gate Wg

does (data not shown).
Regarding possible phantoms in the OBC setting we can

see in Fig. 9 that for dual unitary gates BW OBC does exhibit
a phantom (the initial rate is given by |λ2| of the S PBC),
while for generic gates it does not (data not shown), which
is expected (we have seen in Fig. 5 that the rate for BW
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FIG. 10. Convergence rate for BW OBC circuits with az = 0.5,
j = 8. Red- and green-dashed lines denote the rate predicted by |λ2|
for S PBC and BW OBC circuits respectively. Spikes in the rate are
again found at times when the lightcone boundary is reflected from
boundaries back to site j.

PBC was given by |λ2| of BW OBC, and the two O(i, j, t )
should agree until t ∼ n). Let us have a closer look at the
dual unitary gate az = 0.5 and BW OBC protocol. From data
in Fig. 10 we indeed see that there is a phantom—the initial
rate is smaller—and that there are, similar as in the PBC case
(Fig. 7), again spikes in the rate. Those spikes are associated
with jumps in the relaxation of OTOC [frame (b)] that happen
every time the reflected right lightcone returns to site j, i.e.,
at times kn − ( j − i − 1)/2. All different cases of random
circuits and their relaxation are summarized in Table I. Based
on numerical values of λph (for a number of different gates;
see also previous figures) we identify that λph is equal to either
|λ2| for the OBC in the case of generic gates, or to |λ2|S−PBC

in the case of XXZ gates. Predicting when does one have a
phantom relaxation and what is this λph equal to is not simple.
In some cases λph is equal to the second largest eigenvalue

for a circuit with OBC, like for the generic gate Wg with PBC,
while for the XXZ gate with S OBC protocol it is instead equal
to |λ2| for the PBC. There is also the case of XXZ gates in the
BW configuration where the phantom eigenvalue is equal to
|λ2| for a whole different circuit, namely the S configuration.
Understanding in detail the physics of phantom relaxation
therefore remains an open problem.

VI. CONCLUSIONS

We have derived a Markovian propagator for the average
out-of-time-ordered correlations of local operators in random
quantum circuits in which each two-qubit transformation is
composed of a fixed two-qubit gate W and two random single-
qubit unitaries. This allows us to get an exact expression for
OTOC on the lightcone and any W .

We then focus on the asymptotic relaxation rate at long
times with which OTOC relaxes to its long-time average cor-
responding to a completely scrambled evolution. Similarly as
in the case of purity relaxation [33] we find that this OTOC
relaxation rate is in many cases not given by the second largest
eigenvalue of the Markovian matrix M that governs dynamics
of OTOCs. One has a so-called phantom relaxation—a relax-
ation where the approach to the steady state asymptotically
goes as λt

ph, with λph being some number that is, opposite
to “expectations”, not equal to any of the eigenvalues of M.
Because λph is in fact larger than any nontrivial eigenvalue
|λ j | of M we call it a phantom eigenvalue. In short, M encodes
all the information about OTOCs evolution but its eigenvalues
do not give the correct relaxation rate in the thermodynamic
limit, despite |λ2| being gapped away from λ1 = 1.

Such phantom relaxation proceeds in two steps, where in
the first step that lasts upto times that are linear in system size
the rate is given by the phantom eigenvalue, while in the sec-
ond it is eventually given by the second largest eigenvalue λ2.
Because the transition time between the two regimes diverges
in the thermodynamic limit one has a situation where at a
fixed system size and t → ∞ one gets the naively expected
(but thermodynamically incorrect) relaxation as |λ2|t , while
in the correct thermodynamic limit of first taking the system
size to infinity and only then time to infinity one will observe
the relaxation rate given by the phantom eigenvalue. The

TABLE I. Phantom eigenvalue λph and the second largest eigenvalue |λ2| for different random circuits. For the generic gate Wg one has
phantom relaxation in both PBC cases, while for the XXZ gate in addition also for the S OBC protocol (remember that for the OBC the
spectrum does not depend on the configuration [33], i.e., λ2 is the same for BW and S). The 2nd largest eigenvalue for XXZ gates and PBC
protocols are conjectured to be equal to |λ2|Spbc = (2 − cos(πaz ))/3 and |λ2|BWpbc = (2 − cos(πaz ))2/9 [48].

Gate Protocol Phantom True eig.

Config. b.c. λph |λ2|
S OBC no 0.86 = |λ2|obc

Wg S PBC 0.86 = |λ2|obc 0.74
a = (0.5, 0.3, 0.1) BW OBC no 0.86 = |λ2|obc

BW PBC 0.86 = |λ2|obc 0.73

S OBC 2
3 = |λ2|Spbc 0.45

XXZ S PBC no 2
3 = |λ2|Spbc

e.g., a = (1, 1, 0.5) BW OBC 2
3 = |λ2|Spbc 0.45

BW PBC 2
3 = |λ2|Spbc

4
9 = |λ2|BWpbc
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phenomenon occurs because the limits t → ∞ and n → ∞
do no commute, while mathematically it comes about because
the transfer matrix M is not symmetric, resulting in spectral
expansion coefficients that blow up with system size [33],
see also Refs. [23,34,35,49,50] for other situations where that
occurs.

We find such two-step phantom relaxation for brick-wall
circuits with dual unitary (i.e., XXZ type) as well as with
generic two-qubit gates, and for periodic or open boundary
conditions. Phantoms are also found for the staircases con-
figuration with open boundary conditions and dual unitary
type gates; see Table I for an overview. We numerically
observe that the phantom eigenvalue λph is equal to the
2nd largest eigenvalue of M of a different circuit that can
have different boundary conditions as well as different gates
configuration (theoretical reasons for that are at present not
understood).

For circuits with open boundary conditions we demon-
strate that up to a time-shift all different circuit geometries,
i.e., brick-wall, staircases, etc., have the same OTOC dy-
namics. We also numerically verify that the dynamics is
self-averaging, that is, one will get a phantom relaxation even
for a single random circuit realization, and even without spa-
tial or time independence of single-qubit random unitaries. An
explicit randomness therefore seems not to be essential. This
leaves an interesting possibility that a similar phenomenon
could be observed also in in other systems, for instance in
Floquet models.

The important message therefore is that: (i) when one deals
with finite non-Hermitian matrices the leading eigenvalue
might not give the correct asymptotic dynamics, and (ii) that
this leads to a two-step relaxation process with a sudden dis-
continuous transition in the relaxation rate at a time when the
lightcone hits the site in question for the second time (either
due to a reflection from a boundary for open boundaries, or
due to a wrapping around for periodic boundary conditions).
On the mathematical level it is therefore due to the fact that
boundary conditions apparently can affect the leading relevant
eigenvalue in a nontrivial way. While we do obtain some
exact properties of the Markovian matrix, like a conjectured
exact expression for λ2 in the case of periodic boundary
conditions, much remains to be understood, in particular
under which physical conditions one gets such a two-step
relaxation.
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APPENDIX A: OTOC PROPERTIES

1. Asymptotic value

Here we calculate the asymptotic value O∞ of average
OTOC [see Eq. (2)] evolved with random quantum circuits,
see also Ref. [46]. After long time, the propagator for the
random quantum circuit will resemble a random unitary op-
erator, that is unitary uniformly drawn from the group U(2n).
Therefore, to get the long-time value of the OTOC we can

replace an explicit averaging over circuits, or over long time,
with a Haar average over U(2n),

O∞ = 1 − 1

2n E
U∈Haar

tr
[
σα

i (t )σβ
j σα

i (t )σβ
j

]
, (A1)

where σα
i (t ) = U †σα

i U . To simplify calculations, we exploit
the fact that the Clifford group (unitaries that map Pauli strings
into Pauli strings) is a 2-design, so the average over U(2n)
in Eq. (A1) can be replaced by the average over the Clifford
group. Note that the t dependence in σα

i (t ) is now superficial
as U in our averaging runs over all elements of the Clifford
group. For the Clifford U the transformed σα

i (t ) is also a
product of Pauli matrices and therefore it either commutes or
anticommutes with σ

β
j ,

1

2n
tr
[
σα

i (t )σβ
j σα

i (t )σβ
j

] =
{

1
[
σ

β
j , σ α

i (t )
] = 0;

−1
{
σ

β
j , σ α

i (t )
} = 0.

(A2)

Taking U randomly from the Clifford group, the operator
σα

i (t ) could be either one of all 4n − 1 possible Pauli strings
(the identity operator excluded) with equal probability. We
can now compute O∞ by counting how many of the total
4n − 1 possible Pauli strings commute with σ

β
j and how many

anticommute:
(1) [σβ

j , σ α
i (t )] = 0: σ

β
j is a product of a Pauli matrix σα

i

at site i and identity operators at other sites. In order to σ
β
j and

σα
i (t ) to commute, σα

i (t ) must have either the identity opera-
tor or σα

i at site i and an arbitrary operator at other sites. There
are 2 · 4n−1 such Pauli strings, of which one must subtract the
identity operator. To conclude, there are 2 · 4n − 1 possible
operators σα

i (t ) out of the total 4n − 1 which commute with
σ

β
j .

(2) {σβ
j , σ α

i (t )} = 0: in this case we can just calculate
the number of operators σα

i (t ) by subtracting the number of
operators which commute with σ jβ from the total 4n − 1. We
obtain 2 · 4n−1 − 1.

Putting this together we get O∞

O∞ = 1 −
(

2 · 4n − 1

4n − 1
− 2 · 4n

4n − 1

)
= 1 + 1

4n − 1
. (A3)

For saturation value of n-point OTOC generalizations see
Ref. [46], for chaotic models Ref. [51].

APPENDIX B: U(4) EXACT RESULTS

This Appendix is dedicated to analytic solutions of OTOC
time-dependence in a random quantum circuit with either BW
OBC or BW PBC configurations and the choice of random
two-site gate. Choosing a random two-site gate means that
every elementary step is composed by a random gate uni-
formly drawn from the unitary group U(4) according to the
Haar measure. All shall be calculated independently on the
local Hilbert space dimension q—instead of qubits we shall
now work with general qudits. The analytic solution when
q = 2 can be used as a nontrivial check of the exactness of
our newly derived Markov chain. Namely, average dynamics
for random two-site gate can be obtained by setting u = 0,
v = −3/5 in the transfer matrix from Eq. (15).
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FIG. 11. Graphical representation of the reduction of OTOC dy-
namics to a partition function of an Ising model. In the figure is
represented one possible realization of the Ising model, which must
be summed in the partition function. Red dots represent up-spins
and blue dots represent down-spins. Interaction between spins are
colored according to their weight [1 for same spins and q/(q2 + 1)
for different spins]. In the case shown here is represented a system
with 12 qudits up to time τ = 8. At the lower boundary, we start
with the up-spin located at the 5th (or equivalently 6th) qudit. The
domain walls, describing the boundary between up and down-spins,
must contain the qudit j at time τ = 8 (for the example shown j must
be taken from the interval [3, 8] in order to the picture to represent
a possible configuration). For the configuration shown in the appro-
priate term of the sum in Eq. (B1) one should take “int. = 14′′ and
“width = 3′′.

In order to analytically solve the time evolution of OTOC,
we will heavily rely on a reduction of OTOC dynamics to an
Ising-like partition function found in [18]. Before we continue
with solutions for BW OBC and BW PBC, we will give a
brief overview of the reduction obtained in the previously
mentioned paper. We won’t give a detailed description of the
reduction, but rather explain what one has to do in order to
obtain the final result.

The Ising-like model of which we will calculate the parti-
tion function is obtained by replacing all two-site elementary
steps Ui,i+1 in the random quantum circuit with two-level
spins (s ∈ {↑,↓}). When dealing with a BW protocol, one
obtains a grid of spins (see Fig. 11). Contrary to the main
text, here we measure time τ such that one unit corresponds
to a row of the BW circuit. The choice of OTOC O(i, j, τ )
reflects itself in the upper and lower boundary of the spin grid:
at the lower boundary one must place an up-spin at position
(i, i + 1) (for simplicity we shall assume that i is odd), at
the upper boundary one must place an up-spin at position
( j, j + 1) or ( j, j − 1), depending on time τ and parity of j.
Moreover, boundary conditions dictate that all other spins at
the lower boundary must be ↓.

Reference [18] gives a detailed description on how to
obtain such constraints, together with a derivation of the in-
teraction laws between spins at different positions. Namely,
spins interact with a three-body interaction. Take three spins,
(i, i + 1) and (i + 2, i + 3) at time τ , and (i + 1, i + 2) at time
τ + 1. The weight of the interaction is 1 if all spins are equally
oriented, q/(q2 + 1) if the spins at time τ are different and 0

otherwise. It is now clear that in order to obtain an up-spin at
position ( j, j + 1) at the upper boundary the spin grid must
contain two domain walls, determining the boundary between
up-spins and down-spins (see Fig. 11). The authors of [18]
showed that OTOC are now recovered with the following
equation

O(i, j, τ ) = q2

q2 − 1

∑
ends

(
q

q2 + 1

)int.

(q2)widht#walls. (B1)

The first term in Eq. (B1) comes from the lower boundary
condition and will be present in all configurations (PBC and
OBC) that we study here. The sum runs over all possible
ends of the domain walls on the upper boundary with width
“width”. With “int.” we denoted the number of interactions
between differently oriented spins. In the sum we must count
all possible domain walls with given “ends” (#walls). For a
more graphical explanation of Eq. (B1) see Fig. 11.

In [18], OTOC were calculated for an infinite size system
(infinite number of qudits). The authors obtained

O(i, j, τ )

= ζg

(
τ − 1,

τ − � j − 1

2
, p

)
g

(
τ − 1,

τ + � j − 1

2
, p

)

+ (1 − ζ )g

(
τ − 1,

τ − � j − 3

2
, p

)

× g

(
τ − 1,

τ + � j − 3

2
, p

)
, (B2)

with � j = | j − i| and

ζ = q4

q4 − 1
(B3)

p = 1

q2 + 1
(B4)

g(n, a, p) =
a∑

k=0

(
n

k

)
(1 − p)n−k pk . (B5)

Infinite size systems can be thought as a BW PBC or BW
OBC at early times, namely, all these systems share the same
dynamics up to times t ∼ n, where n is the number of qudits
(before the time evolved operator in O(i, j, t ) reaches the
boundary). This means that by calculating the time derivative
of −2 ln |O( j, τ ) − O∞| for τ → ∞ we would obtain the
phantom eigenvalue for BW PBC circuits (when n � 1). Note
that the prefactor 2 comes from our time definition. In order to
compute the limit, we will simplify Eq. (B3) by taking τ � j
and τ � 1

O(i, j, τ ) ≈ g

(
τ,

τ

2
,

1

q2 + 1

)2

. (B6)

In this case limτ→∞ g(τ, τ
2 , 1

q2+1 ) = 1, so we replace O∞ with

1. By taking the limit of −2 ln |g(τ, τ
2 , 1

q2+1 )2 − 1| we obtain
our final result

lim
τ→∞ −2 ln |g

(
τ,

τ

2
,

1

q2 + 1

)2

− 1| = 2 ln
1 + q2

2q
, (B7)

which gives the right result for q = 2: 2 ln 5
4 [18,19,52].
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1. OTOC in a finite system with open boundary conditions

We shall now compute O(1, j, τ ) for a finite size BW
OBC circuit, where the propagated operator σα

i (t ) is initially
located near the boundary (i = 1). Other choices of the initial
location of σα

i (t ) are less interesting, because O(i, j, τ ) are
identical to OTOC from Eq. (B3) for times t � n. Positioning
σα

i (t ) near the boundary thus gives new results for all times.
Moreover, positioning σα

i (t ) at the leftmost position guaran-
tees that there exist only one domain wall. In this case we have
to count only interactions between opposite spins at the right
domain wall.

In order to calculate O(1, j, τ ) we must determine every
quantity in Eq. (B1). From the previous discussion we learned
that there exists only one domain wall, which propagates
in the system with increasing time. At time τ the up-spin
domain must cover the jth spin if we want the configura-
tion to contribute to O(1, j, τ ). Dealing with OBC circuits
one can differentiate between two different up-spin domain
scenarios: (a) the domain is never wider than n/2 spins, (b)
the domain reaches width n/2 at time τ , after this time there
are no down-spins. This distinction between different domain
scenarios will help us determine all the terms in Eq. (B1): we
shall separately count domain walls that reach width n/2 and
domain wall that never reach width n/2.

The sum in Eq. (B1) can be separated as follows:
(i) All configuration with up-spin domain of width n/2.

In this case (q2)width = qn and the number of interactions
between opposite spins corresponds to the time τ0 when the
up-spin domain spreads over n qudits. The number of different
spin configurations can be counted as the sum over all times of
the number of domain walls that reach the rightmost position
for the first time at time τ0 without reaching the leftmost
position. The number of different paths H (τ, n) was obtained
by subtracting any path that reach n before time τ0 from the
number of all possible paths

H (τ, n) = p(τ, n) −
k/2−1∑
j=n/2

p(2 j, n)�τ−2 j (B8)

where

p(k, n) =
{ n

k

( k
k−n

2

)
, k−n

2 even

0 , otherwise
(B9)

counts the number of domain walls which reach point n at
time k without ever crossing the point 0 and where

�2k = −
∑

N

∏
p

(−1)p�(2rp, n), (B10)

with N = 2k−1 denoting the number of compositions of k,
where the order of different terms matters [for example com-
positions (2,4) and (4,2) of the integer 6 are two different
terms in the upper sum]. The product runs over all p terms
rp of a composition, namely k = ∑

p rp. The function �(k, j)
is defined as

�(k, j) =
(

k
k−n+ j

2

)
−

(
k

k−n− j
2

)
(B11)

and counts the number of different paths that start from n and
reach j at time k and never cross the position 0.

FIG. 12. Time dependence of O(1, j = 10, t ) for different
choices of the local dimension q, n = 20. With dashed lines are
plotted lines with slope 2 ln 1+q2

2q corresponding to the convergence
rate of OTOC in an infinite system [see Eq. (B8)].

Configurations with width n/2 thus contribute with

q2

q4 − 1
qn

τ∑
τ0=1

(
q

q2 + 1

)τ0−1

H (τ0 + 1, n) (B12)

(ii) All configuration with width always smaller than n/2.
In this case ( q

q2+1 )int. = ( q
q2+1 )τ−1. The number of different

spin configurations will be computed as the sum over all
domain wall endpoints (so that up-spins contain the qudit j)
that do not reach 0 minus all domain walls that at arbitrary
times hit the right boundary n, that is H (τ0, n). The factor
(q2)width depends on the endpoint of the domain wall. Such
configurations contribute to the partition function as

q2

q4 − 1

(
q

q2 + 1

)τ−1 n−1∑
u= j

qu[p(τ + 1, u)

−
τ∑

τ0=1

H (τ0, n)�(τ + 1 − τ0, u)]. (B13)

A detailed explanation on how the numbers of paths were
obtained will not be given here, because it deviates too much
from the topic. OTOC O(1, j, τ ) for BW OBC with random
2-site gates is equal to the sum of Eq. (B13) and Eq. (B14).
The obtained result was used to plot the time dependence of
OTOC O( j = 10, t ) for different values of q for a system with
20 qudits, see Fig. 12.

2. OTOC in a finite system with periodic boundary conditions

The case of BW PBC is more complicated. In this case our
analytical result does not give any computational advantage
over the Markov chain iteration method. We will see that
the final results will be given by a recursion, which is time
consuming during numerical evaluations. However, it is still
useful to obtain an analytical result for completeness. As in
the OBC case, here we also differentiate configuration that are
wide n/2 and configurations that are never wider than n/2.

(i) The number of domain walls with width n/2 at time τc

will be computed recursively. Let N̂τc (u0 → u1, v0 → v1) de-
note the number of domain walls pairs, starting at (u0, v0) and
ending at (u1, v1 = u1 + n/2). All domain walls in N̂τc (u0 →
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FIG. 13. OTOC dynamics for a single realization of the random BW PBC circuit with dual-unitary gates az = 0.5, j = 4, showing self-
averaging. We show four different cases of selecting single-qubit random unitaries (see text) and theoretical averaged prediction based on our
Markovian mapping (full black curve). Two dashed exponential functions are given by theoretical rates [red by Eq. (25), green by Eq. (26)].
One can see that even though n = 24 is not yet in the thermodynamic limit, at tc (vertical-dashed line) the relaxation rate does change also for
individual circuit realizations.

u1, v0 → v1) must never be wider than n/2 at times τ ′ < τc.
To shorten the notation, we shall always take u0 = 0 and
v1 = 1, i.e., i = 1, and write N̂τc (u0 → u1, v0 → v1) as N̂ (τc )

u1
.

The quantity N̂ (τc )
u1

can be computed recursively as

N̂ (τc )
u1

= N (τc )
(u0,v0 )→(u1,v1 )

−
τc−1∑

τ0=n/2

τ0−n/2∑
u′=0

N̂ (τ0 )
u′ N (τc−τ0+1)

(u′,u′+n/2)→(u1,v1 ), (B14)

where N (τ )
(u0,v0 )→(u1,v1 ) counts the number of nonintersecting

domain walls from (u0, v0) to (u1, v1), namely

N (τ )
(u0,v0 )→(u1,v1 )

=
(

τ − 1

u1 − u0

)(
τ − 1

v1 − v0

)
−

(
τ − 1

v1 − u0

)(
τ − 1

u1 − v0

)
,

(B15)

where binomial coefficients
(n

k

) = 0 for n < k or k < 0. The
recursion in Eq. (B15) ends at τc = n/2 by taking N̂ (τc )

u = 1.
The contribution of domain walls of width n/2 follows

immediately

qn q2

q4 − 1

τ−1∑
τc=n/2

τc−n/2∑
u=0

(
q

q2 + 1

)2τc−2

N̂ (τc )
u . (B16)

(ii) Domain walls with width always smaller than n/2 will
be computed with the help of N̂ (τc )

u1
. The number of desired

paths will be calculated by subtracting domain walls that reach
width n/2 from the total number of all possible paths

q2

q4 − 1

(
q

q2 + 1

)2τ−2 τ−1∑
u=0

u+n/2∑
v=vb

q2(v−u)

[
N (τ )

(0,1)→(u,v)”d −
τ−1∑

τ0=n/2

τ0−n/2∑
u′=0

N̂ (τ0 )
u′ N (τ−τ0+1)

(u′,u′+n/2)→(u,v)

]

(B17)

with vb = u + mod (D − mod (−τ + 2u +
n/2, n), n)/2 + 1 and D = n/2 − 1 + j (note that we always
take i = 1).

The final result is obtained by summing Eq. (B16) and
Eq. (B17). Note that due to recursive terms, this analytical
result does not give any substantial computational advantage
over the Markov chain iteration method, however we do not
claim that there is no way to count the number of domain walls
in a simpler way.

APPENDIX C: RANDOMNESS

In the main part of the paper we dealt with average OTOC
dynamics (averaged over single-qubit random unitaries). Here
we would like to see if the relaxation is similar without averag-
ing, that is, for a single circuit realization. In order to explore
how important is the choice of random one-site unitaries, we
will study four different scenarios:

(1) When all one-site unitaries are independently drawn
from the group U(2). In the following we shall denote this
choice as diff.x,diff.t (different unitaries for every position and
time). This choice was used in the main part of the paper;

(2) When the same one-site unitary is used at every time
for the same position. Unitaries corresponding to different
positions are drawn independently. In the following we shall
denote this choice as diff.x,hom.t (different unitaries for every
position but same unitaries for every time at fixed position);

(3) When the same one-site unitary is used for every
position. At each time we generate a new independent one-
site operator. In the following we shall denote this choice
as hom.x,diff.t (different unitaries for every time but same
unitaries for every position at fixed time);

(4) When at time t = 0 we generate only one one-site
random unitary and we repeat the same operator for all times
and positions. In the following we shall denote this choice as
hom.x,hom.t (same unitary for every position and time);

Figure 13 shows |O(1, j = 4, t ) − O∞| for one realization
of a BW PBC circuit with the gate W having ax = 1, ay = 1
and az = 0.5. We can see that for all four cases there is a
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change in the slope around tc so we conjecture that in the
thermodynamic limit the dynamics is self-averaging for each
of the four scenarios, including the case where the random
single-qubit unitary is the same at all qubits and at all times.
This has interesting implications: first, explicit averaging over

independent Haar random single-qubit unitaries in a random
circuit is not necessary in order to observe phantoms, and
second, it suggest that phantom eigenvalues, and with it a
step-wise relaxation, could perhaps occur in other situations,
not just in random circuits.
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[17] M. Žnidarič, Exact convergence times for generation of random
bipartite entanglement, Phys. Rev. A 78, 032324 (2008).

[18] A. Nahum, S. Vijay, and J. Haah, Operator Spreading in Ran-
dom Unitary Circuits, Phys. Rev. X 8, 021014 (2018).

[19] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L.
Sondhi, Operator Hydrodynamics, OTOCs, and Entanglement
Growth in Systems without Conservation Laws, Phys. Rev. X
8, 021013 (2018).

[20] T. Zhou and X. Chen, Operator dynamics in a Brownian quan-
tum circuit, Phys. Rev. E 99, 052212 (2019).

[21] B. Bertini, P. Kos, and T. Prosen, Exact Correlation Functions
for Dual-Unitary Lattice Models in 1 + 1 Dimensions, Phys.
Rev. Lett. 123, 210601 (2019).

[22] B. Bertini and L. Piroli, Scrambling in random unitary circuits:
Exact results, Phys. Rev. B 102, 064305 (2020).

[23] P. W. Claeys, J. Herzog-Arbeitman, and A. Lamacraft, Corre-
lations and commuting transfer matrices in integrable unitary
circuits, SciPost Phys. 12, 007 (2022).

[24] P. W. Claeys and A. Lamacraft, Maximum velocity quantum
circuits, Phys. Rev. Research 2, 033032 (2020).

[25] P. Kos, B. Bertini, and T. Prosen, Correlations in Perturbed
Dual-Unitary Circuits: Efficient Path-Integral Formula, Phys.
Rev. X 11, 011022 (2021).

[26] K. Hashimoto, K.-B. Huh, K.-Y. Kim, and R. Watanabe, Ex-
ponential growth of out-of-time-order correlator without chaos:
Inverted harmonic oscillator, J. High Energy Phys. 11 (2020)
068.

[27] T. Xu, T. Scaffidi, and X. Cao, Does Scrambling Equal Chaos?
Phys. Rev. Lett. 124, 140602 (2020).

[28] S. Pilatowsky-Cameo, J. Chavez-Carlos, M. A. Bastarrachea-
Magnani, P. Stransky, S. Lerma-Hernandez, L. F. Santos, and
J. G. Hirsch, Positive quantum Lyapunov exponents in experi-
mental systems with a regular classical limit, Phys. Rev. E 101,
010202(R) (2020).

[29] S. Gopalakrishnan, D. A. Huse, V. Khemani, and R. Vasseur,
Hydrodynamics of operator spreading and quasiparticle dif-
fusion in interacting integrable systems, Phys. Rev. B 98,
220303(R) (2018).

[30] J. Riddell, W. Kirkby, D. H. J. ODell, and E. S. Sorensen, Scal-
ing at the OTOC wavefront: integrable versus chaotic models,
arXiv:2111.01336 .

[31] V. Khemani, D. A. Huse, and A. Nahum, Velocity-dependent
Lyapunov exponents in many-body quantum, semiclassical, and
classical chaos, Phys. Rev. B 98, 144304 (2018).

[32] I. Kukuljan, S. Grozdanov, and T. Prosen, Weak quantum chaos,
Phys. Rev. B 96, 060301(R) (2017).
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