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Emergence of quasiperiodic Bloch wave functions in quasicrystals
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We study the emergence of quasiperiodic Bloch wave functions in quasicrystals, employing the one-
dimensional Fibonacci model as a test case. We find that despite the fact that Bloch functions are not
eigenfunctions themselves, superpositions of relatively small numbers of nearly degenerate eigenfunctions give
rise to extended quasiperiodic Bloch functions. These functions possess the structure of earlier ancestors of the
underlying Fibonacci potential, and it is often possible to obtain different ancestors as different superpositions
around the same energy. There exists an effective crystal momentum that characterizes these ancestors, which
is determined by the mean energy of the superimposed eigenfunctions, giving rise to an effective dispersion
curve. We also find that quasiperiodic Bloch functions do emerge as eigenfunctions when weak disorder is
introduced into the otherwise perfect quasiperiodic potential. These theoretical results may explain a number
of experimental observations, and may have practical consequences on emerging theories of band topology and
correlated electrons in quasicrystals.
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I. INTRODUCTION AND MOTIVATION

Quasicrystals are quasiperiodic crystals that are strictly
aperiodic [1]. Their discovery [2] put an end to the age-old
paradigm that long-range order—in the positions of atoms
in a material—is synonymous with periodicity, ushering in a
Kuhnian scientific revolution [3]. In the past four decades, we
have experienced the exciting paradigm-rebuilding phase of
this revolution [4], in which old notions and ideas are being
reexamined and carefully modified and adapted to the age of
quasicrystals [5]. Of particular relevance here is the funda-
mental notion that order, or lack thereof, is what determines
the nature of single-particle quantum excitations in condensed
matter.

Bloch [6] showed, already in 1928, that electrons in pe-
riodic potentials form extended eigenfunctions, almost as if
they were in free space, with absolutely continuous energy
spectra. Anderson [7] established three decades later that elec-
trons in disordered potentials possess exponentially localized
eigenfunctions, with pure point spectra. Surprisingly, only in
dimensions greater than two is there a delocalization transition
as a function of energy [8], whereby beyond a critical value—
the so-called mobility edge—electrons have sufficient energy
to overcome the disorder for their eigenfunctions to become
extended. It was only natural for the scientific community,
which at the time was still unaware of aperiodically ordered
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matter, to associate the existence of extended or localized
eigenfunctions with having ordered or disordered potentials,
respectively. The discovery of quasicrystals called for a reex-
amination of this notion.

Quasicrystals possess long-range order. It is therefore
natural to expect their single-particle eigenfunctions to be
extended and obey a generalized form of Bloch’s theorem
for quasiperiodic potentials. Yet, four decades of research on
single-particle excitations in quasicrystals [9–29] have shown
that this is not the case. Depending on the nature of the model
used, single-particle eigenfunctions in quasicrystals can take
almost any possible form: they can be extended as in periodic
potentials, localized as in disordered potentials, or critical,
exhibiting power-law or algebraic decay, which is not seen
in the former cases.

As it seems, the Bloch theorem, which is the cornerstone of
the theory of electrons in periodic crystals, does not generally
apply to aperiodic crystals. Rather than proposing alterna-
tive forms for the electronic eigenfunctions in quasicrystals
[30,31] or suggesting a generalized formulation for the Bloch
theorem [32], we examine here whether Bloch wave functions
may still appear naturally in quasicrystals even when Bloch’s
theorem fails to generate them as eigenfunctions. This may
have immediate practical implications, as the study of cor-
related electrons in quasicrystals [33,34] is regaining interest
[35–37] amid the experimental observation of Dirac electrons
in dodecagonal bilayer graphene quasicrystals [38,39] and
the reformulation of the early spectral theories of electrons,
phonons, and photons in quasicrystals [40,41] using modern
topological classifications [42–46]. It may also have exper-
imental significance with the increasing ability, at least in
metamaterials, to observe and manipulate the actual wave
functions [47] and their topological nature [48–50], while
inducing topological defects [51], phason excitations [52],
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and static disorder [53] in the otherwise perfectly ordered
quasicrystalline potential.

To be concrete, let us consider a quasiperiodic crystalline
potential U (r), which can be decomposed into countably
many Fourier modes,

U (r) =
∑

k∈L
Ũ (k)eik·r, (1)

where the reciprocal lattice L, consisting of the closure under
addition of all wave vectors k with nonzero Fourier coeffi-
cients Ũ (k), is a finitely generated Z module. If the rank,
or smallest number D of wave vectors required to generate
L over the integers, is equal to the spatial dimension d , then
U (r) is the potential of a periodic crystal. In other words, if
D = d, L is reciprocal to a Bravais lattice T of real-space
translations leaving the crystalline potential invariant, in the
sense that U (r + R) = U (r) for every R ∈ T . If D > d , then
U (r) is the potential of a quasicrystal, there exists no lattice
of spatial translations leaving the potential invariant, and the
reciprocal lattice L becomes dense and no longer possesses a
Brillouin zone.

According to the Bloch theorem (see, for example, Chap. 8
of Ashcroft and Mermin [54]), single-electron eigenfunctions,
satisfying the Schrödinger equation for such a potential, can
be expressed as

ψq(r) = eiq·r ∑

k∈L
ũq(k)eik·r, (2)

where the quantum number q labeling them is known as
the crystal momentum. Consequently, the Fourier transforms
of the electron density |ψq(r)|2 and the potential U (r) are
supported on the same reciprocal lattice L, while the Fourier
transform Eq. (2) of the eigenfunction itself is supported on
the shifted lattice L + q = {k + q | k ∈ L}. By comparing the
Fourier transforms of |ψq(r)| and ψq(r), one can readily de-
termine the crystal momentum q by the presence of a uniform
shift between the two spectra. Repeating this process for all
eigenfunctions yields a dispersion relation E (q), which corre-
sponds to the crystalline band structure. This holds true if the
crystal is periodic. It generally fails if the crystal is aperiodic,
possessing a dense reciprocal lattice, owing to the fact that the
infinite sum over scattered waves in Eq. (2) generically does
not converge, even though the corresponding sum in Eq. (1)
does.

Nevertheless, it is interesting to explore whether ex-
tended quasiperiodic Bloch functions may somehow emerge
in realistic physical situations—either as naturally occurring
superpositions of eigenfunctions, or even as true eigen-
functions of slightly modified quasiperiodic structures, for
example, by introducing static disorder or external fields. If
so, what would be the nature of these quasiperiodic Bloch
functions? How would they be related to the structure of the
underlying quasicrystalline potential? Could they be charac-
terized by similar quantum numbers q in reciprocal space as
their periodic analogs? If so, would there exist an energy-
momentum dispersion curve, or effective band structure, that
could be associated with these Bloch functions? Positive an-
swers to these questions may explain a number of empirical
observations that seem to indicate that energy-momentum
dispersion curves do exist [55,56] and that slight disorder

may increase the conductivity [57] and the spatial extent of
wave functions [53]. The latter effect has been demonstrated
recently using renormalization-group calculations [58].

II. CHOICE OF MODEL

We would like to choose, among the commonly used mod-
els for studying electrons in quasicrystals, one that is as simple
as possible, yet sufficiently generic to explore the questions
raised above. We therefore concentrate on one dimension—
although some initial calculations of ours in two dimensions
can be found elsewhere [59,60]—and limit ourselves to qua-
sicrystals of rank D = 2, that is with just a single pair of
incommensurate fundamental spatial harmonics. With these
restrictions there are still a few different types of models to
choose from, some more physically motivated than others.
These can roughly be categorized as follows (with more de-
tails in the references provided):

A. Continuous time-independent Schrödinger equations

These are ordinary differential equations of the form

−ψ ′′(x) + λU (x)ψ (x) = Eψ (x), x ∈ R, (3)

with continuous quasiperiodic potentials U (x) as in Eq. (1),
supported on a reciprocal lattice L of rank D = 2 [9–12].
To simplify things, one often limits the potential to its two
fundamental harmonics by taking, for example,

U (x) = cos 2πx + ε cos 2π (τx + θ ), (4)

with an irrational τ .
For weak coupling λ � 1, or weak quasiperiodicity ε � 1,

one can treat the equation as a small perturbation with respect
to free electrons, or to Bloch electrons in a periodic crystal,
respectively. In these limits, the spectrum remains purely ab-
solutely continuous, exhibiting a well-defined band structure
E (q), with a hierarchy of gaps that open at q = nπ + mπτ

(n, m ∈ Z), as a result of the hybridization that occurs when-
ever the degenarate ±q free-electron states differ by a wave
vector k ∈ L. Formally, this happens because of small divisors
that appear in the perturbation expansion (see, for example,
Chap. 9 of Ashcroft and Mermin [54]). In these limits, the
eigenfunctions are quasiperiodic and satisfy Bloch’s theorem
Eq. (2).

Owing to the dense nature of L, for sufficiently large λ

and ε, and depending on the Diophantine properties of the
irrational ratio τ , the formation of gaps typically destroys the
band structure at the bottom of the spectrum. Consequently,
the bottom of the spectrum becomes pure point with eigen-
functions that are exponentially localized. Typically [61],
there is a critical energy Ec = Ec(λ, ε, τ ) below which the
eigenfunctions are exponentially localized and above which
they are extended, akin to the mobility edge that is observed
in Anderson localization in dimensions greater than 2. It
should be emphasized, though, that while Anderson localiza-
tion arises from the lack of order, the localization here arises
from the existence of order, albeit aperiodic order. It is the
long-range order that is responsible for having strong Bragg
peaks Ũ (k) in the Fourier transform of the potential Eq. (1)
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that can then combine with the dense nature of L to destroy
the continuous bands.

B. Discrete time-independent Schrödinger equations

These are finite difference equations of the form

ψ (m + 1) + ψ (m − 1) + λ f (m)ψ (m) = Eψ (m), (5)

with a periodic analytic function f (x) whose period is in-
commensurate with that of the lattice m ∈ Z on which it is
sampled. A standard example is to take

f (x) = cos 2π (τx + θ ), (6)

with an irrational τ .
In the finite-difference or tight-binding Schrödinger

Eq. (5), known as the Aubry-André model [13], or the almost
Mathieu equation [11,14,62–64], one no longer observes a lo-
calization transition as a function of energy. Instead, what one
typically finds is that there is a critical value λc of the coupling
constant, equal to 2 for the standard example Eq. (6), at which
the whole spectrum changes its nature [64]. For almost every
choice of irrational τ and real θ , if λ < λc the bands remain
intact and the whole spectrum is purely absolutely continuous
with eigenfunctions that are extended. If λ > λc, the whole
spectrum is pure point and the eigenfunctions are exponen-
tially localized. Exactly at λ = λc the spectrum is purely
singular continuous [63], like a Cantor set—uncountable yet
of zero Lebesgue measure—neither pure point nor consist-
ing of any bands or continuous intervals. The corresponding
eigenfunctions decay algebraically.

C. Tight-binding time-independent Schrödinger equations on
quasiperiodic tilings

In one dimension, quasiperiodic tilings reduce to quasiperi-
odic sequences of finitely many different letters. These letters
may then represent either the sequence of distances between
atoms on the line, affecting the hopping amplitudes {Tm}
between neighbors, the sequence of different atomic species
arranged on the line, affecting the on-site energies {εm}, or
both, as given by

Tm+1ψ (m + 1) + Tmψ (m − 1) + εmψ (m) = Eψ (m). (7)

When the Tm are all equal or the εm are all equal, Eq. (7) re-
duces to the diagonal or the off-diagonal tight-binding models,
respectively.

The essential difference between these equations and those
of the previous category is that the sequence f (m) in Eq. (5)
consists of infinitely many different values, densely sam-
pling the image of the continuous function f (x), whereas
the sequences {Tm} or {εm} consist of a finite number of
distinct values. A standard example is the family of Sturmian
sequences [65], consisting of two letters, corresponding to
whether vertical or horizontal lines are crossed when cutting
through a square grid with an irrationally sloped straight line.
This includes the most familiar example of the Fibonacci
sequence [15–20], recently reviewed by Jagannathan [66].

The striking behavior for a large family of these mod-
els [65–69] is that they exhibit purely singular-continuous
zero-Lebesgue-measure spectra, with critical eigenfunctions,

for any nontrivial choice of their parameters. They never
exhibit absolutely continuous spectra with extended Bloch
eigenfunctions, as do periodic crystals, and they never exhibit
pure point spectra with exponentially localized eigenfunc-
tions, as disordered structures do. They represent what is most
unique about quasicrystals in this respect, and are therefore
best suited to study the main question posed here: Is it still
possible for Bloch wave function to occur naturally in these
aperiodically ordered models, despite the failure of Bloch’s
theorem in any part of their spectra and for any choice of their
parameters.

D. Time-independent quasiperiodic Kronig-Penney models

The last family of models that should be mentioned in this
context are quasiperiodic generalizations of the 1931 Kronig-
Penney model [70]. These models [22–29] are in some sense
intermediate between the continuous models of Sec. II A and
the discrete models of Secs. II B and II C, as they replace
the continuous potential U (x) in the Schrödinger Eq. (3) by
a discrete sum of delta functions with variable weights Wm,

U (x) =
∑

m∈Z
Wmδ(x − xm). (8)

Taking xm = m and setting Wm = f (m), gives the Kronig-
Penney version of the almost Mathieu equation or Aubry-
André model of Eq. (5); while taking the distances xm − xm−1

or the weights Wm to follow a quasiperiodic sequence of
letters, gives the Kronig-Penney version of the tight-binding
model of Eq. (7). Other variations are possible, including
the replacement of the weights Wm by a convolution of the
delta functions with finite-range potentials vm(x)—like square
wells or barriers that are narrower than the minimum distance
between consecutive delta functions.

These quasiperiodic Kronig-Penney models typically ex-
hibit the same features as the discrete tight-binding versions,
usually with some added complexities that are lost in the
tight-binding approximation. An interesting example is the
appearance of countably many extended Bloch eigenfunc-
tions, whose energies are embedded within the singular
continuous spectrum of an uncountable Cantor set of critically
decaying eigenfunctions [28,29].

E. Our choice: The off-diagonal tight-binding Fibonacci model

As argued in Sec. II C above, we choose to consider the
family of tight-binding models of Eq. (7), where the Bloch
theorem fails completely, and the eigenfunctions are all crit-
ically decaying for any nontrivial choice of parameters. We
employ the well-known Fibonacci sequence, taking the off-
diagonal version of the model for simplicity:

Tm+1ψ (m + 1) + Tmψ (m − 1) = Eψ (m). (9)

Here, the on-site energies are all zero, and the hop-
ping amplitudes Tm, between pairs of adjacent sites ψ (m)
and ψ (m − 1), take the values 1 or T , depending on
whether the two sites are separated by a long (L) or
short (S) interval, respectively. The two types of intervals
are arranged according to the infinite Fibonacci sequence
S∞ = {L, S, L, L, S, L, S, L, L, S, L, L, S, . . .}, which can be
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FIG. 1. Energy spectrum of the off-diagonal tight-binding
Fibonacci Hamiltonian Eq. (9) with T = 6 and N = F16 = 987 sites.
Top inset: Five of the 987 eigenfunctions have energies that lie within
the displayed energy window W . Bottom inset: Three typical spa-
tially decaying eigenfunctions, with nearly degenerate consecutive
eigenvalues, as indicated within the inner panels.

obtained, for example, as the infinite limit of a recursive
concatenation of finite sequences, whereby Sn = {Sn−1Sn−2},
starting with S1 = {S} and S2 = {L}. Accordingly, the length
of the finite sequence Sn is the Fibonacci number Fn, where
Fn = Fn−1 + Fn−2 and F1 = F2 = 1. This is the same as start-
ing with the sequence S1 = {S} and iteratively applying the
substitution rules S → L and L → LS. Moreover, the finite
sequences Sn yield the optimal choices of unit cells for pe-
riodic approximants of the infinite Fibonacci quasicrystal. A
finite sequence Sm is said to be an ancestor of the sequence Sn

if m < n.
The approximant tight-binding Hamiltonian, correspond-

ing to Eq. (9), is thus given by a Fn × Fn matrix that is
tridiagonal up to boundary terms. A direct diagonalization
of the matrix, for a given value of T and a particular choice
of boundary hopping terms, is then used to obtain a discrete
set of Fn eigenvalues along with their corresponding eigen-
functions, converging to the quasicrystalline spectrum in the
limit of n → ∞. A typical spectrum is shown in Fig. 1 for an
approximant with N = F16 = 987 sites, and T = 6. Typical
algebraically decaying eigenfunctions are shown in the bot-
tom inset of Fig. 1, as well as in blue in the top three panels
of Fig. 2, for an approximant with N = F15 = 610 sites, and
T = 6. Indeed, for any T �= 1 the eigenfunctions all tend in
the infinite limit to critical wave functions that decay alge-
braically [15–17] rather than to extended Bloch functions.

III. LINEAR COMBINATIONS OF NEARLY DEGENERATE
EIGENFUNCTIONS

We wish to see whether extended Bloch wave functions
may still appear naturally in these tight-binding models, albeit
not as eigenfunctions. As a first step, and following early ideas
of Even-Dar Mandel and Lifshitz [59,60,71], we consider the
spatial extent one can achieve by taking linear combinations

FIG. 2. The top three panels show three typical spatially de-
caying eigenfunctions of the Fibonacci quasicrystal, with nearly
degenerate consecutive eigenvalues, as indicated within the panels,
differing by less than 10−5 of the total spectral width. The bottom
panel shows a linear combination of these three eigenfunctions,
whose peaks are spatially extended, and for which the mean energy
is 〈E〉 = −5.656905, with an uncertainty, or standard deviation, of

E = 4.2 × 10−5. Here T = 6 and N = F15 = 610.

of nearly degenerate eigenfunctions. This idea is motivated
by the fact that many of the simple structural or tiling models
of quasicrystals are linearly repetitive. This means that any
finite patch of radius r is repeated in the tiling at a distance
that scales linearly with r. Thus, algebraically decaying eigen-
functions that are very close in energy, which are likely to
originate from large patches that are structurally similar, will
have their peaks located at distant positions in the quasicrystal.
This may allow a relatively small number of nearly degenerate
eigenfunctions to span the whole quasicrystal. We note that
Niu and Nori [17] already saw indications that this might be
the case by considering incoherent sums

∑ |ψn|2 of nearly
degenerate eigenfunctions, but not as coherent wave functions∑

cnψn that may describe an actual particle with a small
uncertainly in its energy.

The three eigenfunctions shown in blue in the top three
panels of Fig. 2 correspond to three consecutive eigenen-
ergies in the spectrum of a N = F15 = 610 approximant,
and together may indeed form a coherent superposition that
spans the whole approximant, as shown in red in the bottom
panel. The perceptive reader may notice that the peaks in
the extended function are separated by long (L) and short
(S) intervals, arranged according to the N = F6 = 8 Fibonacci
approximant LSLLSLSL. This reflects the spatial distribution
of similar local sequences, in the F15 approximant, inherited
from its ancestor of nine generations earlier.

To pursue this intuition, we numerically optimize the
spatial extent of linear combinations of nearly degenerate
eigenfunctions, whose energies lie within tiny windows W
around every eigenenergy En in the spectrum of a given
approximant, as demonstrated schematically in the top inset
of Fig. 1. It is most often the case that several consecutive
energies yield the same result owing to the near-flatness of
the spectrum. We use the difference-map algorithm of Elser
et al. [72], with the aim of generating a wave function that
satisfies two constraints simultaneously: (I) it should be as
extended as possible, ideally having an equal amplitude on
all sites and (II) it should be spanned by the assigned set
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FIG. 3. Fourier spectra of (a) ψ , (b) |ψ |, and (c) the potential,
where ψ is the most extended wave function generated by a linear
combination of 34 nearly degenerate eigenfunctions of the Hamilto-
nian Eq. (9), calculated with T = 6 and N = F16 = 987 sites. The
spectra of |ψ | and the potential are peaked at the same wave vectors,
while the spectrum of ψ is shifted by a constant q, motivating us to
label the wave function as ψq. The mean energy of the ψq shown here
is E (q) = 〈ψq| H |ψq〉 = 0.1746.

of nearly degenerate eigenfunctions. The two constraints are
applied iteratively—the first by setting |ψ (m)| = 1/

√
N on all

sites, while keeping the phases, and the second by projecting
the wave function into the subspace spanned by the given
eigenfunctions—always finishing with the latter projection
[59,60]. We note that more traditional constraint-solving ap-
proaches, like least-squares algorithms, yield similar results,
albeit with longer computation times. To assess the results
and the progress of the calculation, we use the normalized
participation ratio,

NPR[ψ] =
(∑

m |ψ (m)|2)2

N
∑

m |ψ (m)|4 , (10)

as a measure of extent. By construction, the NPR is equal to 1
for a uniformly extended wave function, and decays to 0 as it
becomes localized.

Surprisingly, the wave functions that emerge from this
optimization all happen to be Bloch-like Fibonacci wave func-
tions, even though they are merely optimized for extent. They
are Fibonacci wave functions in the sense that they have the
structure of an earlier Fibonacci ancestor of the underlying
potential, as anticipated in the bottom panel of Fig. 2. They
are Bloch-like wave functions in the sense that their Fourier
spectra, as shown in Fig. 3, are carried by the same set of
wave-vectors as the underlying quasiperiodic potential—set
by the Fibonacci sequence of hopping amplitudes Tm—shifted
by the crystal momentum q.

Although we are limited computationally up to approxi-
mants of size N = F18 = 2584, it seems that this behavior
persists with increasing N . Specifically, we find that while
the NPRs of the individual eigenfunctions decrease with
N , the NPRs of the most extended linear combinations of
eigenfunctions remain roughly constant with increasing N ,

FIG. 4. Effective dispersion curve: Mean energy E of linear com-
binations of eigenfunctions as a function of the extracted quantum
number q. Red diamonds show the spectrum calculated from the
most extended linear combinations of nearly degenerate eigenfunc-
tions, yielding the most recent ancestor as a wave function. Blue dots
include the addition of earlier ancestors. The calculation is performed
with T = 6, N = 987 sites, and W = 0.005, giving typically between
21 and 55 eigenfunctions in each linear combination. The dispersion
curve resembles the shape of the energy spectrum in Fig. 1, suggest-
ing that q ∝ n as in periodic crystals.

suggesting that the Bloch-like Fibonacci character of the ex-
tended linear combinations may persist in the thermodynamic
limit.

Moreover, it is possible to extract the crystal momentum
q numerically for each energy by comparing the Fourier
transform of the potential to that of the extended wave func-
tion. Specifically, we calculate q by the shift in the main, or
strongest, peaks in the Fourier spectra of the wave function
and the potential. We note that the accuracy in which we are
able to determine q improves with increasing approximant
size. However, if the most extended wave function is a very
early ancestor, as is the case in spectral regions with a low
density of states, the resemblance between the Fourier spectra
is weaker, and the determination of q becomes less accurate.

The resulting effective dispersion relation E (q), displayed
as red diamonds in Fig. 4, is very similar to the eigenenergy
spectrum in Fig. 1, suggesting that q might be proportional
to n. This is reminiscent of the situation for periodic crystals,
where q = 2πn/N , although some overlap exists between the
apparent minibands, spoiling the perfect monotonic depen-
dence of E on q. We are unable to determine whether this
overlap is real or a result of not having obtained the op-
timal linear combination, leading to an inaccurate mapping
of q to E .

Looking more quantitatively, we find that both the NPR
and the ancestral generation, or Fibonacci number, associ-
ated with the most extended wave functions, are correlated
with the spectral density of states around the mean energy
of the extended wave function. As the density of states in-
creases, a given fixed energy window W will contain more
eigenfunctions, allowing one to obtain a more extended wave
function, and to more closely follow the Fibonacci potential,
yielding a more recent ancestor. With values of T large with
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FIG. 5. Several early ancestors generated around the same
eigenenergy En = −6.6353, calculated with T = 6, N = F16 =
987 sites, and an energy window W = 5 × 10−3. The displayed
ancestors, from top to bottom, are F4 = 3, with mean en-
ergy 〈E〉 = −6.632729 and uncertainty 
E = 2.341 × 10−3; F6 =
8, with 〈E〉 = −6.632730, 
E = 2.341 × 10−3; F8 = 21, with
〈E〉 = −6.632348, 
E = 2.236 × 10−3; and the optimal ancestor
F9 = 34, with 〈E〉 = −6.635101 and 
E = 8.382 × 10−4.

respect to unity, as is the case for T = 6, shown in Fig. 1,
the spectrum appears as a hierarchy of rather flat clusters of
eigenvalues—each corresponding to a Fibonacci number of
eigenfunctions—and the density of states is sharply peaked.
In such cases a very small window W , of less than 10−3

of the full bandwidth, already contains a fairly large cluster
of 21–55 of the 987 eigenfunctions, and a highly extended
wave function corresponding to a recent ancestor is obtained.
As W decreases, fewer functions participate in the linear
combination, the NPR of the optimized wave function grad-
ually decreases, and the ancestral order increases, while the
quantum number q changes very little, although its numerical
determination becomes less accurate. This qualitative behav-
ior remains similar for all values of T . One should only
note that as T approaches unity, deviations from periodicity
decrease, gaps in the spectrum gradually close, and the NPRs
of the eigenfunctions themselves increase.

Rather than optimizing for extent, we can employ stan-
dard distance-minimization algorithms using earlier ancestors
as targets for optimization, without decreasing the number
of eigenfunctions used. The result of such a construction is
shown in Fig. 5, where four different ancestors are obtained
as linear combinations of the same set of nearly degener-
ate eigenfunctions. We find that these earlier ancestors have
similar values of q, which change monotonically with their
mean energies. This seems to imply that earlier ancestors
provide additional samples of the dispersion relation E (q) =
〈ψq| H |ψq〉, generating a denser dispersion curve, shown as
blue dots in Fig. 4. However, this curve exhibits more overlap
between the minibands, with q ∝ n only within each mini-
band, perhaps because the determination of q becomes less
accurate the earlier the ancestor.

IV. ADDITION OF WEAK DISORDER

Our analysis indicates that a small uncertainty 
E � W ,
in the energy of a single electron, may allow it to explore

FIG. 6. Histograms of the NPR of the eigenfunctions of the
perfect Fibonacci Hamiltonian Eq. (9) in blue and those of the Hamil-
tonian with added white Gaussian disorder of strength 
T = 10−4,
each averaged over 1000 disorder realizations, in red, calculated with
T = 6 and N = 987. Weak disorder increases the NPR of the most
extended unperturbed eigenfunctions and distributes the NPR values
more evenly across the histogram.

sufficiently many nearly degenerate energy eigenfunctions for
it to behave like a Bloch electron. Such an uncertainty may
arise naturally from semiclassical dynamics in a semiadiabatic
regime [73] that smooths out small gaps in the spectrum,
leaving effective minibands E (q) between the remaining large
gaps. Alternatively, as we explore here, a mixing of nearly
degenerate eigenfunctions may be induced by adding weak
disorder to the otherwise perfect quasicrystalline Hamiltonian
Eq. (9). We model the disorder using zero-mean Gaussian
random variables with standard deviation 
T , added to the
hopping amplitudes Tm in Eq. (9). Similar results are obtained
for δ-correlated, or white, disorder as for inverse power-
law correlated disorder, so we focus here on the former.
We perform an ensemble average of typically 1000 disorder
realizations for each eigenfunction. The disorder is kept suffi-
ciently weak to maintain monotonic dependence of the energy
eigenvalues on disorder strength, so as not to change the
identity of the eigenfunctions by approaching level crossings.

As expected, extremely weak disorder hardly affects the
eigenfunctions, while sufficiently large disorder leads to
Anderson localization, i.e., to exponentially decaying eigen-
functions. A little less expected, yet consistent with previous
observations [53,57,58], is the result that weak disorder, on
the order of the windows W used earlier or less, improves
the extent of some of the eigenfunctions, while reducing the
extent of others. This is demonstrated in the histograms of
Fig. 6, where one can see that the sharply distributed NPR
values in the perfect Hamiltonian are more evenly distributed
in the ensemble-averaged disordered Hamiltonian. We note
that for the disorder strength giving rise to these results, the
energy spectrum itself remains nearly unchanged.

More important is the observation that weak disorder
significantly increases the NPR of the most extended eigen-
functions, and that the resulting ensemble-averaged functions
take the form of nearly perfect early Fibonacci ancestors, like
the ones obtained above by optimizing linear combinations
of eigenfunctions of the perfect Hamiltonian. However, since
these are very early Fibonacci ancestors, we are unable to
faithfully determine their corresponding wave vector q. The
most extended eigenfunctions, obtained with added disorder
of a given strength, are quite similar to each other and resem-
ble the Fibonacci ancestor shown in Fig. 7.
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FIG. 7. Comparison between an eigenfunction of the perfect
Fibonacci quasicrystal with T = 6 and N = F16 = 987 sites (top),
and the ensemble average of 1000 realizations of the corresponding
eigenfunction of the disordered Hamiltonian with 
T = 10−4 (bot-
tom). Here, disorder increases the NPR from 0.16 to 0.28, and the
ensemble-averaged eigenfunction has the structure of a nearly perfect
N = F7 = 13 Fibonacci ancestor.

V. CONCLUSION

The study of quasicrystals has taught us that the electronic
properties of materials depend crucially not only on how
ordered they are but also on how they are ordered. As we
demonstrate here, the interplay between disorder and aperi-
odic long-range order is particularly intriguing.

Owing to the dense nature of the Fourier module L, the
Bloch sum over wave vectors in Eq. (2) is not guaranteed to
behave properly for quasicrystals as it does for periodic crys-
tals. As a consequence, Bloch’s theorem generally fails and
eigenfunctions are generically critical, decaying algebraically

rather than being quasiperiodically extended throughout the
crystal. Nevertheless, quasiperiodic Bloch wave functions do
form as superpositions of relatively small numbers of nearly
degenerate critical eigenfunctions, which emerge naturally
in the presence of weak disorder. Contrary to its effect on
periodic crystals, disorder in quasicrystals first increases the
extent of the most extended eigenfunctions, transforming
them from critical to extended quasiperiodic Bloch functions
before eventually giving way to Anderson’s inevitable local-
ization.

As for periodic crystals, one can associate an effective
crystal momentum q with each quasiperiodic Bloch wave
function that forms, leading to an effective dispersion relation
E (q), which may explain the dispersion curves observed in
certain experiments [55,56]. We expect this behavior to occur
in other linearly repetitive quasicrystalline models, and to be
even more pronounced in two and in three dimensions, where
Anderson localization is less restrictive. We leave the verifica-
tion of this expectation, as well as the analytical explanation of
our empirical findings, and their extension to other models—
perhaps considering models like the Thue-Morse sequence
that are deterministic yet possess no long-range order—for
future research.
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