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Topological superconductivity induced by magnetic texture crystals
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We present a detailed investigation of the topological phases and Majorana fermion (MF) excitations that
arise from the bulk interplay between (un)conventional one- and two-band spin-singlet superconductivity and a
number of magnetic texture crystals. The latter define inhomogeneous magnetization profiles which consist of a
periodically repeating primitive cell. Here we focus on magnetic texture crystals with a primitive cell of the helix,
whirl, and skyrmion types, which feature distinct symmetry properties. We identify a multitude of accessible
topological phases which harbor flat, unidirectional, bidirectional, (quasi)helical, or chiral MF edge modes. This
rich variety originates from the interplay between topological phases with gapped and nodal bulk energy spectra.
The types of the emerging topological superconducting phases and the features of the arising MFs are solely
determined by the properties and compatibility of the so-called magnetic and pairing point and space groups.
Our analysis is general and does not rely on specific parameters of the models employed here to exemplify the
topological scenarios which become accessible. Therefore, our results can be extended to systems with multiple
bands, are relevant for a wide range of layered materials and hybrid devices, and provide predictions for strong,
weak, and crystalline topological phases.
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I. INTRODUCTION

Since its discovery, superconductivity has served as an
inspiration for countless new concepts and applications.
A recent development in the field concerns the material
discovery and synthetic engineering of topological supercon-
ductors (TSCs) [1–13], which harbor charge-neutral Majorana
fermion (MF) quasiparticles [14–25]. Remarkably, zero-
dimensional (0D) defects can trap zero-energy MFs [21–25],
i.e., the so-called Majorana zero modes (MZMs), which
adhere to non-Abelian exchange statistics [18,26–28] and
open perspectives for cutting-edge quantum manipulations
[26–34]. MZMs are sought after in a variety of systems,
such as those containing singular defects, e.g., vortices
[16–18,20,35–44], disclinations [45,46], hedgehogs [47], and
nonsingular defects unfolding in one direction, e.g., termina-
tion edges [19,45,46,48], domain walls [20,36], and isolated
magnetic skyrmions [49–54].

In the majority of the most prominent engineered quasi-
one-dimensional (quasi-1D) TSCs, where fingerprints of
MZMs appear to have been experimentally recorded [55–74],
the presence of an inversion-symmetry-breaking (ISB) spin-
orbit coupling (SOC) is crucial. Its role is to split the initially
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degenerate spin bands, with the only remaining degeneracies
surviving at inversion-symmetric points (ISPs) kI , which sat-
isfy kI ≡ −kI . In superconductor-semiconductor nanowires
[75–77] and collinear magnetic chains [58,78–81], the ad-
ditional presence of a Zeeman or exchange field lifts the
residual Kramers degeneracies, as sketched in Figs. 1(a)–1(d).
The inclusion of spin-singlet pairing gaps out the remnant
Fermi surface (FS) and compensates the magnetic gaps at kI ,
thus effecting the transition to a topological superconducting
phase.

However, there are still a large number of proposals for
engineered quasi-1D TSCs which instead rely on a syn-
thetic SOC, which is either induced by a magnetic texture
[82–102], or alternatively, by antiferromagnetism [103] or
ferromagnetism [104] in the presence of currents and ex-
ternal or stray Zeeman fields. When it comes to magnetic
textures, a magnetic helix crystal (MHC) is the minimal
profile that can induce topological superconductivity since
it simultaneously generates the required ISB SOC and the
perpendicular exchange field mentioned above [105]. This is
sketched in Figs. 1(e)–1(h). While a MHC is sufficient to
guarantee the occurrence of topological superconductivity in
1D, engineering strong TSCs with a fully gapped bulk energy
spectrum in d > 1 dimensions requires a magnetic profile
which winds in all d directions. Thus, while a MHC leads to
spinless p-wave pairing in 1D, a spin skyrmion crystal (SSC)
phase is necessary to generate an effective spinless chiral
p + ip TSC in 2D [87]. Remarkably, the key role of mag-
netic textures in TSCs has been recently highlighted by the
experimental observations of Refs. [69,72,106–108] where
textures were shown to be pivotal for stabilizing topological
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FIG. 1. (a)–(d) Standard mechanism to achieve 1D topological superconducting phases, which relies on Rashba-type spin-orbit coupling
(SOC). (e)–(f) Reconstruction of the bulk spectrum of a spin-degenerate electron gas due to a magnetic helix crystal (MHC) which possesses
a spatially varying magnetic moment for M‖ �= M⊥. (a) Schematic illustration of ISB SOC pointing in the n̂ = n̂⊥ × n̂‖ spin direction, in the
presence of a homogeneous magnetic field pointing in the n̂⊥ direction. (b) Spin-split bands of an electron gas in the absence of a Zeeman and
exchange field, resulting in a degeneracy at the ISP kI = 0. (c) The combination of SOC and a Zeeman and exchange field perpendicular to
it lifts all spin degeneracies in (b). (d) Equivalent description of (c) after downfolding to the magnetic Brillouin zone (MBZ) of (e), where we
depict the profile of a MHC with wave vector Q = Qn̂⊥, winding in the plane spanned by n̂‖ and n̂⊥. Note that (a) and (e) map to each other
for M‖ = M⊥. (f) Shows the two Fermi points which become magnetically scattered in the presence of the MHC. Here, the magnetic wave
number Q coincides with the FS nesting wave number QN . (g) Equivalent description of (f) in the MBZ. (h) The MHC opens a full gap at the
intersecting point in (g) [green dot in (g)]. In this work, we focus on topological superconducting phases induced by various magnetic textures
in 1D and 2D, by means of mechanisms similar to the one described in (f)–(h).

superconductivity. This is also the case in Ref. [71], where
the possible involvement of a skyrmion defect was invoked
to explain the appearance of a pair of MZMs in topological
magnetic-island heterostructures.

In this paper, we provide an in-depth exploration of the
various 1D and 2D TSCs which emerge from the coexistence
of (un)conventional one- and two-band spin-singlet supercon-
ductivity with a set of representative magnetic texture crystals.
Our starting point is the synthetic SOC mechanism displayed
in Figs. 1(f)–1(h), which opens the door to new and inter-
esting topologically nontrivial phases. In fact, depending on
the type of the texture and the strengths of the magnetic and
superconducting gaps, we find either a fully gapped or a nodal
bulk energy spectrum, which give rise to a diversity of MF
edge modes. We present a comprehensive classification for
each type of topological band structure, and account for both
strong and weak topological superconducting phases, as well
as possible strong topological crystalline phases stabilized by
additional magnetic point- and space-group symmetries.

This work aims at setting a paradigmatic and general
framework to study the topological properties arising from
the interplay between magnetic texture crystals and spin-
singlet superconductivity. Since our analysis relies on the
symmetry properties of the magnetic and pairing terms, and
not on particular details of the models employed for the
concrete demonstration, it is applicable to a broad range
of materials and hybrid devices, including platforms involv-
ing magnetic adatoms deposited on top of superconductors,
alongside intrinsic TSCs that do not rely on ISB SOC.
Our analysis naturally addresses topological superconduct-
ing phases in which magnetism and superconductivity are
assumed to originate from the same electronic degrees of
freedom. Such a scenario may be of direct relevance to iron-
based superconductors (FeSCs), which feature coexistence of
various magnetic phases and superconductivity [109–124].
Among the experimentally discovered phases, one is of yet-
unresolved nature [122], and does not match with any of
the three well-established commensurate magnetic phases

known to exist in FeSCs [125–133]. This commensurate
framework was recently extended in Ref. [134] to include
incommensurate magnetic texture crystals. Given the cur-
rently inconclusive status of the experimental observations,
the phase discovered in Ref. [122] may as well be a magnetic
texture crystal. This opens up new possibilities for topological
superconducting phases in FeSCs, which are distinct to the
ones that have so far been theoretically [40,41,43] and exper-
imentally [135–139] explored.

Motivated by the above, in the following we focus on
the accessible TSCs in layered tetragonal itinerant magnets,
which possess a D4h point-group symmetry in the nonmag-
netic normal phase. We also consider that spin transforms
according to the spatial symmetry operations, and we restrict
to a single Kramers doublet of the double covering D4h group.
We additionally assume that ISB SOC and spin anisotropies
(cf. Ref. [132]) are negligible. Reference [134] has mapped
out the types of single- and double-Q textures that such mag-
nets support, and we here focus on the single-Q MHC and
the fourfold-symmetric double-Q spin whirl crystal (SWC4)
profiles. We also consider the SWC4 phase in the presence
of an in- and out-of-plane Zeeman field, B‖ and B⊥, leading
to the here-termed SWCB2 and SWCB4 textures, respectively.
Notably, for a range of B⊥ values, the SWCB4 texture is equiv-
alent to a fourfold-symmetry-preserving SSC phase [134],
which we here denote SSC4. Table I provides an overview of
these magnetic texture crystals.

II. SUMMARY OF OUR TOPOLOGICAL
CLASSIFICATION RESULTS

To perform the systematic topological classification of the
various TSCs induced by the magnetic texture crystals pre-
sented in Table I, a number of aspects need to be taken into
consideration in regards with the symmetry groups preserved
by the magnetic and pairing terms.

A given magnetic texture crystal preserves the so-
called magnetic point group M, which is here a group
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TABLE I. Magnetic point- and space-group elements preserved for the different magnetic texture profiles studied in this work. These build
upon the magnetic helix crystal (MHC) and the spin whirl crystal (SWC4) textures. The SWC4 profile is also investigated in the presence of an
in- (out-of-) plane Zeeman field B‖ (B⊥). Note that the SWC4 texture with a nonzero B⊥ behaves as the spin skyrmion crystal (SSC4) texture
in certain parameter-value regimes. Here T represents the usual time-reversal operator, and σxz (σyz) is the mirror operator in the xz (yz) plane.
The C4v point group consists of the following five conjugacy classes: {E}, {C2}, {C4,C−1

4 }, {σv}, and {σd}. Here, E denotes the identity element,
Cn denotes a 2π/n counterclockwise rotation of the system about the z axis, and σv (σd) contain the mirrors σxz,yz (σd±z) with vertical mirror
planes extending in the z direction and the main (diagonal d± defined as x = ±y) in-plane axis, as denoted by the respective index. Space-group
elements are denoted above using the Seitz notation, i.e., {g | t} where g is a point-group symmetry of D4h, and t is a translation by a fraction of
the Bravais lattice vectors. Note that deviations from the above generally appear for multiband implementations of the magnetic texture crystal
profiles. Examples of such situations are explored in detail in the main text.

related to the subgroups of the normal-phase symmetry
group D4h. The elements of M are generally obtained
from products of the original double-point-group opera-
tions and time reversal T . Products involving T give
rise to antiunitary mirror symmetries [140–143] which
have nontrivial implications on the topological classifica-
tion in high-symmetry planes (HSPs), and open the door
to novel types of crystalline topological phases and MFs
[144–156]. Further information about the symmetry proper-
ties of the various textures considered in this work is listed in
Table I.

The classification in HSPs is also affected by magnetic
space-group symmetries [88,151,157–164]. Here, T or el-
ements of the double D4h point group are combined with
translations which make the texture “slide” in the plane [165].
These constitute exact symmetries of the system only as long
as the involved translation also constitutes a lattice translation,
which takes place when the magnetic vector is commensu-
rate. Nonetheless, in itinerant magnetic systems the invariance

under magnetic translations also emerges in an approximate
manner for low energies since it is the Fermi wavelength
rather than the lattice constant which sets the characteristic
lengthscale that governs the properties of the system in that
regime. In either situation, nonsymmorphic symmetries enrich
the topological classification in bulk HSPs and at edges which
preserve them.

The final crucial factor which influences the topological
properties is the type of the pairing point group asso-
ciated with the pairing gap. In this work, we assume
(un)conventional one- and two-band spin-singlet pairing with
possible symmetry-imposed or accidental nodes. Going be-
yond a single-band picture allows us to capture salient features
of realistic band structures of correlated magnets, such as the
FeSCs [166–173]. Moreover, depending on which irreducible
representation (IR) of D4h enters the pairing term �k, i.e.,
{A1g, B1g, B2g, A2g}, we generally find a different topological
scenario in HSPs, since �k may possess symmetry-enforced
zeros in these.
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Our main findings regarding the rich diversity of
TSCs are collected in Tables II and III, for general and
interband-only magnetic scattering, respectively. Two-
dimensional (2D) systems in the presence of a MHC
texture exhibit protected nodal points which lead to edge
Majorana and Andreev flat bands (MFBs and AFBs).
Bulk nodal points are also present when considering
the SWC4 texture, but are not protected. As a result,
edge MFBs and AFBs are not accessible. Nonetheless,
a different type of MF edge modes arises, which we
denote bidirectional (see also Ref. [162]) since they do
not possess a fixed helicity or chirality, and depend strongly
on the edge termination. These MF edge modes emerge
due to mirror-symmetry-protected degeneracies at ISPs,
or alternatively due to weak topological superconducting
phases. The addition of a magnetic field can either render
the bidirectional MF edge modes unidirectional [174–176],
or open a bulk gap and mediate a transition to a chiral TSC,
analogous to a p + ip superconductor. Remarkably, we find
that the multiband character of the systems considered here
not only allows for a more realistic description, but also
results in unique topological superconducting phases and MF
edge modes. In particular, we show that two-band systems
under the influence of multiband magnetic textures harbor
Kramers (mirror-symmetry-protected) pairs of (quasi)helical
MF edge modes, although time-reversal (TR) symmetry is
broken. In fact, these pairs of MFs constitute topologically
protected Andreev zero modes (AZMs) in 1D [177–180].
While AZMs have been poorly explored, their topological
nature also renders them prominent candidates for quantum
computing applications [181,182].

At this point, it appears vital to underline the various
features of this work in comparison to a number of pre-
vious studies concerning TSCs from MHCs in 1D and
2D (cf. Refs. [83,84,86,88–96,98,101]), as well as TSCs
stemming from the coupling of a conventional spin-singlet
superconductor to a SSC4 magnet [87,93,99,100]. Regarding
the investigation of topological properties, the above studies
proceeded along two different paths. Either by numerically
evaluating a topological invariant or by considering special
cases of magnetic texture crystals described by a magneti-
zation of a spatially constant modulus, in which cases, the
spatial dependence can be fully or approximately removed by
appropriate SU(2) rotations [105]. In stark contrast, here we
adopt a methodology that addresses the general case where
the magnetic textures possess a spatially varying modulus. For
the purposes of demonstration, and with no loss of generality,
we restrict to crystals which lead to a small number of bands
after the reconstruction of the band structure. Importantly, this
formalism also reveals how to construct low-energy models
which facilitate the analytical evaluation of the topological
invariants. This aids in the description of the topological
properties of the system in spite of the added complexity in-
troduced by the superlattice formation. Moreover, our work is
not restricted to the study of the MHC and SSC4 textures, but
further includes the investigation of the SWC4, which together
with the MHC have been shown to constitute global minima
of a general Landau functional describing incommensurate
magnetism in itinerant magnets [134]. The topological prop-
erties of the SWC4 texture are also analyzed in the presence of

additional Zeeman and exchange fields, thus also connecting
to the SSC4 phase.

Our work provides a complete description of the topologi-
cal properties of these systems, by means of a classification
which accounts for strong, weak, and crystalline phases.
Notably, our analysis also considers the possibility of uncon-
ventional pairing terms. We demonstrate how the interplay
of the magnetic and pairing groups shapes the topological
properties of these systems and gives rise to a multitude of MF
excitations, with several of these not having been previously
discussed in this context. Hence, our work naturally involves
the construction of a number of topological invariants which
have not been previously discussed for TSCs originating from
magnetic texture crystals. In fact, we reveal that a number
of these topological invariants are responsible for the quan-
tization of physical quantities, such as the bulk staggered
magnetization, which can be harnessed to experimentally
infer the topological phase of the systems in question. In
contrast to previous works, that are primarily focused on
single-band systems, our work discusses two-band scenarios
which open the door to engineering topologically protected
Andreev zero and edge modes, as well as Kramers pairs of
Majorana solutions. The latter is a notable result, given the
fact that the magnetic texture crystal violates the standard
time-reversal symmetry.

The remainder of this paper is organized as follows. In
Sec. III we describe the modeling assumptions that we use
throughout this work. In Sec. IV, we investigate TSCs in
1D systems induced by a MHC. In Sec. V we extend our
study to 2D, and explore the full variety of possible TSCs and
protected MF edge modes induced by the SWC4 phase. The
experimental implementation of the various topological sce-
narios of interest is examined in Sec. VI. There, we elaborate
on the interplay of magnetic texture crystals and spin-singlet
superconductivity, and enumerate prominent platforms that
provide fertile ground for their viable coexistence. Section VII
presents our conclusions and outlook. Lastly, Appendixes A–
D contain various definitions, further technical details, and
complementary numerical calculations.

III. MODELING CONSIDERATIONS

Before proceeding, we specify the modeling assumptions
employed in the upcoming analysis. While our analytical
and numerical investigations also aim at predicting possible
topological phases relevant to unconventional superconduc-
tors, we here treat these cases only in a qualitative fashion.
Correlated systems generally exhibit complex band structures,
which is an aspect that hinders a transparent discussion of
the topological properties as pursued here. For example, an
accurate description of the FeSCs typically requires 5- or
10-band models [169,170]. Therefore, in order to ensure a
balance between analytical tractability and faithful modeling,
we focus on simplified one- and two-band models1 which
exhibit hole and electron pockets, as well as FS nesting. These

1Note that each one of the band dispersions employed in the up-
coming models is chosen to be independently invariant under all the
D4h point-group operations.
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TABLE II. Summarizing table of the broad variety of 2D topological superconducting phases induced by a magnetic helix crystal (MHC),
a fourfold-symmetric spin whirl crystal (SWC4), and a SWC4 in the presence of in- and out-of-plane Zeeman field (SWCB2 and SWCB4). The
present table holds for magnetic textures where both intraband and interband contributions are generally present. For each texture we display
the respective magnetic Brillouin zone (MBZ), the relevant high-symmetry planes (HSPs), and the arising symmetry-protected degeneracies
induced by the given magnetic point group (see Table I). Furthermore, we also list the symmetry classification for the full MBZ and the HSPs,
the relevant topological invariants, and the resulting type of Majorana and Andreev edge states. We arrive at three distinct types of invariants
which become nontrivial. For a gapless energy spectrum these consist of the vorticities υ/ν of the arising nodes, while for a fully gapped
energy spectrum, we find the winding number w, the Majorana number M, and the first Chern number C1. Each invariant is in addition labeled
as strong, weak, mirror, or glide, depending on its type. Note that the classification in HSPs presents all the possible topological scenarios
obtained by assuming the presence of only a single-crystalline symmetry at a time. We further elaborate on these in the proceeding sections.
The table also includes the HSP classification in the presence of a pairing function �k transforming as one of the irreducible representations
(IRs) {A1g, B1g, B2g, A2g} of the group D4h. Depending on the IR of �k, the classification in HSPs splits into two branches, depending on
whether �k is even or odd under the original D4h mirror operation defined for the HSP of interest. In the former case (Q = 1τ ), �k remains
invariant under the original mirror operation, while in the latter (Q = τ3), �k is invariant under the mirror operation combined with a rotation
in Nambu space, which is spanned by the unit 1τ and Pauli τ matrices. Finally, the red and blue color coding is adopted throughout the text,
and reflects the spin-up and -down orientation of the z component of the electronic spin polarization stemming from the mode appearing on
the corresponding left (L) and right (R) edge, when a termination is considered. Left (right) edge modes are shown above with solid (dashed)
lines.
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TABLE III. Summarizing table of the accessible topological phases induced by interband-only magnetic textures. As in Table II, also here
we list the topological symmetry classification in the full MBZ and in HSPs, the relevant topological invariants and the resulting edge states,
for all four magnetic textures of interest. As in the preceding table, the above classification is performed for a pairing function �k transforming
according to one of the {A1g, B1g, B2g, A2g} D4h IRs. Note that the topological invariants in the MHC case are identical for the two AIII blocks.
Hence, we only enlist the invariants for a single AIII block.

features are similar to those exhibited by some FeSCs (see
also Fig. 2). The one-band (two-band) models are particularly
suitable for exploring topological properties arising from in-
trapocket (interpocket) nesting.

Another aspect of realistic systems that needs to be ac-
counted for is the fact that the magnetic wave vectors may
be incommensurate or exhibit a high-order degree of com-
mensurability. As a result, such cases require an infinite or
very large number of bands for an accurate description after
downfolding to the magnetic Brillouin zone (MBZ). To avoid
such a complication, we consider commensurate magnetic

wave vectors Q1,2, with the property k + 4Q1,2 ≡ k. More
precisely, Q1 = Qx̂ with Q = −3π/2 ≡ π/2, with the lattice
constant set to unity throughout, and Q2 = Qŷ since the latter
is obtained via a counterclockwise fourfold rotation of Q1.
In most cases we consider that the magnetic wave vectors
coincide with the FS nesting wave vectors QN,1 and QN,2 (see
Fig. 2), which is a realistic assumption within an itinerant
picture of magnetism which is also of interest in this work.

We note that our choice of Q does not affect the gener-
ality of the qualitative conclusions regarding the topological
features of the systems under discussion, as the above wave
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FIG. 2. One-band (a) and two-band (b) Fermi surfaces studied
here. In (a) the two pockets possess the same character, while in
(b) the pockets centered at the � and M (X and Y) points are of the
hole (electron) type. The chosen electron- and hole characters for the
pockets in (a) and (b) allow a qualitative connection with the band
structures of certain FeSCs [169,170]. Note that the results presented
in Tables II and III are not particular to the example band structures
of (a) and (b), but hold generally for systems which share common
magnetic and pairing point and space groups. The precise details of
the band structures mainly influence the quantitative details of the
topological phase diagrams, but not the accessible phases. Moreover,
our results for the two-band model and the general mechanisms
underlying the TSC phases can be directly generalized to system with
more bands.

vectors can be adiabatically connected to incommensurate
ones. This is achieved by only deforming the FS of the system
without modifying its topology, i.e., assuming that neither Lif-
shitz [183,184] nor metal-to-insulator transitions [185] occur
during this process. In fact, the analytical tractability which is
ensured in this manner allows for a deeper and transparent un-
derstanding of the underlying mechanisms. Our conclusions
thus serve as a basis for the study of more realistic multiband
magnetic superconductors.

Furthermore, we point out that the upcoming analysis is not
self-consistent with respect to the magnetic and superconduct-
ing order parameters. While our starting point partly builds
upon the results of Ref. [134], which have been derived using
microscopic models, we do not examine the fate of the tex-
tured magnetic order and its interplay with superconductivity
in full detail. This work has a more explorative character and,
thus, we allow for our search to be unconstrained in order
to identify the most prominent routes for achieving TSCs.
Section VI contains a detailed discussion of prominent routes
and systems to realize the various topological phenomena
investigated in this work.

We also wish to stress that the crystalline topological
properties induced by the magnetic point- and space-group
symmetries only give rise to topologically protected modes at
boundaries which preserve the symmetries in question. This
is in stark contrast to strong topological phases, for which the
bulk-edge correspondence enforces the edge states to appear
for a boundary of an arbitrary direction. For this reason, in
the upcoming sections we first carry out the classification of
the strong TSC phases, and subsequently discuss the possible
crystalline ones which result from the magnetic point- and
space-group symmetries. On the other hand, weak TSCs are
distinct to both crystalline and strong phases. Weak TSCs
can be viewed as a network of strong TSCs in one spatial

dimension lower. For instance, 2D weak topological phases
emerge as a collection of strong 1D TSCs oriented along a
given axis. Consequently, such weak 2D TSCs do not give
rise to topologically protected modes along edges which are
parallel to the characteristic axis determined by the constituent
strong 1D TSCs. However, topologically protected modes ap-
pear for any other edge orientation, and the characteristics of
the edge-mode dispersions vary depending on the orientation
of the edge.

To this end, we clarify that the results of Tables II and III
are not only applicable to the specific magnetic texture crys-
tals depicted in Table I. Instead, these also hold for any other
magnetic texture crystal combined with a pairing term which
belongs to the point and space groups which are studied in
this work. Even more, our results do not rely on any particular
details of the underlying band dispersions, but only on the
general assumption that these preserve T and each band is
individually invariant under the point- and space-group oper-
ations governing the normal phase (see also Footnote 1).

Concluding this section, we wish to emphasize that we
have confirmed the validity of all the analytical results pre-
sented in the upcoming sections by means of numerical
investigations of the respective lattice models in 1D and 2D,
with open boundary conditions, and observed the predicted
edge states.

IV. 1D TOPOLOGICAL SUPERCONDUCTORS

In the following analysis we first explore possible topo-
logical phases in 1D. Apart from being simple to investigate,
the 1D case sets the stage and the formalism employed in the
study of 2D systems, which is the main goal of this work.
In 1D we consider the topological effects arising from the
coexistence of either a conventional or an unconventional
superconducting pairing with a MHC phase with either a
constant or a spatially varying magnitude of the magnetic
moment.

A. One-band models

We begin our study with one-band models (1BMs), which
are defined on a lattice and describe electrons with a band
dispersion ξkx set by the hopping matrix elements tnm. After
including the chemical potential μ, we have

H0 = −
∑
n,m

ψ†
n(tnm + μδnm)1σψm, (1)

where the integers n, m label the positions Rn,m on the direct
lattice, and ψn = (ψn↑, ψn↓)ᵀ, with ᵀ denoting transposition.
The operator ψnσ (ψ†

nσ ) annihilates (creates) an electron with
spin projection σ =↑,↓ at the lattice site Rn. The magnetic
part of the Hamiltonian describes a MHC texture winding in
the xz spin plane:

Hmag =
∑

n

ψ†
n[M‖ sin(QRn)σx + M⊥ cos(QRn)σz]ψn. (2)

Here, Q = π/2 denotes the magnetic ordering wave number,
which in low-dimensional itinerant magnets it often happens
to coincide with the nesting wave number QN . The texture
mediates scattering between two distinct pairs of points. In
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FIG. 3. Example of a 1BM in 1D, obtained by considering
a nearest-neighbor hopping with strength t and a chemical po-
tential value μ = −√

2t < 0. (a) The resulting dispersion ξkx =
−2t cos kx − μ contains two Fermi points at kx = ±π/4 of the first
BZ, which are connected by QN = Q = π/2 ≡ −3π/2 = −3Q. The
texture also mediates the scattering between two points lying at
E = 2|μ|. (b) The resulting four bands of the dispersion in the MBZ.
The points connected by the magnetic wave vectors are depicted with
green dots.

this work, one pair usually lies at high energies and the other
at low. When the condition QN = Q is met, the latter pair
is identified with the two nested Fermi points. See Fig. 3(a)
for a concrete example. We observe that when |M⊥| �= |M‖|
(|M⊥| = |M‖|) the MHC leads to a spatially varying (constant)
magnetic moment. Below we examine each case separately.

1. MHC with a spatially constant magnetic moment: |M⊥| = |M‖|
In this case, we follow Ref. [105] and gauge away the

spatial dependence of the magnetization profile through a
unitary transformation ψn 	→ Ûψn with Û = exp(iqRnσy),
where q = Q/2. By employing the plane-wave basis, the
single-particle Hamiltonian reads as

ĥkx = ξkx1σ −qσy + Mσz = ξ+
kx ;q1σ + ξ−

kx ;qσy + Mσz, (3)

with M⊥ = M‖ = M > 0. The dispersions read as

ξ±
kx ;q = (

ξkx−q ± ξkx+q
)
/2. (4)

One observes that the spin-dependent shift of the wave
number splits the dispersion into an even and an odd function
under inversion, i.e., ξ±

−kx ;q = ±ξ±
kx ;q. The emergence of the

odd function reflects the induction of a Rashba-type SOC. By
further considering a generic spin-singlet pairing gap �kx , we
obtain the Bogoliubov–de Gennes (BdG) Hamiltonian

Ĥkx = τ3 ⊗ (
ξ+

kx ;q1σ + ξ−
kx ;qσy

) + M1τ ⊗ σz

+ τ1 ⊗ (
�+

kx ;q1σ + �−
kx ;qσy

)
, (5)

where we introduced the superconducting gaps �±
kx ;q in a

similar fashion to ξ±
kx ;q in Eq. (4), as well as the spinor

�†
kx

= (
ψ

†
kx↑, ψ

†
kx↓, ψ−kx↓, −ψ−kx↑

)
. (6)

Hence, the many-body mean-field Hamiltonian reads as H =
1
2

∑
kx

�†
kx
Ĥkx �kx . In the above, we employed the τ1,2,3 Pauli

matrices defined in Nambu electron-hole space. From now on,
we adopt the shorthand notation A ⊗ B ≡ AB for Kronecker
products, and we omit writing all identity matrices unless this
is deemed necessary for reasons of clarity.

Leaving aside for the moment the magnetic point- and
space-group symmetries present, the BdG Hamiltonian in
Eq. (5) resides in the BDI symmetry class with generalized
TR, charge-conjugation and chiral symmetries effected by the
operators � = K,  = τ2σyK, and � = τ2σy, respectively.
Here, K denotes complex conjugation.

When �kx leads to a fully gapped spectrum, the system
harbors an integer number of topologically protected MZMs
per edge, with the corresponding Z topological invariant given
by the winding number w [186]. To define the winding num-
ber, we rely on the chiral symmetry dictating the Hamiltonian
and block off-diagonalize it via the unitary transformation
S = (� + τ3)/

√
2:

S†ĤkxS =
(

0 Âkx

Â†
kx

0

)
. (7)

Given the above, we calculate det(Âkx ), which reads as

det
(
Âkx

) = (
ξ+

kx ;q

)2 + (
�+

kx ;q

)2 − (
ξ−

kx ;q

)2 − (
�−

kx ;q

)2

− M2 + 2i
(
ξ−

kx ;q�
+
kx ;q − ξ+

kx ;q�
−
kx ;q

)
(8)

and allows us to define the normalized complex function

zkx = det
(
Âkx

)/∣∣ det
(
Âkx

)∣∣, (9)

and the associated winding number in the complex plane

w = 1

2π i

∫
BZ

dzkx

zkx

. (10)

To facilitate the evaluation of w, one relies on its invariance
under smooth deformations of the Hamiltonian, i.e., deforma-
tions that do not lead to any gap closings of the bulk spectrum.
Hence, one assumes that the parameters take such values,
so that the system is close to topological phase transitions.
In such cases, the main contributions to w arise from the
gap-closing points kc of the bulk energy spectrum, deter-
mined by | det(Âkc )| = 0. This equation yields the conditions
Im[det(Âkc )] = 0 and Re[det(Âkc )] = 0, whereof the first one
reads as

Im
[

det
(
Âkc

)] = ξ−
kc;q�

+
kc;q − ξ+

kc;q�
−
kc;q = 0

⇒ ξkc−q�kc+q = ξkc+q�kc−q. (11)

The above is always satisfied at the ISPs (kI ≡ −kI). If
we momentarily assume that the kx dependence of the pairing
gap does not lead to any additional gap closings aside from
the ones at the ISPs, and take into account the remaining gap-
closing condition Re[ det(Âkc )] = 0, we obtain the topological
phase transition criterion

M =
√(

ξ+
kI ;q

)2 + (
�+

kI ;q

)2
(12)

because ξ−
kI ;q = �−

kI ;q = 0. Since the 1D BZ contains only the
two ISPs kI = {0, π}, the winding number reads as

w =
∑

kI=0,π

sgn

(
�+

kx ;q

dξ−
kx ;q

dkx
− ξ+

kx ;q

d�−
kx ;q

dkx

)∣∣∣∣∣
kx=kI

× sgn
[
M2 − (

�+
kI ;q

)2 − (ξ+
kI ;q)2

]
2

. (13)
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FIG. 4. Topological phase diagrams for the 1BM in Fig. 3 in
the MHC phase for (a) a constant pairing gap �kx = � and (b) an
unconventional pairing gap �kx = �[1 + 2 cos(2kx )], which leads
to additional gap-closing points. Both (a) and (b) were obtained for
Q = QN and a spatially constant magnetic moment, i.e., M⊥ = M‖ =
M > 0. (c), (d) Display the same as in (a) and (b), respectively,
but for a spatially varying magnetic moment with M⊥ = M > 0
and M‖ = M/3. The black dotted lines in (c) span the topologically
nontrivial region in the weak-coupling limit [see Eq. (31)]. As one
observes, this limit is only valid when 0 < M‖,⊥, �  2|μ| are
satisfied.

We note that when the magnetic wave vector Qx̂ coincides
with the FS nesting vector QN x̂, the expression for the topo-
logical invariant further simplifies since ξ+

kI ;q = 0 for at least
one of the two ISPs. Remarkably, this special, but actually
realistic situation, appears to be the sweet spot for entering
the topologically nontrivial phase since the minimum mag-
netic gap Mc = |�+

kI ;q| is required in this case. Away from
this special point, the critical magnetic gap increases, and its
value is controlled by the degree of the |Q − QN | detuning,
which is reflected in the size of |ξ+

kI ;q|. Therefore, a topologi-
cal phase transition still occurs even if the special condition
Q = QN is not met. We thus conclude that the system ex-
hibits gap closings at wave numbers for which ξkx+Q = ξkx

and dξkx+Q/dkx = −dξkx /dkx. Notably, both conditions hold
trivially for two nested Fermi points given that Q = QN .

For a 1BM model with ξ+
0;q = 0 and ξ+

π ;q = 2|μ|, which
happens to hold for the 1BM in Fig. 3, Eq. (13) yields

w = 1

2

∑
kI=0,π

eikI sgn
[
M2 − (

ξ+
kI ;q

)2 − (�+
kI ;q

)2]
, (14)

which implies that the topologically nontrivial regime is real-
ized in the interval√

(ξ+
0;q)2 + (�+

0;q)2 < M <

√
(ξ+

π ;q)2 + (�+
π ;q)2. (15)

Note, however, that the upper boundary may not be reached
in practice since for this purpose, magnetic gap values larger
than the Fermi energy are required.

In Fig. 4(a), we numerically determine the topological
phase diagram for a conventional s-wave pairing gap �kx =

� > 0, given the dispersion in Fig. 3. The orange region
displays the parameter space, for which the system is in a
topologically nontrivial phase with w = 1. For the parameters
used in the figure, Eq. (15) reduces to � < M <

√
8t2 + �2,

and coincides with the numerically obtained upper and lower
bounds of the nontrivial region.

We now continue with addressing the case of an uncon-
ventional superconducting order parameter which generates
additional gap closings away from ISPs. As a result of chiral
and charge-conjugation symmetries, the additional gap clos-
ings come in pairs ±k∗ [80], and thus each pair of gap-closing
points of this type generally contributes with ±1 units to
w. For an illustration, we consider the gap function �kx =
�[1 + 2 cos(2kx )] which features a single pair of such nodes.
The latter nodes have an accidental origin since they are not
imposed by the presence of a symmetry, and further contribute
to the winding number of Eq. (14).

A numerically obtained example for this case is depicted in
Fig. 4(b). The regions with w = −1 and +2 appear due to the
fact that the signs of the fractional contributions arising from
the kI = 0, π points are no longer determined by Eq. (14), as
a result of the unconventional pairing. Therefore, the contribu-
tions of the kI points for w = −1 (w = +2) cancel out (add
up to +1), while the contribution from the ±k∗ gap-closing
points is −1 (+1). Thus, the inclusion of an unconventional
pairing function which leads to additional gap closings at ±k∗
does not significantly alter the nontrivial region here, but does
increase the overall complexity of the phase diagram.

We conclude this section by discussing the impact of the
various magnetic point-group symmetries on the topological
classification, given that the nonmagnetic part of the BdG
Hamiltonian is invariant under the symmetry group of the
normal phase. The addition of magnetism reduces the ini-
tial point group down to the magnetic point group MMHC =
C2 + (C2v − C2)T , whose elements are presented in Table I.
Any possible implications of the magnetic point group on
the topological properties of the system are associated with
the emergence of the two antiunitary mirror symmetries
(C2v − C2)T = {σxzT , σyzT }. Their presence implies that the
symmetry classes for the xz and yz HSPs generally differ
from the BDI class which was obtained by solely considering
the generalized TR symmetry � = K. This is because these
antiunitary mirror symmetries act as additional generalized
TR symmetries in the HSPs. Furthermore, the presence of this
set of three TR symmetries induces two unitary symmetries
{Oxz,Oyz}, whose presence allows for the block diagonaliza-
tion of the Hamiltonian.

It is customary to describe these effects in terms of {�,}
and their (anti)commutation relations with the generators of
the induced unitary symmetries {Oxz,Oyz} [146–148,153],
whose expressions are inferrable from the two unitary mirror
symmetries:

R = (C2v − C2)T � ≡ {Rxz, Ryz}. (16)

Hence, by restricting to the HSPs, we find the expressions
Oxz ≡ Rxz = 1σ and Oyz ≡ Ryz = σz.

For the 1D system examined here Rxz is trivial, while
Ryz is expected to only affect the bulk topological proper-
ties of the system since it is violated when boundaries are
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introduced. Specifically, Ryz can influence the classification at
the mirror-symmetry-invariant points kRyz = {0, π} satisfying
RyzkRyz ≡ kRyz . For these points ξ−

kRyz ;q = �−
kRyz ;q = 0, and

the BdG Hamiltonian in Eq. (5) becomes block diagonal and
reads as

ĤkRyz ,σ
= σM + ξ+

kRyz ;qτ3 + �+
kRyz ;qτ1, (17)

where we used the eigenvectors of σz, which are labeled by
σ = ±1. The above Hamiltonian belongs to symmetry class
AI ⊕ AI with � = K, which in 0D yields the mirror topolog-
ical invariant nM ∈ Z. See Refs. [20,146].

To calculate nM , we choose an approach which keeps
the variety of the topological-invariant constructions used in
this work to a minimum. This is achieved by evaluating the
mirror invariant in an augmented space, which is spanned
by the spatial dimensions relevant for the classification, and
the continuous frequency ε ∈ (−∞,∞) obtained as the zero-
temperature limit of the Matsubara frequencies. Adding ε

compensates the reduction of the physical dimensions by one,
which occurs when restricting to a HSP. As a result, this
allows us to describe both bulk and HSPs using a winding
number defined in the natural and augmented 1D spaces,
respectively.

The topological invariant for the AI class in 0D is thus
given here by the winding number of the normalized complex
number Zε , obtained from the normalized determinant of the
inverse single-particle Matsubara Green function Ĝ−1

ε = iε −
ĤBdG. See Refs. [20,187,188] for further details on topolog-
ical invariants based on Green functions. In the present case,
we have for each σ block

nkRyz ,σ
= 1

4π i

∫ +∞

−∞

dZε,σ

Zε,σ

, (18)

with Zε,σ = − det (Ĝ−1
ε,σ )/| det (Ĝ−1

ε,σ )|. We thus find

− det
(
Ĝ−1

ε,σ

) = (
ξ+

kRyz ;q

)2 + (
�+

kRyz ;q

)2 − (iε)2

− M2 + 2iσεM, (19)

which has a form similar to that of the determinant in Eq. (8),
that was employed to calculate the winding number w in
kx space.2 To be in accordance with Ref. [146], given the
definition in Eq. (18), we define the mirror invariant nM using
a single σ block of our choice as follows:

nM = 2 sgn
(
nkx=0,σ − nkx=π,σ

)(∣∣nkx=0,σ

∣∣ − ∣∣nkx=π,σ

∣∣). (20)

nM counts the number of mirror-symmetry-protected edge
states for edges preserving the respective mirror symmetry.
However, as we announced, the above invariant becomes ob-
solete in 1D systems since mirror symmetry is expected to
be broken when termination edges are present. Nevertheless,
here we rely on the translational invariance of the system and

2Note that the Green function approach could have been also used
to evaluate the winding number w in Eq. (10), by means of a first
Chern number in the augmented (ε, kx ) space. This method has clear
advantages if we wish to include possible self-energy effects.

instead introduce a set of bulk mirror invariants. In analogy to
the spin Chern number construction [189–191], we define

nM;kRyz
=

∑
σ

σnkRyz ,σ
. (21)

After evaluating nkRyz ,σ
, we find that nM;kRyz

becomes

nM;kRyz
=

sgn
[(

ξ+
kRyz ;q

)2 + (
�+

kRyz ;q

)2 − M2
] − 1

2
. (22)

This bulk mirror invariant reflects the quantization of the z-
axis magnetization3 in HSPs since 〈σz〉kx=kRyz

= nM;kRyz
. One

finds |nM;kRyz
| = 1 only after certain level crossings occur at

kRyz , thus bearing similarities to parity-switching level cross-
ings known for Yu-Shiba-Rusinov bound states [192], which
are induced by magnetic impurities in spin-singlet supercon-
ductors [193].

The measurement of the kx-resolved magnetization appears
experimentally feasible by means of spin-resolved angle-
resolved photoemission spectroscopy, which has already been
successfully applied to map out the spin character of the
surface states of TR-invariant 3D topological insulators [194].
We thus find that, although the unitary mirror symmetry Ryz

is generally broken when edges are introduced to the sys-
tem, we can still use nM;kRyz

as a bulk experimental probe
for topological superconductivity. Finally, we remark that the
above calculations also serve as a simple example of similar
derivations that we plan to carry out in the upcoming sections.

2. MHC with a spatially varying magnetic moment: |M⊥| �= |M‖|
We now extend the study of the previous section to the

more general situation, in which |M⊥| �= |M‖|. In this case, us-
ing a spin-dependent unitary transformation to gauge away the
spatial dependence of the MHC is no longer possible, and one
has to approach the problem in the MBZ, i.e., kx ∈ (−q, q],
with q = Q/2 = π/4. To describe the downfolding to the
MBZ, one can either consider a sublattice description which
is briefly discussed in Appendix A, or choose to express the
Hamiltonian in {kx, kx + Q} and {kx, kx + 2Q} wave-number-
transfer spaces. The former is advantageous for carrying out
the topological classification since the resulting BdG Hamil-
tonian is 2π periodic and thus suitably compactified. The
results presented in Tables II and III were obtained using
this approach. However, throughout the main text we follow
the second route, which is implemented by introducing the
enlarged spinor

X 1BM
kx

= 1η ⊗ ρ2 + ρ3√
2

(
�kx−q,�kx+q,�kx+3q,�kx−3q

)ᵀ
,

(23)

where we introduced the Pauli matrices (ρ1,2,3) η1,2,3 de-
fined in the (Q-) 2Q-transfer space. The above basis reveals
more transparently the mechanisms underlying the nontrivial
topological properties induced by the magnetic textures, it

3Recall that the above is expressed in the local spin frame. Rotating
back with Û † implies that nM;kRyz

leads to the quantization of the
staggered magnetization in the xz spin plane.
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highlights the emergent Dirac physics, and it provides a sim-
pler and more convenient framework to evaluate the various
topological invariants.

The wave-number shifts in the arguments of the above
spinor were chosen to connect to the spinor obtained after per-
forming the unitary transformation Û in the case |M⊥| = |M‖|.
See also Fig. 3(b) and note that, given our spinor choice, the
periodic magnetization opens gaps at kx = 0 when Q = QN .
The extended BdG Hamiltonian reads as Ĥkx = Ĥ0

kx
+ Ĥmag

with

Ĥ0
kx

= [
h(0)

kx
+ h(1)

kx
ρ2 + h(2)

kx
η3 + h(3)

kx
η3ρ2

]
τ3

+ [
�

(0)
kx

+ �
(1)
kx

ρ2 + �
(2)
kx

η3 + �
(3)
kx

η3ρ2
]
τ1,

Ĥmag = −M⊥(1 + η1)ρ1σz + M‖(1 − η1)ρ3σx

2
, (24)

where the functions h(s)
kx

and �
(s)
kx

appearing above, with s =
0, 1, 2, 3, constitute linear combinations of ξkx and �kx , which
follow from the general definitions

f (0)
kx

= (
fkx−q + fkx+q + fkx+3q + fkx−3q

)
/4, (25)

f (1)
kx

= (
fkx−q − fkx+q + fkx+3q − fkx−3q

)
/4, (26)

f (2)
kx

= (
fkx−q + fkx+q − fkx+3q − fkx−3q

)
/4, (27)

f (3)
kx

= (
fkx−q − fkx+q − fkx+3q + fkx−3q

)
/4. (28)

The above construction further implies that inversion kx 	→
−kx acts as f (s)

−kx
= (−1)s f (s)

kx
. One observes that the four linear

combinations resulting from the electron part h(0)
kx

+ h(1)
kx

ρ2 +
h(2)

kx
η3 + h(3)

kx
η3ρ2 of the nonmagnetic BdG Hamiltonian give

rise to the four spin-degenerate band segments in the MBZ
shown in Fig. 3(b).

We point out that the set of ISPs in the MBZ reads
as kI = {0, q ≡ −q}, while the kI = π of the original BZ
coincides now with kI = 0 in the MBZ. Note that the
inversion-symmetric nature of kx = ±q is established via the
equivalence relation −q ≡ q + nQ with n ∈ Z.

The magnetic point group dictating the above BdG Hamil-
tonian is identical to the one examined in the previous
section for a MHC with a spatially constant magnetic moment
(|M⊥| = |M‖|). However, before discussing its implications
on the topological classification, we point out that given the
enlarged basis in Eq. (23), which is indispensable here for the
description of the MHC, one needs to account for possible
space-group symmetries.

Specifically, as also presented in Table I, the additional
space-group symmetries {T | π/Q} and {σxz,yz | π/Q} become
now relevant. Throughout this work, we adopt the Seitz
notation {g | t}, which combines the point-group element g
with the translation t. Given our choice of basis, {1 | π/Q} =
−ieikxπ/Qρ2 and T = iσyK as usual, while the mirror op-
erations have the following ρ ⊗ σ space matrix structure,
i.e., σ̂yz = iρ1σx and σ̂xz = iσy. Hence, we find the uni-
tary symmetries with {σ̂yz | π/Q} = ieikxπ/Qρ3σx, {σ̂xz | π/Q} =
eikxπ/Qρ2σy, and the antiunitary symmetry �̃kx ≡ {T | π/Q} =
eikxπ/Qρ2σyK. In contrast to the physical TR operation
which satisfies T 2 = −1, here �̃2

kx
= eiπkx/q1 and leads to

a Kramers degeneracy only at the kx = q ISP in the MBZ

[195–197]. Notably, this is the mechanism underlying the per-
sistent Kramers degeneracies at the purple-colored points of
the MBZ shown in Fig. 1(h). As also discussed in Appendix B,
the above space-group symmetries do not lead to any further
symmetry-protected degeneracies in the spectrum, and thus
influence the topological classification only in HSPs. For this
reason, their implications are discussed later, together with the
magnetic point-group symmetries.

The extended BdG Hamiltonian belongs to class BDI and
is classified by a winding number w ∈ Z. Applying the meth-
ods of Sec. IV A 1, and assuming for simplicity that Q =
QN , and �kx = � > 0 so that �

(0)
kx

= � and �
(s)
kx

= 0 for
s = 1, 2, 3, lead to (see Appendix C 1 for details)

w =
∑

ν

ν

2
sgn

{(
M2

ν − �2
) − (M2

⊥ − �2)(M2
‖ − �2)

(2μ)2

}
,

(29)

with Mν = (M‖ + νM⊥)/2 and ν = ±1.
Figure 4(c) depicts the topological phase diagram for the

1BM in Fig. 3 when M⊥ = M and M‖ = M/3. The orange
regions are phases with a single MZM per edge. While the
anisotropic nature of the MHC does not lead to the removal of
the topologically nontrivial phase, it still significantly mod-
ifies the phase diagram. It is straightforward to verify that
for �kx = �, the gap closings responsible for the topologi-
cal phase transition take place only at kx = 0. Nonetheless,
Eq. (29) also holds for an unconventional superconducting
order parameter after replacing � 	→ �kx=0, under the condi-
tion that additional gap-closing points do not emerge. Instead,
for an unconventional pairing order parameter which leads to
additional gap closings at ±k∗, the topological phase diagram
ends up to be quite complex. After obtaining w for a generic
�kx (see Appendix C 2), we focus on a pairing gap �kx =
�[1 + 2 cos(2kx )]. The related topological phase diagram is
depicted in Fig. 4(d).

To gain deeper insight, we set �kx = � > 0 and restrict to
the weak-coupling limit |�|, |M||,⊥|  2|μ|. Since gap clos-
ings now occur only near the FS, Eq. (29) becomes

w = sgn(M2
+ − �2) − sgn(M2

− − �2)

2
. (30)

Thus, the topological phases arising from gap closings oc-
curring in the low-energy sector are solely determined by the
inequality

M− < � < M+ for M⊥,‖ � 0. (31)

The spatial variation of the magnetic moment, which is
reflected in the size of the difference |M−| = |M‖ − M⊥|, sets
a maximum value for the magnetic anisotropy that can still
allow for the system to enter the nontrivial phase. For the
specific parameters used in Fig. 4(c), the above inequality re-
duces to 3�/2 < M < 3�. The low-energy nontrivial region
is therefore spanned by the black dotted lines in Fig. 4(c),
which verifies that Eq. (30) indeed describes the exact model
well in the weak-coupling limit.

The results in the weak-coupling limit can be alternatively
obtained by directly restricting the multicomponent spinor of
Eq. (23) to the operators creating and annihilating electrons in
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the low-energy sector, i.e.,

χ1BM
kx

= ρ2 + ρ3√
2

(
�kx−q, �kx+q

)ᵀ
. (32)

The projection of the Hamiltonian in Eq. (24) onto this sub-
space is achieved by setting η3 = +1, and dropping the term
proportional to η1 which connects the low- and high-energy
sectors. These steps lead to the Hamiltonian

Ĥlow-en
kx

= (
ξ+

kx ;q + ξ−
kx ;qρ2

)
τ3 − M⊥ρ1σz + M‖ρ3σx

2

+ (
�+

kx ;q + �−
kx ;qρ2

)
τ1, (33)

with ξ±
kx ;q and �±

kx ;q following once again from Eq. (4).
We now discuss the impact of the unitary mirror Rxz,yz

and space-group {σxz,yz | π/Q} symmetries on the topological
classification in HSPs. First of all, �̃kx imposes a twofold
degeneracy at kx = q, thus implying that the magnetic texture
does not induce any new topologically nontrivial phases at
kx = q. See Table II and Appendix A for more details. Even
more, as in Sec. IV A 1, also here, the effects of Rxz are
trivial since they lead to a unitary symmetry Oxz = 1. The
remaining four symmetries modify the topological properties
at kx = 0. The symmetries Ryz and {σyz | π/Q} ({T | π/Q} and
{σxz | π/Q}) lead to a AI ⊕ AI (BDI ⊕ BDI) class, thus provid-
ing an additional Z (Z2) topological invariant to the winding
number w.

The Ryz symmetry allows defining two types of mirror
invariants, in analogy to Eqs. (20) and (21). The block diago-
nalization of the BdG Hamiltonian in Eq. (24), that is effected
by the unitary transformation (Oyz + σx )/

√
2, yields in the

weak-coupling limit (see also Appendix C 3)

2nM,kx=0 =
∑
ν=±1

ν sgn
[
(ξ+

0;q)2 + (�+
0;q)2 − M2

ν

]
. (34)

It is straightforward to verify that nM,kx=0 = nM since no topo-
logical gap closings can take place at kx = q. In a similar
fashion, the off-centered4 space-group symmetry {σyz | π/Q}
allows introducing the here-termed glide invariant nG,kx=0 ∈
Z, which is defined following Eqs. (18) and (21). As pointed
out in Sec. IV A 1 and Footnote 3, also here the staggered
magnetization in the z- (x-) spin axis becomes quantized
when nM,kx=0 (nG,kx=0) is nonzero since 2nM,kx=0 = 〈ρ1σz〉kx=0

(2nG,kx=0 = 〈ρ3σx〉kx=0). For the given model |nM,kx=0| =
|nG,kx=0|.

We now proceed with the Z2 topological invariants which
emerge from the {T | π/Q} and {σxz | π/Q} symmetries. In the
presence of either one of these, the unitary symmetry Õ =
ρ2σy is induced, and allows us to block diagonalize the
Hamiltonian in Eq. (24) via the unitary transformation (Õ +
σz )/

√
2. This yields the BDI blocks

Ĥkx=0,σ = Ĥ0
kx=0 − (Mσ − M−σ η1)ρ1, (35)

with σ = ±1 labeling the eigenstates of σz. The two blocks
see a chiral symmetry � = ρ2τ2. Following the same ap-

4The nonmenclature highlights that this symmetry is not nonsym-
morphic because we can choose a coordinate system in the direct
lattice for which {σyz | π/Q} 	→ σyz. See also Appendix B.

FIG. 5. Example of a 2BM in 1D. (a) The dispersions ξ e
kx

=
te cos kx − εe (fuchsia) and ξ h

kx
= th cos kx + t ′

h[1 + cos(2kx )] − εh

(navy blue) in the first BZ. We set the parameter values th = 2.86 te,
t ′
h = te, εe � −0.92 te, and εh = −0.80 te. We also show the nesting

wave vector QN x̂ which, for the choice of parameters made here,
coincides with the magnetic wave vector Qx̂. Thus, Qx̂ connects
two pairs of points at the Fermi level and two more pairs at higher
energies. (b) The resulting eight band segments in the MBZ. The
points connected by the magnetic wave number (3Q = −Q) come in
pairs due to C2 symmetry, and are depicted by green dots. For clarity,
(a) depicts half of the ordering wave numbers.

proach that led to Eq. (7), we block off-diagonalize each σ

block by means of the unitary transformation (� + τ3)/
√

2,
with the upper block denoted Âkx=0,σ . The Z2 invariant, that
we here term glide Majorana parity PG, is constructed in
Appendix C 4 and is defined as

PG,kx=0 = sgn
∏

σ=±1

det
(
Âkx=0,σ

)
. (36)

Within the weak-coupling limit, we obtain the result

PG,kx=0 = sgn
∏

σ=±1

[
(ξ+

0;q)2 + (�+
0;q)2 − M2

σ

]
. (37)

Hence, here we end up with PG,kx=0 = (−1)nM,kx=0 , which im-
plies that in the present model PG,kx=0 is nontrivial, i.e., equal
to −1, when nM,kx=0 ∈ 2Z + 1.

Concluding this section, we remark once again that in
strictly 1D systems the above point- and space-group sym-
metries affect only the bulk topological properties since these
are all broken when edges are introduced. When this takes
place, it is only w together with the weak Z2 invariant of
class BDI,5 which are capable of predicting the number of the
arising MZMs. This is in stark contrast to 2D systems, where
certain edges also support crystalline and/or weak invariants,
as discussed further in later sections.

B. Two-band models

In this section, we extend the previous analysis to the case
of two-band models (2BMs) with dispersions ξ e,h

kx
, where the

superscript e/h reflects the type of electron/hole pocket that

5We define the weak invariant PM = sgn
∏

kI
det(ÂkI ) ≡

sgn[det(Âkx=0)], with ÂkI the upper off-diagonal block of the block
off-diagonalized Hamiltonian in Eq. (24) evaluated at kI . The
arising equivalence is a result of the Kramers degeneracy at kx = q.
When either {T | π/Q} or {σxz | π/Q} is a symmetry, PM coincides
with the glide Majorana parity PG,kx=0 in Eq. (36).
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arises from the respective band. An example of such a 2BM
is shown in Fig. 5. We employ the κ1,2,3 Pauli matrices to
represent Hamiltonian matrix elements in band space. This
representation is also relevant for the magnetic and pairing
terms, which now become matrices in this space. In particular,
the direct-lattice profile of the magnetization generally reads
as

M̂n = Me
n + Mh

n

2
+ Me

n − Mh
n

2
κ3 + Meh

n κ1. (38)

One notes that a term proportional to κ2 is not allowed since
this violates the requirement that the magnetization field of
the texture is odd under T . On the other hand, the spin-singlet
pairing matrix reads as

�̂kx = �e
kx

+ �h
kx

2
+ �e

kx
− �h

kx

2
κ3

+ �eh
kx

+ �he
kx

2
κ1 − �eh

kx
− �he

kx

2i
κ2. (39)

The required antisymmetry of the superconducting matrix
order parameter in the combined spin, band, and kx spaces
implies that the terms proportional to 1κ , κ3, and κ1 are even
under inversion, while the one proportional to κ2 is odd. In
the remainder, we focus on cases where the FSs associated
with the various pockets neither overlap nor share similar
shapes and, as a result, interband pairing is expected to be
substantially suppressed.6

In the present case we also consider that the magnetization
possesses a MHC form, with the M‖,⊥ helix components of
the previous section being upgraded to band-space matrices
according to Eq. (38). In addition, we assume that the two
intraband pairing order parameters �e,h

kx
do not contain any

zeros and, thus, we set them to be constants. Nonetheless, our
results qualitatively hold for more complex unconventional
gap structures, as long as these do not contain any zeros. We
further note that, here, the inclusion of an additional band
does not lower the symmetry of the Hamiltonian, and the
system is therefore left invariant under the magnetic point- and
space-group symmetries discussed in the previous section.

Since the 2BMs bear similarities with the thoroughly ex-
plored 1BMs, we confine the analysis to the distinct features

6Note also that interband pairing appears more possible to arise
in 1D rather than 2D systems since the FS in the former case con-
sists of points. For nonoverlapping FSs, the appearance of interband
pairing requires a suitable bosonic “glue,” such as antiferromagnetic
magnons, which can provide the wave-vector transfer that is required
to connect the different bands [198]. Even more, the development of
interband pairing in such cases either leads to a net momentum in the
ground state (Fulde-Ferrell phase [199]) or spontaneously violates
translational invariance (Larkin-Ovchinikov phase [200]). This may
in turn generate electric currents or elastic deformations which result
in additional energy penalties for band structures which originally
respect TR and translational symmetries. Finally, in the here more
relevant case of 2D systems which harbor multiple nonsimilar and
nonoverlapping FSs, interband pairing is expected to be further dis-
favored since the establishment of a full gap on the FSs requires the
development of a pairing order parameter which consists of multiple
wave vectors [198].

brought about by the additional band. We extend the spinor
defined in Eq. (23) as follows:

X 2BM
kx

= (
X 1BM;e

kx
, X 1BM;h

kx

)ᵀ
(40)

and consider the Hamiltonian

Ĥkx =
e,h∑
s

PsĤ0;s
kx

− M̂⊥(1 + η1)ρ1σz + M̂‖(1 − η1)ρ3σx

2
,

(41)

where we introduced the electronlike (holelike) band pro-
jectors Pe = (1κ + κ3)/2 [Ph = (1κ − κ3)/2]. Depending on
the precise matrix form of the magnetization, one can interpo-
late between intraband and interband scattering.

For M̂||,⊥ ∝ 1κ , κ3, the magnetic scattering has only an
intraband character, and the two bands are completely decou-
pled. Thus, the topological properties of the system follow
from applying the results of the previous paragraphs sepa-
rately to each band, and the symmetry class is BDI ⊕ BDI. In
contrast, when M̂⊥ = M⊥κ1 and M̂‖ = M‖κ1, the Hamiltonian
exhibits an additional unitary symmetry with the generator
O = κ3σy. Note that this symmetry is due to the specific form
of the magnetic texture in band space, and intraband magnetic
scattering terms M̂⊥,‖ ∝ 1κ , κ3 generally violate it.

Assuming the presence of O, we block diagonalize the
Hamiltonian using the transformation S = (O + σz )/

√
2, and

find that the nonmagnetic part of Eq. (41) remains unaltered,
while the magnetic part becomes

Ĥmag,σ = −σM⊥κ1(1 + η1)ρ1 + M‖κ2(1 − η1)ρ3

2
, (42)

where σ = ±1 correspond to the eigenvalues of σz. Each
Hamiltonian block belongs to the symmetry class AIII with
� = κ3τ2. The procedure for carrying out the 1D topological
analysis is here identical to the one presented in Sec. IV A 2
for systems in the BDI symmetry class, since also the AIII
class supports a Z topological invariant in 1D, which is iden-
tified with a winding number.

Such an analysis (see Appendix C 5) yields that the
topological phase transition from the trivial to the nontrivial
phase occurs when ξ e

kx±3q�
h = ξ h

kx∓3q�
e and ξ e

kx±3qξ
h
kx∓3q +

�e�h = M2
σ are simultaneously satisfied for a given σ . When

the magnetic wave vectors connect two points at the Fermi
level, we have ξ e

k±3q = ξ h
k∓3q = 0 and the topological criterion

reads as �e�h = M2
σ . Remarkably, the latter condition can be

satisfied only when the two magnetically connected points ex-
hibit the same sign for the pairing term. Figures 6(a) and 6(b)
display the resulting phase diagrams for �h/�e = {2, 1

10 },
respectively, with the topologically nontrivial regions marked
in red. In agreement with the above criterion, we find that the
nontrivial regime shrinks when |�e − �h| increases.

We note the doubling of w compared to the case of the
1BMs [cf. Figs. 4(a) and 4(c)]. This is due to the doubling of
the number of gap-closing points kc. Each one of the green
dots in Fig. 5(b) contributes with a single unit to w. The
emergence of a number of 2Z MZMs in conjunction with the
AIII classification implies that each emergent pair of MZMs
should be seen as a single topologically protected AZM.
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FIG. 6. Topological phase diagrams for the 2BM in Fig. 5 in
the MHC phase, evaluated by projecting onto the low-energy sec-
tor. (a) Phase diagram when solely interband magnetic scattering is
considered, and the order-parameter values �h = � and �e = �/2
are employed. (b) Same as in (a), but with �h/�e = 1

10 . When
�h�e < 0 the topologically nontrivial phase vanishes. (c) Same as
in (a), but with the inclusion of intraband magnetic scattering, with
Me

‖,⊥ = Mh
‖,⊥ = M. (d) Here, �h = −2�e and Me

‖,⊥ = Mh
‖,⊥ = M.

Notably, the inclusion of intraband magnetic scattering induces a
topologically nontrivial phase in an otherwise trivial region. We
considered Meh

⊥ = M and Meh
‖ = M/3 in all calculations.

Indeed, from the analyses of Refs. [21,22], it emerges that here
a TSC originating from an interband-only magnetic texture
can be described with a spinor of halved dimensionality com-
pared to the one defined in Eq. (40) since spin-up electrons of
the electronlike pocket pair up only with spin-down electrons
of the holelike pocket, and vice versa. While so far there
exists only a little theoretical activity on AZMs compared to
MZMs (cf. Refs. [101,177–180]), their experimental creation
and manipulation is a fascinating topic on its own. Indeed,
when these AZMs are topologically protected for an extended
region in the parameter space, as found here, they in principle
enable quantum information processing with long-lived quasi-
particles [181,182].

In the more general case, intraband terms which break
the O = κ3σy symmetry may also be present. These can be
divided into nonmagnetic and magnetic. When these are non-
magnetic, e.g., various types of ISB SOC, they stabilize a
DIII symmetry class which supports MZM Kramers pairs. For
a similar situation, see Ref. [44]. However, throughout this
work we consider that all types of ISB SOC have negligible
strengths, thus implying that such a possibility is inaccessible
here. Nonetheless, as we discuss later in this paper, DIII
class Majorana fermions become generally accessible in 2D
2BMs for a SWC4 texture. On the other hand, when additional
magnetic terms are considered, these restore the BDI class
found in the 1BMs, as well as the Majorana nature of the
topologically protected edge excitations.

We proceed by investigating the effects of intraband mag-
netic texture terms. For this purpose, we recalculate the
winding number (see Appendix C 5), and obtain the phase
diagrams in Figs. 6(c) and 6(d) for �h/�e = ±2, respectively.

Strikingly, as seen in Fig. 6(d), the inclusion of intraband
magnetic scattering induces a topologically nontrivial phase,
even when the connected points exhibit different signs for the
pairing term. Once again, assuming that the transition occurs
due to the gap closing at two magnetically connected Fermi
points, and that the magnetic moments are spatially constant,
the topological criterion reads as

(�e ± Me )(�h ± Mh ) = (Meh )2. (43)

This expression imposes severe constraints on the unconven-
tional superconducting order parameter, as well as the relative
contributions of intraband and interband magnetism, which
can lead to topologically nontrivial phases in 1D. Nonethe-
less, this condition is not as stringent in higher-dimensional
systems since the pairing term may lead to a gap closing for
some of the BZ points, which is a sufficient condition to allow,
but not necessarily guarantee, the transition to a TSC phase.

To this end, we remark that crystalline symmetries gen-
erally influence the bulk classification of multiband systems
in a similar fashion to 1BMs when interband and intraband
magnetic texture terms are simultaneously present. Instead,
when only interband textures are considered, the presence of
the O symmetry renders the effects of the crystalline symme-
tries trivial.

Before proceeding to the 2D cases, we here summarize
what we learned from the 1D models, and how this will help
us explore the 2D cases. First of all, we discussed that a system
in the presence of a MHC with a spatially varying magnetic
moment |M‖| �= |M⊥| cannot be directly mapped onto the ISB
SOC mechanism in Figs. 1(a)–1(d), i.e., one cannot gauge
away the spatial dependence of the MHC. Hence, one needs
to adopt either a sublattice description (cf. Appendix A), or
perform a downfolding to the MBZ. The latter serves as a
convenient basis for our calculations, and is adopted in the
upcoming paragraphs. In this regard, the 1D cases additionally
served as an introduction and motivation for our formalism in
the more complicated 2D systems.

Concerning the topological classification, we established
that 1BMs and 2BMs in the MHC phase generally reside
in the BDI symmetry class, regardless of the type of spin-
singlet pairing gap. However, by considering interband-only
magnetic scattering, we found that the 2BMs display an
emergent unitary symmetry ultimately resulting in the class
AIII ⊕ AIII. This class supports AZMs, which, however, can
be converted back to MZMs by including intraband terms.
Lastly, we also performed the topological classification in
the presence of magnetic point- and space-group symmetries,
introduced the relevant invariants, and discussed how these
can lead to new topological phases. For 1D systems, the
additional unitary symmetries proved to be obsolete when it
comes to the prediction of edge modes since edges generally
break these. Nonetheless, their presence sets constraints on a
number of bulk topological properties which can be harnessed
to experimentally infer the TSC phase of the system. In fact,
the methodology employed in the study of unitary symmetries
sets the stage and introduces the concepts for the upcoming
2D cases, where magnetic point-group symmetries play in-
stead an essential role in determining the type of Majorana or
Andreev edge modes.
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FIG. 7. Example of a 1BM in 2D. (a) Fermi surfaces (FSs) in the
BZ obtained for a dispersion ξk = −2t cos kx cos ky − μ with μ =
−√

2t < 0. We show the magnetic ordering wave vectors Q1,2 =
Q{x̂, ŷ} and 3Q1,2 ≡ −Q1,2 connecting points of the FS. (b) Depicts
the resulting four FS segments after transferring to the MBZ for a
MHC with the wave vector Q1. Similar to Fig. 3, also here there exist
points at higher energy which are connected by Q1,2.

V. 2D TOPOLOGICAL SUPERCONDUCTORS

We now extend our study to the case of 2D systems, which
is the main topic on our agenda. We start with 1BMs and
afterwards consider two-band extensions. We find that 2D
systems exhibit a rich variety of MF-edge-mode types, i.e.,
flat, unidirectional, and bidirectional modes when nodes are
present in the bulk energy spectrum or quasihelical, helical,
and chiral modes when the bulk energy band structure is fully
gapped. This MF diversity is obtained by considering 1BMs
and 2BMs in the presence of a MHC, a SWC4, and, finally,
a SWC4 combined with an external in- and out-of-plane Zee-
man field, where the latter situation also reproduces a SSC4

phase.

A. One-band models

In this section we extend the 1BM dispersion ξkx to its
2D analog ξk, with a focus on models leading to two hole
pockets centered at �(0, 0) and M(π, π ). The two pockets
are assumed to feature intrapocket FS nesting at the mutually
orthogonal wave vectors QN,1 and QN,2, thus generally sup-
porting both single-Q and double-Q magnetic phases [134].
The magnetic vectors Q1,2 may coincide with the nesting wave
vectors. Such a type of band structure is shown in Fig. 7,
and bears qualitative similarities to substantially hole-doped
FeSCs. In principle, for highly symmetric FSs other nesting
vectors may play a substantial role in deciding the resulting
magnetic phase. Nonetheless, for the explorative nature of this
paper we simply restrict to the star ±Q1,2.

1. MHC texture: Majorana flat bands

The construction of the Hamiltonian in 2D is straight-
forward, and is obtained by replacing the 1D dispersion
in Eq. (24) by its 2D analog. The MBZ is now defined
as the set k ∈ (−q, q] × (−π, π ] and the ISPs are kI =
{(0, 0), (q, 0), (0, π ), (q, π )}, where q1,2 = Q1,2/2 and q =
|q1,2|. Out of these four, (q, 0) and (q, π ) observe a Kramers
degeneracy imposed by the antiunitary magnetic space-group
symmetry �̃k = {T | (π/Q, 0)}.

FIG. 8. (a), (b) Topological phase diagrams for the 2D 1BM in
Fig. 7, in the presence of a MHC texture with spatially constant
and varying (M⊥/M‖ = 3) moment, respectively. For a given ky =
0, π/8, 2π/8, 3π/8 value, we find one (no) MZMs per edge in the
correspondingly colored (gray) regions.

The extension to 2D is complete after the addition of ky as
a second argument to h(s)

kx
and �

(s)
kx

defined in Eqs. (25)–(28),

which leads to h(s)
k and �

(s)
k . Note, however, that this seem-

ingly trivial extension leads to a dichotomy in regards with
the behavior of �

(s)
k under mirror operations. Specifically,

one can now distinguish two cases depending on whether
�k transforms according to the {A1g, B1g} or the {B2g, A2g} ≡
B2g × {A1g, B1g} IRs of D4h.7 Notably, pairing gaps transform-
ing according to the former (latter) satisfy σxz,yz�k = +�k

(σxz,yz�k = −�k). While this difference does not diversify
the BDI 2D symmetry classification for the two categories of
pairing, it does lead to two distinct classifications in the HSPs
depending on whether the magnetic and pairing point groups
coincide or not. Below, we first focus on the 2D classification
and study the influence of the magnetic point group at the end
of this section.

In analogy to our previous analysis, we define the winding
number for each ky subsystem which, notably, for the BDI
class in 2D defines a weak, instead of a strong, topological
invariant [201,202]. Under the condition that �k does not
induce additional gap closings in the MBZ other than the ones
appearing for k = (0, ky), we obtain

wky =
∑

kc

sgn

(
�+

k;q1

dξ−
k;q1

dkx
− ξ+

k;q1

d�−
k;q1

dkx

)∣∣∣∣∣
kx=kc

×
sgn

{
M2 − [

�+
(kc,ky );q1

]2 − [
ξ+

(kc,ky );q1

]2}
2

, (44)

where we considered M‖,⊥ = M > 0, exploited the property
ξ−kx,ky = ξkx,ky , and made use of the constraint on �k. Evi-
dently, the 1D criterion for a gap closing at a point kc, for a
given ky, still holds, namely, M2 = [�+

(kc,ky );q1
]2 + [ξ+

(kc,ky );q1
]2.

7For example, {A1g, B1g, B2g} ∼ {1, cos kx − cos ky, sin kx sin ky}.
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Thus, gap-closing points appear for (kx = 0, ky) and suitable
values of ky.8

In Fig. 8(a) we display topological phase diagrams for the
model in Fig. 7, for various ky values which are depicted using
a ky-dependent color scale. In the weak-coupling limit, and for
generally different M‖,⊥, each ky subsystem is dictated by the
familiar criterion in Eq. (31):

M− <

√(
ξ+

kc;q1

)2 + (
�+

kc;q1

)2
< M+. (45)

However, in contrast to Eq. (31), here, not all gap-closing
points kc are at the Fermi level, and this detuning introduces
an effective chemical potential ξ+

kc;q1
in the above criterion.

As expected, for ky = 0 we reproduce Eq. (31) after setting
�k = �. Figure 8(b) presents the arising topological phase
diagram for a system in the MHC phase with |M⊥| �= |M‖|.
Clearly, the phase diagram becomes significantly modified
as ky varies, and the various topologically nontrivial regions
generally overlap.

Based on the criteria for a gap closing at the various ky val-
ues, we infer that the nodes in the bulk spectrum move along
the kx = 0 line in the MBZ when varying the superconducting
and magnetic gaps. This resembles a gapless-gapful transition
in topological insulators which leads to a Weyl semimetallic
phase [203]. In fact, such transitions have also been studied
previously in (i) p ± ip TSCs, where an in-plane magnetic
field drives the transition [174], (ii) in nodal d-wave SCs
[175], and (iii) in nodal superconducting phases of FeSCs
[204,205].

In Fig. 9(a) we sketch the path followed by the nodes in the
MBZ when varying the superconducting and magnetic gaps.
Given the structure of the weak topological invariant wky , we
expect to find topologically protected MF modes at the edges
parallel to the y direction, but no modes at the edges perpen-
dicular to it. This is indeed verified in Figs. 9(c) and 9(d),
where we plot the spectrum with open boundary conditions
along the x and y direction, respectively. Here, only the former
edge spectrum displays topologically protected MF modes.
This behavior is reminiscent of graphene and the appearance
of flat bands only when the termination is of the zigzag type
[206]. We observe that nodes related to each other by the
discrete symmetries � and  are connected by Majorana flat
bands (MFBs), in agreement with the values of wky shown
in Fig. 9(b). In the direct-lattice representation, these MFBs
manifest as standing MF waves only at edges parallel to the y
direction, i.e., they possess wave functions with a spatial part
proportional to sin(nπRy/Ny) where n ∈ N+ and Ny being the
number of lattice sites in the y direction (cf. Ref. [207]).

So far, we studied the emergence of the MFBs by view-
ing ky as a mere parameter which controls the topological
properties of each 1D ky subsystem. However, accounting for

8Note that the 1BM presented in Fig. 7 features additional gap
closings at (kx, ±π/2). However, these solely stem from the next-
nearest-neighbor character of the hopping term considered, and do
not constitute universal properties. In fact, this band peculiarity can
be removed by considering additional hopping matrix elements of a
different range in the 2D version of Eq. (1).

FIG. 9. Properties of the topologically stable nodes obtained in
the gapless bulk energy spectrum of the 1BM in Fig. 7 in the presence
of the MHC texture. Here, nodes with vorticity υ = +1 (υ = −1)
are discerned by a dot (cross). (a) Sketch of the path followed by
the nodes when varying the superconducting and/or magnetic gaps.
Nodes of opposite vorticities are connected by MFBs, in agreement
with the winding number values in (b). (c), (d) Numerically obtained
dispersions with open boundary conditions along the x and y di-
rection, respectively. Parameter values used: � = 0.1 t , M⊥ = M‖ =
0.2 t , and Lx,y = 401 sites in the x, y direction.

the correspondence of ky to the spatial coordinate y, and con-
sidering the stable character of the nodes in the bulk energy
spectrum, allows us to characterize the 2D nodal TSC using
local strong topological invariants [208–210]. In fact, the BDI
symmetry class ensures that the MFBs enjoy a topological
protection, which is inherited from the respective robustness
of the bulk nodes in the energy spectrum. Each node at kc

possesses a Z topological charge, i.e., its vorticity

υ = 1

2π i

∮
C

dzk

zk
, (46)

where C is a contour encircling the node. Here, zk corresponds
to the 2D extension of Eq. (9).9

9The apparent similarity of the invariants in Eqs. (10) and (46) is
not accidental. In the 2D case, the ky dependence of the dispersion
can be viewed as a parameter that effectively controls the chemical
potential of the 1D system. By deforming the contour C to two
parallel lines at ky = kc + 0±, which “close” at infinity |kx| → ∞,
the vorticity is given by the difference of the winding numbers
w(μ±

c ). Here, μc corresponds to the kc which tunes the system to
the gap closing. Therefore, the vorticity defined in 2D yields the
difference between two winding-number values which characterize
two topologically distinct phases of the 1D TSC across the gap
closing which appears at the location (0, μc ) of the respective Berry
singularity in (kx, μ) space [20].
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FIG. 10. Modification of the nodal spectrum in Fig. 9 due to the
unconventional pairing function �k = �(cos kx − cos ky ). (a) The
unconventional gap function induces eight additional nodes in the
bulk spectrum. In (b) we present the energy spectrum for open
boundary conditions along the x direction and Lx = Ly = 1001. We
do not find any new MF bands since, for the given orientation of
the termination edges, the contributions of the eight additional nodes
cancel out. Parameter values used: � = 0.1 t and M⊥ = M‖ = 0.05 t .

For the present model, linearizing the Hamiltonian about a
node yields υ = sgn(αβ�ξ+

kc;q1
), where we set �k = �, and

expanded the shifted dispersions about kc as follows: ξ+
k;q1

≈
ξ+

kc;q1
+ αky and ξ−

k;q1
≈ βkx. The above result reveals that the

vorticity is ill defined at the ISPs (0,0) and (0, π ) since, there,
α = 0.10

Let us now proceed and consider a superconducting order
parameter which does generate new nodal points. In order to
determine the location of these new nodes, we employ the 2D
analog of Eq. (33), which describes the low-energy features
about the �(0, 0) point in the MBZ. Alternatively, we can
perform the shift k 	→ k + 4q1 to obtain a description about
Y(0, π ). By repeating the steps detailed in Sec. IV A, the
gap-closing points kc are given by Im[det(Âlow-en

kc,σ
)] = 0 which

yields the equation

ξkc−q1
�kc+q1

= ξkc+q1
�kc−q1

. (47)

As an example, we consider the 1BM of Fig. 7 and the
d-wave gap function �k = �(cos kx − cos ky). We find the
gap-closing points kc : {kx = 0 or cos(2ky) = −1 − μ/t}.
For the given values of q and μ, the additional nodes move
on the lines ky � ±0.18π,±1.18π . The complete informa-
tion regarding the location of the above gap-closing points
in the MBZ is found by further employing the remaining
gap-closing condition Re[det(Âlow-en

kc
)] = 0, which is equiva-

lent to the criterion in Eq. (45). Analyzing the above yields
nodes moving along different lines in the MBZ, as shown
in Fig. 10(a). Contrasting this to Fig. 9, we clearly see the
introduction of eight new nodes in addition to the four nodes
for kx = 0. Here, however, we do not find any additional
MF modes compared to Fig. 9(c) when we consider open
boundary conditions along the main x, y axes, as is evident
in Fig. 10(b) for open boundary conditions in the x direction.
This is because the contributions of the additional nodes can-

10For the model in Fig. 7, υ is also ill defined for ky = ±π/2 since
at these points ξ+

kc;q1
= 0 which, however, is only an artifact of the

next-nearest-neighbor nature of the hopping considered.

cel out by virtue of mirror symmetries when projected onto
the edge where translational invariance persists. However, if
the system were to be terminated along the, e.g., (11) surface,
that would indeed allow for the presence of new MF modes
(cf. Ref. [205]).

We now consider the additional presence of the magnetic
point- and space-group symmetries and the modifications that
these bring to the topological classification. A common fea-
ture of the crystalline classifications in 1D and 2D for the
MHC is that the effects of Rxz are trivial in both. On the other
hand, we find crucial differences which mainly relate to (i) the
enhancement of the dimensionality which generally leads to
different topological invariants even within the same symme-
try class, and (ii) the structure of the pairing gap. Specifically,
we find two distinct cases depending on whether �k is invari-
ant under the action of the magnetic point-group operations,
or not. When �k ∈ {A1g, B1g} (�k ∈ {B2g, A2g}), the magnetic
point group MMHC is (not) conserved. Notably, the pair of D4h

IRs bunched together in a given set are equivalent under the
action of the magnetic point group.

Another key aspect of the crystalline classification in 2D
is that the Kramers degeneracy imposed by �̃k at (q, 0)
and (q, π ) extends to the entire kx = q HSP. As discussed
in Appendix B this is imposed by the pair of off-centered
symmetries Ryz and {σyz | (π/Q, 0)}. Hence, MHC-driven gap
closings cannot take place anywhere in the kx = q HSP.
Therefore, any possible crystalline topological features arising
in this HSP originate from the structure of the pairing gap. For
this reason, the remainder of this section focuses only on the
kx = 0 HSP. The classification in the kx = q HSP appears in
Table II and the topological invariants connect to the analysis
below.

For �k ∼ {A1g, B1g}, Ryz and {σyz | (π/Q, 0)} lead to a
AI ⊕ AI class in the kx = 0 HSP. While a similar result was
also encountered in Sec. IV A 2, here the topological con-
sequences stemming from these symmetries differ because
of the increased spatial dimensionality. Specifically, different
topological features emerge only when the spectrum contains
point nodes. In this case, the class AI allows defining an ad-
ditional Z crystalline topological invariant, which we denote
νkI , and associate with the following vorticity in (ε, ky) space:

νkx=0 = 1

4π i

∑
σ=±1

σ

∮
C

dZε,ky,σ

Zε,ky,σ

, (48)

with C a path enclosing the node, and σ = ±1 labeling the
respective AI block. Zε,ky,σ is obtained in a similar fashion to
Eq. (18). We remark that for the nodes shown in Fig. 9, we
find |νkx=0| = |υ| = 1.

The remaining two space-group symmetries, i.e.,
{σxz | (π/Q, 0)} and {T | (π/Q, 0)}, need to be treated more
carefully since the former only leaves ISPs invariant, and
thus does not introduce any changes to the topological
classification in HSPs. The latter symmetry instead, combined
with �, leads to a class BDI ⊕ BDI in the kx = 0 HSP. Hence,
it only influences the topological properties of the system for
a fully gapped spectrum since the BDI class cannot protect
nodes in 1D [210]. Therefore, in the case of a full gap, we
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define the glide winding number

wG,kx=0 =
∑

σ=±1

σwkx=0,σ ≡ 1

4π i

∑
σ=±1

σ

∫
BZ

dzky,σ

zky,σ

, (49)

with wkx=0,σ corresponding to the winding number of each
BDI class Hamiltonian block of Eq. (35), after the suitable ky

dependence is accounted for, and the respective normalized
complex function zky,σ = det(Âkx=0,ky,σ )/| det(Âkx=0,ky,σ )| is
constructed.

In contrast, when �k transforms according to the IRs
{B2g, A2g}, we find deviations from the above behaviors. No-
tably, the magnetic and pairing point groups differ since MMHC

acts on �k ∼ {B2g, A2g} as

{E ,C2, σxzT , σyzT }�k = {1, 1,−1,−1}�k. (50)

Nevertheless, the sign-changing behavior of �k under mirror
operations still allows us to define a point group GMHC, which
is preserved by the total Hamiltonian and is isomorphic to
MMHC. This group consists of the elements

GMHC = {
E ,C2, σ

Q
xz T , σQ

yz T
}
, (51)

with σQ
xz,yz = Qσxz,yz, where we introduced the dimension-

less electric charge operator Q = τ3. Such symmetries have
also been previously discussed in connection to p-wave su-
perconductors [20,211]. There, these ensure that the energy
spectrum is inversion symmetric, despite the fact that inver-
sion itself is not preserved. Similarly here, GMHC ensures that
the energy spectrum is invariant under the original MMHC

magnetic point group. Note also that the space-group sym-
metries {σxz,yz | (π/Q, 0)}, are correspondingly replaced by
{σQ

xz,yz | (π/Q, 0)}.
To infer the arising topological modifications, we block

diagonalize the 2D extension of Eq. (24) according to the
symmetry of interest. We immediately observe that the effects
of {T | (π/Q, 0)} and {σQ

xz | (π/Q, 0)} in HSPs remain the same,
with the latter only affecting ISPs once again. The presence
of RQ

xz establishes the class AI ⊕ AI in the ky = {0, π} HSPs,
where however the pairing gap is zero. In these HSPs, RQ

xz
can only protect nodes, with a Z invariant given by Eq. (48)
after interchanging kx and ky, and considering ky = {0, π}.
The remaining two symmetries, i.e., {σQ

yz | (π/Q, 0)} and RQ
yz

lead to a BDI ⊕ BDI class in the kx = {0, q} HSPs. When
the spectrum is fully gapped in these HSPs, one finds the
glide wG,HSP and mirror wM,HSP winding numbers. These are
correspondingly defined by, and in analogy to, Eq. (49). For
details and concrete examples of the topological properties
and the arising spectrum for a system with �k ∼ {B2g, A2g},
see Appendix C 6.

Closing this section, we point out that one can also intro-
duce the BDI class weak Z invariants for kx points with a fully
gapped spectrum. These are given by the winding numbers
wkx , which are defined in an analogous manner to wky in
Eq. (44). The wkx invariants are expected to be particularly
relevant when �k ∼ {B2g, A2g}. This is because, for a fixed kx,
the resulting pairing gap becomes effectively of the py-wave
type (cf. Appendix C 6).

FIG. 11. 2D 1BM of Fig. 7 with a double-Q magnetic texture.
(a) FSs of the 1BM in the first BZ. We show the magnetic ordering
wave vectors Q1 (3Q1 ≡ −Q1) and Q2 (3Q2 ≡ −Q2), connecting
points at the Fermi level (green dots). As in the 1D case (cf. Fig. 3),
points at higher energies are also connected by Q1,2, which upon in-
creasing the magnetic energy scale give rise to nodes whose locations
trace the dotted black lines. (b) Resulting FS segments in the MBZ,
where the points simultaneously experiencing magnetic scattering by
both Q1 and Q2 (orange dots), are now centered at the �(0, 0) point.

2. SWC4 phase: Majorana bidirectional edge modes

In this section, we consider the case of a double-Q
magnetic texture, with the ordering wave vectors de-
picted in Fig. 11(a). Here, we focus on the SWC4 pro-
file which couples to the electrons through the exchange
term

Hmag =
∑

n

ψ†
n[M⊥ cos(Q1 · Rn)σz + M‖ sin(Q1 · Rn)σx

+ M⊥ cos(Q2 · Rn)σz + M‖ sin(Q2 · Rn)σy]ψn.

(52)

The double-Q structure of the magnetic texture implies that
the MBZ is obtained by folding in both kx and ky directions of
the original BZ, and is defined as k ∈ (−q, q] × (−q, q]. The
ISPs span the set kI = {�(0, 0), X(q, 0), Y(0, q), M(q, q)}.
To proceed, we employ the wave-vector-transfer Pauli ma-
trices η and ρ related to foldings in the kx direction, as in
Sec. IV A 2, and the Pauli matrices λ1,2,3 and ζ1,2,3 related to
foldings in the ky direction, acting in {k, k + Q2} and {k, k +
2Q2} spaces, respectively. The resulting enlarged spinor reads
as

X 1BM, 2D
k

= 1ζ ⊗ λ2 + λ3√
2

(
X 1BM

k−q2
, X 1BM

k+q2
, X 1BM

k+3q2
, X 1BM

k−3q2

)ᵀ
,

(53)

where X 1BM
k is the 2D analog of Eq. (23). This yields the

following class D ( = τ2σyK) bulk 2D Hamiltonian:

Ĥk = F̂ (hk)τ3 + F̂ (�k)τ1

− M⊥(1 + η1)ρ1σz + M‖(1 − η1)ρ3σx

2

− M⊥(1 + ζ1)λ1σz + M‖(1 − ζ1)λ3σy

2
, (54)

where F̂ (hk) and F̂ (�k) are defined in Appendix D.
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The band dispersions and the magnetic part of the BdG
Hamiltonian of Eq. (54) are invariant under the magnetic
point group MSWC4 = C4 + (C4v − C4)T , as well as the
magnetic space-group operations {T , C4v − C4 | ( π

Q , π
Q )}. See

also Table I. Out of these five space-group symmetries,
the antiunitary �̃k = {T | ( π

Q , π
Q )} = ieiπ (kx+ky )/Qλ2ρ2σyK de-

fines a TR symmetry with �̃2
k = −eiπ (kx+ky )/q1, and yields

a Kramers degeneracy at k�̃k
= {�(0, 0), M(q, q)}. The re-

maining space-group symmetries do not lead to any additional
symmetry-protected degeneracies in the spectrum. See Ap-
pendix B for further clarifications.

Similar to the previous section, also here, the point
group GSWC4 preserved by the BdG Hamiltonian is de-
cided by which one out of the possible four IRs
{A1g, B1g, B2g, A2g}, is stabilized for �k. In a one-to-
one correspondence to these four IRs, we find the
scenarios

G
A1g

SWC4
= {E ,C2, 2C4, 2σvT , 2σdT }, (55)

G
B1g

SWC4
= {

E ,C2, 2CQ
4 , 2σvT , 2σQ

d T
}
, (56)

G
B2g

SWC4
= {

E ,C2, 2CQ
4 , 2σQ

v T , 2σdT
}
, (57)

G
A2g

SWC4
= {

E ,C2, 2C4, 2σQ
v T , 2σQ

d T
}
. (58)

In a similar fashion, depending on the IR of �k, we ob-
tain four space-group symmetries generated by products of
{1 | (π/Q, π/Q)} and the mirror operations preserved by �k.
Note that the topological class remains D, irrespectively of
the given point group GSWC4 . As it is customary in this work,
the effects of the point and space groups are presented at the
end of the section.

For the 1BM in Fig. 11, we find two pairs of nodes upon
modifying the various parameters, as sketched in Fig. 12(a).
These pairs move along mutually orthogonal HSPs in the
MBZ as indicated by the white arrows in the figure. Specif-
ically, as the magnetic gap increases, the nodes first emerge
at the X(q, 0) and Y(0, q) points, and then move towards the
�(0, 0) point of the MBZ.

Similar nodes emerged for a MHC texture in 2D (cf.
Fig. 9). Hence, we expect that in this nodal regime, the
topological properties stemming from a SWC4 texture are
describable by superimposing the results originating from two
MHC textures which wind in perpendicular spatial directions
and different spin planes. In this sense, the underlying topo-
logical mechanism is essentially 1D and, as long as these
nodes are present, we do not expect to obtain any genuine
2D topological superconducting phases. The latter become
accessible only after the nodes meet at the �(0, 0) point
and annihilate. However, the Kramers degeneracy enforced
by �̃k prohibits that, thus imposing that only nodal TSC
phases become stabilized by a SWC4 texture in such 1BMs.
Nonetheless, as we show in the next section, the considera-
tion of additional perturbations which violate �̃k unlocks the
possibility of gapped 2D topological superconducting phases.

We anticipate that the gapping of these nodes becomes
possible by considering suitable perturbations of even in-
finitesimally weak strength. This is because class D does not
protect nodes in 2D [210]. In fact, one would expect that the

FIG. 12. (a), (b) Depict the paths swept by the pairs of nodes
emerging in the bulk energy spectrum for the 1BM in Fig. 7 in the
SWC4 phase. In contrast to Sec. V A 1, the nodes here are not topo-
logically protected as reflected by the gray shading of the dots. (c),
(d) Show the related dispersions for open boundary conditions in the
y direction. (a), (c) Obtained with �k = � while for (b) and (d) we
used the unconventional pairing gap �k = �(cos kx − cos ky ). For
the latter we have four additional nodes in the spectrum compared
to case (a). Note also that the resulting MF modes in (d) are also
lifted from zero energy away from ISPs, but with a much flatter
dispersion compared to the surface bands in (c). All the figures were
obtained for � = 0.1 t and Lx = Ly = 701, while in (c) and (d) we
used M⊥ = M‖ = 0.2 t and M⊥ = M‖ = 0.05 t , respectively.

nodes could be protected by some crystalline symmetry, but
as we find, this is also not the case. Let us further elabo-
rate on this, through examining the impact of the crystalline
symmetries on the topological classification. Each one of the
(C4v − C4)T symmetries acts as an effective TR symmetry
in the HSPs that they leave invariant. Each TR symmetry
operator in the HSPs squares to +1, thus establishing the
BDI symmetry class in these high-symmetry lines. However,
neither BDI class is capable of providing protection to nodes
appearing in these HSPs. Lastly, as explained in Appendix B
and Ref. [162], nonsymmorphic symmetries in 2D systems
can only affect the classification at ISPs, and not in HSPs.

The absence of a topological protection for the nodes is
reflected in the lack of MFBs in the energy spectrum ob-
tained when open boundary conditions are imposed in one
of the two main axes. Related numerical results for �k ∼
{1, cos kx − cos ky} are discussed in Fig. 12, where we assume
open boundary conditions in the y direction.11 Remarkably,
instead of MFBs we find MF edge modes with the distinctive
feature that they do not have a fixed helicity or chirality. Even

11The particular choice of energy dispersion and pairing order
parameter �k leads to an additional unitary symmetry and renders
the spectra twofold degenerate. A weak violation of this symmetry
gets the degeneracy lifted away from ISPs, but preserves the number
of MF edge modes.
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FIG. 13. Influence of crystal termination on the dispersion of the bidirectional MF edge modes in the 1BM in the SWC4 phase. All spectra
were obtained with open boundary conditions along the y direction. The insets show the termination of the magnetic texture for (a) Ly = 701,
(b) Ly = 702, (c) Ly = 703, and (d) Ly = 704. We see that only the termination in (a) leads to a symmetric spectrum since in (b)–(d) a net
magnetization is accumulated at one edge (see cyan colored spin symbols). We used the parameter values � = 0.1 t and M⊥ = M‖ = 0.2 t .
The red and/blue color coding is defined as in Table II.

more remarkably, their spin character and group velocity are
kx dependent and become strongly affected by the type of
crystal termination. See Ref. [162] for related findings, and
Fig. 13 where we display the edge spectrum in Fig. 12 for
various edge terminations. Clearly, we see that the local spin
content on a given edge modifies the MF dispersion on that
same edge. On these grounds, we here term this type of less
familiar MF edge modes as bidirectional.

The properties of the bidirectional MF edge modes can be
understood by viewing their presence as the outcome of the
two coexisting MHCs. The MHC which winds spatially in the
y direction gives rise to MFBs in the conserved kx space, as
long as the other MHC is completely neglected. In this ideal
situation, one obtains a spectrum similar to the one of Fig. 9(c)
after folding down to the MBZ. From this point of view,
the secondary MHC mediates a BDI → D symmetry-class
transition for the 1D edge and, thus, lifts the protection of
the MFBs. However, the presence of bidirectional MF edge
modes is ensured by topologically protected degeneracies at
ISPs.

The emerging 1D physics implies that there should be
suitable topological invariants that encode the presence of a
persistent degeneracy at kx = q, thus enforcing the presence
of the bidirectional MF edge modes. These are no other than
the Z2 weak invariants of class D, which correspond to the
Majorana numbers Mkx,y=q [19,149]:

Mkx=q(ky=q) = sgn
X, M (Y, M)∏

s

Pf
(
B̂ks

)
, (59)

where Pf(B̂ks ) is the Pfaffian of the skew-symmetric matrix
B̂kI = ÛĤkI , where  = ÛK, with Û = τ2σy. The pres-
ence of a C4-symmetric energy spectrum further renders the
two invariants equal. Within the weak-coupling limit, these
are nontrivial for M− < |�+

k=0;q1,2
| < M+, which is satisfied

only after a simultaneous gap closing takes place at X(q, 0)
and Y(0, q). This mechanism stabilizes the degeneracies at
the edge ISPs.

Alternatively, as a consequence of the antiunitary magnetic
point-group elements (C4v − C4)T , each HSP resides in the
1D BDI class, for which one can calculate the ensuing mirror
winding number in 1D, w̃M,HSP, similar to the weak invariant
wkx,y for the MHC models in 2D. w̃M,HSP is a crystalline topo-
logical invariant which is distinct from previously discussed

mirror invariants in this paper, in the sense that the symmetries
(C4v − C4)T do not induce any block-diagonal structure of the
Hamiltonian in their respective HSPs, but rather an emergent
TR symmetry. Note lastly that the invariants for the kx,y = q
HSPs fulfill the relation Mkx,y=q = (−1)w̃M,HSP .

3. SWC4 texture: Genuine 2D TSCs

As we pointed out in the previous section, the Kramers
degeneracy that the �̃k symmetry imposes at the �(0, 0)
point of the MBZ does not allow the nodes moving along
the �X and �Y lines to annihilate, therefore prohibiting the
emergence of a fully gapped bulk energy spectrum and gen-
uinely 2D topological superconducting phases. Nonetheless,
a fully gapped bulk energy spectrum is obtainable in the
presence of additional Hamiltonian terms which achieve at
least one of the following two possibilities: (i) either preserve
�̃k but enforce the nodes to meet and annihilate away from
the Kramers degenerate points of the MBZ, i.e., away from
k� = {�(0, 0), M(q, q)}, or (ii) violate �̃k.

In Fig. 14, we present a situation in which the former
scenario takes place. In this case, the addition of a term
proportional to sin kx sin ky to the dispersion preserves �̃k but
violates C4 symmetry. As a result, the nodes intersect away
from �(0, 0) and annihilate, therefore allowing for a chiral

FIG. 14. (a) The nodal spectrum at �(0, 0) is protected by �̃k

for the 1BM in Fig. 7 in the SWC4 phase. (b) Resulting fully gapped
bulk spectrum for a broken C4 symmetry due to a nematic disper-
sion ξ nem

k = ξk + tnem sin kx sin ky, where ξk is the dispersion used
in (a). In the fully gapped phase the preexisting bidirectional MF
modes in (a) get accompanied by chiral MF modes. The figures were
obtained using Lx = Ly = 1001, �k = � = 0.1 t , M‖ = M⊥ = 0.3 t ,
and tnem = 0.2 t .
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FIG. 15. The effects of Zeeman and exchange fields on the 1BM in Fig. 7 in the SWC4 phase. (a) [(b)] Spectrum with the field in the x (y)
direction with strength 0.05 t . (c) Displays the effect of a field oriented in the z direction, thus, giving rise to a SSC4 phase in the sufficiently
weak Bz regime. Here the field does not lower the magnetic point-group symmetry of the system, but it does lift the unprotected nodes of the
bulk spectrum. Here we used Bz = 0.1 t . (d) Chiral edge modes for Bz = 0.3 t , which become accessible only after a band inversion at �(0, 0)
takes place. For all figures we display the numerically calculated Majorana number (59) as a function of the magnetic field for the different
cases. The invariant Mkx=0 in (c) and (d) is obtained by replacing (X, M) with (Y, �) in Eq. (59), and allows us to infer the transition to the
chiral TSC phase without residing to the calculation of the related first Chern number C1. The red and blue color coding is defined as in Table II.
All figures were obtained with open boundary conditions in the y direction and �k = � = 0.1 t , M‖ = M⊥ = 0.2 t , and Lx = Ly = 1001.

TSC. The second possibility is examined in the following
section and is implemented by considering the presence of a
constant Zeeman field B, which is added to the Hamiltonian
via the term B · σ.

Depending on the orientation of the Zeeman field, the
magnetic point- and space-group symmetries can be fully or
partially violated, thus, also affecting the type of the accessi-
ble dispersive MF edge modes. Specifically, we find that an
in-plane Zeeman field leads to unidirectional (bidirectional)
MF edge modes when its direction is parallel (orthogonal)
to the translationally invariant termination edge. In contrast,
an out-of-plane field preserves the bidirectional character of
the edge modes. We insist that such edge modes and ISP
degeneracies are still accessible even when the crystalline
symmetries are all broken since these are protected by the
weak invariants defined in Eq. (59), which still remain valid.

Apart from the above-mentioned topological supercon-
ducting phases which have an underlying 1D character, the
application of an out-of-plane field converts the SWC4 phase
into a SSC4 for appropriate parameter regimes, and en-
ables fully gapped chiral topological superconducting phases.
These are topologically equivalent to a p + ip TSC, and are
classified according to the first Chern number C1 of the occu-
pied bands [20].

Concluding this section, we remark that the introduction of
the above perturbations is expected to influence the structure
of the considered magnetic texture when the latter is treated in
a self-consistent manner. However, sticking to the spirit of the
explorative nature of this work, we neglect these modifications
as they do not qualitatively modify the topological properties.

4. SWCB2 texture: Majorana unidirectional
and bidirectional edge modes

An in-plane Zeeman field with a direction which is not
aligned with the main or diagonal axes defined by the HSPs
{xz, yz, d±z} leads to the complete violation of the magnetic
point- and space-group symmetries. In this case, it is the
weak class D Z2 invariants which predict the appearance of
protected MZM crossings at edge ISPs independently of the
orientation of the termination edge. However, considering a
magnetic field which is aligned with one of these axes still
allows for a nontrivial magnetic point group. For a Zeeman
field in the x (y) direction, the resulting magnetic point group
becomes MSWCB2 = {E , σxzT } (MSWCB2 = {E , σyzT }), while
the symmetry {σyz(xz) | ( π

Q , π
Q )} also remains intact. See also

Table I. Hence, now, by virtue of the TR symmetry σxz,yzT
acting in the respective HSP, one can also define the BDI class
mirror winding number w̃M,HSP.

In Figs. 15(a) and 15(b) we present the edge spectra for a
Bx and a By Zeeman field, respectively, with the system being
open in the y direction in both cases. By evaluating the re-
spective weak invariant, we find protected degeneracies at the
edge ISPs kx = {0, q}. These persist until a gap closing takes
place, which occurs for a Zeeman-field value which depends
on its orientation. Moreover, we observe the appearance of
dispersive MF edge modes. In the open-system geometry of
Fig. 15(a), the antiunitary mirror symmetry implies that every
state vector φn,kx

corresponding to energy En,kx possesses a
mirror partner σxzT φn,kx

with energy En,−kx , therefore result-
ing in a mirror-symmetric spectrum. In contrast, the emergent
antiunitary mirror symmetry σyzT in Fig. 15(b) relates a state
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vector φn,kx
with itself, thus allowing for a mirror-asymmetric

spectrum and the emergence of unidirectional modes [see
Fig. 15(b)].

5. SWCB4 texture: Majorana bidirectional and chiral edge modes

In the case of an out-of-plane Bz field, the resulting SWCB4

texture possesses nontrivial topological properties itself. In-
deed, it has been shown [134] that SWCB4 is equivalent to
a SSC4 texture for |Bz| < 2|M⊥|. This allows us to estab-
lish a connection to prior works [87,212–216] which have
focused on the emergence of chiral topological superconduct-
ing phases in other magnetic platforms. The above criterion
also implies that, for |Bz| > 2|M⊥|, SWCB4 transforms into a
ferromagnetic profile, which is expected to render the system
trivial.

In connection to the detailed topological classification pre-
sented in the previous section for the SWC4 phase, we observe
that the addition of the Bz field leaves the magnetic point
group MSWC4 intact, but lifts the �̃k and the space-group
symmetries {C4v − C4 | ( π

Q , π
Q )}. As a consequence, the classi-

fication of the SWCB4 texture follows from the classification
performed for the TSCs induced by a SWC4 magnetic texture.
Indeed, we find that the presence of the Bz field still allows
for MF edge modes crossings at ISPs, as seen in Fig. 15(c).
By evaluating the respective weak Majorana number, we find
that for higher values of the external magnetic field Bz ∼ 0.2 t ,
the edge-mode crossings at ISPs get lifted, while a band
inversion at �(0, 0) takes place for slightly higher values of
the field strength. Remarkably, the latter gives rise to two
chiral MF edge-mode branches as displayed in Fig. 15(d). The
emergence of this chiral topological superconducting phase
is also described by the Chern number |C1| = 2. Note that
the Chern-number value |C1| = 1 is also generally accessible,
as long as the accidental symmetry discussed in Footnote 11
becomes lifted.

We now summarize the key results for 1BMs in 2D. For
a MHC the energy spectrum is nodal and leads to MFBs.
Moreover, the classification in HSPs strongly depends on the
IR of the pairing term. Nodes emerge also for a SWC4 but
they are not topologically stable. Nonetheless, degeneracies at
ISPs persist and give rise to weak and crystalline TSC phases,
which result into bidirectional MF edge modes. In the SWC4

case, a fully gapped spectrum is accessible only by violating
C4 or TR symmetries. Indeed, including a Zeeman field leaves
the bidirectional modes intact, converts them into unidirec-
tional modes or opens a gap in the spectrum and stabilizes
chiral Majorana edge modes.

B. Two-band models

We now apply the classification methods discussed in the
previous sections to 2D 2BMs. For an example of such a
model see Fig. 16 which, for the chosen parameters, yields
the FSs shown in Fig. 16(a). Interband FS nesting, with the
two ordering wave vectors Q1,2, takes place between the hole
(fuchsia) and electron (navy blue) pockets. Hence, the system
has the possibility to develop either a single-Q or a double-Q
magnetic phase [134].

Recall from our previous discussion in Sec. IV B that a
multiband system allows for an interplay of interband and

FIG. 16. Example of a 2BM in 2D, described by the disper-
sions ξ h

k = th cos kx cos ky + t ′
h[ cos(2kx ) + cos(2ky )] − εh and ξ e

k =
te cos kx cos ky − εe. We consider the parameters th = 2.86 te, t ′

h = te,
εe � −0.92 te, and εh = −0.80 te. (a) FSs of the 2BM in the first
BZ. For clarity we only show half of the magnetic ordering wave
vectors Q and 3Q = −Q connecting bands at the Fermi level. (b) FS
segments for the 2BM in the MBZ for a MHC, where the nested
points at the Fermi level are marked by green dots. Note that nested
points at finite energy, away from the Fermi level, are also present.

intraband magnetic scattering, as well as for a here-assumed
intraband pairing gap which is a matrix in band space �̂k =
(�e

k + �h
k )/2 + κ3(�e

k − �h
k )/2. Even more importantly, we

show here that the inclusion of the additional band may in
many realistic situations enrich the symmetry of the system.
As we discuss below, a number of features that become un-
locked for 2BMs open perspectives for new phenomena and
TSC phases.

1. MHC texture: Majorana and Andreev flat bands

The present section builds upon the analyses of the 1D
2BMs and the 2D 1BMs under the influence of a MHC. In
the general case, in which intraband and interband magnetic
scatterings are present, the system is dictated by the same
magnetic point- and space-group symmetries discussed in
Sec. V A 1. The nodes in the bulk energy spectrum therefore
possess a topological charge reflected in their vorticity υ.
Moreover, in HSPs one can also define the respective mirror
vorticity νHSP ∈ Z following the definition in Eq. (48). By fur-
ther assuming spatially constant pairing gaps �e,h for the two
pockets, we find that the edge spectrum contains MFBs (see
Fig. 17), whose topological protection can be genuinely de-
scribed either by the strong local invariants mentioned above,
or, by the weak invariant wky .

As found previously for the 2BMs in 1D, the topologically
stable bulk nodes and edge MFBs become accessible even for
�e�h < 0, when intraband magnetic scattering is assumed.
In Figs. 17(a) and 17(c) we display the resulting path of the
nodes in the MBZ and spectrum, respectively, for �e = −�h.
For the chosen values of interband and intraband scattering,
the topological properties are essentially determined only by
the hole pocket, thus exhibiting a similar phenomenology to
Fig. 9(a), with the nodes moving on straight lines.

If instead we restrict to an interband-only magnetic tex-
ture, we find that almost all the features of the 2BMs
in 2D are directly inherited from the 1D interband ver-
sions, namely, (i) the Hamiltonian is block diagonalizable
into an AIII ⊕ AIII fashion [see Eq. (42) and Fig. 17(b)],
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FIG. 17. Sketches of nodes and the numerically obtained disper-
sions for the 2BM of Fig. 16 in the MHC phase. (a), (c) �e = te,
�h = −te, and Meh

‖,⊥ = Me
‖,⊥ = Mh

‖,⊥ = 1.1 te. The nodes are moving
on straight lines similar to the 1BM in 2D (cf. Fig. 9). The number
of nodes has increased with the number of nested points (see green
points in Fig. 16). (b), (d) �e = �h = te, Meh

‖ = Meh
⊥ = 1.1te, and

Me
‖,⊥ = Mh

‖,⊥ = 0. The nodes are now moving on arcs, due to the
interband-only scattering mediated by the magnetic texture. Both
dispersions are obtained with open boundary conditions along the
x direction, and with Lx = Ly = 401. In (b) σ = ±1 labels the two
blocks of the Hamiltonian after performing the unitary transforma-
tion with the operator S in Sec. IV B.

(ii) the number of gap-closing points kc and edge modes
double compared to the 1BMs, (iii) the gap-closing points
are found through the relation ξ e

k±3q1
�h = ξ h

k∓3q1
�e, and (iv)

nodal topological superconducting phases are accessible only
for �e�h > 0.

All the above features are reflected in Figs. 17(b) and
17(d) where we display the path taken by the nodes upon
variation of the magnetic and superconducting gaps, and the
edge spectrum, respectively. Notably, here one obtains in most
cases Andreev flat bands (AFBs), which extend the Andreev
zero modes (AZMs) discussed in Sec. IV B to 2D. AFBs
protected by the symmetry σQ

xz T � ({T � | ( π
Q , 0)}) are also

accessible in ky = {0, π} for �k ∼ {B2g, A2g} (for �k in any
of the four D4h IRs), in which case the symmetry class is⊕

4 AIII, and the topological invariant is a mirror (glide)
winding number wM,HSP (wG,HSP). In contrast, MF excitations
become possible only in crystalline TSC phases obtained for
�k ∼ {B2g, A2g}, where the symmetry σQ

yz T or {σQ
yz � | ( π

Q , 0)}
drives the symmetry-class transition AIII ⊕ AIII → BDI ⊕
BDI, which in turn allows for MFBs. These are protected by a
mirror winding number w̃M,HSP, which is similar to the weak
invariant wkx,y for the 1BMs in 2D in the presence of a MHC.
See Table III.

Notably, a very crucial difference compared to the 2D 1BM
is that, here, the paths along which the bulk nodes move in
k space do not coincide with the main axes of the MBZ.

FIG. 18. 2BM of Fig. 16 under the influence of a double-Q
magnetic texture. (a) FSs of the 2BM in the first BZ. We sketch the
magnetic ordering wave vectors Q1,2 (3Q1,2 ≡ −Q1,2), which con-
nect points at the Fermi level (green dots). For clarity we only show
half of the ordering wave vectors. (b) The resulting FS segments in
the MBZ. As in Fig. 11, we also display the points connected by both
Q1 and Q2 (orange dots) at energies away from the Fermi level. Inset:
The dotted black lines show the gap-closing points kc in the MBZ.

Remarkably, here the nodes generally move on arcs, as indi-
cated by the white arrows in Fig. 17(b). This enables the bulk
nodes to meet and annihilate away from Kramers degenerate
points, thus opening the perspective for fully gapped spectra
for class D or DIII topological superconducting phases in the
SWC4 phase. This implies that here strong 2D TSC phases
seem to become accessible without the requirement of ex-
ternal perturbations, e.g., Zeeman fields, which was the case
for 1BMs.

2. SWC4 phase: Quasihelical Majorana edge modes

We now proceed by studying 2BMs with an interband-
only double-Q SWC4 texture. As in previous sections, we
employ the usual set of wave-vector-transfer Pauli matrices ζ,
λ, η, and ρ, in order to account for the magnetic scattering
taking place in the two orthogonal directions, as displayed
in Fig. 18(a). The MBZ is displayed in Fig. 18(b), where
points connected by a single-Q vector at the FS and points
connected by both Q vectors are marked by green and orange
dots, respectively.

Due to the interband nature of the magnetic scattering the
BdG Hamiltonian now enjoys a TR symmetry � = κ3T . This
satisfies �2 = −1 and leads to Kramers pairs (KP) at all the
ISPs of the MBZ, thus enlisting the BdG Hamiltonian in the
DIII symmetry class. Nodes in the bulk spectrum of a DIII
Hamiltonian are topologically stable only at ISPs, and are
classified by a vorticity akin to the one in Eq. (46). For a fully
gapped bulk spectrum, class DIII supports one strong and two
weak Z2 topological invariants [188,217–219], that we here
construct as

MKP =
�, X,M,Y∏

s

Pf
(
Ŵks

)/√
det

(
Ŵks

)
, (60)

MKP
kx=q(ky=q) =

X, M (Y, M)∏
s

Pf
(
Ŵks

)/√
det

(
Ŵks

)
. (61)

In the above, we defined the skew-symmetric “sewing”
matrix ŴkI ≡ Û�ÂkI at ISPs kI only. The Ŵ matrix is the
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DIII analog of the AII class sewing matrix introduced by
Fu and Kane [220]. The difference is that, here, Û� = iσy

corresponds to the unitary part of the block off-diagonal �,
obtained in the diagonal basis of the chiral symmetry operator
�. In this basis, we identify the block off-diagonal part of the
Hamiltonian as Âk. The transition to this basis is here effected
via the transformation (� + τ3)/

√
2, which brings the arising

chiral symmetry generator � = κ3τ2 into the form � = τ3,
and leads to

Âk = −
e,h∑
s

Ps
[
F̂

(
�s

k

) + iκ3F̂
(
hs

k

)]

− κ2
M⊥(1 + η1)ρ1σz + M‖(1 − η1)ρ3σx

2

− κ2
M⊥(1 + ζ1)λ1σz + M‖(1 − ζ1)λ3σy

2
, (62)

with Pe,h (F̂ ) defined once again as in Sec. IV B (Ap-
pendix D).

We now move on with the discussion of the various crys-
talline symmetries, which are identical to the ones dictating
the 1BMs in Sec. V A 2. Specifically, the antiunitary mirror
symmetries (C4v − C4)T belonging to the related GSWC4 point
group discussed in Sec. V A 2, combine with � and give
rise to the unitary mirror operations R = (C4v − C4)T � =
κ3(C4v − C4). These lead to a AIII ⊕ AIII (D ⊕ D) class in
the corresponding HSP when the pairing gap �k is even
(odd) under the given mirror operation, e.g., for �k ∈ B1g the
symmetry class is AIII (D) in the xz (x = y) and yz (x = −y)
HSPs. Both AIII and D classes are nontrivial in 1D for a
fully gapped system. Thus, HSPs dictated by the symmetry
class AIII ⊕ AIII (D ⊕ D) and at the same time exhibit a fully
gapped spectrum, are characterized by a Z (Z2) mirror wind-
ing number wM,HSP (mirror Majorana number MM,HSP).12

In contrast, nodes in HSPs dictated by either AIII ⊕ AIII or
D ⊕ D are not protected.

On the other hand, nonsymmorphic symmetries can only
influence the topological classification at ISPs. Remarkably,
the �(0, 0) and M(q, q) points are under the simultaneous
influence of two TR symmetries which square to −1, i.e.,
� = κ3T and {T | ( π

Q , π
Q )}, thus observing a fourfold degener-

acy. This can be understood in terms of the unitary symmetry
{κ3 | ( π

Q , π
Q )} = ei(kx+ky )π/Qκ3λ2ρ2 which emerges at these two

ISPs.13

We now investigate a concrete 2BM, specifically the model
defined in Fig. 18. Similar to the analysis of the 1BMs in the
SWC4 phase, we identify two types of MBZ points, namely,
the points connected by a single-Q vector (green dots) and
the points connected by both ordering wave vectors (orange
dots) [cf. Fig. 18(b)]. Based on the results of the previous
paragraphs, we find that the nodes move on arcs determined
by the intersection of the two bands connected by a single-

12MM,HSP is defined as MM,HSP = sgn
∏

σ Mσ,HSP, where σ = ±1
labels the D ⊕ D blocks. Each Mσ,HSP follows from Eq. (59).

13Note that the above fourfold degeneracy does not lead to hour-
glass MFs. Following Ref. [162], we can attribute this to the
commutation relation [{κ3 | ( π

Q , π

Q )},�] = 0 which holds here.

FIG. 19. Bidirectional and mirror-symmetry-protected quasihe-
lical Majorana edge modes for the 2BM in the SWC4 phase. (a) The
bulk nodes move from the points connected by two Q vectors [orange
dots in Fig. 18(b)], and meet at points connected by a single-Q vector
[green dots in Fig. 18(b)], as indicated by the white arrows. (c) The
spectrum related to (a), with bidirectional Majorana edge modes
(Meh

‖,⊥ = 0.095 te). Note that here the bidirectional MF modes are not
topologically protected, due to the similar lack of protection seen by
the bulk nodes. (b) Sketch of the MBZ after the nodes have met and
annihilated at the points marked by the dotted circles. (d) Resulting
quasihelical edge modes connected to the sketch in (b), where we
used Meh

‖,⊥ = 0.11 te. For clarity, in (d), we show only the modes
on a single edge since the z-spin axis electronic spin polarization
of the modes on the other edge is exactly opposite. We note that
both types of spectra are twofold degenerate for reasons discussed in
Footnote 11. We used open boundary conditions in the y direction,
�e = �h = 0.1 te, Me,h

z,⊥ = 0 and Lx = Ly = 501.

Q vector, e.g., ξ e
k+3q1−q2

= ξ h
k−3q1−q2

. The paths of the nodes
upon variations of the magnetic or superconducting gaps are
marked by the black dotted lines in the inset of Fig. 18(b).
Once again, bulk nodes appear strictly for �e�h > 0 since
we here consider an interband-only texture.

The presence of bulk nodes goes hand in hand with
the emergence of bidirectional MF edge modes, as seen in
Figs. 19(a) and 19(c) where we display the nodes and edge
spectrum. However, in the present situation, the bulk nodes
are not topologically protected, thus implying the same for
the resulting bidirectional edge modes. Both nodes and edge
modes are thus removable by considering additional Hamil-
tonian terms which do not modify the ensuing DIII class.
Similar conclusions were drawn for the 1BMs in the SWC4,
with the crucial distinction that there the edge modes had a
topologically protected crossing at kx,y = q. Such protected
crossings do not arise for the bidirectional MF modes in
Fig. 19(c).

By increasing the energy scale of the magnetic gaps the
nodes move on arcs, as indicated by the white arrows in
Fig. 19(a), and meet up at the green points in the MBZ in
Fig. 18(b), when the familiar criterion is satisfied �e�h =
M2

±. In contrast to the 1BMs, here the nodes do get lifted when
they meet up since they intersect away from ISPs, as sketched
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in Fig. 19(b). Beyond this point, the spectrum is fully gapped.
In the present case, the fourfold degeneracies at �(0, 0) and
M(q, q) additionally imply that, there, Pf(Ŵks ) features an
even number of gap closings upon sweeping the various pa-
rameters. Hence, the above-mentioned invariants simplify as
MKP = MKP

kx=qMKP
ky=q where MKP

kx=q(ky=q) = sgn[Pf(ŴkX(Y) )].
In the event of a C4-symmetric energy spectrum, which is
actually the case here, the two invariants are equal. The two
weak Majorana Kramers pair (MKP) numbers generally be-
come nontrivial simultaneously. Nonetheless, here we find
that all three invariants remain trivial.

Despite the fact that the DIII invariants are here all trivial,
in Fig. 19(d) we indeed find the here-termed quasihelical edge
modes centered at kx = q, which are protected by the mirror
symmetry σyzT . These come in pairs, and their electronic
spin polarization is opposite on opposite edges, similar to
what is encountered for their helical counterparts. However,
the quasihelical ones appear only for edges preserving the
respective mirror symmetry, in stark contrast to the helical
edge modes stemming from the strong DIII invariant in 2D,
which emerge for a termination of an arbitrary orientation.
Since for the above numerical calculations we have consid-
ered �e,h

k ∼ A1g, the HSP plane is dictated by the AIII ⊕ AIII
symmetry class. On the other hand, considering a pairing gap
�e,h

k ∼ B2g imposes the D ⊕ D symmetry class in the kx =
q HSP, and allows instead for quasihelical Majorana edge
modes protected by a mirror Z2 invariant. The presence of
two possible types of topological protection for the touching
point further suggests a different behavior for the quasihelical
Majorana edge modes in response to external perturbations,
e.g., Zeeman fields.

3. Magnetic-field-induced TSC phases: Majorana unidirectional
and bidirectional, quasihelical, and chiral edge modes

We complete the study of the 2BMs in 2D by consider-
ing the effects of an additional Zeeman field on the system
discussed in the previous paragraph. In this case, the sys-
tem undergoes the symmetry class transition DIII → D.
Therefore, for a fully gapped bulk energy spectrum, chiral
edge modes become accessible. Even more, when the field
is aligned with one of the HSPs, mirror-symmetry-protected
edge modes are also possible. For a magnetic field in the
x (y) direction, the resulting magnetic point group becomes
MSWCB2 = E + σxzT (MSWCB2 = E + σyzT ). HSPs now be-
long to the BDI symmetry class since the antiunitary elements
of the point group act as TR symmetries. Hence, we can define
the mirror winding numbers w̃M,HSP ∈ Z similarly to the weak
winding numbers wkx,y introduced in Eq. (44).

For concreteness, below we focus on a system with open
boundaries along the y direction, and assume that the pairing
gap is nonzero in the xz and yz HSPs. For a magnetic field
in the x direction, the TR symmetry σxzT is not preserved
by the termination, thus not protecting the quasihelical modes
in the HSP. Evidently the quasihelical Majorana edge modes
in Fig. 20(a) become lifted by the term Bxσx, as seen in
Fig. 20(b). If we instead consider a field perpendicular to
the edge, i.e., a nonzero By or Bz field, we find that the TR
symmetry σyzT is preserved by the termination, thus allow-
ing for mirror-symmetry-protected quasihelical edge modes

FIG. 20. Impact of an applied Zeeman field on the quasihelical
Majorana modes of Fig. 19(d). Once again, only modes on a single
edge are also shown here for clarity. (a) Zoom in the edge-mode
spectrum of Fig. 19(d). (b) [(c)] Shows the resulting edge spectrum
for an external magnetic field in the x (y) direction (Bx = 0.04 te)
[(By = 0.05 te)]. The quasihelical edge modes are protected by the
TR symmetry σyzT , except in the case for a magnetic field in the
x direction, where the modes get lifted. Hence, the addition of the
Zeeman field modifies the symmetry properties at the touching point
in such a way so that the quasihelical Majorana modes in (a) still
are present in (c). The figures were obtained with open boundary
conditions along the y direction, �e = �h = 0.1 te, Meh

‖,⊥ = 0.11 te,
Me,h

z,⊥ = 0, and Lx = Ly = 501.

shown in Fig. 20(c) for a field in the y direction. Finally, we
remark that results with a Bz field are not shown since for the
present model the transition to a chiral TSC appears to occur
for extremely large values of the magnetic field.

VI. EXPERIMENTAL IMPLEMENTATION

This section discusses the most prominent categories of
systems which exhibit the coveted coexistence of magnetic
texture crystals and spin-singlet superconductivity, thus being
compatible with the topological scenarios presented in the
previous paragraphs. This section (i) associates the various
TSCs discussed in the previous paragraphs with realistic phys-
ical systems that can support them, (ii) brings to the attention
of the reader a number of already accessible 1D and 2D TSC
platforms based on a MHC texture, whose properties need
to be revisited in the presence of additional magnetic point-
and space-group symmetries (see concluding discussions of
Sec. II), and (iii) discusses the conditions for realizing TSCs
based on the SWC4 texture in itinerant magnets.

The existence of such candidate platforms is here made
plausible by relying on general symmetry arguments and re-
sults from previous theoretical studies, and does not resort
to model specific self-consistent studies. It is important to
note that for the qualitative discussion pursued in this section,
carrying out self-consistent calculations appears nonvital. In
this paper we have mainly focused on topological phases
for which the magnetic energy scale is required to exceed
the pairing gap. See, for instance, Fig. 1 and the topological
criterion in Eqs. (45). Hence, our interest lies in situations with
a clear separation between the magnetic and pairing energy
scales, which simplifies the analysis of their interplay. In the
following two subsections we elaborate on two distinct lim-
iting situations, in which one of the two above energy scales
clearly dominates over the other.
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A. Case of dominant magnetic energy scale

The limit of interest in this section describes the scenario
where the influence of superconductivity is much weaker than
that of magnetism. Below, we discuss five general classes of
systems that in certain circumstances can satisfy this condition
and engineer a TSC.

1. Hybrid devices with integrated nanomagnets

The first possibility is to engineer the desired magnetic tex-
ture crystal by means of tunable magnets. Such a direction has
recently attracted significant attention from both theoretical
[83,85,96–98,101] and experimental [72,221] points of view.
The most feasible TSCs that appear to be engineerable in this
manner are 1D fully gapped and 2D gapless TSCs generated
by a MHC due to the stray fields of a nanomagnet, which
is coupled to a single semiconducting nanowire or an array
of semiconducting nanowires in proximity to a conventional
superconductor. In these systems, one aims at simultaneously
tuning the doping of the semiconductor and the periodicity of
the magnetic texture crystal, in order to reduce the threshold
magnetic energy scale required for the system to enter the
topologically nontrivial phase.

2. Magnet-superconductor interfaces

Another platform where 2D TSCs with a fully gapped
bulk energy spectrum become accessible are interfaces of
a magnetic insulator and a conventional superconductor
[87,100,102,152]. The class of so-called chiral magnets,
which are characterized by the absence of inversion symme-
try and are dictated by the Dzyaloshinskii-Moriya interaction
(DM) [222], were theoretically predicted to harbor SSCs more
than two decades ago [223,224]. Those theoretical predic-
tions fueled an intense pursuit of such topological magnetic
states of matter [225,226], which eventually led to their suc-
cessful discovery by a number of experimental groups (cf.
Refs. [227–231]). Such hybrid platforms have recently drawn
renewed attention [107,108], after the discovery of a triple-Q
noncoplanar magnetic texture crystal in Mn/Re (0001) [232],
and the experimental demonstration of a skyrmion-vortex
coupling in such interfaces [108]. Notably, it has been theo-
retically shown that the triple-Q magnetic order discussed in
the experiment of Ref. [232] is capable of inducing a 2D TSC
with a nonzero Chern number [100], which supports chiral
Majorana edge modes.

To this end, we remark that SSCs arising in chiral magnets
due to localized moments typically appear as metastable states
which are stabilized by an external magnetic field. In con-
trast, metallic magnets do not conform to this constraint, and
allow for the spontaneous appearance of SSCs [233]. Even
more, SSCs can also appear even when inversion symmetry
is preserved and the DM interaction is absent. This becomes
possible as long as the magnet is sufficiently frustrated. The
latter possibility has been shown in Heisenberg models with
competing spin-spin couplings of different ranges [234,235].

3. Kondo lattice systems

In the previous section, the magnets in discussion were
governed by direct couplings between localized spins which

are described in terms of generalized Heisenberg models.
However, another possibility is that the magnetic state arises
due to indirect spin-spin interactions, which are mediated
by conduction electrons. This indirect mechanism is a result
of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[236], and arises due to the exchange coupling between itin-
erant electrons and localized spin moments. A rich variety of
magnetic phases emerge in these systems, which also includes
noncoplanar phases such as the SSC texture [237–240]. Since
magnetism in this case stems from localized moments, which
are described within a classical picture, the modulus of the
moments induced by the magnetic texture crystal is also here
spatially constant. Consequently, the systems of present in-
terest are prominent candidates for experimentally realizing
TSCs in 1D and 2D which result from the MHC [84] and SSC
textures [93].

4. Topological magnetic adatom lattices

The next general class consisting of systems known to
support the coexistence of magnetic texture crystals and su-
perconductivity concerns a conventional superconductor, on
top of which a single chain or a 2D lattice of magnetic
adatoms are deposited. See, for instance, the proposals in
Refs. [82,86,87,89–92,95,99]. When the exchange coupling
of the electrons in the superconducting substrate is sufficiently
strong, low-energy in-gap Yu-Shiba-Rusinov states [192] ap-
pear and dictate the topological properties of the system. Such
systems appear prominent to harbor fully gapped TSCs in 1D
and 2D, where the magnetic texture crystal is of the MHC or
the SSC type, respectively. Note that, within the limit of clas-
sical magnetic adatoms, the magnetic moment of the adatoms
is equal and fixed, thus giving rise to a magnetization profile
whose modulus is spatially constant.

The type of magnetic order governing these lattices is also
here usually controlled by substrate-mediated RKKY spin-
spin interactions. The arising magnetic ground state depends
on various parameters [80,89,95,241]. Of primary importance
here is how the adatom lattice constant compares to the lattice
constant or the Fermi wavelength of the substrate since in
the present systems these generally differ. Other factors that
determine the outcome of the magnetic ground state consist
of band-structure features of the substrate superconductor
[89], the strength of the Rashba SOC in the substrate and
its interplay with crystal fields [80], and finally long-range
RKKY-type spin-spin couplings [241].

5. Itinerant magnetic superconductors

In the above four cases, the interplay between magnetism
and superconductivity can lead to non-negligible competition
type of effects. For example, in nanowire hybrids the super-
conducting phase exhibited by the metallic segment which
is required to engineer the proximity effect “melts” beyond
a critical value for the magnetic energy scale. In addition, in
topological YSR lattices the pairing term can become substan-
tially suppressed in the vicinity of the adatoms [193], while
the RKKY interaction is also rendered shorter ranged when it
is mediated by a conventional superconductor [90]. Remark-
ably, the presence of superconductivity in the substrate on top

013225-26



TOPOLOGICAL SUPERCONDUCTIVITY INDUCED … PHYSICAL REVIEW RESEARCH 4, 013225 (2022)

of which a magnetic chain is deposited can be pivotal for the
stabilization of MHC phases [95].

In spite of these notable consequences of the interplay
between these two phases of matter, the competition between
magnetism and superconductivity is typically weak in the
above-mentioned systems. The reason is that magnetism and
superconductivity originate from different degrees of free-
dom. Therefore, the above four general categories appear
prominent for realizing a number of TSCs discussed in this
work, and in particular those possessing a fully gapped energy
spectrum.

The suppressed competition arising above is, however,
not relevant when discussing itinerant magnetic superconduc-
tors, in which case both magnetism and superconductivity
arise from the same degrees of freedom. A representa-
tive category of such systems, which is currently receiving
significant attention from the condensed matter physics com-
munity, is the quite broad family of FeSCs. While in these
systems the competition between magnetism and supercon-
ductivity is generally expected to be substantial, FeSCs have
been nonetheless experimentally captured to harbor magnetic
superconducting phases [109–124]. Even more, the here con-
sidered MHC and SWC4 have been recently theoretically
predicted to appear in doped BaFe2As2 compounds [134].
In fact, these two magnetic texture crystal phases constitute
only a part of the possible magnetic textured phases that
can appear as stable global minima in an itinerant tetragonal
magnet. Among these, one also finds that the SSC4 phase is
metastable and only accessible as a local minimum. The above
results where obtained in Ref. [134] using a general Landau
functional that considers the principal harmonics of magnetic
texture crystals.

In the limit of a dominant magnetic energy scale assumed
here, magnetic texture crystals which lead to a full gap in
the energy spectrum are expected to completely suppress the
emergence of superconductivity. At least this picture appears
probable to hold in the usual weak-coupling limit, where
superconductivity originates from Cooper pairing at the FS.
This prohibits the appearance of TSCs in 1D since the FS
consists of points and any arising FS is due to accidental
degeneracies. However, the 2D case does not present such
stringent restrictions since for nonperfectly nested FSs the sta-
bilization of a magnetic texture crystal is expected to gap out
only a fraction of the FS, thus leaving behind a reconstructed
band structure consisting of Fermi pockets. This remnant FS
typically occupies a smaller area than the original FS, and
therefore provides a substantially reduced phase space for
spin-singlet superconductivity to appear.

Notably, while the shape of the remnant FS may retain
inversion symmetry,14 the FS points connected by inversion
do not generally carry opposite spins in the magnetic phase,
unless additional symmetries are present. As a matter of fact,
this is the case for the MHC and SWC4 phases because these
do not induce a net spin polarization.15 This is corroborated by
Figs. 21(a) and 21(b), where we depict the spin polarization of

14See, for instance, in Table I that the magnetic point groups of
MHC and SWC4 contain the C2 point-group element.

15This is due to the space-group symmetries discussed in Table I.

FIG. 21. (a), (b) Show the reconstructed FS for the 2D 1BM
of Fig. 7 in the presence of a MHC and a SWC4, respectively.
The corresponding FSs in the absence of magnetism are shown in
Figs. 7(b) and 11(b). The arrows depict the electronic spin polariza-
tion in the xy spin plane, along the reconstructed FS. In the MHC
(SWC4) phase the net spin polarization is zero, thus inducing a 1D
(2D) Rashba type of SOC. Hence, the reconstructed FSs consist of
Kramers partners which allow for the spontaneous appearance of
spin-singlet superconductivity. The figures were obtained for M‖,⊥ =
2.5 t .

the remnant FS for the model of Fig. 7, after a reconstruction
is introduced by a MHC and a SWC4 texture. Indeed, the
presence of the two magnetic texture crystals gives rise to
a spin texture in k space which is equivalent to a Rashba
type of SOC. Therefore, the emergence of Kramers part-
ners stemming from points connected by inversion allows the
spontaneous development of spin-singlet superconductivity.
In contrast, the possible appearance of net spin polarization
in the remnant FS implies that spin-singlet superconductivity
cannot arise for an infinitesimally weak strength of the inter-
action driving the Cooper pairing, but instead it needs to reach
a threshold value since the pairing susceptibility is no longer
divergent at zero temperature.16

The structure of the spin orientation along the FS is also
distinct to the one that typically stabilizes finite Cooper-pair
momentum phases [199,200]. The latter phases are usually
favored when different FSs are spin polarized in an antipar-
allel manner. This is obviously not the case here. Therefore,
spin-singlet superconductivity pairing up electrons of oppo-
site wave vectors remains favorable. A natural question to
ask is what is the k-space structure of the spin-singlet gap
�k which becomes preferred deep in the magnetic phase. To
provide an answer, one first needs to reclassify the various
pairing terms according to the IRs of the magnetic point
group. As it has been already discussed in Sec. V, the four
1D IRs of D4h are bunched together into the two groups
{A1g, B1g} and {B2g, A2g} when the MHC sets in, while they
all belong to distinct IRs when instead the SWC4 emerges [cf.
Eqs. (55)–(57)]. Therefore, the emergent �k is of the nematic
type in the case of MHC, while it is expected to preserve the
fourfold symmetry of the energy spectrum in the case of a
SWC4 texture.

16In certain systems the emergence of net spin polarization may
significantly enhance the tendency to develop equal spin-pairing
phases [242]. We assume that this is not the case here.
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To this end, an important aspect concerning the possible
realization of a TSC needs to be discussed. Since the spin-
singlet superconductivity emerges to gap out only the helical
FS branch which was left ungapped by the magnetic texture
crystal, one expects that the system will prefer to develop a
highly selective k structure, which mainly becomes nonzero
in the vicinity of the remnant helical FS. If such a scenario
is realized, then a TSC phase does not become accessible
since magnetism and superconductivity do not coexist in the
same regions of k space. Nevertheless, such a situation ap-
pears highly unlikely for systems whose pairing instabilities
are driven by interactions which favor only a low number
of crystal harmonics. Consequently, nonzero pairing is ex-
pected to also appear in the vicinity of the FS gapped out by
the magnetic texture crystals and mediate the electron-hole
conversion which is required for the charge-neutral Majorana
quasiparticles to appear.

B. Case of dominant pairing energy scale

Concluding this section, we wish to briefly comment on
what types of TSCs are still accessible in the antipodal limit
than the one discussed above, i.e., in which the strength of
the energy scale of the magnetic texture crystal is subdom-
inant to the pairing gap. It is first of all straightforward to
infer that, when magnetism and superconductivity coexist in
this limit, TSC phases are not accessible when the system
is fully gapped. Instead, if nodes appear in the spectrum,
then one arrives at situations similar to the ones discussed
in Appendix C 6. There, the nontrivial topology stems from
the unconventional character of the pairing term itself, while
the influence of the added magnetic texture crystal leads to
qualitatively new effects only after its strength exceeds the
required threshold to compensate the pairing gap at the nested
points of the underlying band structure.

Aside from the above, we remark that an alternative topo-
logical scenario becomes accessible when the pairing term
contains nodes and the magnetic texture crystal is such so that
it mediates the pairwise scattering of all the nodes. In the event
that this process leads to a fully gapped energy spectrum, the
bulk system may be classifiable as topologically trivial, but
it still allows for the appearance of MZMs. This occurs by
trapping the MZMs at the cores of vortex defects introduced
in the magnetic texture crystal. Such a possibility is detailed
in Ref. [44].

VII. CONCLUSIONS AND OUTLOOK

We provide a systematic classification of the rich variety
of accessible topological phases and Majorana excitations that
appear due to the bulk interplay of spin-singlet superconduc-
tivity and representative magnetic texture crystals. This work
aims at inspiring developments in a field which has recently
attracted significant interest from both theoretical [44,46,49–
54,80–102,134,152] and experimental [67,69,71,72,74,106–
108] sides. Our work accounts for all possible strong, weak,
and crystallline phases arising in topological superconductors
(TSCs) induced by a set of particularly relevant magnetic tex-
ture crystals, and considers one- and two-band systems which
harbor conventional or unconventional spin-singlet pairing.

As we uncovered here, the concepts of the magnetic and
pairing groups play a crucial role in the symmetry classi-
fication of these systems since their interplay controls the
topological bulk and boundary properties. Our entire discus-
sion unfolds by further assigning and calculating suitable
topological invariants that arise from general classification
schemes [21–25]. Notably, we show how a number of these
abstract invariants emerge in the present context, explicitly
provide their construction, and finally clarify their physical
meaning by linking their presence to the quantization imposed
on a number of physical quantities, such as the staggered
magnetization.

Our investigation first focuses on 1D systems. This allows
bridging our work with previous known results [83–86,88–
90,105] but also reports a long list of different phenomena.
Even more, it sets the stage for the formalism that we em-
ploy in 2D, which relies on a sublattice description, as well
as on downfolding to the magnetic Brillouin zone (MBZ).
While a rigorous topological classification is extracted by
investigating the symmetry of properties of general Hamilto-
nians within the sublattice picture, the latter approach exposes
transparently the key mechanisms which drive the nontrivial
topology. In fact, the MBZ description is also computationally
advantageous when studying the topological properties in the
low-energy sector since a few number of bands are required
for this.

By following the above approaches, we find a number
of interesting results in 1D. First of all, we construct crys-
talline topological invariants which reflect the quantization
of the staggered magnetic moment in such systems. In ad-
dition, our analysis includes the study of unconventional
pairing gaps and discusses how multiple Majorana zero modes
appear on a given edge. Another important component of
this study is the consideration of two-band models (2BMs).
Remarkably, the multiband structure of the magnetization al-
lows interpolating between different symmetry classes, i.e.,
BDI, AIII, and DIII. The former appears when both inter-
band and intraband magnetic scatterings are present. The
second becomes relevant for interband-only scattering, in
which case the Majorana edge excitations come in pairs.
However, these do not obey a charge-conjugation symmetry
and thus each pair should be viewed as a single Andreev zero
mode. On the other hand, true Majorana Kramers pairs ap-
pear when interband-only scattering is present and additional
TR-symmetry-preserving intraband terms are included, e.g.,
inversion-symmetry-breaking spin-orbit coupling terms. See
also Ref. [44].

The emergence of Andreev edge modes in topologically
nontrivial systems has recently attracted substantial attention
[101,177–180]. Noteworthy, here we obtain topologically pro-
tected Andreev modes (cf. Ref. [180]) which are pinned to
zero energy in an extended window in parameter space. As a
result, these topologically protected zero modes open perspec-
tives for new quantum computing platforms since they can
constitute the hardware of long-lived Andreev qubits with en-
hanced protection against decoherence [181,182]. Even more,
engineering systems harboring topologically protected AZMs
opens an alternative direction in synthesizing topological An-
dreev band structures in synthetic space [243–257]. Indeed,
such a pursuit in TSCs has so far been unavoidably restricted
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to exploiting MZMs in multiterminal devices [250–256], and
theoretical works predict that it gives access to the observation
of Weyl points, chiral anomaly, and a number of quantized
Josephson transport phenomena. Being in a position to obtain
AZMs in multiterminal platforms, such as the one exper-
imentally investigated recently in Ref. [258], provides an
alternative and in some cases more robust and less demanding
route for such types of synthetic topology.

The 2D investigation brings forward an equally rich list
of results. By considering once again one- and two-band
models, generally unconventional multiband pairing, as well
as various multiband implementations of representative tex-
tures, we uncover an intricate set of flat-band, unidirectional,
bidirectional, quasihelical, helical, and chiral Majorana edge
modes, that may be protected by strong, weak, or crystalline
topology. Specifically, for a magnetic helix crystal (MHC) we
obtain Majorana and Andreev flat bands, which can be viewed
as direct extensions of the 1D phenomena. However, unique
physics appears here due to the interplay of the magnetic
and pairing point groups, thus revealing a dichotomy when
it comes to the topological classification in high-symmetry
planes (HSPs). Depending on whether the irreducible rep-
resentation (IR) of the pairing term belongs to either the
{A1g, B1g} or {B2g, A2g} set, we find a different topological
classification and, in turn, Majorana edge-mode dispersions.

Considering instead a spin whirl crystal (SWC4) magnetic
texture which eliminates the possibility of dispersionless edge
modes, since the coexistence of two magnetic helix textures
winding in different directions and spin planes, lifts almost
all the degeneracies in the MBZ. Strikingly, however, mirror
and space-group symmetries consistent with the structure of
the texture still impose a number of degeneracies in HSPs.
These enable the conversion of the flat-band edge modes into
unidirectional and bidirectional ones. The bidirectional modes
constitute dispersive Majorana edge modes with neither a
fixed chirality nor helicity, whose spin character depends on
the conserved wave number. Notably, aside from a few excep-
tions [162], this type of excitation has been poorly discussed
so far in the literature.

We find that the emerging topological phases in 2D are
mostly of the crystalline or weak type, and become mani-
fest through the appearance of the here-called quasihelical
Majorana edge modes, which present a certain number of
similarities with the standard helical edge modes in 2D.
Remarkably, strong phases do not become accessible in
2D because the crystalline symmetries present trivialize the
respective strong topological invariants. Specifically, the pres-
ence of space-group symmetries imposes degeneracies at
inversion-symmetric points (ISPs) which, in conjunction with
the fourfold rotational symmetry (C4) present, imposes a nodal
bulk spectrum in the one-band models (1BMs), and do not
allow for a strong Z2 invariant in 2BMs despite the fact that
a fully gapped spectrum is accessible there. As we demon-
strate, one possible route to unlock genuinely 2D topological
phases is by including terms which violate C4 symmetry,
while respecting the degeneracies imposed by the magnetic
space group. Notably, the violation of C4 symmetry can be
either externally imposed via strain engineering or spon-
taneously appear in systems with nematic correlations (cf.
Ref. [259]).

Another possibility is to consider the additional presence
of a Zeeman and exchange field, which lifts the degeneracies
at ISPs, but still retains a number of crystalline symmetries.
As a result, the arising bidirectional modes can be converted
into unidirectional depending on the orientation of the field,
Majorana chiral edge modes become accessible in 1BMs,
and mirror-symmetry-protected quasihelical edge modes may
persist or get gapped out. Despite the fact that space-group
symmetries appear to be detrimental for the appearance of
genuinely 2D topological phases, we remark that they still
constitute a unique pathway to obtain multiply degenerate
Majorana excitations, such as hourglass Majorana edge modes
[162]. While such a possibility did not occur for the models
examined, it still constitutes an interesting direction of re-
search. Lastly, we remind that space-group symmetries are
absent for magnetic textures with incommensurate magnetic
ordering vectors [134], but may still be approximately pre-
served in itinerant magnets for low energies.

At this point, we wish to discuss in more detail prominent
candidate physical systems that can host the above-mentioned
phenomena. Our framework addresses a single Kramers
doublet of the double covering D4h point group, therefore al-
lowing to describe tetragonal magnets. These systems may, for
instance, correspond to correlated magnetic superconductors,
where magnetism and superconductivity coexist microscop-
ically. The desirable scenario is the one where a magnetic
texture appears to partially gap out a well-nested Fermi sur-
face [134], leaving behind reconstructed pockets, which can
be subsequently gapped out by the emergence of supercon-
ductivity. Similar to Ref. [89], in this situation one expects
that the resulting magnetic superconductor self-tunes into one
of the topological phases discussed here.

Among the possible systems that promise to provide a
fertile ground to materialize such a possibility, the family of
doped Fe-based superconductors (FeSCs) stands out. Some
FeSCs are well known to exhibit a coexistence of magnetism
and superconductivity [109–124]. Reference [134] has identi-
fied all the possible single- and double-Q magnetic ground
states that can appear in representative five-orbital models
of FeSCs, and demonstrated that doping generally enables
various magnetic textures, some of which we explore here.
The possible subsequent emergence of conventional or un-
conventional spin-singlet superconductivity can give rise to a
number of the topological scenarios discussed here. Moreover,
accounting for a weak band dispersion in the third spatial di-
mension, which may be non-negligible in certain compounds,
opens additional perspectives for realizing systems with topo-
logically protected Weyl and Dirac points [260], as well as
nodal lines, rings, and chains [261], thus leading to Majorana
and Andreev arc and drumhead surface modes.

Other physical systems which our results may be applica-
ble to include hybrid systems [69,72,74,83,86–98,101] such
as superconductor-semiconductor nanowire hybrids and topo-
logical magnetic lattices. In the former class of systems, it
is desirable to impose on the system the desired magnetic
texture by external means, i.e., using nanomagnets [72,221].
In this case, the magnetic wave vectors should be tailored to
be comparable to the Fermi wave vectors of the underlying
hybrid system, which in turn can be controlled by gating the
device. On the other hand, the wave vectors describing the
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magnetic texture appearing in topological chains depends on
up to which degree is the electronic spectral weight carried by
the superconducting electrons of the substrate [78–80]. In the
deep so-called Yu-Shiba-Rusinov limit, the magnetic adatoms
can be treated classically, and the modulation of the magnetic
texture is determined by a number of factors. These include
the spacing of the magnetic adatoms, the size of their moment,
the strength of their coupling to the substrate electrons, the
possible presence of ISB in the substrate and/or crystal-field
effects. See Refs. [80,241] for investigations concerning topo-
logical magnetic chains.

We continue with enumerating a number of possible ex-
perimental methods to infer the various topological phases
discussed here, and detect the arising Majorana and An-
dreev modes. As mentioned already, spin- and angle-resolved
photoemission spectroscopy [194] can provide information
regarding protected degeneracies. Spectroscopic methods are
also standard routes to detect Majorana and Andreev ex-
citations [262–266]. Here we are particularly interested
in spin-resolved scanning tunneling spectroscopy [265,266]
which can probe the spin character of the boundary excitations
[267,268]. The various MF edge modes lead to a character-
istic electronic edge spin polarization. For a TSC induced
by a MHC the presence of chiral symmetry confines the
electronic spin polarization within a given spin plane, simi-
lar to what is encountered in superconductor-semiconductor
nanowires [265–267], magnetic chains [80,103], as well as
charged [254] and neutral [268] p-wave superfluids. TSCs
engineered from the SWC4 texture exhibit a wider range of
possibilities. As we show in Fig. 13, the type of termination is
decisive for the spin character of the bidirectional MF modes
which possess neither fixed helicity nor chirality. In contrast,
unidirectional modes tend to exhibit a higher degree of spin
polarization. Chiral and (quasi)helical MFs have instead a
fixed spin character since they stem from fully gapped TSCs.
Even more, the various dispersionless or dispersive Majorana
and Andreev edge modes can be probed in suitably designed
generally spin-resolved charge and thermal transport experi-
ments [269–273]. Depending on whether we have electrically
neutral (Majorana) or charged (Andreev) edge excitations one
can correspondingly look for characteristic features and scal-
ing behaviors in thermal and Hall responses [273].

Finally, we conclude by pointing out that magnetic texture
crystals can generally harbor 0D topological defects, such as
vortices, which can be further employed to trap Majorana zero
modes. This was brought to light only recently in Ref. [44],
where it was also shown that such a mechanism takes place
only when the pairing term of the coexisting superconduct-
ing order contains nodes in its bulk energy spectrum. By
considering also this possibility, spin-singlet superconductors
harboring magnetic textures appear to be unique versatile
platforms where a multitude of TSC phases can be observed
and harnessed for cutting-edge applications.
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APPENDIX A: SUBLATTICE FORMULATION IN 1D

In this Appendix, we reformulate our analysis in terms of a
four-sublattice basis, which is more transparent in regards to
the topological classification since it leads to properly com-
pactified 2π -periodic Hamiltonians. For illustrative purposes,
we restrict to the 1D case since the 2D description is obtain-
able in a straightforward manner. Within this framework a unit
cell consists of four sites labeled as {A, B, C, D} (cf. Fig. 22).
We define the spinor

ψ̄
†
n = (

ψ†
A,n, ψ†

B,n, ψ†
C,n, ψ†

D,n

)
, (A1)

where n now labels a four-site unit cell. In this basis, a trans-
lation {1 | a} effects the shift n 	→ n + 1

4 . Hence, {1 | a} and
{1 | 2a} ≡ {1 | π/Q} [for Q = π/(2a)] read as, in wave-number
space kx ∈ (−π/4, π/4] (with a = 1),

{1 | a} =

⎛
⎜⎝

0 0 0 β∗
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠,

{1 | π/Q} =

⎛
⎜⎝

0 0 β∗ 0
0 0 0 β∗
1 0 0 0
0 1 0 0

⎞
⎟⎠, (A2)

where we set β = −ei4kx in order for the MBZs of the wave-
number shifts and sublattice descriptions to match. Next, we
identify the action of inversion I about the center of inver-
sion which is here set to be the A site of the n = 0 unit
cell. For a Hamiltonian element Ĥkx defined in the respective
wave-number spinor of Eq. (A1), inversion acts as IĤkx =
[Î†Ĥkx Î]kx 	→−kx

with

Î =

⎛
⎜⎝

1 0 0 0
0 0 0 β

0 0 β 0
0 β 0 0

⎞
⎟⎠. (A3)

We note that the inversion of kx takes place only after
the matrix multiplications. This is because the matrix rep-
resentation of inversion is kx dependent in this basis. The
kinetic energy operator describing first- (t), second- (t ′), and
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third- (t ′′) order neighbor hopping is represented as

Ĥkin,kx = − t

⎛
⎜⎝

0 1 0 β∗
1 0 1 0
0 1 0 1
β 0 1 0

⎞
⎟⎠ − t ′′

⎛
⎜⎝

0 β∗ 0 1
β 0 β∗ 0
0 β 0 β∗
1 0 β 0

⎞
⎟⎠

− t ′

⎛
⎜⎝

0 0 1 + β∗ 0
0 0 0 1 + β∗

1 + β 0 0 0
0 1 + β 0 0

⎞
⎟⎠. (A4)

One verifies that the above kinetic part of the Hamiltonian is
invariant under translations and inversion. The Hamiltonian
for the MHC texture in Eq. (2) here reads as

Ĥmag =

⎛
⎜⎝

M⊥σz 0 0 0
0 M‖σx 0 0
0 0 −M⊥σz 0
0 0 0 −M‖σx

⎞
⎟⎠. (A5)

The main target of this Appendix is to shed light to the
topological classification at ISPs and HSPs. At kx = 0, we find
that I and {1 | π/Q} possess the twofold-degenerate eigenval-
ues ±1 and ±i, respectively. Instead, at kx = π/4, we find
that I possesses the eigenvalues {1, 1, 1,−1}, while {1 | π/Q}
possesses the twofold-degenerate eigenvalues ±1. The emer-
gence of different eigenvalues for these symmetry operations
at the two ISPs implies that the respective symmetry classes
generally differ. In contrast, these symmetry operators are
kx independent in the wave-number-transfer description, thus
implying that the various ISPs and HSPs are dictated by the
same symmetry and topological properties. The apparent dis-
crepancy is attributed to the fact that the Hamiltonian in the
wave-number-transfer description is not compactified. There-
fore, caution is needed when performing the classification
using this formalism. In fact, we find that the topological
classifications coincide for the the ISPs and HSPs where a
magnetic gap opens. In contrast, at ISPs and HSPs where a
Kramers degeneracy appears and the magnetization becomes
ineffective, only the sublattice-based topological classification
is valid.

APPENDIX B: SPACE-GROUP
SYMMETRY-PROTECTED DEGENERACIES

Nonsymmorphic space-group operations take the form
{g |t}, where g defines a point-group operation and t is a
translation by a fraction of a Bravais lattice vector. A space-
group symmetry is referred to as nonsymmorphic, when no
coordinate system can be chosen to remove the translation t
in {g | t} [162,196,197,274,275]. This is satisfied when gt = t,
i.e., when the involved translation is along a HSP of g. If
this is not the case, the component of t which is perpen-
dicular to the HSP of g is obsolete and can be removed.
However, such a removal may result in the redefinition of
other symmorphic-symmetry elements, which in this basis
may involve a translation. The elements that become simul-
taneously modified in such a process define the so-called set
of “off-centered symmetry elements.” In the main text, we
encounter pairs of such off-centered symmetries. As explained

below, their presence introduces protected degeneracies in the
spectrum. See also Refs. [276–279], and Figs. 23 and 24.

The fact that a genuine nonsymmorphic symmetry requires
that the equivalence gt = t should be met further restricts the
systems in which nonsymmorphic symmetries can provide
topological protection to boundary modes and thus stabi-
lize crystalline topological phases. Since such a boundary
is required to preserve both g and t, only 3D systems can
exhibit topological crystalline phases induced by nonsymmor-
phic symmetries. Indeed, edges of 2D systems generally fail
to fulfill these criteria, and the presence of nonsymmorphic
symmetries can only affect the bulk topological properties of
the system. Consider, for example, a 2D system with the non-
symmorphic symmetry {σxz | (1, 0)}. For this particular case,
the edge (01) is invariant under σxz while (10) is preserving
{1 | (1, 0)}, i.e., we can never find an edge which is invariant
under the symmetry operation {σxz | (1, 0)}. Extending the
example to 3D systems, we immediately observe that the
surface (001) preserves both σxz and {1 | (1, 0)}, and can thus
potentially exhibit topological surface states protected by the
nonsymmorphic symmetry. Hence, we conclude that a non-
symmorphic symmetry cannot induce a crystalline topological
phase in 2D systems, except in rare cases where gk = k [162].

For the MHC texture in 1D, our system is invariant under
a set of symmetries shown in Table I. Out of these, we find
that the symmetry element {σyz | π/Q} is rendered symmorphic
after translating the magnetic unit cell by {1 | a}, as shown
in Fig. 24. At the same time, the point-group element Ryz =
σyzT � is redefined and in this basis involves a translation.
Specifically, the two symmetry elements become redefined as
follows:{

σyz

∣∣∣∣ π

Q

}
	→ σyz and Ryz 	→

{
Ryz

∣∣∣∣ π

Q

}
. (B1)

In fact, it is not possible to choose a coordinate system
for which both {σyz | π

Q } and Ryz become regular point-group
elements. This leads to symmetry-protected degeneracies in
the spectrum. To exemplify this, we rely on the relation
{σyz | π

Q }Ryz = Ryz {σyz | π
Q }eikxπ/q. By further taking into ac-

count that �2 = +1, which holds in the here-relevant BDI
symmetry class, we obtain {σyz | π

Q }2 = +1eikIπ/q for kI =
0, q. This leads to the two eigenvalue equations

{
σyz

∣∣∣∣ π

Q

}
|kI,±〉 = ±eikIπ/Q|kI,±〉, (B2){

σyz

∣∣∣∣ π

Q

}
Ryz|kI,±〉 = ±e3ikIπ/QRyz|kI,±〉. (B3)

We thus observe that the two pairs |kI,±〉 and Ryz|kI,±〉
have the same (opposite) eigenvalues at kI = 0 (kI = q). The
two states are therefore mutually “parallel” (orthogonal) at
kI = 0 (kI = q), ultimately leading to a protected degeneracy
at kx = q [see Fig. 23(a)].

The above degeneracies appear at isolated points of
the MBZ. This behavior has to be compared with the
consequences of the genuinely nonsymmorphic symmetry
{σxz | π

Q } kx = kx. The latter can be employed to label the
eigenstates of the Hamiltonian ∀ kx in the 1D MBZ. Since the
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FIG. 23. Sketches of the entire bulk band structure, or cuts of it, in the case of a MHC in 1D and 2D [(a) and (b)], and the SWC4

magnetic phase [(c)]. The labels show the eigenvalues of the space-group symmetry which commutes with the Hamiltonian in the given HSP.
Degeneracies are colored in purple.

system is effectively spinless, �2 = +1, we find

{
σxz

∣∣∣∣ π

Q

}
|kx,±〉 = ±eikxπ/Q|kx,±〉. (B4)

From the above eigenvalues, in combination with �, we know
that the spectrum in the MBZ must follow the sketch in
Fig. 23(a), which is compatible with the degeneracies imposed
by the pair of off-centered symmetries. The twofold degen-
eracy at kx = q is enforced because the eigenvalues ±i are
connected by the antiunitary symmetry �. Notably, this de-
generacy can be alternatively seen as the result of the emergent
TR symmetry effected by �̃ = {σxz | π

Q }� ≡ {T | π/Q}, with

�̃2 = 1eikxπ/q.
Similar arguments for the MHC in 2D establish once again

that the symmetries {σyz | π
Q } and Ryz constitute a pair of

off-centered ones, and impose a twofold degeneracy at kx = q
for all ky ∈ [0, 2π ). This gives insight about the key features
of the generic band structure which is depicted in Fig. 23(b),
and reveals that the pairing gap cannot be compensated by the
magnetic gap in this HSP.

We conclude this section with a brief comment on the
generic characteristics of the band structure for a 2D system
under the influence of a SWC4 texture. In this case, we do
not find any off-centered symmetries. Nonetheless, twofold
degeneracies still appear as the result of the presence of non-
symmorphic symmetries. See Fig. 23(c) for a sketch of the
general dispersion in the MBZ.

FIG. 24. Sketch of the magnetic unit cell under the action of
{1 | a}. This translation renders {σyz | π

Q } symmorphic, while at the
same modifying Ryz. See Eq. (B1). {σyz | π

Q } and Ryz define a pair of
off-centered symmetries.

APPENDIX C: DETAILS ON TOPOLOGICAL INVARIANTS

1. Winding number in 1D 1BMs for �kx = �

The calculation is facilitated by noticing the presence of
the antiunitary TR symmetry �̃ = ρ2σyK of the Hamiltonian
in Eq. (24). Being kx independent, �̃ influences the topo-
logical classification in the entire MBZ. Note that such a
kx-independent symmetry does not appear in the sublattice
formulation of the problem. The product involving �̃ and the
preexisting � = K symmetry induces the unitary symmetry
Õ = �̃� = ρ2σy. In particular, this allows us to diagonalize
the BdG Hamiltonian into blocks labeled by the eigenvalues
of Õ. By performing the unitary transformation induced by
the operator S̃ = (Õ + σz )/

√
2, we obtain the blocks

Ĥ′
kx,σ

= [
h(0)

kx
+ h(1)

kx
ρ2 + h(2)

kx
η3 + h(3)

kx
η3ρ2

]
τ3 − Mσ ρ1

+ M−σ η1ρ1 + [
�

(0)
kx

+ �
(1)
kx

ρ2 + �
(2)
kx

η3

+�
(3)
kx

η3ρ2
]
τ1, (C1)

where Mσ = (M‖ + σM⊥)/2, with σ = ±1 labeling the
eigenvalues of σz in the new frame. Both blocks reside in BDI
class with � = K,  = ρ2τ2K, and � = ρ2τ2. Consequently,
the presence of the unitary symmetry effected the symmetry-
class transition BDI → BDI ⊕ BDI, which allows defining a
winding number wσ for each block.

One observes that each block leads to a fractional wind-
ing number ± 1

2 . As discussed previously in Ref. [80], this
peculiarity is due to the choice of the spinor, which, while
being convenient, does not guarantee that the Hamiltonian
blocks satisfy the compactification criteria required to define
the Z index. As a result, the block winding numbers cannot
define two independent topological invariants, but they have
to be added or subtracted to provide the proper invariant.
The correct way to combine them can be inferred based on
a well-known limiting case or by adding infinitesimal terms
which violate the unitary symmetry but preserve �, , and
�. Nevertheless, here it is straightforward to infer how to
combine the block invariants by investigating their behavior
in the already established result for M⊥ = M‖ = M > 0. In
this known case, the block winding numbers become

w
M‖,⊥=M
+ = − sgn{(M2 − �2)[1 + (�2 − M2)/(2μ)2]}

2
,

w
M‖,⊥=M
− = 1

2
. (C2)

In order to retrieve the topological invariant of Eq. (14), we
verify that the winding number should be defined as

w = w− − w+. (C3)
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2. Winding number in 1D 1BMs for a generic �kx

Here we obtain an expression for the winding number in
the case of a generic �kx . To facilitate the derivation of an ana-
lytical result, we restrict to the weak-coupling limit. We block
diagonalize the low-energy BdG Hamiltonian in Eq. (33) and
find

Ĥlow-en
kx,σ

= (
ξ+

kx ;q + ξ−
kx ;qρ2

)
τ3 − Mσ ρ1

+ (
�+

kx ;q + �−
kx ;qρ2

)
τ1, (C4)

and define

det
(
Âlow-en

kx,σ

) = (
ξ+

kx ;q

)2 + (
�+

kx ;q

)2 − (
ξ−

kx ;q

)2 − (
�−

kx ;q

)2

− M2
σ + 2i

(
ξ−

kx ;q�
+
kx ;q − ξ+

kx ;q�
−
kx ;q

)
, (C5)

which is of the exact same form as Eq. (8), with the crucial
difference that here kx ∈ MBZ, which implies that the contri-
bution of the last term in the topological invariant of Eq. (29)
drops out. In addition, when kx = 0 constitutes the only wave
number where a gap closing takes place, one directly retrieves
the result of Eq. (30) after setting �kx = �.

3. Mirror invariant in 1D 1BMs

To evaluate the mirror invariant of Eq. (34) at kx = 0, we
restrict to the weak-coupling regime, and block diagonalize
Eq. (33) by means of effecting the unitary transformation
(Oyz + σx )/

√
2, which yield the blocks

Ĥlow-en
kx=0,σ = ξ+

0;qτ3 + �+
0;qτ1 − σ

M⊥ + M‖ρ3

2
. (C6)

The above is further block diagonalizable by introducing the
eigenstates of ρ3 labeled by ρ = ±1. Straighforward manip-
ulations following after the definitions of Eq. (18) yield the
result for each Ĥlow-en

kx=0,σ,ρ block:

nkx=0,σ,ρ = σρ
1 + sgn

[
M2

ρ − (ξ+
0;q)2 − (�+

0;q)2
]

2
.

Similar to the construction leading to Eq. (C3), also here one
has to consider combinations of the invariants stemming from
the ρ blocks. Specifically, here we need to define nkx=0,σ =
−(nkx=0,σ,− + nkx=0,σ,+)/2.

4. Glide Majorana parity

The glide Majorana parity is here defined as a Z2 invariant
for the BDI class in 0D. This is given as the parity of the
winding number for an interpolation Ĥ� with � ∈ [0, 2π )
connecting the Hamiltonian of interest Ĥπ and a reference
Hamiltonian Ĥ0. The winding number reads as

winter =
∫ 2π

0

d�

2π i
Tr

(
Â−1

�

d

d�
Â�

)
. (C7)

By virtue of the charge-conjugation symmetry, we obtain

iπwinter = ln[det(Âπ )/ det(Â0)]

⇒ PG = sgn[(−1)winter ] = sgn
∏

�=0,π

det(Â�). (C8)

To obtain the result of Eq. (37), we employ the above
equation, where each one of the two σ blocks of Eq. (35) is
considered as a reference Hamiltonian for the other. In the
weak-coupling limit, we project onto the η3 = 1 block and
obtain the Hamiltonian blocks:

Ĥlow-en
kx=0,σ = ξ+

0;qτ3 + �+
0;qτ1 − Mσ ρ1. (C9)

We block off-diagonalize the above blocks via the transforma-
tion (ρ2τ2 + τ3)/

√
2 and find

Âkx=0,σ = −�+
0;q − Mσ ρ3 − iξ+

0;qρ2. (C10)

By obtaining the determinant of the above upper off-diagonal
blocks, we directly find the result of Eq. (37).

5. Winding number in 1D 2BMs

To obtain the winding number for an interband-only MHC,
we restrict to the low-energy sector of the system and consider
the projected spinor

χ2BM
kx

= ρ2 + ρ3√
2

(
�e

kx+3q,�
e
kx−3q,�

h
kx+3q,�

h
kx−3q

)ᵀ
, (C11)

as well as the corresponding Hamiltonian blocks

Ĥlow-en
kx

=
∑
s=e,h

Ps
{(

ξ s,+
kx ;−3q + ξ s,−

kx ;−3qρ2
)
τ3 + �sτ1

}

− M̂⊥ρ1σz + M̂‖ρ3σx

2
. (C12)

By exploiting the Õ = ρ2σy symmetry, we can block diago-
nalize the Hamiltonian by means of S̃ in Appendix C 1:

Ĥlow-en
kx,σ

=
∑
s=e,h

Ps
{(

ξ s,+
kx ;−3q + ξ s,−

kx ;−3qρ2
)
τ3 + �sτ1

}
− M̂σ ρ1. (C13)

By solely considering interband magnetic scattering, i.e.,
M̂σ = Mσ κ1 we find the emergent unitary symmetry O =
κ3σy in the original basis, which allows for yet another block
diagonalization via (S̃†OS̃ + ρ1)/

√
2:

Ĥlow-en
kx,ρ

=
∑
s=e,h

Ps
{(

ξ s,+
kx ;−3q + ρξ s,−

kx ;−3qκ3
)
τ3 + �sτ1

}
− ρMσ κ1, (C14)

where ρ = ±1 label the eigenvalues of the matrix ρ1. Hence,
we block off-diagonalize the Hamiltonian via the unitary
transformation (� + τ3)/

√
2, and obtain

det
(
Âlow-en

kx,σ,ρ

) = ξ e
kx+ρ3qξ

h
kx−ρ3q + �e�h − M2

σ

+ i
(
ξ e

kx+ρ3q�
h − ξ h

kx−ρ3q�
e
)
. (C15)
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A nonzero intraband magnetization components restores
the BDI ⊕ BDI class found in 1BMs and yields

Âlow-en
kx,σ

= −
∑
s=e,h

Ps
{
i
(
ξ s,+

kx ;−3qρ2 + ξ s,−
kx ;−3q

)
+�s + Ms

σ ρ3
} − κ1Meh

σ ρ3. (C16)

6. Invariants for 2D 1BMs in the MHC phase and with
�k ∼ {B2g, A2g}

For a gap function transforming as the B2g or A2g IR, the
resulting point group becomes GMHC accompanied by the
space-group symmetries {T , σQ

xz,yz | ( π
Q , 0)}. As discussed in

Sec. V A 1, these modified symmetries lead to a BDI ⊕ BDI
class in the kx = 0 HSP and a AI ⊕ AI class for ky = {0, π}
since, for the latter, the gap function vanishes. Specifically, for
these HSPs, denoted by the wave vectors kRxz , the Hamilto-
nian takes the simple form in the weak-coupling regime:

ĤkRxz ,σ,τ = τ
[
ξ+

kRxz ;q1
+ ξ−

kRxz ;q1
ρ2

] − Mσ ρ1, (C17)

where τ = ±1 labels the two AI blocks. This class only sup-
ports a strong mirror Z invariant for a nodal spectrum, with
the associated invariant defined similar to Eq. (48). Specifi-
cally, we find the normalized complex function entering in the
invariant

Zε,kx,σ,τ =
ξkRxz−q1

ξkRxz+q1
+ ε2 + M2

σ + 2iτε ξ+
kRxz ;q1√(

ξkRxz−q1
ξkRxz+q1

+ ε2 + M2
σ

)2 + 4ε2
(
ξ+

kRxz ;q1

)2
.

(C18)

Instead, for the kx = 0 HSP, the BdG Hamiltonian in the
weak-coupling limit becomes

Ĥk=(0,ky ) = ξk=(q,ky )τ3 − �k=(q,ky )ρ2τ1

− (M⊥ρ1σz + M||ρ3σx )/2. (C19)

For this case we can only define a strong invariant
for a fully gapped spectrum, namely, the glide wG,kx=0

and mirror wM,kx=0 winding numbers [see Eqs. (49) and
(21)] after replacing ε 	→ ky in the latter. For the symmetry
{T | ( π

Q , 0)}� ≡ Õ we block diagonalize the Hamiltonian via

S̃ and find

Ĥk=(0,ky ),σ = ξk=(q,ky )τ3 − �k=(q,ky )ρ2τ1 − Mσ ρ1. (C20)

After block off-diagonalizing the above Hamiltonian by
means of the unitary operator (ρ2τ2 + τ3)/

√
2, we obtain

det(Âky,σ ) = ξ 2
k=(q,ky ) − �2

k=(q,ky )

− M2
σ + 2iξk=(q,ky )�k=(q,ky ).

For the remaining two symmetries {σQ
yz | ( π

Q , 0)} and RQ
yz ,

which in fact commute with Õ, we find that their matrix
representations coincide in each σ block. This leads to the
additional block diagonalization by means of the unitary op-
erator (ρ1τ3 + ρ2)/

√
2:

Ĥk=(0,ky ),σ,ρ = ξk=(q,ky )τ3 − ρ�k=(q,ky )τ1 − ρMσ τ3, (C21)

which we further block off-diagonalize with by means of a
unitary transformation with operator (τ2 + τ3)/

√
2, and find

Âk=(0,ky ),σ,ρ = −i[ξk=(q,ky ) − ρMσ ] + ρ�k=(q,ky ).

FIG. 25. Nodal spectrum for the 1BM in Fig. 7 in the MHC phase
with �k = � sin kx sin ky ∼ B2g. (a) Displays the nodes in the first
BZ in the absence of magnetism. These symmetry-enforced nodes
give rise to MFBs, as seen in (b). (c) Illustrates the same as in (a), af-
ter we include magnetism and downfold to the MBZ. We see that the
initial nodes in (a) split and move on straight lines. This ultimately
lifts the MFBs on edges perpendicular to the magnetic ordering wave
vector Q [see (d)] since the vorticity of the nodes cancels when
projected onto this edge. In contrast, we see in (f) that new MFBs
(marked in purple) are established on edges parallel to Q in addition
to the MFBs inherited from the case of M‖ = M⊥ = 0 (marked in
gray) [cf. (e)]. We used Lx = Ly = 401, � = 1 t throughout, and
M⊥,‖ = 0.8 t in (d) and (f).

In order to exemplify the above, we consider in the
following the 1BM from Fig. 7 in the MHC phase, with
a pairing function transforming as the B2g IR, specif-
ically, �k = � sin kx sin ky. Through relation Eq. (47),
we find the gap-closing points kc : {ky = 0, π, or kx =
± arccos ( − 2t cos ky cos q/μ)}. For the values of q and μ

used in Fig. 7, we obtain the simple relation kc : {ky =
0, π, or kx = ±ky}. For the gap-closing points kc = (kx, 0)
and (kx, π ) we straightforwardly find the gap-closing crite-
rion ξkRxz −q1

ξkRxz +q1
= M2

σ . When the magnetic wave vector
Q1 coincides with the nesting vector QN , we observe
that the spectrum is nodal even for M⊥ = M‖ = 0 with
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kc = (0, 0) and (0, π ). For a nonzero M⊥,‖ the nodes move
along the xz HSPs. The remaining set of nodes, i.e., the
ones moving along the lines kx = ±ky, appear for M2

σ =√
ξk−q1

ξk+q1
+ �k−q1

�k+q1
. Similar to the nodes moving

along the HSPs ky = {0 π}, also here we find a nodal spec-
trum for M⊥ = M‖ = 0 for kx = ±ky = q and q + π . Upon
increasing M⊥,‖ the nodes move along the lines kx = ±ky.

In Fig. 25 we sketch the path of the nodes, the vorticities,
and resulting edge spectra. As seen in Fig. 25(a), already in
the absence of the MHC, the spectrum contains zeros which
are enforced by the symmetry of �k. These give rise to topo-
logically protected MFBs. This is exemplified in Fig. 25(b)
using open boundary conditions in the y axis. Since in this
case M⊥,‖ = 0, we show the original BZ. After switching
on magnetism and transferring to the MBZ, we observe in
Fig. 25(c) that the nodes split and start to move on straight
lines as we vary the pairing and magnetic gaps. This splitting
lifts the preexisting MFBs on edges perpendicular to the Q
vector, as a consequence of the canceling vorticities. This be-
comes more transparent by comparing Figs. 25(b) and 25(d).
Instead, for edges parallel to the Q vector, we recover the
MFBs in Fig. 25(b), but we also obtain newly established
MFBs stemming from the split nodes. This is illustrated in

Fig. 25(e), where we show the same as in Fig. 25(b) but now
in the MBZ, and in Fig. 25(f) with M⊥,‖ �= 0.

APPENDIX D: FUNCTIONS FOR THE REPRESENTATION
OF THE BDG HAMILTONIAN IN 2D

The matrix function F̂ ( fk) has the form

F̂ ( fk) = f (0,0)
k + f (0,1)

k ρ2 + f (0,2)
k η3 + f (0,3)

k η3ρ2

+ λ2
[

f (1,0)
k + f (1,1)

k ρ2 + f (1,2)
k η3 + f (1,3)

k η3ρ2
]

+ ζ3
[

f (2,0)
k + f (2,1)

k ρ2 + f (2,2)
k η3 + f (2,3)

k η3ρ2
]

+ ζ3λ2
[

f (3,0)
k + f (3,1)

k ρ2 + f (3,2)
k η3 + f (3,3)

k η3ρ2
]
,

with the functions f (t,s)
k = (−1)s+t f−k defined as

f (0,s)
k = [

f (s)
k−q2

+ f (s)
k+q2

+ f (s)
k+3q2

+ f (s)
k−3q2

]/
4,

f (1,s)
k = [

f (s)
k−q2

− f (s)
k+q2

+ f (s)
k+3q2

− f (s)
k−3q2

]/
4,

f (2,s)
k = [

f (s)
k−q2

+ f (s)
k+q2

− f (s)
k+3q2

− f (s)
k−3q2

]/
4,

f (3,s)
k = [

f (s)
k−q2

− f (s)
k+q2

− f (s)
k+3q2

+ f (s)
k−3q2

]/
4.
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Shabani, I. Žutić, and A. Matos-Abiague, Electrical Control
of Majorana Bound States Using Magnetic Stripes, Phys. Rev.
Appl. 12, 034048 (2019).

[99] E. Mascot, J. Bedow, M. Graham, S. Rachel, and D. K.
Morr, Topological Superconductivity in Skyrmion Lattices,
npj Quantum Mater. 6, 6 (2021).

[100] J. Bedow, E. Mascot, T. Posske, G. S. Uhrig, R. Wiesendanger,
S. Rachel, and D. K. Morr, Topological superconductivity
induced by a triple-Q magnetic structure, Phys. Rev. B 102,
180504(R) (2020).

[101] G.-Y. Huang, B. Li, X.-F. Yi, J.-B. Fu, X. Fu, X.-G. Qiang,
P. Xu, J.-J. Wu, C.-L. Yu, P. Kotetes, and M.-T. Deng, Field-
programmable topological array: Framework and case-studies,
arXiv:2010.02130.

[102] N. Mohanta, S. Okamoto, and E. Dagotto, Skyrmion control
of Majorana states in planar josephson junctions, Commun.
Phys. 4, 163 (2021).

[103] A. Heimes, P. Kotetes, and G. Schön, Majorana fermions from
shiba states in an antiferromagnetic chain on top of a super-
conductor, Phys. Rev. B 90, 060507(R) (2014).

[104] G. Livanas, M. Sigrist, and G. Varelogiannis, Alternative paths
to realize Majorana fermions in superconductor-ferromagnet
hetrostructures, Sci. Rep. 9, 6259 (2019).

[105] B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss, Spin-
selective Peierls transition in interacting 1D conductors with
spin-orbit interaction, Phys. Rev. B 82, 045127 (2010).

[106] A. Palacio-Morales, E. Mascot, S. Cocklin, H. Kim, S.
Rachel, D. K. Morr, and R. Wiesendanger, Atomic-scale
interface engineering of Majorana edge modes in a 2D
magnet-superconductor hybrid system, Sci. Adv. 5, eaav6600
(2019).

[107] A. Kubetzka, J. M. Bürger, R. Wiesendanger, and K. von
Bergmann, Towards skyrmion superconductor hybrid systems,
Phys. Rev. Mater. 4, 081401(R) (2020).
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