
PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

Neural ordinary differential equation control of dynamics on graphs

Thomas Asikis *

Computational Social Science, ETH Zurich, 8092 Zurich, Switzerland

Lucas Böttcher †

Frankfurt School of Finance and Management, Adickesallee 32-34, 60322 Frankfurt am Main, Germany
and UCLA, Los Angeles, California 90095, USA

Nino Antulov-Fantulin ‡

Computational Social Science, ETH Zurich, 8092 Zurich, Switzerland

(Received 12 August 2021; accepted 22 December 2021; published 23 March 2022)

We study the ability of neural networks to calculate feedback control signals that steer trajectories of
continuous-time nonlinear dynamical systems on graphs, which we represent with neural ordinary differential
equations (neural ODEs). To do so, we present a neural ODE control (NODEC) framework and find that it can
learn feedback control signals that drive graph dynamical systems toward desired target states. While we use
loss functions that do not constrain the control energy, our results show, in accordance with related work that
NODEC produces low energy control signals. Finally, we evaluate the performance and versatility of NODEC
against well-known feedback controllers and deep reinforcement learning. We use NODEC to generate feedback
controls for more than one thousand coupled, nonlinear ODEs that represent epidemic processes and coupled
oscillators.

DOI: 10.1103/PhysRevResearch.4.013221

I. INTRODUCTION

Dynamical processes on complex networks are common
tools to model a wide range of real-world phenomena, in-
cluding opinion dynamics [1,2], epidemic spreading [3–5],
synchronization [6,7], and financial distress propagation
[8]. Continuous-time dynamics on complex networks can
be described by different frameworks including Chapman–
Kolmogorov [9], Fokker–Planck [10], stochastic differential
[11], and ordinary differential [12–14] equations. The struc-
ture of many real-world systems is described by networks with
certain common properties including small-world effects [15],
heavy-tail degree distributions [16,17], community structure
[18], and other features [19,20]. The control of dynamical
processes on networks [21,22] is a challenging task with
applications in engineering, biology, and the social sciences
[23,24]. Optimal control signals can be calculated by solv-
ing boundary-value PMP problems [25–27] or computing
solutions of the Hamilton–Jacobi–Bellman equation (HJB).
Complementing the above approaches, we develop a neural

*asikist@ethz.ch
†l.boettcher@fs.de
‡anino@ethz.ch

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

ODE control (NODEC) framework that controls fully observ-
able graph dynamical systems using neural ODEs [28]. Within
this framework, feedback control signals are calculated by
minimizing a loss function describing differences between
the current state and the target state. We perform extensive
numerical experiments on coupled high-dimensional and non-
linear dynamical systems to showcase the ability of NODEC
to calculate effective control signals.

Mathematically, systems are “controllable” if they can be
steered from any initial state x(t0) to any desired state x∗
in finite time T . For linear systems, an analytical condition
for controllability of linear time-invariant (LTI) systems was
derived by Kalman in the 1960s [29] and is known today
as Kalman’s rank criterion. In 1969, Popov, Belevitch, and
Hautus [30] introduced another controllability test for LTI
systems that relies on solutions of an eigenvalue problem of
the state matrix. In the 1970s, Lin introduced the framework
of structural controllability [31] as a generalization of prior
definitions of controllability on graphs. More recently, dif-
ferent large-scale social, technical, and biological networks
were analyzed from a network controllability perspective
[21,32] building on the framework introduced by Lin [31].
Controlling a complex system becomes more challenging as
the number of nodes that can receive a control signal (driver
nodes) decreases. Furthermore, Ref. [33] addresses the impor-
tant issue of quantifying the (control) energy that is needed to
control LTI systems.

To solve general nonlinear optimal control problems with
energy and driver node constraints, two main approaches are
used: (i) Pontryagin’s maximum principle (PMP) [25–27]

2643-1564/2022/4(1)/013221(20) 013221-1 Published by the American Physical Society

https://orcid.org/0000-0003-0163-4622
https://orcid.org/0000-0003-1700-1897
https://orcid.org/0000-0002-4337-2475
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.013221&domain=pdf&date_stamp=2022-03-23
https://doi.org/10.1103/PhysRevResearch.4.013221
https://creativecommons.org/licenses/by/4.0/

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

and (ii) Bellman’s (approximate) dynamic programming
[34–38]. Pontryagin’s maximum principle [25–27] is based
on variational calculus. When applying PMP, the original
infinite-dimensional control problem is transformed to a
boundary-value problem in a Hamiltonian framework. The
downside of this approach is that the resulting boundary-
value problems are often very difficult to solve. An alternative
to variational methods is provided by Bellman’s dynamic
programming, which relies on the HJB equation. Given a
quadratic loss on the control input, the HJB equation can be
transformed into a partial-differential equation (PDE) [35].
Dynamic programming and PMP are connected through the
viscosity solutions of the aforementioned PDEs [34]. How-
ever, in most cases, the HJB equation is hard to solve [36] and
does not admit smooth solutions [39]. Most reinforcement-
learning-based controls [37] rely on optimizing the HJB
equation and can be viewed as an approximation of the dy-
namic programming [38] approach.

In this article we follow an alternative approach that uti-
lizes neural ODEs to solve feedback control (FC) problems.
We describe and evaluate the ability of NODEC to effi-
ciently control nonlinear continuous-time dynamical systems
by calculating feedback control signals. In Sec. II, we discuss
related work. Section III summarizes mathematical concepts
that are relevant for controlling graph dynamical systems. In
Sec. IV, we provide an overview of the basic features of
NODEC and formulate conditions for its successful appli-
cation to solve control problems. In Sec. V, we showcase
the ability of NODEC to efficiently control different graph
dynamical systems that are described by coupled ODEs. In
particular, we use NODEC to calculate feedback controls that
synchronize coupled oscillators and contain disease dynamics
with a limited number of driver nodes. Interestingly, NODEC
achieves low energy controls without sacrificing performance.
Section VI concludes our paper.

II. RELATED WORK

Previous works used neural networks (NNs) in control
applications [40], in particular, for parameter estimation of
model predictive control [41,42]. Extensive applications of
NNs are also found in the field of proportional-integral-
derivative (PID) controllers [40], where the gain factors are
calculated via NNs. Shallow NNs have been trained to interact
with and control smaller-scale ODE systems [40], without
using neural ODEs or deep architectures. Recently, deep NNs
have demonstrated high performance in control tasks, and no-
tably on related work on differentiable physics [43] that often
use PMP. Deep reinforcement learning [44] models are also
used to calculate control signals and rely on approximations of
the HJB equation. Other gradient-based non-NN approaches
rely on the usage of adjoint methods [45]. Such model ap-
proaches are based on PMP and variational calculus. There
also exist different generic approaches to control network dy-
namics [46,47]. Time-dependent control with NODEC, where
the NN is only a function of time t , is extensively studied
in Ref. [48]. The current work focuses on feedback control
methods where the input of an NN is the state vector x(t). We
study nonlinear dynamical systems, where minimum energy
(optimal) controls are not always known. In our work, we al-

ways choose state-of-the-art control solutions when available,
such as feedback control [49] and deep reinforcement learning
methods [50,51], so that we can compare NODEC perfor-
mance with corresponding baselines. The main contributions
of this work are: (i) an adaptive efficient feedback control ap-
proximation methodology with implicit energy regularization
properties that relies on neural ODEs, (ii) detailed numerical
experiments involving high-dimensional nonlinear dynamical
systems with minimum driver node constraints, and (iii) an
extensively tested codebase that can be easily applied to other
nonlinear control applications.

III. FEEDBACK CONTROL OF GRAPH
DYNAMICAL SYSTEMS

A graph G(V, E) is an ordered pair, where V and E ⊆
V × V are the corresponding sets of nodes and edges, respec-
tively. We denote the number of nodes |V | by N . Although, in
network science [52], it is more common to refer to graphs as
networks, in this paper we will use the term “graph” instead
of “network” to avoid confusion with NNs. Throughout this
paper, we study dynamical systems on graphs described by the
adjacency-matrix A, which has nonzero elements Ai, j if and
only if nodes i and j are connected. We describe controlled
graph dynamical systems by ODEs of the form

ẋ(t) = f A(t, x(t), u(x(t))), (1)

where x(t) ∈ RN denotes the state vector and u(x(t)) ∈ RM

(M � N) an external control signal applied to M � N (driver)
nodes. The adjacency matrix in the subscript of f denotes
the graph coupled interactions in the ODE system. For the
remainder of the article, we omit the subscript as all systems
under evaluation are graph-coupled ODEs that have fixed
adjacency matrices over time. We use Newton’s dot notation
for differentiation ẋ(t). The function f in Eq. (1) accounts
for both (time-dependent) interactions between nodes and the
influence of external control signals on the evolution of x(t).
We assume that the system state x is fully observable. In
control theory, the control signal u(x(t)) is often calculated
via two approaches: (i) by using time as input [i.e., u = u(t)]
[33] or (ii) by using the system’s state at time t as input (i.e.,
u = u(x(t))) [53]. The latter approach is often used in state-
feedback control [53], where the control signal is calculated as
a function of the difference between the state that the system
reached at time t and the control target state u(x(t) − x∗).
In the present article, we focus on state-feedback control
and denote control signals by u(x(t)). The applicability of
the current framework on time-dependent control u = u(t) is
evaluated in detail in Ref. [48].

For the majority of complex dynamical systems, Eq. (1)
cannot be solved analytically. Instead, numerical solvers can
be used to calculate approximate solutions of Eq. (1). As
a starting point, one may use an explicit Euler method
where for a given state x(t) at time t , the state of the
system at time t + �t is calculated according to x(t +
�t) = x(t) + �t f (t, x(t), u(x(t))). Apart from an Euler for-
ward integration scheme, there exist many more numerical
methods [54] to solve Eq. (1). We use the expression
ODESolve(x(t), t0, T, f , u(x(t))) to indicate a generic ODE
solver that uses the right-hand side of Eq. (1) as an input

013221-2

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

and computes the state trajectory, or set of state vectors,
XT

t0 = {x(t)}t0�t�T . In Sec. V, we employ Dormand–Prince
and Runge–Kutta schemes as our ODESolve methods.

A. Driver node selection

Our aim is to showcase the ability of NODEC to produce
efficient feedback controls for systems where the number
driver nodes approaches the minimum number necessary to
achieve control. Thus, we need to identify driver nodes that are
able to fully control the underlying dynamics. Usually, we are
interested in finding the minimum set of driver nodes, which
is equivalent to the graph theoretical problems of maximum
matching or minimum edge dominating sets [55,56]. How-
ever, for general graphs, finding the maximum matching set is
NP-hard [57,58]. In our NODEC framework, we determine
driver nodes according to two methods: (i) the maximum
matching method [21] for disease dynamics and (ii) from
stability criteria in the case of Kuramoto oscillators [59]. We
denote the set of driver nodes and its cardinality by B ⊆ V and
M, respectively. Furthermore, we use B ∈ RN×M to denote
the driver matrix. The elements Bi,m are equal to 1 if node
i is a driver node and if the control signal um is applied on
node i. Otherwise, the driver-matrix elements Bi,m are equal
to 0. The driver matrix B connects a control input um(x(t))
associated with a driver node m to the corresponding graph
node i for nonzero elements Bi,m. Although NODEC can be
used to evaluate shared and/or interacting control signals [60],
in the current article we evaluate dynamical systems where
each control signal um(x(t)) is assigned to one and only one
graph node i; thus, only one matrix element Bi,m is nonzero
per row Bi. We acknowledge that there are multiple studies
on driver node placement on graphs, yet there is considerably
fewer work that addresses ways of efficiently finding control
inputs for high-dimensional dynamical systems with a limited
number of driver nodes.

B. Control energy constraints

In complex systems, it may not always be possible to apply
any control signal to a driver node. Consider a disease that
spreads between networked communities and a control signal
that denotes the intensity of quarantine. Applying a constant
control signal with high values indicating blanket lockdown
measures may not be acceptable by society. In the given ex-
ample, our goal would be to contain disease spread as much
as possible, while applying appropriate control signals to the
selected driver nodes. A widely use metric for the intensity of
the control signal [21] is the control energy

E (u(x(t))) =
∫ T

t0

‖u(x(t))‖2
2 dt, (2)

where ‖ · ‖2 denotes the L2 norm. In our numerical experi-
ments we approximate over � timesteps Eq. (2) by

E (T) ≈
�∑

ξ=1

‖u(x(t0 + ξ�t))‖2
2 �t . (3)

In Ref. [48], we show that NODEC may approximate
optimal (or minimum energy) control signals without the

necessity of explicitly accounting for an integrated energy cost
in the underlying loss function. Instead, NODEC appears to
implicitly minimizes the control energy via the interplay of
an induced gradient descent, neural ODE solver dynamics,
and NN initialization. Avoiding the control energy term in a
constrained optimization also reduces computational cost of
learning compared to solving boundary-value PMP problems
[25–27], or computing solutions of the Hamilton–Jacobi–
Bellman (HJB) equation [34–38]. In the present article, we
provide evidence that NODEC achieves lower energy and
higher performance when compared to different FC baselines
for large complex systems.

IV. NEURAL ODE CONTROL

As in Sec. III, we consider a dynamical system Eq. (1)
with initial state x(t0), final reached state x(T), and target state
x∗. The goal of NODEC is to minimize differences between
x(T) and x∗ using control inputs û(x(t),w), where the vector
w represents the weights of an underlying NN. We quantify
differences between reached and target states with the control
loss function J (XT

t0 , x∗) over the state trajectory XT
t0 . The gen-

eral NODEC procedure is thus based on finding weights w

that minimize a loss function J (XT
t0 , x∗) under the constraint

Eq. (1), using a gradient descent update over a certain number
of epochs. That is,

min
w

J
(
XT

t0 , x∗; w
)

s.t. ẋ(t) = f (t, x(t), u(x(t))),
(4)

where the control signal u(x(t)) = û(x(t); w) is calculated as
an NN output and

w ← w + �w with �w = −η∇wJ
(
XT

t0 , x∗; w
)
. (5)

Here, η > 0 denotes the learning rate. Our proposed method
relies on the usage of neural ODEs [28], which are a natu-
ral choice for the approximation of continuous-time control
signals. Using neural ODEs instead of discrete-time controls
allows us to approximate a continuous-time interaction and
express the control function û(x(t); w) as a parameterized NN
within an ODE solver (see Fig. 1).

We show that NODEC can be used to control nonlinear
graph dynamical systems with different loss functions. It is
of particular relevance for continuous-time control problems
with unknown and intractable optimal control functions. The
ability of NODEC to approximate various control functions is
established by universal approximation theorems for the ap-
proximation of continuous-time control functions with NNs.
Similar to reinforcement learning (RL), NODEC is able to
learn control inputs directly from the underlying dynamics in
an interactive manner. Contrary to other control approaches
[25–27,33,35], we do not impose a control energy constraint
directly on our optimization loss function, improving the
learning efficiency considerably [61].

In Algorithms 1 and 2, we show the two parts of a generic
NODEC algorithm that approximates control signals. The
main elements of NODEC are: (i) input and target states, (ii)
graph coupled dynamics, (iii) NN architecture and initializa-
tion, (iv) the parameters of the ODE solver (e.g., step-size),

013221-3

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 1. A schematic that summarizes the training process of
NODEC. An NN learns the control within the ODESolve method.

and (v) the gradient descent algorithm and its hyperpa-
rameters, such as the learning rate. Note that Algorithm 2
relies on automatic differentiation methods [62,63], where the
gradients “flow” through the underlying NN that is time-
unfolded by ODE solvers [54].

A. Neural ODE and NODEC learning settings

Although NODEC utilizes neural ODEs [28], the learning
tasks of both frameworks differ significantly. Neural ODEs
model dynamics of the hidden state h(t) of an NN according
to

ḣ(t) = g(t, h(t); w), (6)

where g(h(t), t ; w) and ḣ(t) represent the NN and hidden-
state evolution, respectively. As in Eq. (4), the vector w

denotes the neural-network weights. Previously, neural ODEs
were mainly applied in supervised learning tasks [64] and in
normalizing flows [28]. For NODEC, we use an NN as a pa-

rameterized function to approximate the control term u(x(t))
in graph dynamical systems (1). Contrary to supervised ap-
plications of neural ODEs [28], our proposed framework
numerically solves control problems in an interactive manner,
similar to reinforcement learning.

B. Learnability of control with neural networks

As reachability of a target state x∗ from an initial state
x(t0) implies the existence of a control function u(x(t)), we
now focus on the ability to approximate (i.e., learn) u(x(t))
for reachable target states with an NN.

Given that (i) a target state x∗ is reachable with continuous-
time dynamics (1) and (ii) the control function u(x(t))
that reaches the target state x∗ is continuous or Lebesque
integrable in its domain, then a corresponding universal
approximation (UA) theorem applies for an NN that can
approximate a control function û(x(t); w) → u(x(t)) by
learning parameters w.

The above proposition holds when both an appropriate
UA theorem [65–69] and reachability [70] requirements are
satisfied by the underlying dynamics and the NN controller.
Related work indicates UA properties for neural ODEs [71]
that can be leveraged to calculate approximate solutions to the
control problem Eq. (4). The ability of an NN to learn control
signals has also been covered in the literature outside of the
domain of neural ODEs [41,72–74]. In the current work, we
choose to compare our proposed model to an analytical feed-
back control baseline [59] and state-of-the-art reinforcement
learning [51] for nonlinear dynamical systems describing Ku-
ramoto oscillators and disease spread.

C. Learning loss and control goals

To apply NODEC to control tasks, we have to translate
a control goal into an adequate learning loss. The choice of
the control goal depends on the underlying dynamics, graph
structure, and objectives of the control designer. A very com-
mon goal in literature [75] is “microscopic” control where
each node i has to reach a predetermined state value within
time T , i.e., xi(T) = x∗

i . Such a control goal is often applied

013221-4

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

in industrial applications and may be used to steer electric
and mechanical systems toward desired target states [75]. This
control goal is achieved by minimizing a metric that quantifies
the distance between the target and reached states x(T) and
x∗. One possible choice of such a metric is the mean squared
error (MSE) J (x(T), x∗) = 1

N

∑N
i=1(xi(T) − xi

∗)2. When the
MSE is used, corresponding optimal control problems may
be expressed as convex optimization problems [76]. For more
details on the application of NODEC to microscopic loss
functions, see Ref. [48].

We focus on control goals that do not require a specific
target state value for each node, but instead require that con-
straints over aggregate values or statistical properties of the
system’s states are satisfied. For the control of certain complex
systems, it is useful to consider such “macroscopic” con-
straints [23,77]. Often such goals lack exact optimal control
solutions, thus offering many opportunities for novel control
applications of NODEC.

A common macroscopic control goal is that nodes in the
target state are required to be synchronized, i.e., the nodes’
states are required to have the same value or constant phase
shifts. Such synchronization conditions are often considered
in the context of controlling oscillator systems [45,78]. When
synchronizing oscillators, reaching the target state at time T
may not satisfy the control goal completely, as we may require
the system to preserve the state properties that satisfy the
synchronization goal for a time period [t, T]. In the current
work we showcase that NODEC is able to optimize such
control problems.

We also consider more complex control goals, where the
system evolution includes coupled ODEs with more than one
state variable. In the context of epidemic models, the state xi

of a node i is represented by a vector that consists of mul-
tiple state variables. For susceptible-infected-recovered (SIR)
models, three state variables, Si(t), Ii(t), and Ri(t), are used
to model the part of a population on node i at time t that is
susceptible, infected, and recovered, respectively. A relevant
control goal for controlling epidemics is the “flattening” of
the curve, or reducing the maximum infected population that
occurs at time t∗ ∈ [t0, T].

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the ability of NODEC to
(i) reach target states efficiently with a limited number of
driver nodes, (ii) control different dynamics and losses, and
(iii) calculate low energy control signals. We first evaluate
the performance of NODEC for two nonlinear systems with
very different control tasks to showcase its applicability and
versatility in computationally challenging settings for which
analytical solutions or approximate control schemes may
not exist. We describe the experimental setup by defining
the dynamical systems, initial state, control goal, and NN
hyperparameters used for training. The choice of NN hyperpa-
rameters focuses mainly on the network architecture, inputs,
optimizers, and training procedures. For the sake of brevity,
we omit technical details in the main text and provide further

information in the Appendix and in our code [79,80] and data
repositories [81].

A. Coupled oscillator dynamics

Here we study the ability of NODEC to control a network
of coupled oscillators via feedback control. Such systems are
used to model power grids and brain networks [82,83]. One
common control goal for oscillator systems is to reach a fully
synchronized target state and stabilize the system over time.
This introduces two main challenges: (i) a target state that
satisfies this goal needs to be reached and preserved and (ii)
the trained model needs to be able to achieve synchronization
stability for initial states not seen in training. For continuous-
time linear time invariant systems and systems that can
be linearized, there exist optimal feedback control methods
[84]. Continuous-time oscillatory dynamics may not always
be linearizable [59] and exhibit chaotic behavior [85,86],
which cannot be observed in (finite-dimensional) LTI systems.
NODEC does not require linearization and could potentially
control systems that are costly or intractable to linearize.

In a graph of N coupled oscillators, a possible mathemati-
cal description of the evolution of phase xi of oscillator i with
natural frequency ωi is

ẋi = ωi +
∑

m

Bi,mum(x(t)) + K
∑

j

Ai, jh(x j − xi), (7)

where A is the interaction matrix, K the coupling constant,
and h a 2π -periodic function [59]. By setting h(x) = sin(x),
we recover Kuramoto dynamics [87]

ẋi = ωi +
∑

m

Bi,mum(x(t)) + K
∑

j

Ai, j sin(x j − xi). (8)

In accordance with Ref. [59], we consider a target state in
which all oscillators are tightly packed in a synchronized
cluster where |x j − xi| ≈ 0 for all i, j. Linearization of the
uncontrolled version of Eq. (8) within the rotating reference
frame yields the target state

x	 = K−1L†ω, (9)

where L† is the pseudoinverse of the graph Laplacian L =
D − A and ω = [ω1, . . . , ωN] is the vector of natural frequen-
cies [59]. For the derivation of Eq. (9), one uses that the
mean natural frequency is zero. The quantity D is the degree
diagonal matrix, with each element of the diagonal Di,i = di

being equal to the degree di of the corresponding node i.

1. Learning loss function

We measure the degree of synchronization of Kuramoto
oscillators in terms of the order parameter [78]

r(t) = 1

N

√∑
i, j

cos (xi(t) − x j (t)) = 1

N

√∑
i, j

eι(xi−x j). (10)

We denote with ι the imaginary unit.
The control loss may also aggregate the order parameter

over time, when the control goals take stability into account.

013221-5

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

In such a case, one might consider the mean order parameter
over time,

r(t) = 1

T

∫ T

0
r(t) dt, (11)

which approaches zero if the oscillators are incoherent.
By discretizing T into � intervals, we can also discretize
Eq. (11) using

r(t) = 1

�

�∑
ξ=0

r(ξτ)τ, �τ = T . (12)

For the numerical calculations we omit τ . Equation (12) can
be used as a loss function,

J
(
XT

τ

) = −r(t) = − 1

�

�∑
ξ=1

r(ξτ), (13)

to achieve stable synchronization of coupled oscillators. Loss
functions that represent periodically and randomly changing
oscillator states can be also used as an input for learning
control inputs. Instead of using loss function (13) that is
associated with maximizing the degree of synchronization in
the whole network, one may wish to achieve different de-
grees of synchronization in different time windows, which
can be modeled by using time-dependent synchronization
losses. Furthermore, forcing parts of a network into different
oscillatory states may be possible by minimizing differences
between observed and desired oscillator phases in certain sub-
graphs.

The loss function (13) introduces two challenges with re-
spect to the classical MSE loss [76]: (i) it is a macroscopic
loss as we do not require to reach a specific state vector
x∗ to minimize [88] Eq. (13) and (ii) the loss is calculated
over a time interval [τ, T] [89]. The initial time is omit-
ted [ξ = {1, . . . , �} in Eq. (13)], since we assume that no
control is applied prior to reaching the initial state. In our
numerical experiments we observed that using such a loss
affects numerical stability, especially for long time intervals,
e.g., when � = 100. Averaging over r(ξ t) may smooth out
temporal variations of r(t), especially for very high values of
�. When such drops occur in sampled training trajectories,
NODEC learns to achieve high synchronicity only temporar-
ily. NODEC learns controls that yield highly synchronized
stable trajectories similar to the FC baselines, when we extend
Eq. (13) by subtracting the minimum order parameter value
mint∈[τ,T] r(t) over time:

J
(
XT

τ

) = −
(

r(t) + min
t∈[τ,T]

r(t)

)
. (14)

Introducing the minimum order parameter term increases the
stability of the learned control as the loss creates higher gradi-
ents for controls that cause loss of synchronization. We train
NODEC on trajectories that may at maximum reach a total
time of T = 40, and we test and evaluate the performance
of the trained neural network on random initial states for
T = 150. As we report in Sec. V A 5, the described training
protocol is able to achieve good performance for these testing
parameters.

2. Control baselines

A FC baseline for Kuramoto dynamics is presented in
Ref. [59]. First, the feedback control gain vector b(FC) is de-
fined for the control baseline. In accordance with Ref. [59],
we use a control gain vector b(FC) instead of a driver matrix.
An element b(FC)

i of the gain control vector is assigned to a
graph node i and it needs to satisfy

b(FC)
i �

∑
j
=i

{|KAi, j cos(x	
i − x	

j) − ε|

− [KAi, j cos(x	
j − x	

i) − ε]}. (15)

If cos(x	
i − x	

j) � 0, the corresponding term in the summation
vanishes. We take the equality of the constraint in Eq. (15)
to calculate the control gain vector elements b(FC)

i based on
Ref. [59]. The error margin buffer ε is implemented as sug-
gested in related work [59] by setting ε � 0 when selecting
driver nodes in Eq. (15). For ε = 0, the driver node selection
might be insufficient and it may not be possible to drive the
system to a desired target state [59]. Using an error margin
buffer increases the driver node selection tolerance and, thus,
selects more diver nodes, which can steer the system to a
desired target state. The nonzero values of the driver matrix
can be chosen arbitrarily, as long as the constraint in Eq. (15)
is satisfied. Nonzero values b(FC)

i determine the driver nodes.
The baseline control signal ui for a node i is calculated as

ui(xi(t)) = ζb(FC)
i sin(xi

∗ − xi(t)). (16)

In driver matrix notation, we iterate over all nodes and select
a node i as the mth driver node by setting the driver matrix
element Bi,m = b(FC)

i if b(FC)
i
= 0. We set the target state in

Eq. (16) to xi
∗ = 0.

We require that feedback control reaches comparable per-
formance to NODEC in terms of r(t); thus we multiply the
vector b(FC) with a positive scalar value [90] ζ = 10. Higher
absolute values of ζ |b(FC)

i | may create control signals that
reach the target state in less time at the expense of a higher
control energy. As the driver matrix is calculated based on
an approximation of the graph Laplacian pseudoinverse L† of
a singular system, optimal control guarantees for minimum
energy may not always hold.

3. Numerical simulation parameters

To evaluate the system synchronicity, we calculate the or-
der parameter [see Eq. (10)], which reaches the maximum
value r(t) = 1 if all oscillators are fully synchronized.

For our numerical experiments, we create an Erdős–Rényi
graph G(N, p) with N = 1024 nodes, expected mean degree
d = 6, and link probability p = d/(N − 1). We generate the
driver matrix as in Sec. V A 2, and select the nonzero elements
as driver nodes. To reduce approximation errors due calcula-
tion of the Laplacian pseudoinverse matrix, we set a buffer
margin of ε = 0.1 in Eq. (15), when selecting driver nodes.
Control signal energy is evaluated with Eq. (3). Moreover, we
set the coupling constant to K = 0.4 and sample the natural
frequencies ωi from a uniform distribution U(−√

3,
√

3) [49].
This setting results in approximately 70% of the nodes being
assigned as driver nodes.

013221-6

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 2. (a) NN architecture for controlling Kuramoto oscillators and (b) symbol legend.

4. NODEC hyperparameters

Only the current system state x(t) is provided as an input
for the NN, similar to the baseline described in Sec. V A 2. We
use a fully connected architecture as illustrated in Fig. 2(a).
Finally, to calculate the binary driver matrix B for the NN
in Eq. (8), we iterate all nodes of G, and for each node
i we assign Bi,m = 1 and set it as the m-th driver node if
b(FC)

i
= 0 and Bi,m = 0 otherwise. The driver index m incre-
ments by one each time a driver node is assigned. We use
a binary driver matrix instead of the gain matrix used in
FC, as we require the network to learn the control signals
per driver node without prior knowledge of the exact control
gains.

The current control goal is to stabilize Kuramoto oscil-
lators in a synchronized state over a period of time. The
loss of synchronization may occur at any point during this
period. To avoid loss of synchronization over a period of
time, we train NODEC (see Appendix Algorithm 3) in a
curriculum learning procedure [91], where NODEC is ini-
tially trained on trajectories sampled for low values of T .
The value of T increases gradually as training proceeds. The
learning process in the beginning of the curriculum, when
T is very low, allows NODEC to learn controls that steer
the oscillators through the transient state between synchronic-
ity and non-synchronicity. As T increases, the network also
learns controls that preserve the network in the synchronized
state.

In feedback control, the target is often to synchronize the
system for different initial states [92]. To train the system
for more than one initial state, we use a mini-batch-training
procedure that samples 8 random initial states per epoch
for training. We observed that randomly sampling an initial
state from a uniform distribution in [0, 2π] does not improve
training performance and fails to learn synchronization. It has
been reported in the literature [93] that normally distributed
layer inputs (with zero mean and unit variance) can help NNs
converge faster. Therefore, we decided to sample initial states
from a normal distribution with zero mean and unit variance.
Our results confirm that learning and convergence improve.
Sampling initial states enables us to use mini-batches to speed
up and stabilize training as well. In the Kuramoto example
we use the Adam optimizer [94] for parameter optimization.
The complete training scheme is also illustrated in Appendix
Algorithm 3.

5. Results

To test the control performance of NODEC, we first sample
an unobserved initial state close to the synchronized steady
state in accordance with Ref. [59]. The initial state values
for single sample evaluation [see Figs. 3(a) and 3(b)] are
uniformly sampled within −10% of the synchronized steady
state values, i.e., xi ∈ [0.9x	

i , x	
i], to be close to the synchro-

nized steady state as proposed in Ref. [59]. We observe that
the NN achieves a target state with larger order parameter
values [see Fig. 3(b)] and requires lower energy [see Fig. 3(a)]
than the FC baseline. We also observe that NODEC requires
higher energy and slightly more time to synchronize the sys-
tem but less to preserve it, compared to the FC baseline [see
Fig. 3(b) and Appendix Fig. 7] .

To determine whether NODEC can achieve synchro-
nization stability regardless of the initial state choice [see
Fig. 3(c)] and its proximity to the synchronized steady state,
we test the trained model on 100 initial states, with val-
ues uniformly sampled in [0, 1]. In Fig. 3(c) the vertical
axis represents the relative total energy difference between
NODEC and FC for the same initialization (ENODEC(T) −
EFC(T))/EFC(T). The horizontal axis represents the mean rel-
ative order parameter difference calculated as [rNODEC(T) −
rFC(T)]/rFC(T). NODEC achieves around 1% higher order
parameter values and almost 86% less total control energy
for all samples. More sophisticated strategies of adapting the
constant term ζ in Eq. (15) could be applied to adapt the driver
matrix values in feedback control. This is, however, outside
the scope of this paper. Our results show that NODEC can
be adapted to achieve highly synchronized states in Kuramoto
dynamics on an Erdős–Rényi graph via feedback control.

B. Epidemic spreading and targeted interventions

Designing targeted intervention and immunization strate-
gies [5,95] is important to contain the spread of epidemics.
To study the performance of NODEC in such containment
tasks, we will use the susceptible-infected-recovered-type
(SIR-type) model [96] that extends the classical SIR model by
accounting for quarantine interventions and other preventive
or reactive measures for disease containment. In our formula-
tion of SIR-type dynamics, we also account for control inputs
and network structure. The “R” compartment in our model is
used to describe (i) recovered individuals that were infected
and acquired immunity and (ii) removed individuals (i.e.,

013221-7

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 3. Comparison of NODEC and FC in terms of (a) energy, (b) synchronization stability, and (c) relative performance for randomly
sampled unobserved initial states.

susceptible individuals under quarantine who do not interact
with anyone else). The complete state of the epidemic model
is now described by a matrix X (t) ∈ R4×N , where each row
represents the state vector of the corresponding node [97].
The proportion of susceptible, infected, recovered, and quar-
antined individuals at node i is X 1,i = Si, X 2,i = Ii, X 3,i = Ri,
X 4,i = Yi, respectively. The corresponding generalized SIR-
type dynamics of node i is described by a set of rate equations:

Ṡi(t) = −βSi(t)
∑

j

Ai, j I j (t) −
∑

m

Bi,mum(X (t))Si(t), (17a)

İi(t) = βSi(t)
∑

j

Ai, j I j (t) − γ Ii(t) −
∑

m

Bi,mum(X (t))Ii(t),

(17b)

Ṙi(t) = γ Ii(t) +
∑

m

Bi,mum(X (t))Si(t), (17c)

Ẏi(t) =
∑

m

Bi,mum(X (t))Ii(t), (17d)

subject to the conditions that (i) the total population is con-
served and (ii) the control budget is bounded from above by
b: ∑

i

(Si + Ii + Ri + Yi) = N, (18a)

∑
m,i

Bi,mum(X (t)) � b. (18b)

The driver nodes Bi,m = 1 can be selected via differ-
ent methods, e.g., the nodes/communities that are willing
to apply proactive and reactive measures. In our simula-
tions, driver nodes are selected with the maximum matching
method [55,56]. Furthermore, we assume that the epidemic
originates from a localized part in the graph and we mini-
mize the proposed epidemic loss in Eq. (19) for a different
part of the graph. The parameters β and γ are the infec-
tion and recovery rates, and um(X (t)) describes the effect
of containment interventions (e.g., quarantine, mask-usage
and distancing). When an NN controller (NODEC or RL)
is used, we set um(X (t)) = ûm(X (t)). These terms are used
to model preventive and reactive measures, respectively. For
example, susceptible individuals may isolate themselves and
completely avoid infection (S → R) until the pandemic passes

(preventive) or infected individuals are quarantined and put to
intensive care to contain the spread and help infected patients
recover (I → Y) (reactive measure). The described control
problem is complicated by several factors. First, the budget
constraint [see Eq. (18b)] does not allow assignment of high
control values across all nodes. Second, we need to distribute
limited intervention resources dynamically across structurally
similar nodes. Unlike in networks with community structure,
where isolating single nodes can effectively control epidemic
spreading, the regularity of the square lattice does not admit
such a control approach.

Another possible formulation of time-dependent control
targets in epidemic modeling is to weigh the number of new
infections with a discount factor to prioritize minimizing cur-
rent infections over minimizing future infections. For network
epidemic models, degree-based approximations can be used
in conjunction with optimal control theory to derive interven-
tions for such loss functions. For more information, see, e.g.,
Ref. [98].

1. Learning loss function

The control goal is to “flatten” the curve, i.e., to delay
and minimize the mean infected fraction over nodes in the
subgraph G∗, which has no overlap with the part of the graph
containing the initial spreading seed. Based on these control
goals, we formulate the following loss function:

J
(
XT

t0 , X∗) = (
max

t0�t�T
ĪG∗ (t)

)2
, (19)

where ĪG∗ denotes the mean fraction of infected individuals in
G∗. This control goal is macroscopic, as we do not know the
exact feasible state X∗ for which I∗(t∗) = argminI (t)J (I (t))
that minimizes such a loss. Furthermore, the exact time t∗
at which the minimum loss is achieved is not known, and
therefore we need to evaluate samples from the state trajectory
XT

t0 to determine t∗. Similar to Eq. (14), the current control
goal requires loss calculations over a time interval. Moreover,
this loss is not calculated over the whole state matrix X but
only on the infected state IG∗ of the target subgraph. Intu-
itively, one would trivially achieve the proposed goal if there
are no further constraints. If nodes that connect the subgraph
G∗ to the rest of the graph cannot be controlled efficiently,
then achieving the control goal becomes nontrivial. Tackling
the outlined epidemic control problem allows us to evaluate

013221-8

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 4. NODEC architecture for controlling SIR-type dynamics.

NODEC on a complex control task (see Sec. V B 5) with
applications in disease control.

2. Control baselines

A baseline that takes structural node properties (e.g., node
degree or centrality) into the account, may be a good base-
line for graphs with structural heterogeneity, but not for
regular structures like lattices. Clearly, a weak baseline is ran-
dom control (RND), where we assign random control inputs
to driver nodes with um(t) = bcm/

∑M
m′=0 cm′ , cm ∼ U(0, 1).

However, a targeted constant control baseline (TCC), which
in the presence of an “oracle” assigns constant control inputs
um(t) = b/M to every driver node in G∗, is a strong baseline
for constant control. As TCC is a static control, it already
protects the driver nodes from t = 0 on, so TCC-controlled
nodes will be infected very slowly. Assigning all budget to all
driver nodes of interest also minimizes wasted “containment”
budget. Still, distributing more budget to a smaller number of
nodes increases the L2 norm of the control, making controls
very expensive when considering quadratic energy costs. To
have a control with less energy, it is important to distribute the
budget to more nodes, therefore enabling more global contain-
ment and less constant containment on the target subgraph.

We also study the performance of neural dynamic control
baselines, such as continuous-action RL, with fully connected
NNs and our variant (see Fig. 4) as policy architectures (see
Sec. V B 4 and Appendix B 1). Only one of the three evaluated
training routines of RL provided high-performance results.
We tested: SAC [50], TD3 [51], and A2C [99], but we report
only the results of TD3 which were more competitive with
respect to NODEC. To allow RL to tackle the SIR-type control
problem, we first implement SIR-type dynamics as an RL
environment. The input of RL is the tensor of all SIR-type
states at time t . We consider an observation space, which
includes continuous values in [0,1] and has dimension 4 × N .
RL actions am(t) ∈ R are continuous values for each driver
node and correspond to control signals. Once the actions are
passed to the environment, a preprocessing operation takes
place to convert the RL action into valid control signals (see
decision network of Fig. 4). RL is allowed to provide (change)

FIG. 5. SIR-type control evaluation in terms of (a) proportion of
infected individuals and (b) total energy. NODEC versus baselines:
reinforcement learning (RL), targeted constant control (TCC), ran-
dom constant control (RND), and free dynamics with no control (F).

the control signals to (interact with) the environment in a fixed
discrete time interaction interval �t = 10−2 during training.
Lower interaction intervals were also considered, but required
longer training and did not seem to improve performance. For
RL, we need to express the control goal as a reward function
which is used for the approximation of action value function
within the RL framework. We tested several reward designs
and we describe this process in Appendix B 2, but we simulate
best performance with the following reward function:

ρ(t) =
{

0, if ĪG∗ (t) � maxτ<t (ĪG∗ (τ)),

−Ī2
G∗ (t) + (maxτ<t ĪG∗ (τ))2, otherwise.

(20)

3. Numerical simulation

To determine the target time T , we observe the SIR-type
dynamics (β = 6 and γ = 1.8) on a 32 × 32 lattice with-
out control and set its value to the time at which the mean
infection over all nodes is approximately zero. Initially, the
epidemic starts from a deterministic selection of nodes in
the upper-right quadrant. For all control strategies, the budget
(maximal number of control interventions) is b = 600. Given
that RL takes considerably longer to converge and that we
were required to perform a much more extensive hyper param-
eter search, we showcase our experiments only on the lattice
graph and a single initial state. Our control goal is to contain
epidemic outbreaks (i.e., “flattening” the infection curve) in
the subgraph G∗, which is located in the bottom-left quad-
rant (see Fig. 6). All baselines are compared with timestep
�t = 10−3.

4. NODEC hyperparameters

From a technical perspective, the SIR-type dynamics intro-
duce extra state variables. Therefore, fully connected layers
will require one to estimate considerably more parameters.
We observe that neither NODEC nor RL converged to a
high-performance solution when using fully connected layers,
and we thus omit these results. Furthermore, the control task
requires the network to optimize a loss that is not calculated
over whole graph, but rather on a specific subgraph. NODEC
has no direct information on which nodes are part of subgraph
G∗. The information is provided via the minimization of the
learning loss-function in Eq. (19). Back-propagation happens

013221-9

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 6. Initial infection, target subgraph, and control trajectories for SIR-type dynamics. Colorscale plots represent 99.5% of the presented
values for dynamics with NODEC controls.

at time t∗ = argmaxt�T J (IG∗ (t)). This time is approximated
by preserving a sample of states when using the ODESolve,
and picking the maximum observed peak infection from that
sample.

As the existing neural architectures discussed in Sec. V A 4
did not perform well, we switch to an architecture that in-
cludes the graph structure. To leverage the information of
the graph structure and generate efficient control signals that
“flatten” the curve, we decide to design a more specialized
NN architecture that includes the information of the graph
structure within its layers. For that reason we use a Graph NN
(GNN) architecture (see Fig. 4 and Appendix B 1). We use
a learning rate η = 0.07 and the Adam optimizer. The same
GNN architecture is implemented in the RL baselines as the
policy network. The GNN approach encountered fewer nu-
merical instabilities during training and allowed for efficient
learning without curriculum procedures. We use a training
procedure for SIR-type control as shown in Appendix Algo-
rithm 4 that preserves the best performing model in terms of
loss. The hidden state matrix Z is calculated from the GNN
and then provided as an input to the decision NN (see Fig. 4
right side). The decision network contains operations that en-
force the budget and driver constraints by applying a softmax
activation function and calculating control signal outputs for
the driver nodes. The decision network contains no learned pa-
rameters and is included inside the NODEC architecture and
RL environment. Transfer learning [100] between NODEC
and RL can be achieved by pretraining the GNN network
with NODEC and then using it as an RL policy. RL achieves
the same performance as NODEC when transfer learning is
tested. Further fine tuning of the pretrained policy with RL
does not improve performance of NODEC in this setting,
but transfer learning indicates a possible future extension of
combining model-based training with real-world model-free
fine tuning.

5. Results

Our main results are summarized in Fig. 5 and
Table I and indicate similar superior performance of TCC and
NODEC compared to the other control strategies, but with
lower energy costs for NODEC. In Fig. 5, we observe that
NODEC is providing strong protection with total energy costs
that are not as high as TCC (see Table I). If we assume that
the proposed system will reach maximum hospital capacity
at 20% of the infected fraction in the target subgraph, we
observe that TCC, RL, and NODEC are sustainable control

strategies. In Fig. 5 and Table I, NODEC underperforms TCC
with approximately 1% higher maximum infection fraction,
but requires almost 41% less control energy. The effective-
ness of the control can be attributed to the adaptive nature
of NODEC. The other adaptive baseline, RL requires around
54% less energy than TCC but allows for 2.1% higher peak
infection compared to NODEC. The effectiveness of targeted
adaptive controls in time can be used to model and examine
the effectiveness of proposed real-world long-term pandemic
control strategies, such as rolling lockdowns [101] and/or
vaccine allocation [98,102].

NODEC achieves better performance at the cost of higher
energy compared to RL. Reinforcement learning is often
described as “model-free” and addresses the (i) prediction
problem and (ii) control problem [37]. We note that RL ap-
proaches may suffer from credit assignment challenges, where
a reward signal is uninformative regarding the specific actions
(especially in terms of time) that help reach the goal [103].
However, even after testing different reward designs and pa-
rameters settings, no RL framework managed to perform
better than our baselines. It may be possible that extensive
reward engineering, and other model upgrades may lead to a
better performance. In contrast to RL, the proposed NODEC
framework is not model-free and the underlying gradient de-
scent is directly calculated from the loss function. Therefore,
we do not need to consider value prediction and credit as-
signment. It is possible to design a model-free NODEC by
learning the underlying system dynamics simultaneously with
control similar to Ref. [43], which could be an interesting
future extension of our work.

The spread of the epidemic, target subgraph, and controls
of the main baselines are illustrated in Fig. 6. RL and NODEC
calculate control signals that change over time and slowly fade
out as t → T . We also observe that controls persist in some
driver nodes even then the infection wave is over (see also

TABLE I. Total energy E (T) and peak infection maxt (Ī (t))
achieved by different epidemic spreading control methods.

Control Peak Infection Total Energy

TCC 0.068 14062.6
NODEC 0.078 8356.6
RL 0.099 6358.0
RND 0.210 4688.9
F 0.532 0.0

013221-10

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

Appendix Fig. 10). This behavior is also observed in other
baselines that satisfy the equality of the constraint Eq. (18b)
(RND and TCC). The budget constraint Eq. (18b) allows con-
trol signals to sum up to the budget value b. The implemented
NN architecture calculates controls by multiplying the budget
with a softmax activation function output over a hidden state
output from the learned GNN architecture (see Fig. 4 right
side). The output of the softmax activation function is nonzero
by definition [104] and thus the NN always calculates nonzero
control signals. Once the infection wave has traversed the
graph, both RL and NODEC controllers distribute the control
over several nodes, thus decreasing required control energy
[105]. This outcome is an artifact of the softmax activation
function, but it may also indicate the implicit energy regular-
ization properties of NODEC [48]. On the contrary, the higher
energy costs of TCC keep increasing, as high control signals
remain in place after the infection wave has passed.

VI. DISCUSSION AND CONCLUSION

Neural ODE control is able to effectively control dynam-
ical systems based on observations of their state evolution.
Contrary to Ref. [28] that parameterizes the derivative of
hidden states using NNs, our neural ODE systems describe
controlled dynamical systems on graphs. In general, NNs are
able to approximate any control input as long as they satisfy
corresponding universal approximation theorems. However,
in practice, NODEC needs to deal with different numerical
hurdles such as large losses and stiffness problems of the un-
derlying ODE systems. By testing NODEC on various graph
structures and dynamical systems, we provide evidence that
neural ODE-based control approaches are useful in feedback
control and that numerical hurdles can be overcome with ap-
propriate choices of both hyperparameters and ODE solvers.

Future studies may study the effectiveness of NODEC
under additional constraints such as partial observability and
delayed and noisy controls.

ACKNOWLEDGMENTS

L.B. acknowledges financial support from the SNF (Grant
No. P2EZP2_191888). N.A.-F. has been funded by the
European Program scheme “INFRAIA-01- 2018-2019: Re-
search and Innovation action,” Grant Agreement No. 871042,
“SoBigData++: European Integrated Infrastructure for So-
cial Mining and Big Data Analytics.” T.A. received financial
support from the LCM–K2 Center within the framework of
the Austrian COMET-K2 program.

APPENDIX A: KURAMOTO OSCILLATORS

1. Curriculum learning

A curriculum learning procedure is used to train Kuramoto
models. The algorithm is described below in Algorithm 3.

2. Synchronization loss before convergence

In this section, we describe one of the results presented
in Fig. 3(b) in more detail. We observe that NODEC takes
more time to converge to a synchronized state in the example

illustrated in Fig. 7. We also observe that NODEC requires a
higher amount of control energy before reaching the synchro-
nized state [see Fig. 3(a)]. Once synchronicity is reached, the
NN can adapt and produce lower energy controls. This might
not be the case for feedback control, which has a constant term
ζ multiplied by the driver matrix values.

FIG. 7. Early order parameter values based on Fig. 3(b).

013221-11

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 8. Evolution of the proportion of susceptible, infected, recovered, and contained individuals for all baselines in the target subgraph
G∗. We report the performance for (a) no control (F) baseline, (b) random control (RND) baseline, (c) reinforcement learning control (RL)
baseline, (d) NN control (NODEC) baseline, and (e) targeted constant control (TCC) baseline.

APPENDIX B: EPIDEMIC MODEL

1. Neural network architecture

Here, we provide some technical details and an overview
of the GNN architecture presented in Fig. 4. The final output
of an NN is a control vector û(X (t)). The input of the GNN is
a tensor � ∈ R4×N×d̂ , where d̂ is the maximum degree of the

TABLE II. Tested and evaluated hyperparameters for the TD3
reinforcement learning baseline.

Hyperparameter Value Tested values

Actor learning rate 0.0003 0.0003, 0.003, 0.03
Actor architecture GNN GNN, FC
Critics learning rate 0.0001 0.0001, 0.001, 0.01
Critics architecture FC FC
τ (Polyak update parameter) 0.005 0.005, 0.05
γ (discount factor) 0.99 0.5, 0.8, 0.99, 1
Exploration Gaussian noise mean 0.01 0, 0.01. 0.1
Update frequency of actor parameters 4 epochs 1–4 epochs
Policy noise 0.001 0.001. 0.01, 0.1
Noise clip 0.5 0.5, 0.2
Reward normalization True True, False

graph. An element �k, j,i of the tensor represents the kth state
of the jth neighbor of node i. The jth neighbor of node i is
fixed via any permutation of neighbors prior to training. The
operation that constructs a tensor � from the input state ma-
trix X (t) is referred to as “neighborhood embedding.” GNN
applies an operation for each node that aggregates the state
values over all neighboring nodes and produces a hidden state
tensor H (�). This hidden state is provided to the consecutive
layers, and a hidden state matrix (or embedding) Z ∈ R4×N

is calculated, with same dimensions as the input state matrix
X . This matrix Z is provided again as an input to the GNN
structure described above (see left side of Fig. 4) and a new
tensor � is calculated based on the neighborhood embedding
procedure. Providing the calculated hidden state matrix Z as
an input to the GNN is termed “message passing” [106].
This is a typical procedure when training GNNs. Message
passing essentially allows the NN to calculate a hidden state
representation for each node i but also leverage information
of nonadjacent neighbors for the calculation after the first
repetition. We observe that allowing the message passing
process to repeat four times maximizes the performance of
the network for the current control task. For example, in the
second iteration of the above procedure, the input tensor � of
the GNN contains a representation calculated by a functional
on an aggregation over all states x j (t) of all next-nearest

013221-12

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

FIG. 9. RL learning performance evaluation plots using Tensorboard with 0.8 smoothing for (a) total episode reward as TD3 trains, (b) actor
loss as TD3 trains, (c) first critic loss, and (d) second critic loss.

neighbors j of node i. In conclusion, the GNN architecture
aims to learn a state representation Z that can be used to
produce efficient control signals that take into account the
states of nonneighboring nodes of each driver. After the last
message propagation is finished, the mean over the channels
is calculated over the hidden state matrix 〈Z〉0 generating a
hidden state vector z ∈ RN .

2. Reinforcement learning

In this section, we focus on the technical details of the
RL baseline we used in the main paper. Reinforcement learn-
ing is often described as “model-free” and addresses the (i)
prediction problem and (ii) control problem [37]. We note
that RL approaches may suffer from credit assignment chal-
lenges, where a reward signal is uninformative regarding the
specific actions (especially in terms of time) that help reach
the goal [103]. In contrast to RL, the proposed NODEC is
not model-free and the underlying gradient descent is directly
calculated from the loss function. Therefore, we do not need to
consider value prediction and credit assignment. It is possible
to design a model-free NODEC by learning the underlying
system dynamics simultaneously with control, which could be
an interesting future extension of our work. Note that a direct
performance comparison between RL and NODEC in terms
of target loss may be considered unfair especially toward

RL methods, unless extensive hyperparameter optimization is
performed beforehand.

We first implement SIR-type dynamics as an RL environ-
ment. The softmax activation function and budget assignment
discussed in Sec. V B 4 take place in the environment and RL
computes the softmax logit values over all nodes. Reinforce-
ment learning is allowed to interact with the environment in a
fixed interaction interval �t = 10−2, similar to NODEC. A2C
and SAC implementations are taken from StableBaselines3
[107]. Both implementations were tested for different param-
eter sets and trained for at least 50000 steps. Unfortunately,
no implementation was able to “flatten the curve” consid-
erably better than random control. Next, we use the TD3
implementation from Tianshu [108], which currently show-
cases high-speed benchmarks and allows more customization
of policy/critic architectures. The corresponding RL training
takes around 17 s per epoch, whereas NODEC takes approxi-
mately 5.5 s per epoch. Neither TD3 or NODEC fully utilized
the GPU in terms of computing and memory resources, often
staying below 50% of usage, while memory utilization usually
was below 10GB per method.

We show an overview of the hyperparameters that we use to
train TD3 in Table II. For more detailed explanations of these
hyperparameters, see Ref. [51] and the Tianshu documenta-
tion [108]. Several baseline architectures in RL frameworks

013221-13

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

are often fully connected multilayer perceptrons. Still, we
observe that the graph NN presented in Fig. 4 was more
efficient in converging rewards in less computation time. We
trained all models for 100 epochs and stored and evaluated
the best model. In SAC and A2C, one training environment
was used, whereas TD3 was sampling from two independent
environments simultaneously due to its computational
speed.

In terms of parameters both the TD3 policy network and
NODEC GNN have exactly the same learning parameters
(weights), but training is very different, as the gradient flows
described in Fig. 1 and Algorithms 1 and 2 cannot happen. The
value function is now used for the calculation of similar gra-
dients by predicting the cumulative reward signal. We studied
several possible reward designs, and in the end we rigorously
tested the following rewards:

The first reward signal we tested is calculated based on
the mean number of infected nodes belonging to the target
subgraph ĪG∗ (t) at time t :

ρ1(t) = −[ĪG∗ (t)]2�t . (B1)

Although this reward seemingly provides direct feedback for
an action, it also leads to several challenges. First, it does
not necessarily flatten the curve, but it minimizes the overall
infection through time. Such a reward could, for instance,
potentially reinforce actions that lead to “steep” peaks instead
of a flattened infection curve, as in practice it minimizes the
area under the I (t) curve. Furthermore, as current containment
controls may have effect if applied consistently and in the
long term, such reward design suffers from temporal credit
assignment, since the reward value depends on a long and
varying sequence of actions. Finally, any actions that happen
after the peak infection occurrence will still be rewarded neg-
atively, although such actions do not contribute to the goal
minimization.

The next reward

ρ2(t) =
{

0 , if t < T,

−(maxt�T ĪG∗ (t))2 , otherwise,
(B2)

is designed to overcome the aforementioned shortcomings.
This reward signal is sparse through time, as it is nonzero only
at the last step of the control when the infection peak is known.
The main property of interest of Eq. (B2) is that it has the same
value as the loss that we used to train NODEC (see Eq. (19).
This reward signal also suffers from credit assignment prob-
lems. As the reward is assigned at a fixed time and not as
a direct result of the actions that caused it, the correspond-
ing reward dynamics is non-Markovian [109]. To address
challenges caused by rewards with non-Markovian properties,
reward shaping [110] and recurrent value estimators [111] can
be used. Furthermore, n-step methods or eligibility traces can
be evaluated if we expect the reward signal to be Markovian
but with long and/or varying time dependencies.

The final reward ρ3(t) that we evaluated and used in the
presented results is designed with two principles in mind:∑

t

ρ3(t) ∝∼
(

max
t�T

ĪG∗ (t)
)2

, (B3a)

argmint�T

∑
t

ρ3(t) = (
argmax

t�T
ĪG∗ (t)

)
(B3b)

FIG. 10. Spread of infection for all baselines.

Following those principles, the reward signal is approximately
proportional to and provides information about the value of
the infection peak used in the NODEC loss calculation. The
reward sum minimizes exactly at the time when peak infection
occurs. This property is expected to reduce effects of temporal
credit assignment. When aiming to replace the proportionality
in Eq. (B3a) with an equality, we obtain

ρ3(t) =
{

0, if ĪG∗ (t) � maxτ<t (ĪG∗ (τ)),

−Ī2
G∗ (t) + (maxτ<t ĪG∗ (τ))2, otherwise,

(B4)

which is equivalent to the reward function of Eq. (20) in
the main paper. It is straightforward to show that Eq. 20
indeed satisfies

∑
t ρ3(t) = maxt�T (ĪG∗ (t))2 and Eq. (B3b).

This reward greatly improved performance without resort-
ing to recurrent value estimators or further reward shaping.
Still, after all proposed reward design and hyperparameter
optimization, NODEC has a higher performance (see Fig. 8),
although TD3 performs better than random control.

In Figs. 6 and 10 the dynamic controls of both RL and
NODEC seem to focus on protecting the target subgraph
by containing the infection as it spreads. In contrast to tar-
geted constant control, they succeed in doing so by protecting
driver nodes outside the target subgraph. When comparing the
dynamic control patterns, the budget allocation of NODEC
seems to be much more concentrated on specific nodes, and it
creates more often contiguous areas of containment.

In Fig. 8, we also show the evolution of the proportion of
susceptible S(t), infected I (t), recovered R(t), and contained
individuals Y (t). We observe that TCC and NODEC show
clear signs of flattening the curve by preserving the highest
susceptibility fraction and lowest recovery fraction at time T ,
which can be interpreted as less susceptible nodes becoming
infected and needing to recover. The random method outper-
forms the other frameworks in terms of effective containment

013221-14

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

TABLE III. Nomenclature Part I for Sec. IV.

t0 Initial time for control of a dynamical process. Often we may also use t = 0 without loss of generality.
T Terminal time for control of a dynamical system.
�t Timestep
G(V, E) Graph represented as an ordered pair of a set of nodes V and a set of edges E.
N Number of nodes in a graph.
A Adjacency matrix that represents a graph G. It has non zero elements Ai, j
= 0 if and only if nodes i, j are connected.
x(t) Vector x(t) ∈ RN , which denotes the state of a dynamical system at time t .
x∗ Vector that denotes the target state of a dynamical system.
ẋ(t) Newton’s dot notation for differentiation of the system state.
M Number of driver nodes, i.e., nodes that can be controlled in a graph. As the driver nodes is a subset of all the nodes we have M � N .
f (t, x(t), u(x(t))) System evolution function that denotes the dynamic interactions between nodes

and drivers when calculating the state derivative.
u(x(t)) Feedback control signal function u(x(t)) : RN → RM calculated based on the system state at time t .
B Driver matrix B ∈ RN×M , where Bi,m = 1 if node i is the m-th driver node and receives a control signal um(t).
E (u(x(t))) Total energy value of a control signal calculated from time t0 until time t .
û(x(t)) Control signal value calculated by NODEC.
w Vector with NN parameters for NODEC.
XT

t0
State trajectory between t0 and T . An ordered set of state vectors x(t), t ∈ [t0, T].

J (XT
t0
, x∗; w) Learning and control objective function for NODEC. In the current work, we evaluate control goals x∗

that are achieved over a state trajectory XT
t0

.
�w Gradient descent update for NN parameters.
η Learning rate hyperparameter for gradient descent.
h(t) Hidden state evolution function used in the neural ODE paper [28].
ODESolve(x(t), t, T, f , u) Function that denotes a numerical ODE solving scheme.

fractions, as random control assignments at each time step let
the disease spread such that higher proportions of infected in-
dividuals I (t) are reached in the target subgraph and therefore
drivers with high infection fractions are effectively contained
when controlled. Although low energy effective containment
might seem favorable at first sight, it is not optimal in terms
of flattening the curve with restricted budget, as it allows high
infection fractions to occur within an area of interest. Budget
restrictions often do not allow to fully constrain the spread in
all infected nodes.

In Fig. 9, we observe that although RL does not converge
in terms of critic and actor loss, it still converges to a higher
reward. This confirms that RL is capable of controlling contin-
uous dynamics with arbitrary targets, but it requires significant
parametrization and training effort to have good stable value
estimates.

Finally, we tried to examine transfer learning capabilities
from NODEC to RL. A closer look at Fig. 4 reveals that the
parameterized graph neural architecture used for NODEC and
RL can be the same, i.e., there are no weights in the decision

TABLE IV. Nomenclature Part II (Coupled Oscillators) for Sec. V A.

ωi Natural frequency of oscillator (node) i.
K Coupling constant.
h(xi − x j) 2π -periodic function function that couples oscillators. Often the sine function is used, s.t. h(·) = sin(·).
x	 Synchronized steady state of coupled oscillator system.
D Graph degree diagonal matrix D of G, where all off-diagonal elements are 0 and diagonal elements are equal to the degree

Di,i = di of the corresponding node.
L Graph Laplacian matrix L = D − A of G.
L† Pseudoinverse of the graph Laplacian matrix L of G.
b(FC) Feedback control gain vector of the FC baseline.
r(t) Order parameter, which denotes the synchronization of coupled oscillators.
ζ Scaling parameter for feedback control baseline.
τ Timestep.
� Number of timesteps for discretizing the time period [0, T].
ξ Timestep index used to calculate discretized approximations of continuous-time quantities.
rNODEC(t) Order parameter value achieved under NODEC control at time t .
ENODEC(t) Total energy value achieved under NODEC control at time t .
rFC(t) Order parameter value achieved under feedback control baseline at time t .
EFC(t) Total energy value achieved under feedback control baseline control at time t .

013221-15

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

TABLE V. Nomenclature Part III (Disease Spreading) for Sec. V B.

Si(t) Susceptible fraction of individuals at node i at time t .
Ii(t) Infected fraction of individuals at node i at time t .
Ri(t) Recovered fraction of individuals at node i at time t .
Yi(t) Contained fraction of individuals at node i at time t .
X (t) Matrix representation of the state, where the vectors S, I, R, Y are rows. Each column represent the state of a certain node.
G∗ Target subgraph, i.e., the subset of nodes that we are interested to reduce the peak infection.
β Infection rate.
γ Recovery rate.
c j Number sampled from a uniform distribution c j ∼ U(0, 1) to calculate random control.
b Control budget. A linear constraint on maximum total control that can be applied at time t .
ρ(t) Reward signal for reinforcement learning techniques.
di Degree of a node i.
d̂ Maximum degree.
� Input tensor for convolutional NN of the GNN.
Z Output of hidden layers to be used for message propagation in the graph NN.

network layers of Fig. 4. This means that the architectures
trained with NODEC can be used as the “logit” action policy
in RL, showcasing an effective use of transfer learning. In the
given example, the RL policy network starting with trained
NODEC parameters, is further trained for 100 episodes. After
training, RL had a similar performance as NODEC since both
methods flatten the curve at approximately ĪG∗ = 0.0788. This
means that RL did not improve the solution generated by
NODEC. This example can be used to illustrate the inter-
play between NODEC and RL and how they can be used
in synergy, e.g., when back-propagating through continu-
ous dynamics is too expensive for high number of epochs.
Reinforcement learning can be used as a metaheuristic on top
of NODEC, and the latter can be treated as an alternative to
imitation learning.

APPENDIX C: OTHER NOTES

1. Hardware and code

Our experiments were mainly conducted on a dedicated
server that was equipped with a NVIDIA TITAN RTX GPU,
64GB of RAM, and an Intel I9 9900KF 8-core processor.
Partial code tests with assertions were conducted to examine
(i) stiffness, (ii) numerical errors or bugs, and (iii) validity
and similarity of the same dynamics controlled by different
models. For the majority of the experiments seeds are fixed
and initial states parameters are stored in data files to enable
reproducibility. ODEsolve and sample experiments may be
affected by stochasticity on different machines. Based on sta-
tistical testing, we observe that with a good initialization and
NN hyperparameter optimization, NODEC performs close to
the reported values. Future works under provided repository,
may perform extensive hyperparameter studies dedicated to
specific dynamics and graphs. The average training time of
NODEC per task is between 5 and 10 min, depending on
the complexity of the task. Baseline methods calculations
and parametrizations would also take minutes, making time
performance comparable.

The project code can be found on GitHub [112] under MIT
license. Numerical experiments are stored in the experiment
folder (please check github README for more details).

2. ODE solvers and stiffness

We used the Dormand–Prince solver [54] for the majority
of our numerical experiments (in particular, for training). For
evaluating our results, we use a specific method, which allows
the controller to change the control signal at constant time
intervals. This choice allows us to compare control errors and
energy costs without considering interaction frequency bias
that occurs when one method outperforms another method
because the solver allowed it to interact more often with the
system and produce more tailored control signals. Adaptive
step length helps the NN to learn controls for variable
interaction intervals and approximate continuous control
better. We performed small-scale unit tests with VODE [54]
against Dormand–Prince, Runge–Kutta, and implicit Adams

013221-16

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

implementations, and we noticed that for most systems
numerical errors were negligible.

The goal of this paper is to evaluate the ability of NODEC
to learn controls within a solver. In future works that aim
at controlling large-scale systems, different ODE solvers
may be chosen according to both the system’s stiffness
and performance requirements of the application. Whenever
dynamics and training had high VRAM requirements, the
adjoint method was used (mainly the implementations from
Refs. [28,113]).

3. Adaptive learning rate training

Learning rate plays an important role on reaching a low
energy control. To determine the optimal learning rate values
we propose the adaptive learning rate scheme found in
Algorithm 4.

APPENDIX D: NOMENCLATURE

The notation used in this article is summarized in Tables
III–V.

[1] L. Böttcher, H. J. Herrmann, and H. Gersbach, Clout, activists
and budget: The road to presidency, PLoS One 13, e0193199
(2018).

[2] M. Hoferer, L. Böttcher, H. J. Herrmann, and H. Gersbach,
The impact of technologies in political campaigns, Physica A
538, 122795 (2020).

[3] D. Brockmann and D. Helbing, The hidden geometry of
complex, network-driven contagion phenomena, Science 342,
1337 (2013).

[4] N. Antulov-Fantulin, A. Lančić, T. Šmuc, H. Štefančić, and
M. Šikić, Identification of Patient Zero in Static and Temporal
Networks: Robustness and Limitations, Phys. Rev. Lett. 114,
248701 (2015).

[5] L. Böttcher, J. Andrade, and H. J. Herrmann, Targeted recov-
ery as an effective strategy against epidemic spreading, Sci.
Rep. 7, 1 (2017).

[6] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, The
Kuramoto model in complex networks, Phys. Rep. 610, 1
(2016).

[7] M. K. Stephen Yeung and S. H. Strogatz, Time Delay in the
Kuramoto Model of Coupled Oscillators, Phys. Rev. Lett. 82,
648 (1999).

[8] D. Delpini, S. Battiston, M. Riccaboni, G. Gabbi, F. Pammolli,
and G. Caldarelli, Evolution of controllability in interbank
networks, Sci. Rep. 3, 01626 (2013).

[9] N. G. Van Kampen, Stochastic Processes in Physics and Chem-
istry (Elsevier, Amsterdam, 1992), Vol. 1.

[10] J. E. Moyal, Stochastic processes and statistical physics, J. R.
Stat. Soc. Ser. B (Methodol.) 11, 150 (1949).

[11] H. Andersson and T. Britton, Stochastic Epidemic Models
and Their Statistical Analysis (Springer Science and Business
Media, Berlin, 2012), Vol. 151.

[12] C. Castellano and R. Pastor-Satorras, Thresholds for Epidemic
Spreading in Networks, Phys. Rev. Lett. 105, 218701 (2010).

[13] J. P. Gleeson, Binary-State Dynamics on Complex Networks:
Pair Approximation and Beyond, Phys. Rev. X 3, 021004
(2013).

[14] B. Barzel and A.-L. Barabási, Universality in network dynam-
ics, Nat. Phys. 9, 673 (2013).

[15] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature (London) 393, 440 (1998).

[16] D. J. D. S. Price, Networks of scientific papers, Science 149,
510 (1965).

[17] A.-L. Barabási and R. Albert, Emergence of scaling in random
networks, Science 286, 509 (1999).

[18] M. Girvan and M. E. Newman, Community structure in social
and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821
(2002).

[19] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical
phenomena in complex networks, Rev. Mod. Phys. 80, 1275
(2008).

[20] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, Kronecker graphs: An approach to modeling
networks, J. Mach. Learn. Res. 11, 985 (2010).

[21] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Controllability of
complex networks, Nature (London) 473, 167 (2011).

[22] Y.-Y. Liu and A.-L. Barabási, Control principles of complex
systems, Rev. Mod. Phys. 88, 035006 (2016).

[23] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical
Processes on Complex Networks (Cambridge University Press,
Cambridge, UK, 2008).

[24] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Epidemic processes in complex networks, Rev.
Mod. Phys. 87, 925 (2015).

[25] O. L. Mangasarian, Sufficient conditions for the optimal con-
trol of nonlinear systems, SIAM J. Control 4, 139 (1966).

[26] M. I. Kamien and N. L. Schwartz, Sufficient conditions in
optimal control theory, J. Econ. Theory 3, 207 (1971).

[27] E. McShane, The calculus of variations from the beginning
through optimal control theory, SIAM J. Control Optim. 27,
916 (1989).

[28] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud,
Neural ordinary differential equations, Adv. Neural Inf.
Process Syst. 31 (2018).

[29] R. E. Kalman, Contributions to the theory of optimal control,
Boletín de la Sociedad Matemática Mexicana 5, 102 (1960).

[30] M. L. Hautus, Controllability and observability conditions of
linear autonomous systems, in Proceedings of the Indagationes
Mathematicae), Vol. 72 (North-Holland Publishing Company,
Amsterdam Netherlands, 1969), pp. 443–448.

[31] C.-T. Lin, Structural controllability, IEEE Trans. Autom.
Control 19, 201 (1974).

[32] J. Ruths and D. Ruths, Control profiles of complex networks,
Science 343, 1373 (2014).

[33] G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, Controlling
Complex Networks: How Much Energy is Needed? Phys. Rev.
Lett. 108, 218703 (2012).

[34] X. Zhou, Maximum principle, dynamic programming, and
their connection in deterministic control, J. Optim. Theory
Appl. 65, 363 (1990).

013221-17

https://doi.org/10.1371/journal.pone.0193199
https://doi.org/10.1016/j.physa.2019.122795
https://doi.org/10.1126/science.1245200
https://doi.org/10.1103/PhysRevLett.114.248701
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1038/srep01626
https://doi.org/10.1103/PhysRevLett.105.218701
https://doi.org/10.1103/PhysRevX.3.021004
https://doi.org/10.1038/nphys2741
https://doi.org/10.1038/30918
https://doi.org/10.1126/science.149.3683.510
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1038/nature10011
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1137/0304013
https://doi.org/10.1016/0022-0531(71)90018-4
https://doi.org/10.1137/0327049
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://doi.org/10.1109/TAC.1974.1100557
https://doi.org/10.1126/science.1242063
https://doi.org/10.1103/PhysRevLett.108.218703
https://doi.org/10.1007/BF01102352

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

[35] W. H. Fleming and H. M. Soner, Controlled Markov Processes
and Viscosity Solutions (Springer Science & Business Media,
Berlin, 2006), Vol. 25.

[36] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Program-
ming (Princeton University Press, Prtinceton, NJ, 2015).

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (MIT Press, Cambridge, MA, 2018).

[38] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L.
Lewis, Optimal and autonomous control using reinforcement
learning: A survey, IEEE Trans. Neural Networks Learn. Syst.
29, 2042 (2017).

[39] H. Frankowska, Nonsmooth solutions of Hamilton-Jacobi-
Bellman equation, in Modeling and Control of Systems
(Springer-Verlag, Berlin, 1989), pp. 131–147.

[40] F. Lewis, S. Jagannathan, and A. Yesildirak, Neural Network
Control of Robot Manipulators and Nonlinear Systems (CRC
Press, Boca Raton, FL, 2020).

[41] S. J. Yoo, J. B. Park, and Y. H. Choi, Stable predictive control
of chaotic systems using self-recurrent wavelet neural net-
work, Int. J. Control Autom. Syst. 3, 43 (2005).

[42] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter,
Differentiable mpc for end-to-end planning and control, in
Advances in Neural Information Processing Systems (Curran
Associates, Red Hook, NY, 2018), pp. 8289–8300.

[43] P. Holl, V. Koltun, and N. Thuerey, Learning to control PDEs
with differentiable physics, in Proceedings of the International
Conference on Learning Representations (2020).

[44] B. Pang, Z.-P. Jiang, and I. Mareels, Reinforcement learning
for adaptive optimal control of continuous-time linear periodic
systems, Automatica 118, 109035 (2020).

[45] U. Biccari and E. Zuazua, A stochastic approach to the syn-
chronization of coupled oscillators, Front. Energy Res. 8, 115
(2020).

[46] A. W. Wijayanto and T. Murata, Flow-aware vertex protec-
tion strategy on large social networks, in Proceedings of the
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM) (IEEE, Piscataway,
NJ, 2017), pp. 58–63.

[47] S. P. Cornelius, W. L. Kath, and A. E. Motter, Realistic control
of network dynamics, Nat. Commun. 4, 1 (2013).

[48] L. Böttcher, N. Antulov-Fantulin, and T. Asikis, AI Pontryagin
or how artificial neural networks learn to control dynamical
systems, Nat. Commun. 13, 333 (2022).

[49] P. S. Skardal and A. Arenas, On controlling networks of
limit-cycle oscillators, Chaos: An Interdisciplinary Journal of
Nonlinear Science 26, 094812 (2016).

[50] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor, in Proceedings of
the International Conference on Machine Learning (PMLR,
Stockholmsmässan, Stockholm Sweden, 2018), pp. 1861–
1870.

[51] S. Fujimoto, H. Hoof, and D. Meger, Addressing function
approximation error in actor-critic methods, in Proceed-
ings of the International Conference on Machine Learn-
ing (PMLR, Stockholmsmässan, Stockholm Sweden, 2018),
pp. 1587–1596.

[52] M. Newman, Networks (Oxford University Press, Oxford, UK,
2018).

[53] O. Mayr, The origins of feedback control, Sci. Am. 223, 110
(1970).

[54] L. F. Shampine, Numerical Solution of Ordinary Differential
Equations (Routledge, Oxford, UK, 2018).

[55] C. Commault, J.-M. Dion, and J. W. van der Woude, Charac-
terization of generic properties of linear structured systems for
efficient computations, Kybernetika 38, 503 (2002).

[56] T. Yamada and L. R. Foulds, A graph-theoretic approach to
investigate structural and qualitative properties of systems: A
survey, Networks 20, 427 (1990).

[57] M. R. Garey and D. S. Johnson, Computers and Intractability
(Freeman, San Francisco, CA, 1979), Vol. 174.

[58] A. Olshevsky, Minimal controllability problems, IEEE Trans.
Control Network Syst. 1, 249 (2014).

[59] P. S. Skardal and A. Arenas, Control of coupled oscillator
networks with application to microgrid technologies, Sci. Adv.
1, e1500339 (2015).

[60] In shared control, the same control signal um[x(t)] is applied
to multiple nodes, while in interacting control multiple control
signals are applied to the same node i.

[61] Imposing an energy constraint would require collecting and
back-propagating the norm of all control inputs at each time
step during training. Using such a back-propagation scheme
would increase training times considerably because of the
potentially large number of control inputs in large-scale graph
dynamical systems.

[62] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning: A sur-
vey, J. Mach. Learn. Res. 18, 1 (2018).

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
Pytorch: An imperative style, high-performance deep learning
library, in Advances in Neural Information Processing Systems
(Curran Associates, Red Hook, NY, 2019), pp. 8026–8037.

[64] P. Kidger, J. Morrill, J. Foster, and T. Lyons, Neural controlled
differential equations for irregular time series, in Advances in
Neural Information Processing Systems (Curran Associates,
Red Hook, NY, 2020).

[65] M. H. Stone, The generalized Weierstrass approximation the-
orem, Math. Mag. 21, 237 (1948).

[66] D.-X. Zhou, Universality of deep convolutional neural net-
works, Appl. Comput. Harmon. Anal. 48, 787 (2020).

[67] A. M. Schäfer and H. G. Zimmermann, Recurrent neu-
ral networks are universal approximators, in Proceedings of
the International Conference on Artificial Neural Networks
(Springer, Berlin, 2006), pp. 632–640.

[68] E. D. Sontag and H. Siegelmann, On the computational
power of neural nets, J. Comput. Syst. Sci. 50, 132
(1995).

[69] B. Hanin and M. Sellke, Approximating continuous func-
tions by relu nets of minimal width, arXiv:1710.11278
(2017).

[70] J. Lygeros, On reachability and minimum cost optimal control,
Automatica 40, 917 (2004).

[71] T. Teshima, K. Tojo, M. Ikeda, I. Ishikawa, and K. Oono, Uni-
versal approximation property of neural ordinary differential
equations, arXiv preprint arXiv:2012.02414 (2020).

[72] M. A. Bucci, O. Semeraro, A. Allauzen, G. Wisniewski,
L. Cordier, and L. Mathelin, Control of chaotic systems by

013221-18

https://doi.org/10.1109/TNNLS.2017.2773458
https://doi.org/10.1016/j.automatica.2020.109035
https://doi.org/10.3389/fenrg.2020.00115
https://doi.org/10.1038/ncomms2939
https://doi.org/10.1038/s41467-021-27590-0
https://doi.org/10.1063/1.4954273
https://doi.org/10.1038/scientificamerican1070-110
http://eudml.org/doc/33600
https://doi.org/10.1002/net.3230200406
https://doi.org/10.1109/TCNS.2014.2337974
https://doi.org/10.1126/sciadv.1500339
http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.2307/3029337
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1006/jcss.1995.1013
http://arxiv.org/abs/arXiv:1710.11278
https://doi.org/10.1016/j.automatica.2004.01.012
http://arxiv.org/abs/arXiv:2012.02414

NEURAL ORDINARY DIFFERENTIAL EQUATION CONTROL … PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

deep reinforcement learning, Proc. R. Soc. A 475, 20190351,
(2019).

[73] C. Hua and X. Guan, Adaptive control for chaotic systems,
Chaos, Solitons Fractals 22, 55 (2004).

[74] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis,
F. L. Lewis, and W. E. Dixon, A novel actor–critic–identifier
architecture for approximate optimal control of uncertain non-
linear systems, Automatica 49, 82 (2013).

[75] B. G. Liptak, Instrument Engineers’ Handbook, Volume Two:
Process Control and Optimization (CRC Press, Boca raton, FL,
2018).

[76] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos,
The explicit linear quadratic regulator for constrained systems,
Automatica 38, 3 (2002).

[77] J. Sethna et al., Statistical Mechanics: Entropy, Order Param-
eters, and Complexity (Oxford University Press, Oxford, UK,
2006), Vol. 14.

[78] M. Brede, Locals vs. global synchronization in networks of
nonidentical Kuramoto oscillators, Eur. Phys. J. B 62, 87
(2008).

[79] T. Asikis, L. Böttcher, and N. Antulov-Fantulin, Github repos-
itory for neural network control (2020), https://github.com/
asikist/nnc.

[80] T. Asikis, L. Böttcher, and N. Antulov-Fantulin, Code
ocean capsule for reproducing all nodec experiments
https://codeocean.com/capsule/1934600/tree/v1 (2021).

[81] T. Asikis, L. Böttcher, and N. Antulov-Fantulin, Data
repository for all nodec experiments, https://ieee-
dataport.org/documents/neural-ordinary-differential-
equation-control-dynamics-graphs (2020).

[82] D. Cumin and C. Unsworth, Generalising the Kuramoto model
for the study of neuronal synchronisation in the brain, Physica
D 226, 181 (2007).

[83] F. Dorfler and F. Bullo, Synchronization and transient stabil-
ity in power networks and nonuniform Kuramoto oscillators,
SIAM J. Control Optim. 50, 1616 (2012).

[84] D. Schoenwald and U. Ozguner, Optimal control of feedback
linearizable systems, in Proceedings of the 31st IEEE Confer-
ence on Decision and Control (IEEE, Piscataway, NJ, 1992),
pp. 2033–2034.

[85] C. Bick, M. J. Panaggio, and E. A. Martens, Chaos in Ku-
ramoto oscillator networks, Chaos 28, 071102 (2018).

[86] Y. L. Maistrenko, O. V. Popovych, and P. A. Tass, Chaotic
attractor in the Kuramoto model, Int. J. Bifurcat. Chaos 15,
3457 (2005).

[87] Y. Kuramoto, Self-entrainment of a population of coupled
nonlinear oscillators, in Proceedings of the International Sym-
posium on Mathematical Problems in Theoretical Physics
(Springer, Berlin, 1975), pp. 420–422.

[88] The target states that satisfy this control goal are not unique
and not necessarily known, but satisfy x∗ = argmaxxr(x).
Since there is no specific dependence on a target state vector,
we omit the quantity x∗ in the loss function.

[89] The initial time is omitted [ξ = {1, . . . , �} in Eq. (13)], since
we assume that no control is applied prior to reaching the
initial state.

[90] We tested several other values before selecting the specific
value. Smaller values would lead to a lower degree of syn-
chronization than that achieved by NODEC, but they would
require less energy. Higher values would either completely

fail to synchronize the system or require very high amounts
of energy to achieve similar results.

[91] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, Curricu-
lum learning, in Proceedings of the International Conference
on Machine Learning (Association for Computing Machinery,
Montreal, Quebec, Canada, 2009), pp. 41–48.

[92] K. J. Åström and R. M. Murray, Feedback Systems: An In-
troduction for Scientists and Engineers (Princeton Univeristy
Press, Princeton, NJ, 2010).

[93] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
in Proceedings of the International Conference on Machine
Learning (JMLR.org, Lille, France, 2015), pp. 448–456.

[94] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, in Proceedings of the International Conference
on Learning Representations (ICLR), San Diego, CA, May 7–9,
edited by Y. Bengio and Y. LeCun (2015).

[95] M. Salathé and J. H. Jones, Dynamics and control of diseases
in networks with community structure, PLoS Comput. Biol. 6,
e1000736 (2010).

[96] B. F. Maier and D. Brockmann, Effective containment explains
subexponential growth in recent confirmed covid-19 cases in
China, Science 368, 742 (2020).

[97] We note that here we use capital letters for the SIR-type
variables, to follow the common notation in related literature.

[98] M. Xia, L. Böttcher, and T. Chou, Controlling epidemics
through optimal allocation of test kits and vaccine doses across
networks (2021), arXiv:2107.13709.

[99] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T.
Harley, D. Silver, and K. Kavukcuoglu, Asynchronous meth-
ods for deep reinforcement learning, in Proceedings of the
International Conference on Machine Learning (2016), pp.
1928–1937.

[100] S. J. Pan and Q. Yang, A survey on transfer learning, IEEE
Trans. Knowl. Data Eng. 22, 1345 (2009).

[101] D. Acemoglu, V. Chernozhukov, I. Werning, and M. D.
Whinston, Optimal targeted lockdowns in a multi-group sir
model, NBER Working Paper 27102 (2020).

[102] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and
G. Pappas, Optimal vaccine allocation to control epidemic
outbreaks in arbitrary networks, in Proceedings of the IEEE
Conference on Decision and Control (IEEE, Piscataway, NJ,
2013), pp. 7486–7491.

[103] R. S. Sutton, Temporal credit assignment in reinforcement
learning, Ph.D. dissertation, University of Massachusetts
Amherst, 1985.

[104] In practice control signals may approach 0 due to floating point
errors.

[105] Looking at the control energy Eq. (2), we observe that low
absolute value control signals assigned over many driver nodes
may produce lower energy values compared to very high ab-
solute value control signals applied to fewer driver nodes.

[106] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful are
graph neural networks? in Proceedings of the International
Conference on Learning Representations (ICLR, New Orleans,
USA, 2019).

[107] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M.
Ernestus, and N. Dormann, Stable-Baselines3: Reliable
Reinforcement Learning Implementations, Journal of Machine
Learning Research, 11, 1 (2021).

013221-19

https://doi.org/10.1098/rspa.2019.0351
https://doi.org/10.1016/j.chaos.2003.12.071
https://doi.org/10.1016/j.automatica.2012.09.019
https://doi.org/10.1016/S0005-1098(01)00174-1
https://doi.org/10.1140/epjb/e2008-00126-9
https://github.com/asikist/nnc
https://codeocean.com/capsule/1934600/tree/v1
https://ieee-dataport.org/documents/neural-ordinary-differential-equation-control-dynamics-graphs
https://doi.org/10.1016/j.physd.2006.12.004
https://doi.org/10.1137/110851584
https://doi.org/10.1063/1.5041444
https://doi.org/10.1142/S0218127405014155
https://doi.org/10.1371/journal.pcbi.1000736
https://doi.org/10.1126/science.abb4557
http://arxiv.org/abs/arXiv:2107.13709
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.3386/w27102
http://jmlr.org/papers/v22/20-1364.html

ASIKIS, BÖTTCHER, AND ANTULOV-FANTULIN PHYSICAL REVIEW RESEARCH 4, 013221 (2022)

[108] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M.
Zhang, H. Su, J. Zhu, Tianshou: A highly modular-
ized deep reinforcement learning library, arXiv:2107.14171,
2021.

[109] S. Thiébaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza,
Decision-theoretic planning with non-Markovian rewards,
J. Artif. Intell. Res. 25, 17 (2006).

[110] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith, Non-
Markovian rewards expressed in ltl: Guiding search via reward
shaping, in Proceedings of the Annual Symposium on Combi-
natorial Search (2017).

[111] E. Mizutani and S. E. Dreyfus, Two stochastic dynamic
programming problems by model-free actor-critic recurrent-
network learning in non-Markovian settings, in Proceedings of
the IEEE International Joint Conference on Neural Networks
(IEEE, Piscataway, NJ, 2004), Vol. 2, pp. 1079–1084.

[112] https://github.com/asikist/nnc.
[113] P. Kidger, R. T. Q. Chen, and T. Lyons, “Hey, that’s not an

ODE”: Faster ODE Adjoints via Seminorms, edited by M.
Meila and T. Zhang, in Proceedings of the 38th International
Conference on Machine Learning, Proceedings of Machine
Learning Research Vol. 139 (PMLR, 2021), pp. 5443–5452.

013221-20

http://arxiv.org/abs/arXiv:2107.14171
https://doi.org/10.1613/jair.1676
https://github.com/asikist/nnc

