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Anomalous Hall effect in a compensated ferrimagnet: Symmetry analysis for Mn3Al
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It has long been believed that the anomalous Hall effect (AHE) can only be observed in ferromagnets.
However, any magnetic material can exhibit AHE due to the broken time-reversal symmetry. In this work, we
present a nontrivial AHE on the compensated ferrimagnet Mn3Al using symmetry arguments and first-principles
calculations. Nonzero components of anomalous Hall conductivity σαβ are determined based on the magnetic
space group of Mn3Al. The explicit first-principles calculation confirms σxy = −320 (� cm)−1. The nature
of Berry curvature responsible for the intrinsic origin of AHE is further identified using group theory: lifted
degeneracies at 1

2 K�, L, and 1
2 K ′� induced by spin-orbit interactions. Moreover, the global behaviors of Berry

curvatures are shown over the whole Brillouin zone which reveal the overlooked contributions around X ′.

DOI: 10.1103/PhysRevResearch.4.013215

I. ANOMALOUS HALL EFFECT

Ever since the discovery of the anomalous Hall effect
(AHE), virtually all studies have been focused on ferro-
magnets. For ferromagnets, the intrinsic origin of AHE was
initially pioneered by Karplus and Luttinger [1], where the
spin-orbit interaction (SOI) is supposed to be proportional to
the net magnetization. Although this assumption is only valid
in ferromagnets, it has been believed that AHE necessarily
accompanies a net magnetization.

The modern understanding of AHE employs the Berry
curvature, which characterizes the topological nature of elec-
tronic structures [2]. Apart from the extrinsic contributions
due to impurities, the intrinsic anomalous Hall conductivity
(AHC) is derived from the linear response theory (or from
Kubo formula) as

σαβ = e2

h̄

∫
BZ

d3k

(2π )3

∑
n

f (εnk )�n,αβ (k), (1)

where �n,αβ (k) is the Berry curvature of the nth band and
f (εnk ) is the Fermi-Dirac distribution function; the integration
is performed over the Brillouin zone (BZ). The Berry curva-
ture is defined in terms of the Berry connection An,α (k) =
−i 〈unk|∂α|unk〉 as �n,αβ (k) = ∂αAn,β (k) − ∂βAn,α (k) where
the derivatives are taken with respect to the crystal momentum
k. Here |unk〉 represents the periodic part of the nth Bloch
state.

Clearly from Eq. (1), AHC vanishes in a time-reversal (TR)
symmetric system because the Berry curvature is odd under
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the TR T , i.e., T : �n,αβ (k) → −�n,αβ (−k). Therefore AHE
can only arise in the absence of the TR symmetry, namely, in
any magnetic material [3].

Other symmetries can further constrain the form of AHC
[4,5]. For example, in bipartite antiferromagnets, AHC van-
ishes due to the antitranslation which is the composite
symmetry of the TR and the translation between two sublat-
tices. This is why such simple antiferromagnets do not exhibit
AHE. However, if such symmetries, which let AHC vanish,
are absent, nontrivial AHE can exist. Indeed, recent studies on
antiferromagnets [6–17] and a compensated ferrimagnet [18]
have revealed that a nontrivial AHC can exist without a net
magnetization [19].

In this work, we confirm that the net magnetization is not
essential for AHE by investigating a compensated collinear
ferrimagnet Mn3Al [20–22]. More specifically, we identify
the magnetic space group of Mn3Al and discuss its constraints
on AHC. We further analyze how and why the Berry curvature
arises at some specific regions in BZ based on group theory.
Moreover, the global features of Berry curvature are revealed
over whole BZ. Finally, AHC is explicitly evaluated to con-
firm expected features.

II. CRYSTAL STRUCTURE AND MAGNETIC SYMMETRY

Mn3Al, a regular Heusler compound, has the structure
shown in Fig. 1 with the space group Fm3̄m (No. 225). It
is a face-centered cubic (fcc) structure with lattice constant
a = 5.80 Å [20–22]. Two inequivalent Mn sites are distin-
guished by Mn(I) and Mn(II), depending on the site symmetry.
Both Al and Mn(I) take fcc sites with the relative translation
by ( 1

2 , 1
2 , 1

2 ) in lattice coordinates. Mn(II) can be viewed as
insertions to the center of cubes formed by Al and Mn(I).
Table I lists structural information such as Wyckoff positions,
site symmetries, and magnetic moments.

As will be demonstrated from first-principles calculations,
Mn3Al stabilizes in a collinear ferrimagnetic phase. The
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FIG. 1. (a) Structure of Mn3Al in conventional cubic unit cell
with space group Fm3̄m (No. 225). (b) Magnetic unit cell in the
presence of magnetic moments, denoted by arrows, along the z axis,
whose magnetic space group is I4/mm′m′ (No. 139.537).

choice of the magnetization axis along the z axis, as depicted
in Fig. 1(b), alters the governing symmetry from cubic to
tetragonal. As a result, the symmetry is described by the
magnetic space group I4/mm′m′ (No. 139.537) [23], where
the prime denotes the TR [24–28]. I4/mm′m′, which does
not include antitranslations, contains the principal fourfold
rotation 4001; twofold rotations 2′

100 and 2′
11̄0

; and inversion
1̄ as well as mirror planes perpendicular to the rotation axes,
m001, m′

100, and m′
11̄0

. We remind one here that I4/mm′m′ is
the same magnetic space group of the body-centered cubic
iron with the magnetization along the z axis [23].

Now we discuss the constraints imposed on AHC σαβ =
(σyz, σzx, σxy) by I4/mm′m′. For AHC, the magnetic point
group 4/mm′m′ suffices to determine the constraints [4,5].
From the transformation rules of σαβ which is a pseudovector,
we can obtain all constraints. For example, for twofold rota-
tion, 2001 : (σyz, σzx, σxy) → (−σyz,−σzx, σxy), which results
in σyz = σzx = 0. Furthermore, no symmetry operation makes
σxy vanish because the z component of a pseudovector is
invariant under any operation of 4/mm′m′ [26–28]. Conse-
quently, I4/mm′m′ allows only σxy to be nontrivial:

σαβ = (0, 0, σxy). (2)

Similarly, we can perform the symmetry analysis for any
given system. For this purpose, we summarize how a certain
type of symmetry operation constrains AHC in Table II of
Appendix A.

TABLE I. Structural information of Mn3Al, whose space group
is Fm3̄m (No. 225); atomic positions of representative atoms along
with Wyckoff positions and their site symmetry are in lattice coor-
dinates of the conventional cubic unit cell as shown in Fig. 1(a).
Magnetic moments are in units of μB.

Atom Wyckoff position Site symmetry x y z mz

Al 4a m3̄m (Oh) 0 0 0 0.01
Mn(I) 4b m3̄m (Oh) 1

2
1
2

1
2 2.72

Mn(II) 8c 4̄3m (Td ) 1
4

1
4

1
4 −1.36

1
4

1
4

3
4

FIG. 2. Band structures along the high-symmetry lines of the fcc
lattice. Colors represent 〈Sz〉. Half-metallicity is evident with gap in
the spin-up bands. Fermi energy EF is set to zero.

III. COMPUTATIONAL METHODS

Electronic structure calculations are performed using the
QUANTUM ESPRESSO package [29,30]. Generalized gradi-
ent approximation is employed based on Perdew-Burke-
Ernzerhof parametrization [31] within projector augmented
wave basis [32]. SOI is included in the scheme of fully rel-
ativistic pseudopotentials from PSlibrary [33]. The valence
electron configuration for Al is [Ne]3s23p1 and for Mn is
[Ar]3d54s2 with semicore 3s and 3p states. Cutoffs for wave
function and charge density expansions are 67 Ry and 344 Ry,
respectively. For the self-consistent calculation, a 19 × 19 ×
19 Monkhorst-Pack grid [34] is used.

After the self-consistent calculation, maximally localized
Wannier functions are constructed using the WANNIER90
package [35], where a 9 × 9 × 9 k grid is used for non-self-
consistent calculation. The validity of Wannier functions is
examined using the POSTW90 code in WANNIER90 by compar-
ing the band structure from QUANTUM ESPRESSO. The Berry
curvature is computed both by POSTW90 and WANNIERBERRI

[36]; the former for plotting along high-symmetry lines, while
the latter for plotting in the whole BZ. AHC is then explicitly
evaluated using WANNIERBERRI with a 600 × 600 × 600 k
grid and double-checked by POSTW90 with a coarser grid only
at the Fermi energy.

IV. RESULTS AND DISCUSSIONS

A. Band structures and Berry curvature

First-principles calculations confirm that Mn3Al exhibits a
compensated collinear ferrimagnetism consistent with previ-
ous studies [20–22]. Magnetic moments of individual atoms
are listed in Table I, where vanishing total magnetization is
evident.

Band structures along high-symmetry lines are shown in
Fig. 2. As spin is not a good quantum number with SOI, 〈Sz〉
is presented instead. Most bands are well characterized by 〈Sz〉
except some regions which do not affect our discussion. The
half-metallicity is evident with gap in the spin-up bands. Our
result is consistent with calculations using WIEN2K without
SOI [21].
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FIG. 3. (a) Band structures in a narrow energy window and Berry curvature �αβ (k) along the same path as in Fig. 2. (b),(c) Band structures
in the vicinity of EF (b) without and (c) with SOI. Reduced symmetry due to SOI induces a finite Berry curvature. Little groups of high-
symmetry points (lines) are shown at the top (bottom) of each figure. The irreps of bands at L and 
 are denoted where different irreps are
distinguished by colors. In (c), the unitary subgroup of the little group is shown in square brackets. (d) Band structures and Berry curvature
along X ′-�-X , K-�-K ′, and L′-�-L to illustrate broken cubic symmetry due to SOI. (e) Labels of high-symmetry points in the Brillouin zone.

Before we get into details on Berry curvatures, we re-
mind one that the Berry curvature originates from band
mixing through interactions in which SOI is a prominent
example. Moreover, in magnetic materials, SOI breaks part
of the crystal symmetry. So the degeneracies protected by
those symmetries are lifted and large Berry curvatures can
emerge there. As shown below, this is observed in both an
accidental degeneracy such as a nodal line protected by a
mirror-reflection symmetry and an essential degeneracy pro-
tected by a little group, or group of k [37].

In Fig. 3(a), we show the total Berry curvatures �αβ (k) =∑
n f (εnk )�n,αβ (k) along the same high-symmetry lines as

in Fig. 2. As seen, pronounced features are well manifested
around 1

2 K� and L. As just explained, the origin of Berry
curvatures can be understood based on the reduced symmetry
due to SOI. Hence, we present band structures in the vicinity
of EF in Figs. 3(b) and 3(c) without and with SOI, respec-
tively. By comparing Figs. 3(b) and 3(c), we observe (i) two
bands around 1

2 K� are mixed and (ii) a degenerate band along
� connecting � and L is lifted. This is further analyzed in
detail based on the little groups. In the following analysis,
the ordinary point groups are adopted as little groups in the

absence of SOI, whereas the magnetic point groups are used
in the presence of SOI.

Let us first focus on 1
2 K�. In the absence of SOI, the

little group of 
 connecting K and � is mm2 (C2v ). As de-
noted in Fig. 3(b), three bands below EF belong to three
one-dimensional (1D) irreducible representations (irreps), A1,
A2, and B1. By turning on SOI, the little group changes to
m′m2′ and each band now belongs to one of two 1D irreps, 
3

and 
4 of m′m2′ [38]. As a consequence, two bands belonging
to 
3 exhibit a level repulsion which induces large Berry
curvatures. But why does only �xy(k) have nonzero value
along 
? The mirror-reflection symmetry m001 is the key. Un-
der m001, �αβ (k) transforms as m001 : (�yz,�zx,�xy)(k) →
(−�yz,−�zx,�xy)(kx, ky,−kz ). Thus, only �xy(k) can
be nontrivial in the mirror-invariant plane kz = 0 that
includes 
.

The Berry curvatures at 1
2 K� can instead be understood in

terms of a gapped nodal line [39–42] which is a lifted acciden-
tal degeneracy. As is well known, if two bands with different
mirror eigenvalues cross, a nodal line exists in the mirror-
invariant plane. In our case, the band crossing in Fig. 3(b)
between A1 and B1 was protected by the mirror-reflection
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FIG. 4. (a)–(c) Each component of total Berry curvature, �αβ (k) = ∑
n f (εnk )�n,αβ (k), plotted in the whole BZ. The difference between

X and X ′ is prominent in (c): Berry curvatures obey the tetragonal symmetry I4/mm′m′ instead of the cubic symmetry Fm3̄m. For better
visibility, the logarithmic scale f (x) = sgn(x) log10(1 + |x|) is used, where |�αβ (k)| � 10 Å2 are excluded. The maximum and minimum
values are set to ±| f (x0 )| with x0 = max |�αβ (k)|. (d) AHC σαβ as a function of the chemical potential μ. As required by the symmetry,
σyz = σzx = 0 at any μ. At μ = EF , σxy = −320 (� cm)−1.

symmetry m11̄0 while that between A2 and B1 was by m001.
The former symmetry m11̄0 is broken by SOI and large Berry
curvatures around the gapped nodal line are induced.

Let us now turn to L. Without SOI, the degenerate band
just above EF belongs to the two-dimensional (2D) irrep Eu

of 3̄m (D3d ). By turning on SOI, the degeneracy is lifted and
each band belongs to the 1D irrep L−

2 of the little group
2′/m′ with one above EF and the other below. This leads to
large Berry curvatures at L. The Berry curvatures along �

can be understood similarly because the only difference is the
inversion symmetry 1̄.

Note that the nature of the origin of Berry curvatures
around L is different from that of 1

2 K�. While the former is
originated from lifted essential degeneracy, the latter is from
lifted accidental degeneracy.

We emphasize that nonzero �αβ (k) at some high-
symmetry points or lines does not necessarily imply a
nontrivial AHC. To estimate AHC qualitatively, we need to
extend the Berry curvature in Fig. 3(a) to whole BZ. In doing
so, one should be careful about the use of the symmetry,
because the magnetism breaks some crystal symmetry. This
is illustrated in Fig. 3(d) along three different paths X ′-�-X ,
K-�-K ′, and L′-�-L where high-symmetry points are denoted
in Fig. 3(e).

For each segment of the paths in Fig. 3(d), we observe the
following. (i) X ′-�-X : Band structures are slightly asymmet-
ric because 4100 is broken in the presence of the magnetism.
The Berry curvature shows no meaningful difference. (ii) K-
�-K ′: A significant difference in Berry curvature originates
from the different behavior of band mixing around 1

2 K� and
1
2 K ′�. Around 1

2 K ′�, both band crossings, or nodal lines,
shown in Fig. 3(b) are gapped in the presence of SOI. (iii)
L′-�-L: Band structures are symmetric because L and L′ are
connected by 2001. The Berry curvature is symmetric for
�xy(k) and antisymmetric for �yz(k) and �zx(k). Thus, the
contributions to σyz and σzx from the neighborhood of L and
its equivalents cancel among them regardless of the value of
Berry curvature.

B. Anomalous Hall conductivity

As mentioned, the integration of total Berry curvature
over BZ gives AHC. We show the total Berry curvatures in
the whole BZ in Figs. 4(a)–4(c) where the above analysis

becomes more evident. Notably, almost all contributions re-
side around the edges of the cube formed by L and its
equivalents with exceptions around X ′ and −X ′. The negative
contributions of �xy(k) around X ′ is a shape of a hollow
cylinder which is compatible with Fig. 3(d). In Appendix B,
the origin of Berry curvatures around X ′ is discussed in terms
of the lifted essential degeneracy due to SOI.

It is worth emphasizing that the contributions around X ′
cannot be captured by the conventional high-symmetry lines
of fcc lattices where X and X ′ are treated equivalently. How-
ever, the k path of the body-centered tetragonal lattice, taking
account of the magnetic space group, can capture the inequiv-
alence of X and X ′.

From this global behavior of Berry curvature, all symmetry
constraints can be visually verified. More specifically, the
relation �yz(k) = −�zx (ky,−kx, kz ) required by 4001 is easily
confirmed from Figs. 4(a) and 4(b). The mirror-reflection
symmetry m001 is also evident for all components. More-
over, �xy(k) is invariant under all symmetry operations of
I4/mm′m′ which is compatible with Eq. (2).

In Fig. 4(d), we show σαβ as a function of the chemical
potential μ. Note that σxy at μ = EF , which is obtained by
adding all contributions of total Berry curvature shown in
Fig. 4(c), sits at a local maximum. Hence, the positive �xy(k)
around L and 1

2 K ′� are quite comparable to the negative
�xy(k) around 1

2 K� and X ′. As seen, only σxy survives with
−320 (� cm)−1 at μ = EF , while other components, σyz and
σzx, vanish with respect to μ as required by the symme-
try. Moreover, σxy reaches −1200 and −600 (� cm)−1 for
μ − EF ≈ −0.14 and 0.07 eV, respectively.

C. Anomalous Nernst conductivity

Anomalous Nernst effect, closely related to AHE, is a
phenomenon that a current is induced by a temperature gra-
dient, Jα = ααβ (−∂βT ), where Jα is the current density, ααβ

is the anomalous Nernst conductivity (ANC), and T is tem-
perature. At low temperature, ANC is expressed by the Mott
relation [43]

ααβ = π2

3

k2
BT

e
lim
T →0

∂σαβ

∂μ
, (3)
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FIG. 5. (a) AHC σαβ and (b) ANC ααβ divided by T as a function of the chemical potential μ. At μ = EF , αxy/T = −0.015 A/(K2 m).
(c),(d) The Berry curvature �n,αβ (k) on the Fermi surface: (c) hole- and (d) electronlike sheets of the Fermi surface. The logarithmic scale,
f (x) = sgn(x) log10(1 + |x|), is used for better visibility. The maximum and minimum values are set to ±| f (x0 )| with x0 = max |�n,αβ (k)|.

where kB is the Boltzmann constant. Hence, ANC can be
obtained by taking the derivative of AHC. In Fig. 5(b), ANC
divided by T is shown as a function of the chemical potential
μ. At μ = EF , αxy/T = −0.015 A/(K2 m) and it reaches as
large as −0.15 A/(K2 m) when μ − EF ≈ −0.32 eV. Note
that ANC obeys the same symmetry constraints of AHC.

The explicit expression of ∂σαβ/∂μ at low temperatures is
given as [43]

lim
T →0

∂σαβ

∂μ
= e2

h̄

∫
BZ

d3k

(2π )3

∑
n

δ(EF − εnk )�n,αβ (k), (4)

which implies that what is responsible for ANC is the sum
of Berry curvature on the Fermi surface, whereas the sum of
Berry curvature of occupied states is for AHC.

Based on Eq. (4), we can alternatively evaluate ANC by
summing Berry curvature on the Fermi surface. To give more
insight, Berry curvature is plotted on the Fermi surface in
Figs. 5(c) and 5(d) using FermiSurfer [44]. The large �n,αβ (k)
is from two regions: (i) from the vicinity of 1

2 K� and 1
2 K ′�;

and (ii) from the neck along the X ′ of the holelike sheet
[Fig. 5(c)] and the small pocket of the electronlike sheet near L
[Fig. 5(d)]. In the former, the contributions from the electron-
and hole-like sheets seem to cancel out. In the latter, only
�n,xy(k) seems to give the net contributions of ANC. Note that
the presence of �n,xy(k) along X ′ and the absence along X in
Fig. 5(c) indicates broken cubic symmetry due to magnetism.

V. CONCLUSIONS

In conclusion, the nontrivial AHE has been presented in the
collinear ferrimagnet Mn3Al with zero net magnetization. The
analysis of symmetry constraints on AHC under the magnetic
space group I4/mm′m′ shows that only σxy can survive. To
demonstrate our reasoning, we have calculated Berry curva-
tures and AHC using first-principles calculations. The large
Berry curvatures have been observed around 1

2 K�, L, 1
2 K ′�,

and X ′ whose origins have been classified into two types:
lifted accidental and essential degeneracies. The nature of

the origin of Berry curvatures has been coherently explained
using group theory. We have also emphasized that both types
of lifted degeneracy are equally important for AHE regardless
of the type. Finally, the explicit calculation of AHC shows
σxy = −320 (� cm)−1 at the Fermi energy, which becomes as
large as −1200 (� cm)−1 with hole doping.
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APPENDIX A: SYMMETRY CONSTRAINTS ON
ANOMALOUS HALL CONDUCTIVITY

In general, the symmetry constrains the form of physical
quantities. For AHC, magnetic point groups are enough to dis-
cuss constraints imposed by the symmetry [4,5]. Although the
correspondence between magnetic point groups and allowed
components of AHC is given in the literature, we summarize
it in a slightly different way in Table II for our convenience.

To obtain Table II, we note that for any symmetry operation
in a magnetic point group, AHC, which is a pseudovector and

TABLE II. Symmetry constraints imposed on σαβ . The symmetry
axis is taken along the z axis, i.e., n = ẑ. The prime denotes TR and
n ∈ {2, 3, 4, 6}.

Proper rotation Improper rotation σαβ = (σyz, σzx, σxy )

n n̄ (0, 0, σxy )
2′ m′ (= 2̄′) (σyz, σzx, 0)

n′ ( �= 2′) n̄′ ( �= m′) (0,0,0)

013215-5
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FIG. 6. Band structures and Berry curvatures along W ′-X ′-U ′

(a) without and (b) with SOI. The lifted essential degeneracy at
X ′ due to SOI results in finite Berry curvatures. Berry curvature
without SOI is not shown because it is negligibly small. The same
conventions are adopted as in Fig. 3.

odd under TR, satisfies the constraint⎛
⎝σyz

σzx

σxy

⎞
⎠ = (−1)s det[Rn(θ )]Rn(θ )

⎛
⎝σyz

σzx

σxy

⎞
⎠. (A1)

Rn(θ ) is an orthogonal matrix, including both proper and
improper rotations about an axis n by an angle θ . Determinant
is there as AHC is a pseudovector; s = 1 with TR and s = 0
without TR.

For simplicity, we first consider a proper rotation about n =
ẑ. In this case, Eq. (A1) reduces to

⎛
⎝σyz

σzx

σxy

⎞
⎠ = (−1)s

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

⎛
⎝σyz

σzx

σxy

⎞
⎠. (A2)

By solving Eq. (A2), one finds that (i) if s = 0, only σxy can
be nontrivial, (ii) if s = 1 and θ = π , only σyz and σzx can be
nontrivial, and (iii) if s = 1 and θ �= π , no nontrivial compo-
nents exist. For an improper rotation, given as the product of
a proper rotation and the inversion, one can easily show that
the same conclusion holds. The discussion is summarized in
Table II.

The symmetry constraints on Berry curvatures can be ob-
tained similarly. In this case, we often find simple constraints
along rotation-invariant axes or on mirror-invariant planes as
a result of the k dependence of the Berry curvature.

APPENDIX B: BERRY CURVATURES AROUND X ′

In Fig. 6, we show band structures and Berry curvatures
along W ′-X ′-U ′. Without SOI, there is one degenerate band
that belongs to 2D irrep Eu of the little group 4/mmm (D4h)
just above the Fermi energy at X ′. After turning SOI on, the
degeneracy is lifted into two 1D irreps X ′

6
− and X ′

8
− of the

little group 4/mm′m′. Berry curvatures become finite after the
band belonging to X ′

8
− (Z ′

3 and S′
3 to be exact) crosses the

Fermi energy.
Notably, there is a band crossing between A1 and B1 below

the Fermi energy in Fig. 6(a) which implies a nodal line in the
kx = 0 plane. However, no appreciable contribution around
the gapped nodal line is observed in Fig. 6(b). Therefore,
Berry curvatures around X ′ originate from the lifted essential
degeneracy at X ′.
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