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Active learning for the optimal design of multinomial classification in physics
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Optimal design for model training is a critical topic in machine learning. Active learning aims at obtaining
improved models by querying samples with maximum uncertainty according to the estimation model for
artificially labeling; this has the additional advantage of achieving successful performances with a reduced
number of labeled samples. We analyze its capability as an assistant for the design of experiments, extracting
maximum information for learning with the minimal cost in fidelity loss, or reducing total operation costs of
labeling in the laboratory. We present two typical applications as quantum information retrieval in qutrits and
phase boundary prediction in many-body physics. For an equivalent multinomial classification problem, we
achieve the correct rate of 99% with less than 2% of samples labeled. We reckon that active-learning-inspired
physics experiments will remarkably save budget without loss of accuracy.
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I. INTRODUCTION

Machine learning (ML) has conquered intricate tasks in the
past decade [1,2]. A critical obstacle to applying ML is that
collecting sufficient labeled data is both time demanding and
resource consuming. Consequently, model training requires
some sort of optimization, aiming at deriving a well-trained
model, even making use of numerous unlabeled data, as it
involves common real-world problems. For now, physicists
also complete quantum tasks, study properties of quantum
systems, and design physics experiments with ML algorithms
[3–14]. Its most utilized branch, so-called reinforcement
learning (RL) [15], has naturally shown its capability in
quantum control [16–31]. It is also related to quantum in-
formation retrieval by controlling the measurement process
[32,33], which has been extended to a quantum version [34]
for optimal measurement control [35,36]. To minimize the
cost of measurements, one has to design the optimal strategy
for quantum information retrieval, which fits the framework
of active learning (AL).

The key hypothesis of AL is that a model trained on a sub-
set of adequately selected samples to be labeled can achieve
a similar performance as the one trained with all samples
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labeled [37,38]. It is verified that AL achieves an accurate
binary classification of quantum information by selecting the
quantum states with the maximal information for labeling by
measurements [39]. In this paradigm, the cost of labeling is
the fidelity loss induced by measurement, which depends on
the measurement strength and feedback. The application of
AL is not bounded to quantum information retrieval, where
we have shown the trade-off between extracted quantum in-
formation (model refining) and fidelity loss (cost of labeling).
Recently, it was also employed to assist experimental control
[40–42], computational physics [43–46], quantum machine
learning [47–49], etc., attaining convincing performance as
well. Based on these facts, we conclude that most of the
physics problems can be efficiently studied by AL, if they
can be equivalently represented by classification problems.
Accordingly, the cost of labeling is no longer limited to the
fidelity loss in quantum information retrieval, but extended
to the operation cost that reduces the uncertainty of sam-
ples by experimental protocols, including doing numerical
simulations or physics experiments for analyzing the most
informative patterns queried by AL.

In this work, we present typical applications of AL al-
gorithms on classification problems in physics. We focus on
multinomial cases, where different sampling strategies are
no longer equivalent. Starting from a nontrivial extension of
the framework proposed in [39], we propose quantum infor-
mation retrieval in qutrit systems, allowing an experimental
implementation with six entangled photons. Another exam-
ple comes from many-body physics, where AL manages to
predict the boundaries of the exotic phases with less than 2%
of samples labeled by phase detections. We also verify that
AL guarantees optimal model training by querying the most
informative samples, so that the rate estimation can hardly be

2643-1564/2022/4(1)/013213(16) 013213-1 Published by the American Physical Society

https://orcid.org/0000-0002-6008-0001
https://orcid.org/0000-0001-9378-0285
https://orcid.org/0000-0003-3752-8231
https://orcid.org/0000-0003-4221-4288
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.013213&domain=pdf&date_stamp=2022-03-21
https://doi.org/10.1103/PhysRevResearch.4.013213
https://creativecommons.org/licenses/by/4.0/


YONGCHENG DING et al. PHYSICAL REVIEW RESEARCH 4, 013213 (2022)

FIG. 1. (a) The schematic diagrams of pool-based AL cycle (on the left) and SSL cycle (on the right). (b) The querying behavior of least
confidence, margin sampling, and entropy sampling in a triple classification problem is illustrated by heat maps. The most informative query
regions radiate from the centers. The label with the highest probability locates near the corner, where the opposite edge shows the lowest
probability for the rest of the classes.

improved without new artificially labeled samples. In sum-
mary, we reckon that the introduction of AL algorithms would
remarkably reduce the cost of physics experiments.

II. ACTIVE LEARNING THEORY

Let us consider a set of labeled samples X = {xi, yi}l
i=1,

where the inputs xi ∈ X , where X is defined in a parame-
ter space of d dimension, Cd . We focus on a classification
problem, looking for a model θ that predicts the output, cor-
responding to the class yi ∈ C = {c1, . . . , cm} for an m-class
problem. Another set of unlabeled samples U = {xi}l+u

i=l+1 ∈
X is required for the application of AL, having u � l; i.e.,
one has many more samples as candidates to be labeled than
those in the labeled pool. AL works differently from super-
vised learning, which trains the model with a fixed labeled
set. AL follows an iterative procedure based on adding the
most informative sample from U to the training set X in each
iteration, in order to improve the model performance; the goal
is to find a satisfying model quickly with only a few samples in
U being labeled manually. Now the critical question is which
samples contain the most information that should be selected
and labeled. Normally the selection is performed by models,
suggesting the samples with maximal uncertainty about the

outcome. Thus, labeling these samples provides more infor-
mation, benefiting the learning process by adding them to the
training set X . Although AL updates its training set iteratively
like semisupervised learning (SSL), they are not the same
concept and are often confused. Here we clarify the difference
by a schematic diagram [cf. Fig. 1(a)]. SSL is also based on
a labeled training sample X and a pool of unlabeled samples
U . The main difference between AL and SSL is that the latter,
instead of selecting the most informative sample of maximal
uncertainty, makes use of a model θ that selects the sample
xi ∈ U with maximal certainty of its class yi, labeling it as yi

since one can assume that the probability of wrong labeling is
minimum. Even though AL can be combined with SSL, e.g.,
training the model by SSL after an initial selection of labels
by AL, it does not significantly benefit the learning procedure.

Various approaches allow us to evaluate the uncertainty
for sorting the samples in U and making the decision about
which candidate should be transferred to X after labeling.
There are two widely practiced strategies for this goal, which
are the so-called uncertainty sampling (USAMP) and query
by committee (QBC) [50]. USAMP only uses a single model
for selecting samples according to the estimator [51]. QBC
employs a committee that consists of several models to select
the samples with the minimal consensus, measured by voting
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entropy or Kullback-Leibler divergence [52]. For realizing
USAMP in multiple class problems, we introduce three strate-
gies as follows. The least confidence (LC) criterion is based on
labeling the sample with the least confidence according to the
prediction

xLC = argmax
x

[1 − Pθ (ŷ|x)],

ŷ = argmax
y

[Pθ (y|x)], (1)

where ŷ is the most probable class according to the prob-
abilistic classification model θ . One notices that the model
only considers the most probable label ŷ, losing information
of the other labels. A natural extension is that the first and
second most probable class labels ŷ1 and ŷ2 contain more in-
formation, which might be better if a corresponding criterion
is constructed. Therefore, a more informative approach called
margin sampling is given as

xM = argmin
x

[Pθ (ŷ1|x) − Pθ (ŷ2|x)], (2)

inspired by the truth that one can easily classify the samples
separated by large margins, and accordingly the most ambigu-
ous sample is given by small margins [53]. Thus, the sample
with the smallest margin is the most informative one since
knowing its true label from the human annotator contributes
the most value to discriminate among m classes. Obviously,
this criterion can be further extended by taking information
from all classes, with information entropy being quantified by
Shannon’s theory [54] as

xE = argmax
x

[
−

∑
i

Pθ (ŷi|x) log Pθ (ŷi|x)

]
. (3)

The information entropy measures the amount of information
required for representing a piece of given information, which
is usually considered as an assessment of the uncertainty, be-
ing widely used in all aspects of ML. The implicit relationship
among these measures leads to divergent query behaviors [cf.
Fig. 1(b)] when dealing with problems of multiple classes.
This might cause varying performance after the training, es-
pecially when the class distribution of samples is biased.

In the case of QBC, voting entropy (VE) can be defined by

xVE = argmax
x

[
−

∑
i

V (yi )

Ṽ
log

V (yi )

Ṽ

]
, (4)

where V (yi ) denotes the votes from the committee of the size
Ṽ for the label yi. Although QBC shows its advantage on
performance over USAMP in the previous binary quantum
information classification task [39], we focus on USAMP in
this work since different query strategies can be investigated
by multinomial classification problems in physics with only a
single model, saving massive computational resources.

III. INFORMATIONAL RETRIEVAL IN QUTRITS

According to quantum information theory, the carriers with
a higher dimension of Hilbert space encode more informa-
tion than a qubit as a two-level system. Here we consider a
nontrivial extension to the binary classification problem pro-
posed in [39], substituting the qubits by qutrits. Information

is extracted from the qutrits by quantum measurement for
classification, where the cost for labeling is defined as the
fidelity loss for consistency.

A. Measurement for labeling

A qutrit is a three-level system that allows independent
transition between levels, which can be constructed by logical
basis states selected from a biphoton system. We only consider
an arbitrary qutrit wave function |�〉 = c1|0〉 + c2|1〉 + c3|2〉
for labeling by quantum measurement, without focusing on
its physical realization. The qutrit is in the superposition of
three orthogonal bases, where each of the bases denotes a
class. Once a qutrit is queried, we aim at retrieving its pop-
ulation of each basis by quantum measurement, labeling it
as the class of maximal population as a human annotator.
As the weak measurement is introduced as an extension of
von Neumann measurement for extracting information from a
quantum system without collapsing it, we employed the weak
measurement in our framework in order to reduce fidelity
loss. The weak measurement for labeling binary class can
be simplified by coupling an ancilla qubit as a pointer to the
qubit. The expectation 〈σ̂z〉 can be estimated by weak values
from the pointer, classifying the sample qubit 〈σ̂z〉 > 0 for
class 0 and 〈σ̂z〉 < 0 for class 1. However, the expectation
on the Z direction of the spin-1 operator, 〈Ŝz〉 = |c1|2 − |c3|2,
does not carry enough information for picking out the basis of
the maximum population anymore. For example, the qutrit can
be either class 2 if P(c1) = 0.1, P(c2) = 0.7, and P(c3) = 0.2,
or class 3 if P(c1) = 0.3, P(c2) = 0.3, and P(c1) = 0.4, with
the same expectation 〈Ŝz〉 = −0.1. The trick for equivalently
evaluating the maximum population is no longer available in
qutrit, hence the need to retrieve the amplitude of each basis
or the diagonal elements of the system density matrix. Instead
of quantum state tomography, we employ the recent (exact)
direct reconstruction scheme [55] to retrieve the information
in qutrits by weak measurement, allowing arbitrary coupling
strength without approximation.

A weak measurement protocol usually consists of two
steps: coupling the quantum system to a quantum pointer for
a new system, then performing a projective measurement on
the pointer. Instead of a Gaussian pointer of position, we use
ancilla qubits as two-level pointers. We couple the ancilla
qubit to the qutrit following an interaction Hamiltonian

HI (t ) = g(t )Â ⊗ Y, (5)

where g(t ) is the time-dependent coupling, Â is the observable
to be weakly measured, and Y is the spin-1/2 Pauli operator
on the Y direction. The qutrit is coupled to the pointer after t0,
described by the unitary operator

U = T exp

[
−i

∫ t0

0
g(t )Â ⊗ Y dt

]
= exp(−iθ Â ⊗ Y ). (6)

Additionally, Eq. (6) can be reformulated into

U = (I − �) ⊗ I + � ⊗ exp (−iθY ), (7)

which is valid for all coupling θ when the observable Â is
a projection operator. Exact direct reconstruction of the den-
sity matrix can be realized by an arbitrary strength of weak
measurement, where θ = π/2 provides a maximally strong
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measurement. Two ancilla qubits A and B are needed as point-
ers for retrieving quantum information carried in the qutrit.
The initial system is described by

ρini = ρ ⊗ |0〉A〈0| ⊗ |0〉B〈0|, (8)

where the element of the density matrix ρ jk can be expressed
in the orthonormal basis of the d-dimensional Hilbert space
(d = 3 for qutrit, with orthonormal basis |0〉, |1〉, and |2〉). We
couple the projection operator �a j = |a j〉〈a j | to the Y direc-
tion of the first ancilla qubit, giving the evolution operator

UA, j = (I − �a j ) ⊗ IA ⊗ IB + �a j ⊗ exp(−iθAYA) ⊗ IB,

(9)

then followed by coupling �b0 = |b0〉〈b0| to the second an-
cilla qubit,

UB = (I − �b0 ) ⊗ IA ⊗ IB + �b0 ⊗ IA ⊗ exp(−iθBYB),

(10)

where |b0〉 = d−1/2 ∑
j |a j〉 is independent of j or k. The

system is evolved by

ρcouple, j = UBUA, jρiniU
†
A, jU

†
B , (11)

being ready for information extraction by projective mea-
surement (postselection) of the qutrit in basis |aj〉 and
corresponding measurement on ancilla qubits. For labeling the
qutrit sample, we need the population of each basis, i.e., the
diagonal elements of the qutrit density matrix. The following
expectation value

〈ÂAÂB〉 j,k = Tr[(�ak ⊗ ÂA ⊗ ÂB)ρcouple, j] (12)

can be measured for the task. Specifically, the diagonal ele-
ments can be exactly estimated:

ρ j j = 16N2
AB〈�1A�1B〉 j,k, (13)

by defining �1A,B = |1〉A,B〈1| the projection operators on the
the Pauli Z operator’s eigenbasis |1〉 of ancilla qubits, being
independent of k. The factor NAB = d/(4 sin θAθB) can be
inferred by normalizing the density matrix after all elements
are estimated, if the coupling strengths θA,B are unknown.
Different from the weak measurement scheme in [39], the
estimation of ρ j j is precise for any θ since the ancilla qubits
here are not Gaussian pointers with low accuracy of position.
Meanwhile, signals should be amplified by a proportion of
sin4 θ for reconstructing the density matrix. Although the
statistical errors are inevitable for an arbitrary measurement
strength, the errors become more relevant because of the
biquadratic weak signal. Similarly, the statistical error with
certain θA and θB can be reduced by 1/

√
n if n copies are given

to measure the correlator 〈�1A�1B〉 for retrieving ρ j j . For
evaluating the labeling cost, we calculate the fidelity between
the initial qutrit density matrix ρ and the density matrix after
coupling, ρ̃:

F = [Tr(
√√

ρ̃ρ
√

ρ̃ )]2, (14)

where ρ̃ is defined as tracing over the ancilla qubits,

ρ̃ = TrA,B(ρcouple, j )=
∑

i

(Iqutrit ⊗ 〈bi|)ρcouple, j (Iqutrit ⊗ |bi〉),

(15)

with |bi〉 the orthonormal basis of the sub–Hilbert space of the
ancilla qubits.

B. Problem formulation

Now we demonstrate AL with a triple classification prob-
lem, in which the quantum information to be retrieved is
encoded in qutrits. We realize the qutrits by biphotons, for
which the logical basis states are selected by the polarization
of photons as follows:

|0〉 = |HH〉, |1〉 = 1√
2

(|HV 〉 + |V H〉), |2〉 = |VV 〉,

(16)

where H and V denote the horizontal and vertical polariza-
tion modes of a photon, respectively. Arbitrary states can
be prepared with an adequate experimental setup, allowing
efficient manipulation of qutrits. Considering the advantages
of qutrits in quantum communication, we use the remote state
preparation (RSP) protocol [56], whose experimental setup
is also compatible with the initial weak measurement frame-
work. Alice wants to send (remotely prepare) a qutrit state
|�〉 = c1|0〉 + c2|1〉 + c3|2〉 to Bob. To this aim, Alice starts
with preparing a maximally entangled qutrit state

|�ent〉 = 1√
3

(|0〉a|0〉b + |1〉a|1〉b + |2〉a|2〉b), (17)

then followed by measuring her qutrit a with the projection
|�∗〉 = c∗

1|0〉 + c∗
2|1〉 + c∗

3|2〉. Bob will accept his qutrit b if
he gets a positive signal from Alice, claiming that she man-
aged to project her qutrit a to |�∗〉. Otherwise, the qutrits
are discarded, being replaced by a new iteration of RSP.
Alice understands that an arbitrary projection should satisfy
|c1|2 + |c2|2 + |c3|2 = 1, deciding to test Bob with the follow-
ing task: It is assumed that ci are functions of x ∈ X , where
Bob has no information of c j (x). Alice prepares l + u qutrits
according to the functions c j (xi), where xi are sites in the
parameter space of d dimension. Alice asks Bob to classify
these qutrits with minimal fidelity loss, inferring the relation
between the sites xi and the class c j . Alice allows Bob to ask
for her to send him an arbitrary qutrit among l + u samples,
allowing all possible quantum operations on his qutrit as well.

C. Numerical simulation

In Fig. 2(a), Alice prepares a quantum state in a lattice of
21 × 21 = 441 qutrits, encoding the map x1, x2 → c1, c2, and
c3, which are the amplitudes of logical basis states. Bob re-
ceives the correct labels of three qutrits from Alice, belonging
to different classes for initializing the classification model.
With the linearly separable assumption, Bob selects logistic
regression because it is probabilistic and simple. Bob labels a
qutrit by direct reconstruction of its density matrix, randomly
retrieving a diagonal element, labeling it as class j if ρ j j >

0.5. Otherwise, Bob retrieves another diagonal element, which
carries enough extra information for labeling the qutrit. In
this way, Bob selects the candidate among unlabeled samples
based on uncertainty, defined by various criteria as least con-
fidence, margin sampling, and entropy sampling, adding them
to the training set for tuning the model [see Figs. 2(b)–2d)].

013213-4



ACTIVE LEARNING FOR THE OPTIMAL DESIGN OF … PHYSICAL REVIEW RESEARCH 4, 013213 (2022)

FIG. 2. (a) The lattice prepared by Alice consists of 21 × 21 = 441 qutrits for triple classification. The qutrit states are demonstrated by
pie charts with proportions |c1|2, |c2|2, and |c3|2. USAMP protocols with the query strategies (b) least confidence, (c) margin sampling, and
(d) random sampling as baseline, respectively. Bob initializes a logistic regression model by three oracles provided by Alice (circled in red).
Qutrits queried by the model are circled in black and covered by smaller circles in class colors. We find out that query behaviors are different
even if we employ a model initialized by the same training set. Meanwhile, USAMP strategies lead to a quick model convergence and satisfying
estimation.

The model converges to a nearly 90% correct rate with less
than 5% labeled samples. We notice that different sampling
strategies give similar estimations but different distribution

patterns of sampled qutrits. For example, least confidence
tends to select qutrits located in the middle of the parameter
space, while qutrits near the borders of two classes are more

FIG. 3. (a) Mean correct rates of triple classification model with random sampling (baseline), least confidence, margin sampling, and
entropy sampling as different sampling strategies. Confidence intervals are filled by transparent colors, denoting a standard deviation based on
200 numerical experiments. (b) Mean correct rates of triple classification model with margin sampling. Each qutrit is labeled by measurements
of different strength θA and θB. Parameters remain the same as in (a).
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likely to be queried by margin and entropy sampling. Here we
neglect the probability of samples being wrongly labeled due
to the statistical error of 〈�1A�1B〉 j,k , which can be reduced
by asking for more copies of the qutrit candidate. In other
words, we only consider the AL of accurately labeled samples
in the large-n limit. Although statistical errors lead to a larger
error rate of labeling for samples on the decision boundaries,
we show that the performances of AL are not significantly
affected by such errors with extra numerical experiments in
Appendix B.

In order to study different strategies of AL quantitatively,
we define the cost of labeling in the direct reconstruction of
density matrices with arbitrary coupling strength by average
fidelity loss. We bound the number of labeled samples in the
training set or fidelity loss to compare the three strategies. In
Fig. 3(a), the result shows that all three strategies outperform
random sampling (RS) as the baseline, indicating that AL
works with the application of the logistic regression model
on this data set, which we should not take for granted (see
Appendix C). In the latter case, we stop labeling qutrits once
the fidelity of the system reaches the threshold. Although we
can hardly separate these strategies, we may choose margin
sampling for its smoother curve and stabler performance in
this case, according to the numerical experiment presented
in Fig. 3(a). In contrast to [39], we no longer take n copies
as variables into consideration; i.e., all samples are labeled
correctly. Thus, it is trivial that a weaker coupling strength θi

should lead to better performance [cf. Fig. 3(b)] without the
trade-off of requiring more copies, otherwise increasing the
probability of contaminating the training set with incorrect
labels. The case of incorrect labels is further discussed in
Appendix B.

IV. PHASE TRANSITION IN MANY-BODY PHYSICS

The cost of labeling refers to the fidelity loss induced
by extracting quantum information from the samples in the
previous section, which can be extended to other definitions
in various scenarios. For example, the exotic features of
many-body physics can be studied by numerical simulations
or laboratory experiments, which are both time demanding
and resource consuming. We employ AL to study a phase
transition estimation problem, aiming to efficiently classify
the multiple phases in the model.

A. Magnets with geometrical frustration

The antiferromagnetic Ising model on a triangular lattice
(TIAF) under transverse field has the quantum Hamiltonian

H = J
∑
〈i, j〉

σ z
i σ z

j − �
∑

i

σ x
i , (18)

summing over the nearest neighbors on the triangular lattice,
which might be the simplest model for realizing geometrical
frustration [cf. Fig. 4(a)]. There exists an extended criti-
cal phase in transverse field TIAF, being separated by two
Kosterlitz-Thouless (KT) transitions from a sublattice ordered
phase on one side and a paramagnetic (disordered) phase.
One can study its quantum dynamics with analytic methods

FIG. 4. (a) An intuitive illustration of geometrical frustration that
stems from the antiferromagnetic Ising model on a triangular lattice,
where spins are aligned opposite to neighbors for minimizing the
energy. A spin is frustrated once the other two align antiparallel
since either orientation gives the same energy. (b) Phase diagram
of the model under transverse field with boundaries, Eq. (19), given
by previous researches [57,58]. There exists a clock (ordered) phase
since the frustration effect occurs for each spin, giving a ground
state of sixfold degeneracy. A critical KT phase floats between the
paramagnetic phase and clock phase, where KT transitions occur at
the phase boundaries.

[57,58], allowing quantitative prediction of the phase dia-
gram at both arbitrary finite temperature and transverse field
strength, giving the phase boundary of the KT phase and
paramagnetic phase

T2

J
= b

�

�c
lnν

(
�c

�

)
, (19)

where b = 0.98 is the numerical constant fixed by renormal-
ization, ν ≈ 2/3 is the three-dimensional (3D) XY exponent,
and �c = 1.65J is the critical strength of the transverse field.
Correspondingly, we have the boundary of the KT phase and
ordered phase by the substitution T1 = (4/9)T2 [cf. Fig. 4(b)].
The numerical values of b and �c are suggested by previous
density matrix renormalization group (DMRG) and Monte
Carlo studies of the system [59].

Meanwhile, we are aware of the fact the statistical proper-
ties of the system can be derived from its partition function
Z = Tr exp(−βH ), where β = 1/(kBT ) (kB = 1 for simplic-
ity). According to the Suzuki-Trotter theorem [60], we can
express the partition function of the quantum Hamiltonian
in terms of a stacked classical Ising model with the reduced
Hamiltonian

H2+1 =
∑
〈i, j〉,k

Ki jsiks jk −
∑
i,k

K⊥siksik+1, (20)

where sik denotes the classical Ising spins with values ±1,
and k is the index in the imaginary time direction of the
(2 + 1)-dimensional classical system. It consists of antifer-
romagnetic coupling Ki j = J/(nT ) within each layer and
ferromagnetic coupling K⊥ = (1/2) ln(nT/�) between lay-
ers. The map of the quantum to classical system becomes
exact when the Trotter number n goes to infinity. Thus, it
allows us to study the transverse field TIAF numerically,
e.g., by means of a continuous-time Monte Carlo algorithm
[61], which avoids the exponential increasing of the system’s
height as exp(2K⊥). Instead of discretizing the imaginary
time direction and storing values of ±1 at each Trotter step,
we take the continuous-time limit for applying the scheme
of the Swendsen-Wang cluster update method [62]. We cut
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a continuous segment S̃i{[t0, t0 + t]} of length t < β by a
Poisson process with decay rate of 1/�. Next we connect
space-neighboring segments S̃i{[t1, t2]} and S̃ j{[t3, t4]} with an
overlap length of t = len([t1, t2] ∩ [t3, t4]) by the probability
of 1 − exp(−2Jt ). This way, we build clusters of connected
segments, randomly assigning them a value of ±1, removing
unessential cuts in each segment to obtain a new configuration
of the (2 + 1)-dimensional system. We update the system
by Metropolis acceptance criterion p = min{1, exp(−�E )},
where �E denotes the energy difference between the original
and the new configuration. We retrieve the local magnetiza-
tion mi by dividing the weighted length of the spin σi by β,
from which we can detect the phase of the transverse field
TIAF with arbitrary choice of T , J , and �. The details of the
algorithm are explained in Appendix D.

B. Problem formulation

The analytical description and the computational approach
provide us the tools to study the exotic phases of the mag-
nets with geometrical frustration and phase boundaries. We
assume that Bob does not have enough prior knowledge of
the system; i.e., Bob only knows that there exist three distin-
guishable phases in the transverse field TIAF model, which
are a paramagnetic (disordered) phase at high temperatures
or strong transverse fields, a clock (ordered) phase at low
temperature or weak transverse field, and a floating KT (crit-
ical) phase between them. Bob aims at predicting the phase
boundaries by ML models, with samples xi = (�, T, J ). Bob
can detect the phase of the model under the parameter xi
by either a computational physics approach or condensed
matter physics experiments, labeling the sample by the out-
come yi. Considering that labeling samples by either method
might be time demanding and expensive, Bob employs AL
for an optimal experiment design, labeling the sample with
maximum uncertainty evaluated by the model. SSL comes
behind the AL after labeling as many samples as possi-
ble, corresponding to the experiment’s budget for artificial
labeling.

C. Numerical simulation

Instead of sampling on a lattice with finite qutrits, Bob
is facing a continuous parameter space for sampling, which
can be simplified after discretization of the space. Since Bob
already knows that there is a KT phase floating between the
others, Bob selects a nonlinear support vector machine (SVM)
with a Gaussian kernel. Although SVM is not a probabilistic
model, one can still equivalently evaluate the uncertainty by
its decision function. Accordingly, Bob transforms the triple
classification problem to binary classification by combining
two one-vs-rest (OvR) strategies. Different phases are charac-
terized by positive or negative values of the decision function.
It is trivial that the estimations of the phase boundaries are the
contour lines of the value to be zero. In order to evaluate the
performance of AL and its combination with SSL, one has to
define the correct rate by comparing the values of the decision
function to the true value. We highlight that even though the
analytical analysis leads us to an elegant expression of phase
boundaries, as shown in Eq. (19), the parameters b, ν, and �c

are still suggested by previous numerical studies instead of
calculating ab initio. In other words, these parameters have
their uncertainties, which are bounded by shots of DMRG or
Monte Carlo numerical experiments. Thus, Alice assumes that
the combination of analytical expressions and experimental
values could characterize the phase boundaries; i.e., Alice
employs Eq. (19) as the classifier for obtaining true labels
of samples for model evaluation, which might not exactly
describe the phase boundaries in nature. Meanwhile, various
computational physics approaches with hyperparameters re-
sult in different phase-detection outcomes, especially when
the sample is near the true phase boundaries. Thus, Bob
queries the phase of a sample from Alice instead of doing
numerical simulations for a fair evaluation of the AL algo-
rithm. To mimic the statistical error in numerical or laboratory
experiments, Alice models the error by a probability of wrong
labeling, flipping the oracle’s OvR class by

Pflip = 1
2 exp(−kd ), (21)

where k is a tunable coefficient and d is the distance from the
sample site in parameter space to the curve.

In Fig. 5, we present a demonstration on predicting the
boundary of the paramagnetic phase and the rest by the use of
RS as baseline and USAMP. We notice that USAMP queries
sample close to the analytical phase boundary, achieving a
better estimation than RS does. Then we go for a quantita-
tive study by combining two nonlinear SVMs with Gaussian
kernel for discriminating among three quantum phases. We set
the space to be sampled as �/�c ∈ [0, 1.1], T/J ∈ [0, 0.6] for
paramagnetic phase vs the rest and T/J ∈ [0, 0.3] for ordered
phase vs the rest, respectively, where the lattice length is 0.01.
We benchmark the performance of USAMP under different
labeling error rates by RS [cf. Fig. 6(a)]; USAMP with la-
beling error modeled by k = 100 achieves almost 90% rate
estimation for the triple classification problem, outperforming
RS significantly. We also perceive the fact that the RS with
k = 100 realizes a more precise estimation than the USAMP
with k = 5 does. We deduce that it is reasonable because k =
5 has a far higher probability of incorrect labeling of samples.
To be more specific, there is a trade-off when labeling the
samples that are close to the phase boundaries, because they
reduce uncertainty but the model is more likely to be misled
by introducing wrong labels. By contrast, RS uniformly se-
lects samples, which most of them are far from the boundaries.
Although labeling them does not reduce the uncertainty as
much as USAMP does, the possibility of incorrect labeling is
notably suppressed, especially when the parameter k is small
enough in our error model. We further consider the situation
that the experimental budget is very limited; i.e., one can
only label minimal numbers of samples, requiring cooperation
between AL and SSL. In Fig. 6(b), we use SSL to investigate
if one can refine the model trained by AL once the number
of artificially labeled samples meets the upper limit. We ver-
ify that SSL hardly improves the performance of the model
trained by AL. Therefore, we conclude that AL provides an
optimal design of experiments, exploiting the information in
each queried sample.
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FIG. 5. (a) A binary classification model with sampling strategy random sampling, discriminating the paramagnetic phase and the rest.
We show the heat map of the decision function, and plot the 100 queried samples by their labels. Labeling error is modeled by Eq. (21) with
k = 50. By labeling less than 2% of the samples, the model achieves a rate estimation of 94%. (b) The strategy is margin sampling which
improves the performance to 99% while the other parameters remain the same. We plot the ground-truth phase boundary (19) by a solid black
curve, and the decision boundaries of the model by yellow dashed curves.

V. CONCLUSIONS

We have proven the advantage of AL algorithms in study-
ing multinomial classification problems in physics by two
representative cases, namely, quantum information retrieval in
qutrits and phase boundary prediction in many-body physics.
AL algorithms remarkably reduce the cost of labeling, which
can be defined theoretically or practically, by fidelity loss in
quantum information retrieval or operation cost in physics
experiments, respectively. The AL-assisted information re-
trieval in qutrits can be experimentally verified by entangling
photons, with a biphoton locally projected by Alice and re-
motely prepared at Bob, followed by two ancilla photons
for extracting information. AL algorithms enable optimal
model training, thereby equivalently quantifying the relation
between quantum fidelity loss and the corresponding clas-
sical information gain by performance enhancement of the
model without calculating the information entropy reduc-
tion [63]. One should also focus attention on the fact that
the performance of AL is also related to the ML model
itself. Although it significantly reduces the labels required
for model training for most tasks, it fails when the ML
model does not work for given data distribution or even mis-
leads the prediction, with the counterexample shown in the
Appendix C.

A possible extension of this work could involve the com-
bination of the proposed framework with deep learning. An
artificial neural network (ANN), as a universal functional
approximator, may substitute the statistical ML models as the
discriminator. Pretrained ANNs can also work as generative
models, fundamentally related to the origin of trade-off and
dynamical prediction [64], or for annotating samples for effec-
tively training a less complex model with more interpretability
[65]. The difficulty of this extension is that repetitively train-
ing deep ANNs with updating data sets costs too many
computational resources, violating the aim of efficient training
by itself. Such an extension requires training theory for the
dynamical data set from the community of computer science.

Another extension is multilabel classification, which
should not be confused with the multinomial classification
presented in this work. Multilabel classifications involve that
multiple labels can be predicted for each sample, which
naturally allows the encoding in quantum systems by super-
positions.

One more possibility to enhance the research presented in
this work is to include information about data density when
selecting the labels to be sampled in order to avoid choosing
samples that are close to the decision border but are not
representative of the data set.

FIG. 6. (a) Mean correct rates of estimation on phase boundaries with random sampling (baseline), USAMP (k = 5, 50, 100) as different
sampling strategies and labeling error rates. Confidence intervals are filled by transparent colors, denoting a standard deviation based on 100
numerical experiments. (b) Mean correct rates of AL-trained models followed by SSL, after the numbers of samples labeled by annotator meet
the upper limits. The transparent lines denote the mean correct rate of AL-trained models without SSL. Parameters remain the same as in (a).
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Finally, we would like to emphasize that the use of AL
in physics is apparently not restricted to retrieving quantum
information and studying many-body physics. AL algorithms
assist physicists in designing optimal experiment strategies
and analyzing the data output, leading to promising applica-
tions in particle physics and cosmology as well, where the cost
of the experiments is extremely sensitive.
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APPENDIX A: MACHINE LEARNING MODELS

We briefly introduce the ML model for optimal training
with a few labeled samples: logistic regression, nonlinear
SVM with Gaussian kernel, and naive Bayes. Semisupervised
learning and its implementation are also provided for repro-
duction. All the algorithms are available in the latest version
(v.0.24.2) of the PYTHON library SCIKIT-LEARN [66].

Logistic regression. Logistic regression is a linear model
for classification, which is also known as maximum-entropy
classification. The binary prediction of a sample can be mod-
eled by the logistic function

Pθ (yi = 1|xi) = hθ (xi) = 1

1 + exp(−θTxi)
, (A1)

Pθ (yi = 0|xi) = 1 − Pθ (yi = 1|xi), (A2)

where the generalized linear separation model reads

log

(
y

1 − y

)
= θTx = θ0 + θ1x1 + · · · + θnxn. (A3)

For the model training, we write down the cost function to be
minimized as a likelihood function,

J (θ ) = −N−1
N∑

i=1

log Pθ (yi|xi), (A4)

assuming that all observations in the sample follow the
Bernoulli distribution. The gradient of the cost function gives

∂θ j J (θ ) = N−1
N∑

i=1

[hθ (xi) − yi]x j, (A5)

which updates the parameter by θ j = θ j − α∂θ j J (θ ). It is
equivalent to summing the conditional entropy and Kullback-
Leibler divergence in the limit of large N . For finding the best
hθ (x), θTx will be as small (large) as possible for producing
class label y = 0 (or y = 0), thereby letting θ j → −∞ (or
+∞). To avoid such overfitting and numerical instability for a

better generalization, one considers controlling the growth of
θ j by regularization. A typical L2 regularization penalizes the
cost function by rewriting the cost function in the following
way:

J̃ (θ ) = J (θ ) + λ

2N
θTθ, (A6)

where λ is the hyperparameter that leads to underfitting by
making θ j shrink to zero with a large value and has less
regularization effect with a smaller value. Logistic regression
is a vital ML model that inspires famous extensions for other
tasks, e.g., the conditional random field in natural language
processing, aiming to learn the sequential features of samples.

In our implementation with SCIKIT-LEARN, we use L2
regularization with hyperparameter C = 1/λ = 1 for a multi-
nomial classification of quantum information retrieval in
qutrits. The model is trained by the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm for gradient
descent, where learning rate, maximum iteration, and toler-
ance are set to default.

Nonlinear Gaussian SVM. A support vector machine aims
at finding a hyperplane that separates support vectors xi
(samples) of different classes y = ±1 with the correct pre-
diction for most support vectors. For each sample we define
a variable ξi = max[0, 1 − yi(wTxi − b)]. Equivalently, we
highlight that ξi is the minimal non-negative value satisfying
yi(wTxi − b) � 1 − ξi. To this goal, we solve the primal prob-
lem

min
w,b,ξi

1

2
wTw + C

n∑
i=1

ξi, (A7)

where C is the L2 regularization parameter for controlling the
distances from the samples to the hyperplane. One derives the
Lagrangian dual problem to the primal as

max
ci

= −1

2

N∑
i=1

N∑
j=1

yici
(
xi

Txj
)
y jc j, (A8)

where
∑N

i=1 ciyi = 0 and 0 � ci � C. For a nonlinear
classification, one may map the support vectors into a higher-
dimensional space as xi → φ(xi). The inner product xi

Txj is
substituted by the kernel K (xi, xi, xj) = φ(xi)φ(xj).

For the phase boundary prediction problem, we use the
radial basis function (Gaussian) kernel

K (xi, xj) = exp(−γ ||xi − xj||2), (A9)

where ||xi − xj|| is the Euclidean distance between xi and
xj. Once we solve the optimization problem, we obtain the
decision function for a given sample∑

i

yiciK (xi, x) + b, (A10)

where a positive (negative) value denotes the label prediction
of y = ±1. In our implementation, we set C = 1 and γ =
1/[2var(X )].

Naive Bayes. Naive Bayes is a simple ML model
for predicting the class of a sample xi by conditional
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FIG. 7. Mean correct rates of triple classification model with random sampling (baseline), least confidence, margin sampling, and entropy
sampling as different sampling strategies under statistical errors. Confidence intervals are filled by transparent colors, denoting a standard
deviation based on 200 numerical experiments. We simulate the statistical errors by perturbations δρ j j on the diagonal elements of density
matrices, after calculating them from the measurement output. The standard deviations are (a) σ = 0.05 and (b) σ = 0.1.

probabilities

P(y|xi) = P(y)P(xi|y)

P(xi)
. (A11)

The naive conditional independence assumption

P(x j |y, x1, . . . , x j−1, x j+1, . . . , xn) = P(x j |y) (A12)

simplifies the prediction as

P(y|xi) = P(y)�n
i=1P(x j |y)

P(xi)
. (A13)

Thus, one realizes the classification by following the rule

ŷ = argmax
y

P(y)�n
j=1P(x j |y), (A14)

where naive Bayes classifiers differ by the assumption of
P(x j |y). In our extra AL numerical experiments, we assume
that the distribution is Gaussian:

P(x j |y) = 1√
2πσ 2

y

exp

[
− (x j − μy)2

2σ 2
y

]
. (A15)

Semisupervised learning. In our implementation, we use
a self-training classifier to learn from unlabeled data. After
training a nonlinear Gaussian SVM by AL, the SVM itera-
tively predicts pseudolabels for all data in the unlabeled pool.
A sample is added to the training set with its pseudolabel
once the confidence meets a threshold. The SVM trains itself
until the maximum iteration number is met, or no new sam-
ples were added in the last iteration. For the phase boundary
prediction problem, we set the threshold to 0.95, and the
maximum iteration number is 5.

APPENDIX B: INFORMATION RETRIEVAL WITH
STATISTICAL ERRORS

In the main text, we have ignored that the measured class
may be wrong due to the statistical error, which can be miti-
gated by measuring multiple copies of the qutrit. Indeed, the
measurements of the observable 〈�1A�1B〉 j,k induce statisti-
cal errors, which are amplified when we calculate the diagonal
elements of density matrices. According to Eq. (13), errors are
inversely proportional to the measurement strengths θi. Thus,

the samples close to the decision boundaries are more likely to
be wrongly labeled. One may argue that neglecting the statis-
tical errors, i.e., considering measurements in the ensemble of
the large-n limit, naturally favors the AL method. We inves-
tigate the analysis, investigating the trade-off between label
errors and encoded information by the following numerical
experiments.

In Fig. 7, we compare three USAMP strategies of AL to
RS as the baseline with the same setup of Fig. 3(a). After
calculating the diagonal elements ρ j j of density matrices, we
perturb them by random Gaussian numbers δρ j j , whose stan-
dard deviation is artificially set to different values. Although
RS benefits more because of fewer label errors, the baseline
still does not outperform AL. We conclude that AL queries
of the samples with maximum uncertainty are robust against
label errors.

Furthermore, we study the performance of AL with sta-
tistical errors on different measurement strengths. In Fig. 8,
we show the mean correct rates of margin sampling with the
same setup of Fig. 3(b). We set the standard deviations of
Gaussian perturbations to σ = 10−4/(θ2

Aθ2
B ). We notice that

FIG. 8. Mean correct rates of triple classification model with
margin sampling under statistical errors. Each qutrit is labeled by
measurements of different strength θA and θB. We set the standard
deviations of Gaussian perturbations to σ = 10−4/(θ2

Aθ 2
B ).

013213-10



ACTIVE LEARNING FOR THE OPTIMAL DESIGN OF … PHYSICAL REVIEW RESEARCH 4, 013213 (2022)

FIG. 9. Mean correct rates of logistic regression triple classification model for case I with sampling strategies as (a) least confidence and
(b) entropy sampling, respectively. Each qutrit is labeled by measurements of different strength θA and θB. Parameters remain the same as in
Fig. 3(a).

the weaker the measurement is, the more significant the sta-
tistical errors are. Although the advantage of AL remains,
label errors decrease the performance of weak measurements
at small θi, which might be improved or partially avoided by
other measurement protocols, whose design goes beyond the
scope of this work.

APPENDIX C: EXTRA NUMERICAL
EXPERIMENTS IN QUTRITS

Here we present miscellaneous information about the extra
numerical experiments on quantum information retrieval in

qutrits. Besides the data set described in the main text (case
I), we test AL algorithms on another configuration without
rotational symmetry (case II). We introduce the function to
generate the data set as follows.

Case I. We define the rotation operation x′ = R(θ )x on the
parameter space x = (x1, x2)T ∈ [−1, 1] × [−1, 1]:(

x′
1

x′
2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x1

x2

)
. (C1)

We have three independent parameter spaces x(1) = R(0.32)x,
x(2) = R(2π/3 + 0.32)x, and x(3) = R(4π/3 + 0.32)x, giv-
ing angular parameters φ(i) = arctan(x(i)

2 /x(i)
1 ). Thus, we

FIG. 10. (a) Mean correct rates of naive Bayes triple classification model for case I with random sampling (baseline), least confidence,
margin sampling, and entropy sampling as different sampling strategies. Confidence intervals are filled by transparent colors, denoting a
standard deviation based on 200 numerical experiments. (b–d) Mean correct rates of classes 1, 2, and 3 versus the rest, respectively, where
USAMP strategies are equivalent for binary classification problems. The other parameters remain the same.
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FIG. 11. (a) The lattice prepared by Alice, encoding the quantum information of case II, which consists of 21 × 21 = 441 qutrits for
triple classification. The qutrit states are demonstrated by pie charts with proportions |c1|2, |c2|2, and |c3|2. USAMP protocols with the query
strategies (b) least confidence, (c) margin sampling, and (d) entropy sampling, respectively. Bob initializes a naive Bayes model by three
oracles provided by Alice (circled in red). Qutrits queried by the model are circled in black and covered by smaller circles in class colors.

generate the data set by

c̃i(x1, x2) = 1
2 (1 + sin φ(i) ), x(i)

1 � 0,

= 1
2 (1 − sin φ(i) ), x(i)

1 < 0, (C2)

where the amplitudes ci are derived from the normalization of
c̃i.

Case II. Here the parameter space is defined on x =
(x1, x2)T ∈ [0, π/4] × [0, π/4], where amplitudes of each ba-
sis read

c1(x1, x2) = sin2(x1 + x2),

c3(x1, x2) = cos2(x1 + x2),

c2(x1, x2) =
√∣∣1 − c2

1 − c2
3

∣∣. (C3)

Benchmarking sampling strategies. In the main text, we
demonstrate the performance of AL algorithms with different
sampling strategies for training the logistic regression model.
For case I, margin sampling gives a smoother curve of correct
rate [cf. Fig. 3(a)]. Here we present the correct rate of least
confidence and entropy sampling for the same test in Fig. 9.
As we expected, the performances are hardly distinguishable.

Naive Bayes for case I. The main text has mentioned that
one could not take the advantage of AL for granted. AL
queries the samples that are closer to the decision boundary.
In this way, it might not query the samples of other classes
far from the decision boundary. It affects the model’s perfor-
mance significantly once the model’s estimation is based on
weights of sample classes, making the baseline RS outperform
all USAMP methods.

Here we test AL algorithms to efficiently train naive Bayes
classifiers, aiming to solve the quantum information retrieval
in qutrits. In case I, we proved that the logistic regression
model gives a satisfying prediction with USAMP, and sig-
nificantly outperforms RS. However, we meet a setback in
training a naive Bayes classifier for the same task (cf. Fig. 10).
We test OvR for three classes; although the performance of
USAMP surpasses RS with more labeled samples, both show
similar behaviors. We reckon that the similar performances
are reasonable since the quantum information data set is gen-
erated with rotational symmetry so that each class is balanced.
As a result, RS outperforms all USAMP strategies with a
small number of labeled samples.

Naive Bayes for case II. We wonder if the phenomenon
in case I exists in other scenarios, which inspired us to test
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FIG. 12. (a) Mean correct rates of naive Bayes triple classification model for case II with random sampling (baseline), least confidence,
margin sampling, and entropy sampling as different sampling strategies. Confidence intervals are filled by transparent colors, denoting a
standard deviation based on 200 numerical experiments. (b–d) Mean correct rates of classes 1, 2, and 3 versus the rest, respectively, where
USAMP strategies are equivalent for binary classification problems. The other parameters remain the same.

the naive Bayes classifier on another data set as case II. We
present an illustrative demonstration on the query behaviors
and a quantitative study in Figs. 11 and 12, respectively. We
find out that RS outperforms USAMP strategies even more
significantly in case II than in case I.

Now we analyze the mechanism of the failure of AL algo-
rithms in such model and data set. AL algorithms collaborate
with ML models, querying the most informative sample ac-
cording to the model’s estimation. It might be misled if the
probabilistic model is based on the prior, which is sensitive
to the labels of samples in the training set. Indeed, the pre-
dictions of unknown samples via naive Bayes classifier are
in proportion to P(y) as the prior. For example, the model
will ignore the probability of a third class, if the samples of
that third class do not share enough population in the prelim-
inary training set, with only a few samples. Thus, the model
performs an almost binary classification with AL, which can
only be corrected once almost all samples are queried. By
contrast, RS queries samples uniformly distributed in the pa-
rameter space. Although the samples queried are supposed to
be less informative, it ensures a better estimation of P(y) by
querying samples that uniformly distribute in the parameter
space.

APPENDIX D: CONTINUOUS-TIME MONTE
CARLO ALGORITHM

For fairly evaluating the ML models with true values,
we do not employ the continuous-time Monte Carlo algo-

rithm for labeling the samples by detecting its phase, but
simulating a numerical error model corresponding to the
analytical analysis. We reckon it is necessary to introduce
the algorithm for a better understanding, which might help
the audience apply AL algorithms to other tasks in many-
body physics, where one aims to predict unknown features
of many-body systems; i.e., model evaluation is no longer
required.

For a reliable Monte Carlo approach, one has to verify if
the sign problem exists in the system to be studied. There are
only positive weights in the transverse TIAF model; that is to
say, there is no sign problem for this geometrically frustrated
system. According to the Suzuki-Trotter theorem [60], the
two-dimensional (2D) quantum Ising model is equivalent
to a (2 + 1)-dimensional classical Ising model, whose
discretized version is difficult to be simulated because of the
scaling limit. Thus, one can use a continuous (imaginary)
time algorithm [61] that no longer treats classical spin
variables as lattices, but continuous segments of a certain
length: sik = sik+1 = · · · = sik+N → S̃i{[t0, t0 + t]}, where
t = N/(nT ). The edges of the segments are named cuts, for
which at those switching times, the spin is flipped to another
value.

The configuration is updated by the Swendsen-Wang
method, consisting of inserting new cuts and clustering
segments as two main steps. For neighboring classi-
cal spins on the imaginary time direction sik and sik+1,
the probability of sharing a same value is pi = 1 −
exp(−2K⊥) = 1 − (�/nT ) + O(1/n2T 2). Accordingly, the
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FIG. 13. (a) An initial configuration of the system, consisting of spin segments in the imaginary time direction. (b) Inserting new cuts
according to the Poisson process (D1). (c) Connecting segments for clustering (D2). (d) New configuration after randomly assigning values to
each cluster. The redundant cuts within segments should be removed before a new iteration.

probability of connecting classical spins on the imagi-
nary time direction of a length t in the continuous limit
reads

(pi )
ntT = (1 − �/nT )ntT → exp(−�t ). (D1)

It denotes a Poisson process with decay time 1/�. Simi-
larly, we connect space-neighboring segments S̃i{[t1, t2]} and
S̃ j{[t3, t4]} with an overlap length of t = len([t1, t2] ∩ [t3, t4])
by the probability

1 − (1 − pi j )
ntT

= 1 − (1−2Ki j/nT )ntT → 1 − exp(−2Ki jt ), (D2)

forming new clusters for a value assignation of ±1 with equal
probability. A schematic of the cluster-updating method is
shown in Fig. 13.

It is straightforward to obtain the measurement of ob-
servables; e.g., the local magnetization mi can be calcu-
lated by averaging the length of segments with weights
±1, and then divided by β = 1/T , leading to local
susceptibility

χi =
∫ β

0

〈
σ z

i (τ )σ z
i (0)

〉
dτ = β

〈
m2

i

〉
, (D3)

by averaging over configurations generated over Monte Carlo
steps. For labeling samples, i.e., detecting phases, we briefly
introduce the quantities for completing such a task. Landau-
Ginzberg-Wilson theory suggests that the complex XY order

parameter [67] is

ψ (r) = ψ0 exp(iφ)

=
[

m1 + m2 exp

(
i4π

3

)
+ m3 exp

(
− i4π

3

)]
/
√

3,

(D4)

which equals zero for the paramagnetic phase and critical
phase, where mi are the local magnetizations of spins in the
triangular sublattice. One can also calculate the susceptibility
once the magnetization vanishes in the limit of infinitely large
TIAF. The clock phase can be detected by checking the sixfold
symmetry-breaking term

c6 =
〈
ψ6

0 cos 6θ
〉

〈
ψ6

0

〉 , (D5)

which equals ±1 for (+ − −) or (+0−) phases, as well as
zero for paramagnetic and critical phases. Another quantity
that distinguishes the paramagnetic phase and critical phase is
the Binder cumulant [68],

U = 1 −
〈
ψ4

0

〉
3
〈
ψ2

0

〉2 , (D6)

which converges to zero at paramagnetic phase, Ũ that de-
pends on the location within critical phase, and to 2/3 at
clock phase in the infinitely large system size limit. Locating
the critical phase can also be approached by scaling analysis
[69] and KT theory [70], which is introduced in the numerical
study of the model with full details [59].
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