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Statistical inference of one-dimensional persistent nonlinear time series
and application to predictions
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We introduce a method for reconstructing macroscopic models of one-dimensional stochastic processes with
long-range correlations from sparsely sampled time series by combining fractional calculus and discrete-time
Langevin equations. The method is illustrated for the ARFIMA(1,d,0) process and a nonlinear autoregressive toy
model with multiplicative noise. We reconstruct a model for daily mean temperature data recorded at Potsdam,
Germany and use it to predict the first-frost date by computing the mean first passage time of the reconstructed
process and the 0 ◦C temperature line, illustrating the potential of long-memory models for predictions in the
subseasonal-to-seasonal range.
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I. INTRODUCTION

Predicting the dynamics of complex systems with models
inferred from data has been a longstanding endeavor of sci-
ence. If such models are stochastic, they can capture quite
naturally erratic fluctuations in the observed data. We will
discuss the large body of literature on the reconstruction of
Markov processes below. However, in many real world data
sets, violations of Markovianity by long-range temporal cor-
relations have been observed. For a stationary process with
light-tailed increment distribution, the Hurst exponent H mea-
sures such temporal long-range correlations [1,2]. For H >

0.5, the process exhibits persistent long-range correlations.
For short-range correlated processes, in particular Markov
processes, there exists a characteristic timescale, i.e., a mini-
mal time separation required between two states of the process
to be considered independent. Hence the process possesses no
asymptotic self-similarity, resulting in H = 0.5 [3–5]. Models
for long-range correlations emerged after Hurst’s study of the
reservoir capacity for the river Nile [6]. Later on, long-range
correlations were found in data sets of temperature anomalies
[7,8], river runoffs [9], extreme events return intervals [10],
biological systems [11,12], and economics [13]. The earli-
est models generating long-range correlations are fractional
Brownian motion (FBM) [3] in continuous time and autore-
gressive fractionally integrated moving average (ARFIMA)
processes [14,15] in discrete time. The ARFIMA(1,d,0) pro-
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cess is defined as

yt+1 = φ yt + (1 − B)−d ξt

= φ yt + lim
M→∞

M∑
j=0

�( j + d )

�( j + 1) �(d )
ξt− j, (1)

in which the positive real number φ is the autoregressive
parameter, B the backshift operator, � the gamma function,
and ξt Gaussian white noise. It has the asymptotic Hurst
exponent H = 0.5 + d and, as Eq. (1) shows explicitly, it is
not Markovian. Figure 1 shows conditional averages of yt ,
E (yt |y0 ∈ [2.9995, 3.0005]), as a function of t for various val-
ues of the memory parameter d , where the condition requires
that y0 ∈ [2.9995, 3.0005], and E (·) denotes the expectation
value. The short-range limit of this example, d = 0, H = 1/2,
is the Markovian AR(1) process and has an autocorrelation
time of τ = −1/ ln φ ≈ 2.3. The much faster relaxation of
this conditional mean to the sample mean of the process
(which is 0) demonstrates that memory in the noise can lead
to enhanced predictability of the process. Therefore, it is
beneficial to reconstruct such models from data, if there are
clear indications for temporal long-range correlations, instead
of ignoring them.

Today, there are many approaches to reconstructing
stochastic models from data. Examples include generalized
Langevin equations [16,17], fractional Klein-Kramers equa-
tions [18], underdamped Langevin equations [19], Fokker-
Planck equations [20–23], and discrete-time ARFIMA [24]
and nonlinear autoregressive moving average (NARMA) [25]
models. While all of these approaches deal with either low
sampling rates, long-range correlated data, nonlinear drift
terms, multiplicative noise or single-trajectory data, none of
them covers all of these complications for model reconstruc-
tion at once. However, in many applications, e.g., geophysical
time series recordings, neither trajectory ensembles nor highly
sampled data sets are available, when the time series exhibit
both nontrivial short-range and long-range behavior. Király
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FIG. 1. Conditional averages of ARFIMA(1,d,0) processes with
φ = 0.65 and parameter values d ∈ {0.0, 0.15, 0.45} relax to zero
on different timescales. For d = 0.0, the process simplifies to the
Markovian AR(1) process (yellow curve: Analytical). The displayed
curves for d �= 0 are ensemble averages with N = 104 independent
samples, conditioned on y0 ∈ [2.9995, 3.0005] and a finite memory
length M = 250, truncating the noise integration [cf. Eq. (1)]. Error
bars indicate standard deviations. For larger d , the memory of the
noise is stronger, resulting in a slower relaxation towards the mean
of the process. This indicates that for processes with long-range cor-
relations (d > 0), prediction horizons are longer than for processes
without long-range correlations.

and Jánosi propose a method for the model reconstruction
of daily temperature anomalies with long-range correlated
input noise in an ad hoc and approximate way [26]. Here, we
extend this pioneering work to a generally valid framework
for the reconstruction of discrete-time models and illustrate
the predictive power of long-memory models.

In the remainder of this article, we describe our method
and illustrate it by applying it to the ARFIMA(1,d,0) process,
to a nontrivial toy model, and to daily mean temperature data.
Finally, we use a reconstructed stochastic model of daily mean
temperature anomalies to predict the first-frost date in Pots-
dam, Germany, and assess the performance of the prediction.

II. METHOD

We exploit the scale freedom of long-range correlations
and decompose the long-range and short-range behavior of
stochastic time series. First, we remove long-range corre-
lations using the Grünwald-Letnikov fractional derivative,
resulting in a process which is approximately Markovian.
Then, we reconstruct the short-range dynamics with a
discrete-time Langevin equation. Finally, we numerically cre-
ate sample paths with the inferred Langevin equation and
introduce long-range temporal correlations, again employ-
ing the Grünwald-Letnikov fractional integral also used in
ARFIMA processes.

We start with a one-dimensional, stationary time series
{yt }1�t�N of length N , which exhibits an asymptotically
constant Hurst exponent H > 0.5. The numerical value of
H may be determined by detrended fluctuation analysis

(DFA) [27,28] or other methods, among them R/S statistics
[6], and wavelet transforms [29,30]. We use the first-order
finite-difference approximation of the Grünwald-Letnikov
fractional derivative of the order of d = H − 1

2 with a finite
difference of �t = 1.0, defined as [31]

t−MDd
t yt =

M∑
j=0

ω
(d )
j yt− j ; ω

(d )
j = (−1) j

(
d

j

)
. (2)

Here, M defines the memory length of the fractional opera-
tion. In theory, M goes to infinity for fractional processes [cf.
Eq. (1)]. In applications, choosing an appropriate finite M is a
trade-off between the loss of M data points and the timescale
of the long-range correlations to be removed. Choosing M =
N/2 would be optimal, but increased statistical fluctuations
in the subsequent analysis advise smaller M. The removal of
long-range correlations of time series using fractional calculus
has been applied, e.g., in [32,33]. For numerical ease, we use
the recurrence relation w

(d )
j = (1 − d+1

j ) w
(d )
j−1 with w

(d )
0 = 1

for the computation of the coefficients in Eq. (2).
The values of the resulting fractionally differenced time

series are denoted by {t−MDd
t yt } = {xt }, which we consider

approximately Markovian. We now model the time series
{xt }1<t<N−M with a stochastic difference equation [34] and
call it the discrete-time Langevin equation,

xt+1 = f (xt ) + g(xt ) ξt . (3)

Reminiscent of the continuous-time Langevin equation, we
refer to f (xt ) as drift and to g(xt ) as diffusion. Here, both
f (xt ) and g(xt ) are allowed to be nonlinear, resulting in
a nonlinear restoring force and multiplicative noise; ξt de-
notes Gaussian white noise with 〈ξt 〉 = 0 and 〈ξtξt ′ 〉 = δtt ′ .
We assume g(xt ) � 0 for xt ∈ (−∞,∞). The subsequent
scheme is inspired by the reconstruction scheme for time-
discrete NARMA models [25,35]. At first, we make an Ansatz
	(xt ; λ), λ = (λ1, λ2, . . . ) for the drift f (xt ). The functional
form of 	 requires an educated guess upon inspection of the
data in the (xt+1, xt ) plane. Demanding stability of the process
requires f (xt ) to monotonically decrease in xt for xt → ±∞.
We then find the optimal parameters λ̂ by a least-squares
fit, i.e.,

λ̂ = arg min
{λ}

N−1∑
t=1

[xt+1 − 	(xt ; λ)]2 = arg min
{λ}

N−1∑
t=1

Rt (λ)2.

(4)

For a drift function 	(xt , λ̂) which resembles f (xt ), the aver-
aged squared residual amounts to 〈R2

t 〉 = g(xt )2〈ξ 2
t 〉 = g(xt )2

because of assumptions about the noise. Hence, we make an
Ansatz �(xt ; θ ), θ = (θ1, θ2, . . . ) for the squared residuals.
Again, an educated guess is needed for its functional form.
Performing a least-squares fit yields the optimal parameters
for approximating g(xt )2.

With the acquired parameters, we can generate trajectories
employing the following discrete-time Langevin equation:

xt+1 = 	(xt , λ̂) +
√

�(xt , θ̂ ) ξt . (5)

Here, ξt is Gaussian white noise with zero mean and variance
one. By construction, time series generated using Eq. (5) are
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Markovian and should have similar stochastic properties as
the fractionally differenced time series {xt }.

Finally, we fractionally integrate the model time series,
adding long-range correlations to the model data. For this
purpose, we employ the first-order finite-difference approxi-
mation of the Grünwald-Letnikov fractional integral, which is
obtained by setting d → −d in Eq. (2) and reads

t−MId
t xt =

M∑
j=0

(−1) j

(−d

j

)
xt− j . (6)

Our approach neglects measurement noise. Since we are in-
terested in reconstructing a macroscopic model possessing
the same statistical properties as the original time series, we
consider potential measurement noise as an indistinguishable
part of the process. Choosing appropriate functions 	 and
� is crucial for obtaining a suitable model. Therefore, we
advise testing various functions and base the selection both
on goodness of fit as well as comparisons of model data and
original data. The assumed Markovianity of the fractionally
differenced data should be tested in applications. If it is not
satisfied, the discrete-time Langevin equation presented here
must be replaced by a higher-order Markovian model incor-
porating more than one previous realization of the process.

III. ARFIMA(1,d,0) PROCESS AND THE DISCRETE-TIME
LANGEVIN EQUATION

We demonstrate the two parts of our method with the
ARFIMA(1,d,0) process and a toy model defined by a non-
linear discrete-time Langevin equation. From the definition
of the ARFIMA(1,d,0) process yt [cf. Eq. (1)], it is clear
that by applying the finite-difference fractional derivative [cf.
Eq. (2)], we obtain the AR(1) process:

xt+1 = φ xt + ξt , xt = (1 − B)d yt = lim
M→∞ t−MDd

t yt .

Due to linearity, the autoregressive parameter φ is the same
as in the ARFIMA(1,d,0) model. Hence, inference of φ from
the fractionally differenced process and subsequent fractional
integration of the inferred process yields the original process
here.

The following toy model process possesses a bimodal dis-
tribution and illustrates solely the second part of our method
for nonlinear functions f (xt ) and g(xt ),

xt+1 = −0.04 x3
t + 1.8 xt + (

0.01 x2
t + 0.5

)
ξt , (7)

with ξt as before. We make polynomial Ansatzes of order three
and four for the drift 	(xt ) and diffusion �(xt ), respectively.
Figure 2 displays model data as well as the perfect agreement
of input drift and diffusion functions and their reconstructions.
The reconstruction also works with a fifth-order polynomial
for 	(xt ) and a sixth-order polynomial for �(xt ).

IV. DAILY TEMPERATURE DATA AND
FIRST-FROST PREDICTION

We apply our method to daily mean 2m-temperature data
of the Potsdam Telegrafenberg weather station and predict the
first-frost date in late autumn using the first passage time of
the reconstructed process with the zero-temperature boundary.

FIG. 2. Parameter inference for toy model defined by Eq. (7).
(a) The drift inference of the model. (b) The diffusion inference of
the model. Red dots are the N = 106 data points. Blue crosses show
average values for 25 bins of equal width, only shown for illustration.
Orange curves show the results of least-squares fits for polynomials
of order three and four, respectively. Green dashed curves show input
drift and input diffusion, respectively. The orange and green curves
are in perfect agreement.

The data are provided by the European Climate Assessment
and Dataset project team [36]. The Potsdam temperature data
set consists of an uninterrupted time series starting on January
1, 1893 and is therefore apt for our analysis. Neglecting the
daily temperature cycle, we consider the temperature data set
as a time series of a discrete-time stochastic process with two
additional trends, namely, seasonal cycle (also called climatol-
ogy) and climate change. We approximate the seasonal cycle
by fitting a second-order Fourier series to the data, adding a
quadratic function in time to account for the nonstationarity of
the temperature time series due to climate change. The result-
ing stationary time series referred to as temperature anomalies
is approximately Gaussian [37, Fig. 2, p. 9246]. Here, we use
DFA-3, in which a cubic polynomial is used for the detrending
procedure [28], to determine the Hurst exponent resulting in
H = 0.65 (cf. Fig. 3).

FIG. 3. Detrended fluctuation analysis (DFA-3) of daily mean
temperature anomalies (green triangles), fractionally differenced
daily mean temperature anomalies (blue crosses), and model data
(orange dots). Offset for improved visibility. The asymptotic slope
of the fluctuation functions H of the daily mean temperature anoma-
lies and the model data coincide almost perfectly. The slope of the
fractionally differenced daily temperature anomalies approaches the
H = 0.5 line, indicating the absence of long-range correlations.
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FIG. 4. Estimation of (a) drift and (b) diffusion of the discrete-
time Langevin equation for fractionally differenced daily mean
temperature anomalies of the Potsdam Telegrafenberg weather sta-
tion. Red dots are the fractionally differenced anomalies [see (a)] and
their squared residuals [cf. Eq. (4); see (b)]. The blue crosses are bin
averages of the red dots, displayed for illustration only. The green
curves are results of least-squares fits of the polynomials of order
three for the drift and order four for the diffusion. The orange curves
are results of least-square fits of the model data (100 samples of the
length of the Potsdam data) generated with Eq. (5) and obtained
parameters of the green curves. There are small deviations of the
diffusion for large negative anomalies between the Potsdam data and
the modal data due to the numerical stability constraint.

Following the recipe described above, we fractionally dif-
ferentiate the temperature anomalies with d = H − 0.5 and
a memory length of three years (M = 1095). Choosing longer
memory ranges does not improve the model. The approximate
Markovianity of the fractionally differenced data is indicated
by its Hurst exponent (cf. Fig. 3), the exponential decay of its
autocorrelation function [cf. Fig. 5(a)], and an inspection of
the dependence of the residuals Rt (Xt−2, Xt−3|λ̂) on previous
realizations of the process, which is negligible.

For the drift and diffusion terms, we make a polynomial
Ansatz of order three and order four, respectively. Figure 4
displays the estimated drift and diffusion functions for the
fractionally differenced Potsdam Telegrafenberg daily mean
temperature anomalies. Király and Jánosi also report nonlin-
earities for the drift and diffusion of temperature anomalies
for an aggregate of temperature time series of 20 Hungarian
weather stations [26, Fig. 3, p. 4]. Their data show more
pronounced nonlinearities for drift and diffusion than the
Potsdam temperature anomalies because of more data points
for large anomalies where nonlinearities are more dominant.

To ensure numerical stability of the discrete-time Langevin
equation defined by the estimated drift and diffusion func-
tions, we set �(xt > xmax) = �(xmax) and �(xt < xmin) =
�(xmin). We then fractionally integrate a discrete-time
Langevin trajectory generated with the obtained drift and
diffusion parameters. Figure 5 displays the cumulative his-
tograms, autocorrelation functions, and power spectral densi-
ties of the temperature anomalies and model trajectories (see
Fig. 3 for the Hurst parameter estimation). They are in very
good agreement, which is also confirmed by visual inspection
of model time series, cf. Fig. 5(d) for one sample.

The reconstructed process may serve for making pre-
dictions. We predict the first-frost date for the Potsdam
Telegrafenberg weather station by computing the first passage
time distribution of generated process trajectories and the
zero-temperature line for a sample size of 50 years. We choose

(a)

(b) (c)

(d)

FIG. 5. Comparison of Potsdam daily mean temperature anoma-
lies and model data. (a) The autocorrelation function of the Potsdam
data exhibits some small-scale oscillations not explained by our
model. The exponential decay of the fractionally differenced Pots-
dam data is clearly visible, indicating the approximate Markovianity
of the data. (b) Cumulative distribution function. The model data
show slightly higher variance than the Potsdam data. (c) The power
spectral densities are estimated with a periodogram and Welch’s
method. Power spectral densities of the model data and the Potsdam
data agree well, apart from a kink at the maximum frequency. For
(a)–(c), the model data consist of 100 samples of the length of the
Potsdam data set. (d) 100 data points of the Potsdam daily mean
temperature anomalies and one model trajectory conditioned on the
past M = 1095 realizations of the Potsdam daily mean temperature
anomalies. Lines between data points are plotted for illustration only.

the 23rd of October as the forecast start date. For each sample
year, we cut the Potsdam daily mean temperature time series
at the 22nd of October, resulting in a time series from January
1, 1893 to the 22nd of October of the sample year. After
removal of the seasonal cycle, we infer model parameters
with our method. Using the reconstructed model, we generate
25 × 103 trajectories using Eq. (5), setting the fractionally
differenced temperature on the forecast start date as the initial
condition. We add the generated trajectory to the fractionally
differenced temperature anomalies, fractionally integrate the
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FIG. 6. First-frost prediction results. Dark blue triangles are the
observed first-frost dates of the Potsdam Telegrafenberg daily mean
temperature data set. Light blue stars indicate the benchmark pre-
diction of the first-frost date obtained by fitting a parabola to the
previously observed first-frost dates since 1893. Black squares are
the zero crossings of the seasonality cycle for years in which they
exist. Red dots are the predicted first-frost date with one standard
deviation of the first-frost date distribution. Accuracy of estimators:
Prediction: RMSE = 14.7 d and MAE = 11.4 d; benchmark pre-
diction: RMSE = 15.9 d and MAE = 11.9 d; seasonality: RMSE =
38.0 d and MAE = 34.8 d; standard deviation of observed first-frost
dates: σ = 15.6 d. The first-frost prediction performs slightly better
than the benchmark prediction.

concatenated new trajectory, add the seasonal cycle, and deter-
mine its first passage time with the 0 ◦C temperature line. The
mean first passage time over the ensemble of 25 × 103 values
is the predicted first-frost date. For a benchmark prediction,
we fit a parabola to the observed frost dates of the years before
the sample year, paralleling the climate change correction, and
extrapolate it to the sample year. Figure 6 shows the observed
first-frost date, the predicted first-frost date and its standard
deviation, the benchmark prediction, and the zero crossing of
the seasonality cycle for the years 1971–2020. The bias of
the predicted first-frost sample average amounts to −2.9 days,
meaning our prediction only has a marginal bias compared to
the average lead time of 32 days. We use the root-mean-square
error (RMSE) and the mean absolute error (MAE) to measure

the prediction performance. The RMSE of our prediction is
smaller than the variance of the observed first-frost dates,
indicating our prediction narrows the uncertainty of the pre-
dicted event. The RMSE and MAE (cf. caption of Fig. 6) show
that the prediction performs much better than the seasonality,
but only slightly better than the benchmark estimation. We
note that the variance of the observed first-frost date is much
larger than the variance of the prediction. In real weather, the
first-frost date is impacted by many factors, e.g., large-scale
weather patterns not captured by the local daily mean tem-
perature. Commemorating, we solely use a one-dimensional
time series to predict an event in a high-dimensional complex
system; we expect better prediction performances for recon-
structed models in more-dimensional systems. Reconstructing
these in multivariate models using the method presented in
this article is part of future research. Additionally, larger val-
ues of the memory parameter d would also contribute to larger
prediction horizons (cf. Fig. 1). In meteorology, the first-frost
date is defined as the first passage time of the daily minimal
temperature and the zero-degree temperature line, whereas we
use daily mean temperature data for our analysis. The first-
frost prediction results for the Potsdam minimal temperature
time series are qualitatively identical, but the reconstruction
of drift and diffusion is less satisfactory due to their more
complex shape.

V. CONCLUSION

In this article, we propose a method for the reconstruction
of one-dimensional nonlinear stochastic processes from per-
sistent sparsely sampled time series using fractional calculus
and discrete-time Langevin equations. The method performs
well for ARFIMA(1,d,0) and Potsdam daily mean temper-
ature data. A first-frost prediction for Potsdam daily mean
temperature data shows predictive power to some extent.
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