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Dynamic structure factor of the magnetized one-component plasma:
Crossover from weak to strong coupling
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Plasmas in strong magnetic fields have been mainly studied in two distinct limiting cases—that of weak
and strong nonideality with very different physical properties. While the former is well described by the
familiar theory of Braginskii, the latter regime is closer to the behavior of a Coulomb liquid. Here we study
in detail the transition between both regimes. We focus on the evolution of the dynamic structure factor of the
magnetized one-component plasma from weak to strong coupling, which is studied with first-principle molecular
dynamics simulations. The simulations show the vanishing of Bernstein modes and the emergence of higher
harmonics of the upper hybrid mode across the magnetic field, a redistribution of spectral power between the
two main collective modes under oblique angles, and a suppression of plasmon damping along the magnetic
field. Comparison with results from various models, including the random phase approximation, a Mermin-type
dielectric function, and the quasilocalized charge approximation show that none of the theories is capable of
reproducing the crossover that occurs when the coupling parameter is on the order of unity. The findings are
relevant to the scattering spectra, stopping power, and transport coefficients of correlated magnetized plasmas.
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Strong particle interactions affect the thermodynamic,
transport, and dielectric properties of plasmas. Conditions
required for these effects to occur are found in very dense or
cold systems or when highly charged particles are involved.
More specifically, in classical plasmas, the condition for the
Coulomb coupling parameter,

� = Q2

4πε0 a kBT
, (1)

where Q is the charge, T the temperature, and a =
[3/(4πn)]1/3 the Wigner-Seitz radius (density n), is � ∼
O(1). Examples range from ions in warm dense matter [1,2]
(solid densities), ultracold neutral [3] and non-neutral plasmas
[4] (mK temperatures), to complex (or dusty) plasmas [5]
(highly charged dust particles). Recent experimental advances
in the magnetic confinement of ultracold neutral plasmas [6],
high energy density matter [7], and dusty plasmas [8–11], as
well as theoretical efforts concerning, e.g., the stopping power
[12–15] and transport coefficients [16–24] demonstrate grow-
ing interest in the physics of magnetized strongly correlated
plasmas—conditions relevant to the outer layers of neutron
stars [25–29], confined antimatter [30,31], or magnetized tar-
get fusion [32,33]. In this challenging regime, the familiar
theory of Braginskii [34] is no longer applicable, and new
theoretical concepts as well as first-principle simulations are
required.
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The dynamic structure factor (DSF) is highly relevant
for both experiment and theory as it determines the x-ray
Thomson scattering signal, a diagnostic used in dense plasma
and warm dense matter experiments [35–39], and provides
access to thermodynamic, transport [40–42], and dielectric
properties [43], including the wave spectra [43–47]. While
waves in weakly coupled (� � 1) magnetized plasmas
have been investigated theoretically in the seminal work of
Bernstein [48] and are documented in textbooks [49,50],
molecular dynamics (MD) simulations, the quasilocalized
charge approximation (QLCA) [51], and harmonic lattice
theory have provided insight into the collective modes in
very strongly coupled (�� 10) magnetized two- [52–56]
and three-dimensional systems [57–60]. These conditions are
encountered, e.g., in strongly coupled rotating dusty plasmas,
where the Coriolis force in a rotating reference frame has
been used to emulate the Lorentz force on charged particles
in a magnetic field [9–11]. A common feature found in both
coupling regimes is the appearance of several high frequency
modes, including the famous Bernstein modes [48]. The
intermediate regime with � ∼ 1, and the transition from
weak to strong coupling, however, are largely unexplored, yet
directly relevant, e.g., to the evolving field of magnetically
confined ultracold neutral plasmas [6]. In the unmagnetized
case, the weak to strong coupling transition has recently been
studied for a single component Yukawa fluid [61].

Therefore, in this work, first-principle MD simulations are
conducted to explore the DSF and the wave spectra of the
magnetized one-component plasma across coupling regimes,
including the moderately coupled regime, where a theoretical
description is particularly challenging. As the coupling is in-
creased from a weakly correlated state, the simulations show
(i) the damping and finally the vanishing of Bernstein modes,
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(ii) the formation of higher harmonics of the upper hybrid
mode, (iii) a redistribution of spectral power between the two
principal collective modes under oblique angles, and (iv) a
suppression of plasmon damping along the magnetic field. To
connect with theory, the results are compared with the random
phase approximation (RPA), a Mermin-type extension includ-
ing collisions, and the QLCA. None of the theories provides
a consistent description of the observations as the coupling
regimes are crossed.

This work is organized as follows. The molecular dynamics
simulations and the theoretical methods are briefly discussed
in Sec. I and Sec. II, respectively. Results for the DSF are
then presented in Sec. III. The findings are discussed and
summarized in Sec. IV. Explicit expressions for the low order
moments of the DSF are provided in the Appendix.

I. SIMULATION METHOD

The system we study is the magnetized one-component
plasma, where a single charged species is embedded in a
uniform neutralizing background of the opposite charge and
subject to the Lorentz force induced by an external mag-
netic field. The simulations have been performed using the
LAMMPS code [62], with an integration scheme adapted to
strong magnetic fields [63]. Computation of the DSF,

S(k, ω) = 1

2π N

∫ ∞

−∞
〈n(k, t )n(−k, 0)〉eiωt dt, (2)

where n(k, t ) = ∑
i e−ik·ri (t ) is the Fourier transformed par-

ticle density, proceeds as in previous work [41,64]. The
timestep �t was chosen as �t ωp = 0.0015 for the lowest
coupling strength, � = 0.125, and was increased to �t ωp =
0.003 (�t ωp = 0.01) for � = 0.25 and � = 0.5 (� � 1).
Here, ωp = [Q2n/(ε0m)]1/2 is the plasma frequency. Most
of the simulations have been carried out with N = 80 000
particles, but for some simulations with � � 1 smaller system
sizes have been used as well (N = 10 000). Comparisons be-
tween N = 10 000 and N = 80 000 did not reveal a systematic
influence of the particle number on the DSF, see Sec. III C.

After an initial equilibration period without external field,
a magnetic field B = B êz along the z axis of the coordinate
system is turned on, and the particle density is recorded for
various wave vectors k along (component k‖) and across B
(component k⊥), as well as for oblique angles θ = ∠(k, B).
For future reference, the magnetization will be given as

β = ωc

ωp
, (3)

the ratio of the cyclotron frequency, ωc = QB/m, and the
plasma frequency, ωp.

II. THEORY

For a direct comparison with theory, the fluctuation-
dissipation theorem is invoked [65], which connects the
DSF with the inverse of the longitudinal dielectric function,
ε(k, ω), according to

S(k, ω) = − kB T

π ω n v̂c(k)
Im[ε−1(k, ω)], (4)

where v̂c(k) = Q2/(ε0 k2) is the Fourier transform of the
Coulomb potential. For the dielectric function, the result from
the Vlasov equation (or random phase approximation, RPA)
[50,66],

εRPA(k, ω)

= 1 + 1

k2λ2

[
1 +

∞∑
n=−∞

ω

ω − n ωc
In(η)e−η ζn Z (ζn)

]
, (5)

which is a mean-field theory without collisional effects, and
a Mermin-type extension with a particle number (but neither
momentum nor energy) conserving Bhatnagar-Gross-Krook
(BGK) collision operator (relaxation rate ν) are employed
[50,67],

εBGK(k, ω)

= 1 + (ω + iν)[εRPA(k, ω + iν) − 1]

ω + iν[εRPA(k, ω + iν) − 1]/[εRPA(k, 0) − 1]
.

(6)

The arguments of the modified Bessel function In(η) and the
plasma dispersion function Z (ζn) read η = k2

⊥r2
L and ζn =

(ω − n ωc)/(
√

2|k‖|vth). Here, vth = (kBT/m)1/2 is the ther-
mal velocity, λ = vth/ωp the Debye length, and rL = vth/ωc

the Larmor radius.
The roots of the dielectric function, ε(k, ω) = 0, yield the

spectrum of longitudinal modes. The spectrum perpendicular
to the field (k ⊥ B) consists of a set of Bernstein modes near
the harmonics of the cyclotron frequency [49], all of which
are strictly real in the RPA. For one of the modes, the upper
hybrid frequency, ωUH =

√
ω2

p + ω2
c , is the long wavelength

limit while all other modes start at harmonics of the cyclotron
frequency. Parallel to the field (k ‖ B), one encounters the
plasmon, which is not affected by the magnetic field and
identical to the usual plasmon mode in the unmagnetized OCP.
The BGK dielectric function [67] adds the effect of collisional
damping, which is missing in the RPA.

The above approaches are expected to be applicable in
the weakly correlated regime but do not extend into the
regime of strong coupling. For very strongly coupled systems,
where particles are trapped in local potential minima of the
potential energy surface, the QLCA of Kalman and Golden
[51,68] has been successfully applied to the magnetized OCP
[57,59,60]. The key quantity in the QLCA is the dynam-
ical matrix Dαβ (k) = LαβDL(k) + TαβDT (k), where Lαβ =
kαkβ/k2 (Tαβ = δαβ − Lαβ ) is the longitudinal (transverse)
projection operator and DL/T (k) the associated components
of the dynamical matrix (α, β ∈ {x, y, z}) [51], given by

DT (k)

ω2
p

=
∫ ∞

0

h(r)

r

[
sin(kr)

kr
+ 3

cos(kr)

(kr)2
− 3

sin(kr)

(kr)3

]
dr

(7)

and DL(k) = −2DT (k). The latter require the pair distribution
function g(r) = h(r) + 1 of the plasma as input, which is
available from the simulations, see Fig. 1. The wave spectrum
is then computed from [57,59,60](

ω2δαβ + iωωcσαβ − ω2
pLαβ − Dαβ

)
qβ = 0, (8)
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FIG. 1. Pair distribution function g(r) of the OCP for various
values of �, as indicated in the figure. Note that g(r) is independent
of the magnetic field.

where σαβ accounts for the Lorentz force and has the only
nonzero components σyx = −σxy = 1, ω denotes the mode
frequency, and qβ (k, ω) the components of the displacement
vector.

The dispersion and polarization properties of the three col-
lective modes that result from Eq. (8) have been studied in
detail previously [57,59,60]. For the dynamic structure factor,
which is directly coupled to the longitudinal current, modes
with a longitudinal component are particularly relevant. Sim-
ilar to the RPA above, for k ⊥ B (k ‖ B), the dominant
collective mode is the upper hybrid (plasmon) mode, both
of which are now modified by correlations in the QLCA.
As in the RPA, the plasmon dispersion is independent of the
magnetic field.

The phenomena discussed in the following occur on very
different time and length scales, depending on � and β.
Relevant physical parameters include the Debye screening
length λ (in particular for � � 1) and the Larmor radius rL.
In the context of transport properties, the classical distance
of closest approach, b = Q2/(4πε0kBT ), and the mean free
path between collisions, λmfp, have additionally been used to
define magnetization regimes, depending on the ratios of rL

and {λmfp, λ, b, a} [22,34]. Note that in the strongly coupled
regime, � � 1, the Wigner-Seitz radius a eventually becomes
smaller than the distance of closest approach and larger than
the Debye screening length. Two useful relations between the
length scales are

λ

a
= 1√

3 �
,

rL

a
= 1√

3 �β
. (9)

For the discussion of the DSF and the wave spectra,
time scales play an equally important role. In unmagnetized
plasmas, longitudinal plasma waves occur near the plasma
frequency ωp. On the other hand, the inverse of the cyclotron
frequency ωc is the natural time scale for charged particles in
a magnetic field. Thus, the parameter β = ωc/ωp as defined
above should provide a useful estimate for the importance
of magnetization effects on the wave spectra. In addition, the

collision frequency νc = vth/λmfp may be compared with the
cyclotron frequency to estimate the effect of collisions on the
gyromotion. This yields νc/ωc = rL/λmfp. In the context of
the BGK dielectric function [Eq. (6)], we use ν/ωc instead,
where ν is the relaxation rate for the one-particle distribution
function.

The low order moments of the DSF are known exactly and
can be related to the static properties of the OCP. Explicit
expressions for the moments are summarized in the Appendix.

III. RESULTS

In the following, the DSF of the magnetized OCP will
be investigated for a wide range of coupling strengths, from
a weakly correlated state with � = 0.125 up to a strongly
coupled system with � = 30. The evolution of the pair dis-
tribution function across this regime is illustrated in Fig. 1.
As the coupling increases, the correlation hole becomes larger
and, around � ≈ 1–3, a maximum develops at r/a ≈ 1.7,
indicating the onset of short range order. As will be seen
below, the coupling strength also manifests itself in dynamical
features, which are directly observable in the DSF.

A. Wave vector (quasi)perpendicular to the magnetic field

1. Existence and vanishing of higher harmonics

The DSF for a strongly magnetized (β = 2) weakly cou-
pled (� = 0.125) plasma with wave vectors perpendicular to
the external field is presented in Fig. 2(a). It shows several
peaks that can be attributed to Bernstein modes close to the
cyclotron harmonics. The lowest of the modes begins at the
upper hybrid frequency in the k⊥ → 0 limit. While their po-
sitions are in excellent agreement with the RPA dispersion
relation, obtained from the roots of εRPA(k, ω), an important
difference occurs at small wave numbers, where the high order
peaks disappear below a critical wave number. This is shown
in more detail in the side panel, where cuts for fixed wave
numbers are displayed. As the wave number is decreased
(from right to left), the intensity of the high frequency peaks
becomes weaker until they eventually vanish. Such behav-
ior is similar to the vanishing of the higher harmonics in
strongly coupled magnetized plasmas, see Fig. 2(b). However,
in this regime, the high order modes now appear in close
vicinity of the harmonics of the upper hybrid (UH) mode.
The UH mode is in excellent agreement with the QLCA
dispersion relation. The peak frequencies of the higher har-
monics are located roughly between the k⊥ → 0 and k⊥ → ∞
limits of the QLCA, see the side panel. The latter is given
by ω∞ = 1

2 [
√

ω2
c + 4 ω2

E + |ωc|], where ωE = ωp/
√

3 is the
Einstein frequency of the OCP [57,59]. In case of the high
order modes and large k⊥, the peaks tend to be closer to ω∞
while the second harmonic at small k⊥ is closer to 2 ωUH.
Similar behavior was observed previously in magnetized two-
dimensional Yukawa liquids [55,56] and in the current spectra
of the magnetized OCP [57].

The transition between the weak and strong coupling
regime is illustrated in Fig. 3. The left column depicts the
DSF at the smallest k⊥a available in the simulations. Consider
first Fig. 3(a) with β = 2/

√
5 ≈ 0.89. In the most weakly

coupled system, � = 0.125, there are two clear maxima at
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FIG. 2. DSF for k ⊥ B with β = 2 in (a) the weakly coupled and
(b) the strongly coupled regime. The color scale shows values of
S(k, ω) ωc. The dashed lines depict (a) the dispersion relation from
the RPA and (b) the QLCA solution for the upper hybrid mode. The
short dashed lines in (b) correspond to harmonics of ωUH and ω∞,
see the text for details. The side panels show cuts for fixed wave
numbers, which are indicated by the dashed vertical lines. Note that
the wave numbers on the horizontal axis are scaled differently in
(a) and (b).

the n = 2 and n = 3 cyclotron harmonics (ω = n ωc). As the
coupling increases to � = 0.5, the n = 3 peak disappears,
and the second harmonic becomes very weak. It vanishes
for � = 3, where a weak shoulder emerges at the second
harmonic of the upper hybrid frequency, which, in this par-
ticular case, is identical to the third cyclotron harmonic. The
shoulderlike structure becomes more pronounced at higher
coupling. At � = 30, a local maximum is formed just below
ω = 2 ωUH = 3 ωc.

For β = 1.25 [Fig. 3(b)] the harmonics of ωc and ωUH

are more clearly separated. Analogous to the previous case,
the cyclotron harmonics disappear at intermediate coupling
strengths but it now becomes apparent that the shoulder in
the strongly coupled systems emerges just below the second
harmonic of ωUH, where the DSF first increases and then
starts to fall off rapidly. This feature becomes even more
pronounced at β = 2 [Fig. 3(c)], where the peak between 2 ωc

and 2 ωUH never vanishes at any of the � considered yet de-
velops a pronounced asymmetry. It does disappear, however,
in case of the third harmonic, i.e., in the interval (3 ωc, 3 ωUH).
At the strongest magnetization, β = 5 [Fig. 3(d)], the line

FIG. 3. Transition of the DSF from weak to strong coupling
for k ⊥ B. (a)–(d) k⊥a ≈ 0.0905 for coupling parameters � ∈
{0.125, 0.5, 1, 3, 10, 30} (from top to bottom). Short dashed (long
dashed) vertical lines show harmonics of the upper hybrid (cy-
clotron) frequency. (e)–(h) DSF for � = 1 at wave numbers k⊥a ∈
{0.0905, 0.271, 0.633, 1.18, 2.35, 3.71} (from bottom to top).

shape changes qualitatively and closely resembles the current
spectra in previous simulations at � = 100 [57]. A distinction
between harmonics of ωc and ωUH becomes increasingly dif-
ficult because ωc ≈ ωUH for β 
 1.

The right column of Fig. 3 shows the DSF at � = 1 for a
range of wave numbers. It is apparent that β � 1 is required to
observe the high frequency modes in a plasma with interme-
diate coupling strengths, even for larger wave numbers, where
their intensity is higher, see also Fig. 2.

The different nature of the second harmonics in moderately
and strongly coupled plasmas is exemplified further in Fig. 4,
where frequencies have been normalized by the upper hybrid
frequency, and the limit of small magnetization is considered.
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FIG. 4. DSF for k ⊥ B at (a) � = 1 and (b) � = 10. The wave
number is k⊥a = 0.181. The long dashed vertical lines in (a) show
the position of the second cyclotron harmonic at 2 ωc. The short
dashed lines indicate the second harmonic of the upper hybrid fre-
quency. The magnetization is given in the figure. Note that for β → 0
we have ωUH → ωp.

The position of the second harmonic for � = 1 shifts as β is
varied [Fig. 4(a)]. It is well described by twice the cyclotron
frequency, which suggests that this mode is a remnant of the
Bernstein modes. In the strongly coupled system with � = 10,
however, the peak position (for large β) or the rapid decay of
the DSF (for small β ) are always found in the close vicinity
of 2 ωUH [Fig. 4(b)]. Even in the unmagnetized limit, β = 0,
this feature persists. It has been observed previously in MD
simulations of the OCP [69,70], where it was considered an
indication for the excitation of the second plasmon harmonic.
The strong similarity with the upper hybrid mode suggests that
the mechanisms for the excitation of harmonics in magnetized
and unmagnetized plasma could be closely related and that
the effect becomes strongly amplified as the field strength in-
creases. It would be interesting to study these mechanisms in
more strongly coupled systems, where higher order harmonics
can be observed even in unmagnetized systems, but this is
beyond the scope of this work.

Returning to the high frequency spectrum in weakly to
moderately coupled systems, the damping of Bernstein modes
is studied in more detail in Fig. 5. For strictly k ⊥ B, the RPA
dispersion relation is purely real, i.e., modes propagate with-
out damping. The simulations, however, show a pronounced
broadening of the various peaks. This can be explained qual-
itatively with Eq. (6), which contains collisional damping
via a BGK type collision operator. For comparison with the
simulations, the relaxation rate ν was chosen empirically with
the goal to properly reproduce the low-frequency part of the
DSF. Note that we did not perform a dedicated numerical
fitting procedure or used a theoretical model [67]. With such
a manual adjustment for ν, the line shape of the simulations
can be well reproduced up to ω ≈ 5 ωc for � = 0.125. A
larger ν is required to capture the more strongly coupled
system with � = 0.5, where the individual peaks have become
significantly less pronounced, for the same k⊥rL. Moreover,
the deviations in the high frequency tail become stronger, and
the peak positions show slight deviations from the simulation
data.

The two uppermost curves illustrate the damping effect
of a small wave vector component parallel to the magnetic

FIG. 5. DSF for β = 2 and k⊥rL ≈ 1.18. The coupling parameter
is � = 0.125 for the three upper curves and � = 0.5 for the lowest
curve. The two uppermost curves have a finite wave number parallel
to the magnetic field, as indicated in the figure. The corresponding
angles between k and B are θ ≈ 76◦ and θ ≈ 79◦. The long dashed
(short dashed) lines depict the RPA (BGK) DSF. For the BGK data,
the relaxation rate is ν/ωc = 0.05 (� = 0.125) and ν/ωc = 0.14
(� = 0.5). The data have been shifted for clarity.

field. Here, the RPA result is also shown, which now contains
cyclotron damping via the plasma dispersion function Z (ζn)
[see Eq. (5)] but still misses collisional damping. While the
RPA underestimates the peak broadening, especially in the
low frequency domain, it provides a much improved agree-
ment at high frequencies compared to the DSF with collisions,
suggesting that the simple BGK type collision operator with
a constant relaxation rate cannot capture the dynamics across
the entire frequency range.

2. Waves in weakly magnetized plasmas

The focus so far was mainly on plasmas with strong mag-
netization, where all Bernstein modes are located above the
upper hybrid frequency. According to the RPA dispersion
relation, Bernstein modes below the upper hybrid frequency
start at (n + 1) ωc at k⊥ = 0 and approach n ωc for k⊥ → ∞.
This is in contrast to Bernstein modes above ωUH, which have
the same limit for small and large wave numbers, cf. Fig. 2.

Figure 6 shows the DSF for a system with β = 1/
√

3 ≈
0.58, where the upper hybrid frequency and the second har-
monic of the cyclotron frequency coincide (2 ωc = ωUH).
Since the k⊥ → 0 limits of the two lowest RPA modes are
the same, this constitutes a particularly challenging situation.
For the weakly coupled system with � = 0.25, the simulations
show a single peak at the smallest wave number, which splits
into two as k⊥ increases. The peak positions are in very good
agreement with the RPA dispersion relation, except for the
smallest wave numbers, see Fig. 6(a). Increasing the coupling
to � = 1, only a single peak remains. Its position is initially
between the two RPA modes and appears to follow the upper
mode beyond k⊥rL ≈ 1, see also Figs. 6(b) and 6(c), which
depict the DSF in the relevant frequency range. A possible
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FIG. 6. (a) Peak position from the DSF with a magnetization
β = 1/

√
3 (ωUH/ωc = 2) for different � as a function of k⊥rL. Also

depicted is the dispersion relation from the RPA and QLCA (� = 3)
as well as the peak position from the BGK DSF with ν/ωp = 0.15.
Panels (b) and (c) show the DSF for the two wave numbers indicated
by the dashed vertical lines in (a). The dashed lines show the BGK
DSF with ν/ωp = 0.15. The short dashed line in (c) additionally
depicts the BGK result with ν/ωp = 0.5. Note that the k⊥rL used
for � = 3 deviates slightly (∼1%) from the corresponding values for
� = 0.25 and � = 1.

remnant of the lower peak remains visible in Fig. 6(c). At
� = 3, the peak position is almost constant up to k⊥rL ≈ 1
and then decreases, which is accompanied by a pronounced
peak broadening.

Note that, in general, the peak positions from the DSF
do not necessarily provide a good estimate for (the real part
of) the dispersion relation of the collective modes, especially
when the peaks have a large width or when two modes over-
lap, see also the discussion in Ref. [47]. For more advanced
ways to analyze excitation spectra, in particular using damped
harmonic oscillator models to extract oscillation frequencies
and damping rates, the reader is referred to Refs. [71,72].
The dashed line in Fig. 6(a) shows an attempt to explain the
above observations with Eq. (6). It shows the peak positions
of the DSF within the BGK model with ν/ωp = 0.15, where
the peaks now possess a finite width. On one hand, the slight
increase (decrease) of the frequency of the lower (upper)
mode, compared to the RPA dispersion, can be qualitatively
reproduced at small k⊥rL for � = 0.25. On the other hand, the
BGK model does not provide consistent agreement with the

FIG. 7. DSF of the OCP with β = 2 for various angles θ =
∠(k, B) and two coupling strengths, as indicated in the figure. The
vertical lines depict harmonics of (a) ωc and (b) ωUH and ω∞
(ω∞ < ωUH). The wave number is kmina = 0.0905 (0◦ and 90◦), ka =√

2 kmina (45◦), and ka = √
5 kmina (63◦). The inset in (b) shows

the frequencies of the two main peaks as a function of θ . Squares
(circles) correspond to � = 0.25 (� = 10). The dashed lines are the
frequencies of cold fluid theory, see Ref. [59].

simulations for the DSF, see Figs. 6(b) and 6(c). While the
shape of the BGK DSF in (c) is in reasonable agreement with
the MD data for � = 0.25, the peaks in (b) at a smaller wave
number are not well reproduced, and the damping is overes-
timated. Increasing the relaxation rate in (c) to ν/ωp = 0.5
(short dashed line) leads to the vanishing of the upper peak,
whereas an increase of the coupling strength in the simulations
appears to favor the opposite behavior. For completeness, the
QLCA dispersion relation for the UH mode is also displayed
in Fig. 6(a) for � = 3, even though the coupling is weaker
than its anticipated range of applicability. The QLCA is in
reasonable agreement with the simulations but shows a nega-
tive dispersion at small k⊥ whereas the peak frequency from
the simulations slightly increases with k⊥ in this regime.

None of the theories can provide a consistent explanation
for the simulation results at all coupling strengths. The RPA
and BGK models contain thermal and kinetic effects, which
are missing in the QLCA. On the other hand, the QLCA con-
tains strong coupling effects via the pair distribution, which
lead, e.g., to a change of the elastic constants [73]. While
the treatment of collisions in the BGK dielectric function
is simplistic, the RPA and QLCA are missing these effects
completely. In particular for a scenario as in Fig. 6, where the
plasma is (i) moderately coupled, (ii) moderately magnetized,
and (iii) the upper hybrid frequency is in the direct vicinity
of a Bernstein mode, all of these effects may play a role
simultaneously.

B. Oblique angles

In the following, the DSF will be inspected for oblique
angles between k and B. Consider first Fig. 7, which shows the
transition as θ is varied from 90◦ to 0◦ in the long wavelength
limit. For � = 0.25 [Fig. 7(a)], the DSF at 90◦ is dominated
by the upper hybrid mode and the second cyclotron harmonic.
The third harmonic is barely visible. On the other hand,
for θ = 0◦, the spectrum only shows the plasmon mode at
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FIG. 8. (a)–(c) DSF at an angle θ ≈ 27◦ between k and B for
β = 2/

√
5 ≈ 0.89. The wave number k = |k| is indicated in the

figure. Dashed lines in (a) and (b) correspond to the RPA. (d) Peak
position of the DSF. The solid lines show the result of the RPA at
� = 0.5 (QLCA at � = 30). In case of the RPA, the dashed line
indicates the interval where the peak becomes barely visible.

the plasma frequency. Under oblique angles, two principal
collective modes can be observed. The first has a frequency
below the plasma frequency while the second mode remains
close to the upper hybrid frequency. In addition, the second
cyclotron harmonic persists while the third becomes weak for
θ = 45◦.

At � = 10 [Fig. 7(b)], the low frequency part of the spec-
trum is very similar to the weakly coupled case in Fig. 7(a).
In fact, the frequencies of the two main collective modes are
well described by the cold fluid result [59], as shown in the
inset in Fig. 7(b), both for weak and strong coupling. For
β > 1, the frequency of the upper mode branch lies between
the cyclotron frequency and the upper hybrid frequency while
the lower branch has a frequency below the plasma frequency
and approaches zero as θ → 90◦. In the high frequency part
of the spectrum, there now appear harmonics just below 2 ωUH

and 3 ωUH, as discussed in Sec. III A 1. This feature in the DSF
persists even for θ = 0◦, but with a lower intensity, as already
observed in the spectrum of the longitudinal current, which is
closely related to the DSF [57].

The DSF and the peak positions of the two principal col-
lective modes for θ ≈ 27◦ are shown in Fig. 8 for β ≈ 0.89.
Note that, for β < 1 and in the |k| → 0 limit, cold fluid theory
predicts the frequencies in the upper and lower branch to
lie between ωp and ωUH, and ωc and 0, respectively. As the
wave number |k| increases at fixed θ , the second peak in the
moderately coupled system with � = 0.5 becomes dominant
[Fig. 8(a)], and its frequency increases. Also shown is the
DSF from the RPA, which is in good agreement with the
simulations. At � = 3 [Fig. 8(b)], the trend remains intact, but

the RPA fails to provide an adequate description of the simu-
lations. Finally, deep in the strongly coupled regime [� = 30,
Fig. 8(c)], the trend is reversed. Here, the high frequency peak
gradually becomes weaker while, at the same time, the low
frequency mode grows in intensity and eventually becomes
dominant.

The peak positions of the main modes also show a qual-
itatively different behavior at weak and strong coupling, see
Fig. 8(d). For � = 0.5, the frequency of the upper peak in-
creases with |k|, which is in qualitative agreement with the
RPA. Note, however, that the determination of the frequency
is rendered difficult due to the somewhat noisy data. A rapid
drop of the RPA peak frequency then occurs for ka � 1.4,
where the peak intensity also becomes significantly weaker
(indicated by the dashed line). In the intermediate coupling
regime (� = 3), the lower peak persists for a larger wave num-
ber interval and can be detected up to ka ≈ 1. The frequency
of the upper peak is now almost constant and starts to decrease
for ka � 1.5. For � = 30, the lower mode frequency initially
increases slightly and drops beyond ka � 2. The frequency of
the upper mode is almost constant. In this coupling regime,
the frequencies are well described by the QLCA dispersion
relation [59].

C. Wave vector parallel to magnetic field

As discussed in Sec. II, neither the RPA nor the QLCA
predict any change of the DSF or the dispersion relation of
the plasmon for wave vectors strictly along the magnetic field.
The DSF obtained from the simulations, however, is altered by
the magnetic field.

The plasmon mode is shown in detail in Fig. 9. The peak
position is indeed largely independent of the field. However, at
small wave numbers, the peak width becomes smaller as the
magnetization increases, see Figs. 9(a) and 9(c). This effect
is more pronounced in the system with stronger coupling
(� = 10), where the peak height roughly doubles from β = 0
to β = 2. At � = 1, a magnetization β = 5 is required for
a similar effect. At larger wave numbers, the influence of
the magnetic field becomes marginal, and the DSF is almost
independent of β. Only for � = 10 and β = 2, the simulations
show signs for the formation of a maximum at ω = 0.

The low frequency part of the spectrum is investigated in
Fig. 10. Note that the intensity of the DSF in this frequency
range is orders of magnitude lower than for the plasmon. As
opposed to the latter, an increase of the magnetization leads
to a broadening of the zero frequency peak. Note, however,
that the decay of the peak can become very rapid, which
is best observed in the � = 1 and β = 5 case. As before,
the fields required to observe these effects are smaller when
the system is strongly coupled. Since the particle number
in strongly magnetized plasmas has previously been shown
to have a pronounced effect on the velocity autocorrelation
function [24], we present in Fig. 10 a comparison between
N = 10 000 and N = 80 000 particles. In case of the DSF, the
influence of the particle number appears to be much weaker,
showing no significant effect. Comparisons at other conditions
confirm the observations made here.

In dense Yukawa liquids, where the interaction is short-
ranged, hydrodynamics provides an excellent description of
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FIG. 9. DSF for k ‖ B at (a), (b) � = 1 and (c), (d) � = 10. The
wave numbers and magnetization are indicated in the figure.

the DSF in the small wave number and low frequency limit
[41,74]. Moreover, it establishes a close link between the peak
widths of the diffusive heat mode and the sound mode on
the one hand, and the thermal diffusivity and the longitudinal
viscosity on the other hand. In case of the OCP, however, it
was found [74] that the coefficients obtained from a fit of the
hydrodynamic DSF of Baus and Hansen [75] to simulation
data did not agree well with the transport coefficients of the
OCP [76]. Thus, it remains unclear if a connection between
the transport coefficients and the DSF can be established for
the (magnetized) OCP. If so, it could provide a means to
determine the latter directly from the DSF.

FIG. 10. DSF for the wave vector parallel to the magnetic field
with k‖a = 0.181. The coupling and magnetization as well as the
particle number are indicated in the figure.

IV. CONCLUSIONS

In summary, the DSF of the magnetized OCP has been
studied across coupling regimes. The simulations have shown
that the DSF and the wave spectrum undergo major changes
when the coupling regimes are crossed.

(i) In weakly coupled plasmas and for wave vectors per-
pendicular to the field, the DSF exhibits higher harmonics
of the cyclotron frequency that can be attributed to Bernstein
modes. On the other hand, (ii) in strongly coupled systems, the
higher harmonics found in this regime are related to the upper
hybrid mode, see also Ref. [57]. Unless the plasma is strongly
magnetized, β > 1, the excitation of harmonics is weak in
the intermediate regime around � ≈ 1–3, where the crossover
occurs. The coupling strength for the crossover appears to
be rather insensitive to the value of β. In weakly to moder-
ately magnetized systems, when the upper hybrid frequency is
close to the second cyclotron harmonic, the simulations have
revealed an intricate modification of the dispersion relation
for frequencies in the upper hybrid range. A spectrum with
two well separated modes at weak coupling transforms into a
single mode spectrum at strong coupling.

(iii) Under oblique angles, two principal collective modes
are observed whose frequencies are well described by the cold
fluid result in the long wavelength limit. The intensity of the
peaks strongly depends on � and β. For a particular case with
β ≈ 0.89, the upper (lower) mode becomes dominant as the
wave number increases when the system is weakly (strongly)
coupled. In the direction parallel to the external field, the
simulations have shown that (iv) the peak position of the
plasmon mode is practically unaffected by the magnetic field.
On the other hand, the peaks become significantly narrower in
strongly magnetized plasmas. This effect becomes marginal,
however, when the wave number is increased.

The RPA dielectric function can provide a good description
for the DSF and the dispersion relation of the collective modes
in weakly coupled plasmas, � � 1. However, it misses colli-
sional damping, which can be accounted for in a Mermin type
dielectric function with a particle number conserving BGK
collision operator [67]. While it can reproduce the line broad-
ening qualitatively, the model could be improved by including
momentum and energy conservation, which is particularly im-
portant in the long wavelength limit, as has been demonstrated
in unmagnetized systems [77]. It remains to test the appli-
cability of such improved models and theoretical predictions
for the relaxation rate. In the strongly coupled regime, the
QLCA provides a good description of the dispersion relation
of the collective modes but misses damping effects. None of
the approaches can be consistently applied in the interme-
diate range, � ∼ O(1), or reproduce the crossover between
weak and strong coupling. This calls for a unified theory that
properly accounts for kinetic, collisional, and strong coupling
effects at the same time.

While the OCP allows one to study in detail the simultane-
ous effects of strong coupling and magnetization, the physics
may become considerably more complex in realistic two-
component plasmas. Due to the large mass difference between
electrons and ions, the former are more easily magnetized
than the latter, and the plasma could be partially magnetized.
Moreover, depending on the density and temperature, the
electrons can be degenerate, as e.g., in warm dense matter
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[1,2]. Therefore, an extension of the present work to the mag-
netized uniform (quantum) electron gas at finite temperature
would be of high interest, where an external magnetic field
even affects the equilibrium properties of the system, in con-
trast to the classical OCP. This would also affect the screening
of the (classical) ions by degenerate electrons [78], which is
of direct relevance for their effective coupling strength [79,80]
and the ion-ion DSF [81]. While exact dynamical simulations
for the uniform electron gas are unfeasible, ab initio data
for the DSF have recently become available from quantum
Monte Carlo simulations (for unmagnetized systems) [82]. In
the magnetized case, RPA results have been derived for the
response functions and the mode spectrum [83,84]. Finally, it
must be kept in mind that the OCP is an electrostatic model
and therefore misses many of the collective modes that emerge
in a full electromagnetic description of magnetized plasmas.
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APPENDIX: MOMENTS OF THE DSF

The frequency moments of the DSF,

〈ωm〉 =
∫ ∞

−∞
ωm S(k, ω) dω, (A1)

are determined by the static properties of the system. Recall-
ing the derivation of the moments [40,85], one observes that,
in case of the magnetized OCP, the zeroth and the second mo-
ment are unaffected by the magnetic field. They are given by
〈ω0〉 = S(k) and 〈ω2〉/ω2

p = (ka)2/(3 �), respectively. Here,
S(k) is the static structure factor. For the fourth moment, one
finds an additional contribution ∼k2

⊥β2/k2 from the Lorentz
force,

〈ω4〉
ω4

p

= 〈ω2〉
ω2

p

[
k2
⊥

k2
β2 + (ka)2

�
+ 1 − 2 I (k)

]
, (A2)

where the quantity I (k) [44] also appears in the QLCA,
I (k) = −DL(k)/(2 ω2

p ) = DT (k)/ω2
p, see Eq. (7) and below.
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