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Topological lasers are investigated in nonlinear, non-Hermitian, and topological lattice systems based on a
quench dynamics starting from one site. Explicitly, we consider the topological laser in the Su-Schrieffer-Heeger
model with two topological edge states and the second-order topological laser in the breathing kagome lattice
with three topological corner states. Once we stimulate any one site, after some delay, all sites belonging to the
topological edge or corner states are shown to emit stable laser light depending on the density of states, although
no wave propagation is observed from the stimulated site. Thus the profile of topological edge or corner states is
observable by measuring the intensity of lasing. The phenomenon occurs due to a combinational effect of linear
non-Hermitian loss terms and nonlinear non-Hermitian gain terms in the presence of the topological edge or
corner states. It is intriguing that the dynamics of topological edge or corner states are observed in real-time and

real-space dynamics of the laser emission.
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I. INTRODUCTION

Topological physics is one of the most essential concepts
found in recent fundamental physics [1,2]. Recently, it is ubig-
uitously found in various systems in photonic [3—22], acoustic
[23-32], mechanical [33-37], and electric circuit [38—45] sys-
tems. Among them, topological photonics is most extensively
studied theoretically and experimentally. One of the reasons is
that it is possible to observe real-time and real-space dynam-
ics. Another merit is that topological photonics has opened a
new field of topological physics, i.e., non-Hermitian topology,
nonlinear topology, and their combination. Non-Hermitian
effects are introduced by a loss and a gain of photons. On the
other hand, nonlinear effects are introduced by the Kerr effect
or a stimulated emission effect.

A topological laser is a prominent application of topolog-
ical physics [12,13,46-54]. It utilizes topological edge states
for the coherent laser emission. Thanks to the topological pro-
tection, the topological laser is robust against the randomness
and the defects of the sample, which is favorable for future
laser applications. A topological laser is an ideal playground
to investigate nonlinear non-Hermitian topological physics.
The loss of photons and gain from stimulated emissions
constitute the non-Hermitian terms. The nonlinear effect is
included in the gain term, which represents the saturation of
the gain.

Higher-order topological phases are an extension of topo-
logical phases [55-62]. There emerge topological corner
states in the second-order topological phase. One of the sim-
plest examples is given by the breathing kagome lattice, where
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three topological corner states appear in triangle geometry.
This model is a natural generalization of the Su-Schrieffer-
Heeger (SSH) model to two dimensions. Since the model
requires only positive hoppings, it is realized in various sys-
tems including photonic [17,19], acoustic [29,30], and electric
circuit systems [63].

In this paper, we analyze a quench dynamics of a nonlinear
non-Hermitian topological laser and a higher-order topologi-
cal laser by stimulating any one site. We study explicitly the
SSH model for a topological laser and the breathing kagome
model for a higher-order topological laser. In the SSH model
with two topological edge states, once we stimulate any one
site, after some delay, all sites belonging to the two topolog-
ical edge states begin to emit stable laser light depending on
the density of states (DOS), although no wave propagation
is observed from the stimulated site. Thus the profile of a
topological edge state together with the DOS is observable
by laser intensity. The strength of the laser light is identical
for the two edges because of reflection symmetry. This is also
the case for the second-order topological laser in the breathing
kagome lattice with three topological corner states. Here, the
system has trigonal symmetry. The phenomenon occurs due
to a combinational effect of linear non-Hermitian loss terms
and nonlinear non-Hermitian gain terms in the presence of
the topological edge or corner states. It is remarkable that the
dynamics of topological edge or corner states are observed in
real-time and real-space dynamics of the laser emission.

II. TOPOLOGICAL LASER
A. Model

We consider a coupled-ring system made of active res-
onators [46]. The dynamics of a laser system is governed
by [46]
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FIG. 1. (al)—(a3) Illustration of a dimerized lattice with (al)
ka =0, (a2) kakp # 0, and (a3) kg = 0. (b1)—(b3) Illustration of a
breathing kagome lattice with (bl) k4 = 0, (b2) kakp # 0, and (b3)
kg = 0. A line (triangle) contains many small segments (triangles).
At the edges (corners) of the chain (triangle), there are two (three)
isolated atoms for k4, = 0, while there are dimer (trimer) states for
kg = 0. They are marked by dashed circles. Lattice sites are num-
bered from n = 1 to N as indicated in (a2) and (b2).
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where v, is the amplitudes of the site n, where n =
1,2,3,..., N in the system composed of N sites; M,,, de-
scribes a hopping matrix; y represents the loss in each
resonator; y& represents the amplitude of the optical gain
via stimulated emission; 7 represents the nonlinearity; and
P, stands for the spatial profile of the pump. The system
turns into the linear model in the limit 7 — co. On the other
hand, y controls the non-Hermiticity. The system turns into a
Hermitian model for y = 0. We call the term proportional to
y the loss term and the term proportional to y£ the nonlinear
gain term.

We take

Pr=Y 8u )

where 7 runs over the edge or corner sites. Namely, optical
gains are introduced only at the edge or corner sites.

We are interested in the case where M, represents a tight-
binding model possessing a topological phase. We explicitly
consider the SSH model illustrated in Figs. 1(al)-1(a3),
where 7 takes values at the left and right edges, and the breath-
ing kagome model illustrated in Figs. 1(b1)-1(b3), where 7
takes values at the top, bottom-left, and bottom-right corners.

It is possible to solve Eq. (1) numerically for explicit
system parameters, as we do later. However, to reach a
deeper understanding of the phenomena, an analytical study
is indispensable. Since this is impossible for general system
parameters, we make an analytical study for special cases.

B. Edge or corner dynamics

We first consider the dynamics of an edge or corner site
when it is perfectly isolated as in Figs. 1(al) or 1(bl). This
is the case where M,,, = O for the edge or corner sites. For
instance, this is realized by setting k4 = 0 in Eq. (12) or A =
—1in Eq. (15) for the SSH model.

The dynamics is governed by isolated equations,
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FIG. 2. Dynamics of the isolated equation (3) under the initial
conditions (a) ¥1(0) = 1 and (b) v;(0) = 0.1. The solutions reach
the same stationary solution irrespective of the initial conditions. Red
color indicates the solution with & = 2, while cyan color indicates
that with £ = 0. We havesetn = 1 and y = 1/2.

Solving this equation numerically with two different initial
conditions ¥ = 1 and ¥ = 0.1, we show the results in
Figs. 2(a) and 2(b), respectively. It is intriguing that the dy-
namics of the topological edge or corner state does not depend
on the initial condition of ;. The saturated value of v; as
t — oo is identical for all isolated edge or corner states. This
can be understood analytically as follows.

We solve Eq. (3) for nontrivial stationary solutions. The
stationary solution for an edge or corner site 7 is given by

1
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Hence the nontrivial solution reads
lim |y, = n(€ — 1), ©)
—00

where it is necessary that £ > 1.

As a result, there are only two stable solutions in Eq. (3).
One is the ground-state mode v, = O for any value of £, and
the other is the stimulated mode |, >=nE—1)for& > 1.
The initial condition determines which state is realized.

The nonlinear term is essential to have a nontrivial station-
ary solution. Indeed, we obtain a linear theory in the limit
n — oo, where the amplitude |, |? diverges.

The state remains real for a real initial condition, and
Eq. (3) is simplified to

dyr _
—¥5 + Smlﬂﬁ B

ydt, (6)

which is solved as

2In Y —Eln [y(W2/n+1-86)]
v — Y +10). (D)

The state evolution y;(¢) is given by the inverse of this equa-
tion.

C. Bulk dynamics

‘We next analyze the dynamics of the bulk site, where there
is no nonlinear non-Hermitian term because P, = 0. Then, the
dynamics is governed by the linear equation

dv, .
" =%;mem—wwm (8)

i

013195-2



NONLINEAR NON-HERMITIAN HIGHER-ORDER ...

PHYSICAL REVIEW RESEARCH 4, 013195 (2022)

With the use of a solution of the linear equation

dy? 0
] L= Mnm 5 9
"t ; " ©)
Eq. (8) is solved as
Yo =Y. (10)

This means that the amplitude exponentially decays as a func-
tion of time in the bulk.

D. Quench dynamics

To reveal the property of the system, we investigate the
quench dynamics by giving a pulse to one site and exploring
its time evolution subject to Eq. (1). This provides us with
a good signal to detect whether the system is topological
or trivial [64]. It has also been applied to various nonlinear
systems to manifest the self-trapping phenomena intrinsic to
the nonlinearity effect [65-68].

Let us study a quench dynamics starting from one site
indexed by m,

Vu(t) =8,m att =0, (11)

where m = 1 represents the left-edge site or the top-corner site
as in Figs. 1(a2) and 1(b2). We solve Eq. (1) under the initial
condition (11).

The quench dynamics describes a nonequilibrium dynam-
ics. However, the point is that we just give a small signal only
to one site. Its time evolution is like a small surface wave
propagating over the sample by detecting its static property
without disturbing it. Hence the quench dynamics well cap-
tures properties of the sample at equilibrium, including the
topological property governed by the hopping matrix M,,, and
the self-trapping effect due to the nonlinearity. In this sense,
the quench dynamics method is analogous to the Green’s func-
tion method, where a test particle is injected into the system
to detect properties of the system at equilibrium.

III. NONLINEAR NON-HERMITIAN SSH MODEL

A. Model

A topological laser based on the SSH model has been
discussed [12,13,48-53]. We consider the case where the hop-
ping matrix is governed by the SSH matrix in Eq. (1). The
matrix is explicitly given by

Mnm = _(KA + KB)CSn,m + KA(CSZn,mel + 32111,2n71)
+ KB(82n,2m+l + 82m,2n+] ) (12)

We show the band structure for a finite chain in Fig. 3(a2).
The explicit equations for a finite chain with length N are
given by

Ao,
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FIG. 3. Saturated amplitude || at (al) the edge site in the SSH
model and (bl) the corner site in the breathing kagome model,
where y = 1/2 for magenta, y = 1/4 for cyan, and y = 1/8 for
orange. (a2) The energy spectrum in the SSH model made of a finite
chain with topological edge states in red for A < 0. (b2) The energy
spectrum of the breathing kagome model in triangle geometry with
topological corner states in red for A < —1/3. The horizontal axis is
L. Wehavesetk =1,np=1,and & = 2.

It is convenient to introduce the coupling strength « and the
dimerization parameter A by

kg = k(1 + 1),

with |A| < 1. The isolated edge limit is realized at A = —1 in
Fig. 1(al).

kp = k(1 — 1), (15)

B. Topological number in the SSH model

The present SSH model (1) has the same topological struc-
ture as in the original SSH model by the following reasoning.
First, there is no contribution of the nonlinear gain term (o
y &) to the bulk since it exists only at the edge site. Next, the
loss term (o y) only shifts the matrix as

Mnm = Myuyn — 1Y Sum. (16)

Equation (1) is rewritten in the form of the linear model for
the bulk (n # n),

Ay —
ldl ZZMnmwnr (17

nm

Then, the topological properties are determined by the hop-
ping matrix M.
The hopping matrix is explicitly given by

M(k) = —(ka + kp + iy)l + Mo (k) (18)
in the momentum space, with
q(k) = ka + kge ™ (19)
and
0 qk)
My(k) = . 20
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The topological number in the original SSH model is given by
the Berry phase

2
r— L/ Ak)dk., @1)
27 0

where A(k) = —i(¢(k)|0|@(k)) is the Berry connection with
¢ (k) being the eigenfunction of M (k). Note that the diagonal
term in Eq. (17) with Eq. (12) does not contribute to the
topological charge because the wave function ¢ (k) does not
depend on the diagonal term. Hence the present model (1) has
the same phases as the original SSH model. The system is
topological for A < 0 with the emergence of the topological
edge states marked in red, while it is trivial for A > 0 as in
Fig. 3(a2).

C. Quench dynamics

We numerically solve Eqs. (13) and (14) under the initial
condition (11) by taking m = 1. We show the time evolution
of |y,| in Fig. 4. The results of the quench dynamics are sig-
nificantly different between the topological and trivial phases.
In the topological phase, the amplitude || at the left edge
is rapidly saturated as shown by the red curve in Fig. 4(a2),
while there is a delay in the saturation of the amplitude |y |
at the right edge as shown by the cyan curve in Fig. 4(a2).
The delay implies the propagation of a wave along a chain,
although the propagation of the wave is invisible in Fig. 4(al),
as is consistent with Eq. (10). This means that a wave with
a tiny amplitude transfers the information of the excitation to
the right edge and induces a stimulated emission. On the other
hand, in the trivial phase, the amplitude || rapidly decreases
as shown in Fig. 4(a2). Furthermore, there is no excitation
|| at the right edge.

Figure 4(a3) shows a spatial profile of the amplitude ||
after enough time, which is the DOS for a pair of topological
edge states in nonlinear non-Hermitian system.

We find that there is no reflection of the propagating wave
by the right edge. This is due to the loss term (o y) in the bulk.
It is highly contrasted with the case of the Hermitian model.
In addition, the amplitudes || and || are always identical.
This is due to reflection symmetry x <— N — x on the right-
hand side of Egs. (13) and (14) because d,,/dt = O for the
stationary solution. This is confirmed in Eq. (5) explicitly for
the limit (A = —1) of the isolated edge states, and numerically
for any value of A.

We show the saturated amplitude || as a function of the
dimerization A in Fig. 3(al). It is finite for the topological
phase although it deviates from 1 other than A = —1 due to the
hopping term. On the other hand, it is almost zero for the triv-
ial phase. These features correspond to the emergence or the
absence of the topological edge states as shown in Fig. 3(a2).
Namely, the quench dynamics well signatures the topological
phase transition although there are nonlinear non-Hermitian
terms.

We also study the dynamics under the initial condition
(11) by taking the site m in the bulk. The result is shown
in Fig. 5 by choosing m = 7. All sites belonging to the two
topological edge states are stimulated after a delay with the
intensity depending on the DOS. The timing of the stimulation
is determined by the distance from the initial site.
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FIG. 4. Density plot of the time evolution of the amplitude |, |
as a function of n in (al) the topological phase with A = —0.5 and
(bl) the trivial phase with A = 0.5 in the SSH model. The amplitude
|1, as a function of ¢ for various 7 in (a2) the topological phase and
(b2) the trivial phase, where red curves indicate n = 1, while cyan
curves indicate n = N in (a2) and (b2). The saturated amplitude |,
as a function of n in (a3) the topological phase and (b3) the trivial
phase after enough time. We have set k =1, n =1, y = 1/2, and
& = 2. We take a sample with N = 20.

It is possible to control the time delay by tuning the hop-
ping amplitude . We have studied the dependence of the time
evolution of lasing on k. The starting time of illumination gets
faster (later) for larger (smaller) « as shown in Figs. 6(a) and
6(b). We exhibit the time evolution of || in Fig. 6(c) for
various «, which also proves that the time delay is controlled
by tuning «.

D. Dimer states

We study the trivial phase (A > 1). In particular, we may
solve the equations of motion analytically in the dimer limit
(A = 1). In this case, we obtain a closed set of equations for
sites 1 and 2,

dyn . 1
kL, —Yy) — ] —f——-— , (22
l ka (Y2 1) l)/( 51 |W1|2/77>1/f] (22)

dt
dyn

i? = KA(wl — ). (23)
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FIG. 5. Density plot of the time evolution of the amplitude |, |
as a function of n in (al) the topological phase with A = —0.5 and
(b1) the trivial phase with A = 0.5 in the SSH model. We start from
the site n =7. We have setk =1, n =1,y =1/2,and £ =2. We
take a sample with N = 20.

The stationary solutions of (22) and (23) are either the trivial
one

Y1 =1Yn =0, (24)

or a nontrivial one

Y1 =+nE —1),

Y, = const. (25)

We note that it is not necessary for the right-hand side of
Eq. (23) to be zero because only the phase rotates if it is
not zero. Which stationary solution is actually chosen is a
dynamical problem depending on the initial condition.

We show the numerical solution with the initial condition
Y1 = 1 and Y, = 0in Fig. 7(a). The amplitudes || and [y |
exponentially decrease to zero with oscillations. Hence the
stationary solutions are ¥r; = ¥, = 0. Furthermore, we have
found numerically that || is almost zero in the trivial phase
as in Fig. 3(al). As far as we have checked numerically, there
is no nontrivial dimer solution in the trivial phase of the SSH
model.

(a)topological (k=4) (b) topological (k=1/2) (c)
1

|

20135

0 t 5

135 site(n) site(n) 20

FIG. 6. Control of the delay time. Density plot of the time evo-
lution of the amplitude |,| as a function of n with (a) k = 4 and
(b) k = 1/2, and the time evolution of the laser intensity |y, | with
(c) k = p/4, where p=1,2,...,16. In (c), the vertical axis is the
laser intensity |y, |, and the horizontal axis is the time ¢. The param-
eters are the same as in Fig. 3.

t
50

FIG. 7. (a) Dynamics of the amplitude |v,| of the dimer in the
SSH model (22) and (23). (b) Dynamics of the trimer in the breathing
kagome model (35) and (36). We have setkys =1, n =1,y =1/2,
and & = 2.

IV. NONLINEAR NON-HERMITIAN BREATHING
KAGOME MODEL

A. Model

We proceed to investigate the system where the hopping
matrix M, describes the breathing kagome lattice, whose lat-
tice structure is illustrated in Figs. 1(b1)-1(b3). The hopping
matrix is explicitly given by [62]

0 hi his
M&) =—[n, 0 i (26)
ok 0

with
iy = kpe Re/2HV3/2) Ly o=ilkn/2443Kk,/2) 27

oy = @2 7V32) e (h/20302) 1 (g)

hiz = KAeikX + ngiikx 29)

in the momentum space, where we have introduced two hop-
ping parameters k4 and kg corresponding to the upward and
downward triangles in Figs. 1(b1)—1(b3).

B. Topological number in the breathing kagome model

The topological number in the breathing kagome model is
defined by [62]

I =3(p} + p), (30)
where
1
pi= —/ A;d’k, (31)
S Jpz

with A; = —i(¢ (k)| |¢(k)) being the Berry connection with
Xi=2x,y, and S = 8712/\/5 being the area of the Brillouin
zone (BZ); ¢(k) is the eigenfunction of M (k). We obtain
I'=0 for 1 > A > 1/3, which is the trivial phase with no
topological corner states. On the other hand, we obtain I' = 1
for —1 < A < —1/3, which is the topological phase with the
emergence of three topological corner states. Finally, I is not
quantized for —1/3 < A < 1/3, which is the metal phase. See
Fig. 3(b2).

C. Quench dynamics

By solving Eq. (1) under the initial condition (11) with the
choice of m = 1, we show the time evolution of the amplitude

013195-5
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metal topological

trivial

FIG. 8. Time evolution of the amplitude |y, | of the breathing kagome model in (al)—(a5) the topological phase with A = —0.5, (b1)—(b5)
the metal phase with A = 0.2, and (c1)—(c5) the trivial phase with A = 0.5. The color density indicates the amplitude |y, |. (a5) and (c5) give
the profiles of the topological corner states and the trimer states together with their DOS, respectively. We have set«k =1, n =1, y = 1/2,

and & = 2. We take a triangle with N = 108.

|¥,| in Figs. 8 and 9, where n = 1 denotes the top-corner site.
Figure 8 displays a global picture of how the stimulated signal
at site n = 1 propagates all over the sites as time evolves.
Figure 9 displays a detailed evolution along the left side of the
lattice. We also show the saturated amplitude as a function of
A in Fig. 3(bl). The saturated amplitudes are identical at the
three corner sites due to trigonal symmetry of the breathing
kagome lattice, as found in Fig. 8.

(a1) topological (b1)  metal (c1)  trivial
t t t
12 12 12
8 8 8
4 4 4

0 ;
135 site(n) 16

(a2) (b2)
10 10
[, [,
08— 08
06 |46 06
04 04
3 n=1
02 14 02
09 4 g 1t % g8 12 t

FIG. 9. Density plot of the time evolution of the amplitude |, |
along one side of the breathing kagome lattice in the (al) topological
phase with A = —0.5, (b1) metal phase with > = 0.2, and (c1) trivial
phase with A = 0.5. Time evolution of the amplitude |y,| of the
breathing kagome model for various 7 in the (a2) topological phase
with A = —0.5, (b2) metal phase with A = 0.2, and (c2) trivial phase
with A =0.5. We have setk =1, =1,y =1/2, and £ = 2. We
take a triangle with N = 108.

We comment that Fig. 8(a5) shows a spatial profile of the
saturated amplitude |, |, which is the DOS for three topolog-
ical corner states in a nonlinear non-Hermitian system.

These figures show typically different behaviors in the
topological, trivial, and metal phases. First, in the topological
phase, the amplitudes at the other two corner sites increase
after a delay to the saturated amplitude as shown in Fig. 9(a2).
Second, in the metal phase, the amplitude at the corner site
rapidly decreases as in Fig. 9(b2). These features are very
much similar to those in the the SSH model.

On the other hand, in the trivial phase, there is a significant
difference between the SSH model and the breathing kagome
model. In the SSH model, the amplitude rapidly decreases as
in Fig. 4(b2). However, this is not the case for the breathing
kagome model. The amplitude at the top corner site suddenly
decreases to the saturated value, while those at the bottom
corner sites increase to the saturated value after a delay as in
Fig. 9(c2). Furthermore, the saturated amplitude || depends
on the magnitude of & as shown in Fig. 3(b1). We pursue the
reason why the amplitudes do not vanish in the trivial phase.
We will see that it is due to the formation of the trimer state.

D. Trimer states

We consider the limit A = 1, where the system is decom-
posed into a set of trimers as in Fig. 1(b3). The equations of
motion are explicitly given by

i s ) — i (1—s;)w (32)
TRy L+ )"

dt
d
i% — a (U + V), (33)
d
i_;f — 1a(Y1 + ). (34)
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Without loss of generality we may set ¥, = i3 and obtain

i%=2wz—iy<1—s;>wl, (35)
dt L+ [yl?/n
i% = ka(Y1 + V). (36)
The stationary solutions are either the trivial one
Y1 =y =0, (37)

or a nontrivial one

Y1 =+/nE - 1),

which is identical to the stationary solution (25) in the SSH
model. There is no y dependence in the stationary solution
(38), which agrees with the results shown in Fig. 3(b1).

We have found analytically the trimer state in the limit of
A =1 in the trivial phase. A numerical solution is given as a
function of time ¢ in Fig. 7(b), where ||| and |y,| approach
two saturated values (38), as is consistent with Fig. 3(bl).
Figure 3(b1) suggests that the trimer state is formed also away
from the limit A = 1 depending on the value of y. Indeed,
Fig. 8(c5) shows a spatial profile of three trimer states at
A = 0.5. The formation of trimer states implies the presence
of a nontopological laser in the breathing kagome model.
These behaviors are contrasted with the dimer state in the SSH
model, where |¢;| = 0 in the trivial phase as in Fig. 3(al).

Y, = const, (38)

V. DISCUSSION

A topological laser provides a unique arena of topology,
non-Hermiticity, and nonlinearity. We have studied topologi-
cal lasing in the SSH lattice and the breathing kagome lattice.
They have topological edge or corner states in the topological
phase. When any one site is stimulated, all sites belonging to
the topological edge or corner states begin to emit stable laser
light depending on the DOS. The results would be universal
for the physics of topological lasing with the use of topologi-
cal edge or corner states.

Non-Hermiticity and nonlinearity play essential roles in
the stabilization of lasing. Without the nonlinearity, there is

no stable lasing because the amplitude exponentially grows or
decays. The amplifier plays an essential role in the lasing. If
there is no loss term, there should be a reflection wave at the
right-edge site or the bottom-corner sites, which is absent in a
topological laser.

On the other hand, nontopological lasing is not universal.
Indeed, the quench dynamics is different between the SSH
model and the breathing kagome model in the trivial phase.
There is no stable laser emission in the SSH model. However,
once one site is stimulated, all three corner states emit stable
laser lights in the breathing kagome model due to the forma-
tion of trimer states at the three corners.

Topological lasing has already been experimentally real-
ized based on models such as the SSH model [12,18,50—
53] and a Chern insulator [47]. It must be possible to re-
alize the present model experimentally using the existing
technique.

Comments are in order. First, there are various studies on
Hermitian nonlinear topological physics, although they are
not directly related to topological lasing. A nonlinear SSH
model was theoretically proposed [69] and then experimen-
tally investigated [70], where the linear and nonlinear bonds
are alternating. The nonlinear term is introduced by a back-
to-back varactor in electric circuits [70]. Second, higher-order
topological physics has already been studied in the context of
Hermitian nonlinear photonics [71,72].

In conclusion, we have found stable laser emission to occur
in the topological phase. Our results show that topological
lasers provide an ideal playground of nonlinear non-Hermitian
topological physics, where a topological edge or corner state
is observable by measuring the real space-time dynamics of
lasing.
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