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Activity-induced phase transition in a quantum many-body system
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A crowd of nonequilibrium entities can show phase transition behaviors that are prohibited in conventional
equilibrium setups. An interesting question is whether similar activity-driven phase transitions also occur in
pure quantum systems. Here we investigate a classical anisotropic lattice gas model that undergoes motility-
induced phase separation and extend the model to the quantum regime. The resulting model is a quantum many-
body model that undergoes quantum phase transitions induced by non-Hermiticity. The quantum phase diagram
includes active phase transitions involving phase separation, microphase separation, and flocking. The quantum
phase transitions are identified as the transitions of dynamical paths in the classical kinetics upon the application
of biasing fields. Our approach sheds light on the useful connection between classical nonequilibrium kinetics
and non-Hermitian quantum physics.
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I. INTRODUCTION

The collective dynamics of active or self-driven compo-
nents can lead to phase transitions and pattern formations that
are prohibited in equilibrium systems [1]. Recent works have
shown the properties of materials such as surface flow [2],
odd responses [3], and anomalous topological defect dynam-
ics [4,5] that can be realized by introducing activity into the
design. In addition to the application in biophysical examples
[6], combining the understandings of active systems with a
broader range of models in condensed matter should bring
progress not only in nonequilibrium physics but also in ma-
terial science [7].

Although the scope of active matter has greatly widened
in the past years [8], its quantum analog has so far not
been explicitly proposed. Past works have pointed out how
similar equations of time evolution may appear between clas-
sical active matter and models from other regions of physics;
the Toner-Tu type equation [9] describing the dynamics of
microwave-driven 2D electron liquid [10], high effective tem-
perature realized at the interface between two 3D systems with
a difference in chemical potential [11,12], and a self-propelled
particle expressed by a spinor with spin-orbit coupling [13],
to name a few. However, activity-induced phase transitions
in the spirit of the Vicsek model, i.e., spontaneous symmetry
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breaking induced in a many-body model by nonequilibrium
driving, are yet to be identified in a quantum setup.

In recent years, advances in atomic-molecular-optical ex-
periments have allowed precise control over open quantum
systems [14–17], encouraging the exploration of nonequilib-
rium physics in various courses including topological phases
[18–25] and quantum critical phenomena [26–29] in non-
Hermitian setups. In light of these developments, it is now
sensible to consider how the quantum versions of classical
nonequilibrium processes can be realized, and ask whether
there exist new phases of matter induced by activity in quan-
tum many-body systems.

One of the simplest models of phase transition in active
matter is the exclusion process with uniaxial activity [30].
In this model, the particles undergo exclusive random walk
with uniaxially biased hopping depending on their internal
degree of freedom. This model undergoes anisotropic phase
separation upon increasing the strength of biased-hopping
(i.e., self-driven motility), which could be thought of as an
example of motility-induced phase separation (MIPS) [31].
MIPS has been observed in Brownian particle [32] and lattice
[33] simulations as well as in experiments involving artificial
[34] and biological [35] materials. Although the basic mech-
anism of MIPS is seemingly simple (i.e., accumulation of
particles at high-density regions due to the slowing down of
self-propelled motion), the components that cause the phase
separation behavior [36,37] and the critical properties of the
phase transitions [38–41] are still under active discussion, and
may depend on the details of the model [42–44].

Similar models with uniaxial biased motion have been
considered as the driven lattice gas, where phase behaviors
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FIG. 1. Correspondence between a classical model of active mat-
ter and a quantum model of hard-core bosons. In the classical model,
particles stochastically move with asymmetric hopping rates. In
the quantum model, hard-core bosons asymmetrically hop due to
the non-Hermitian terms in the Hamiltonian, and also feel nearest-
neighbor interactions additional to the hard-core repulsion. |C〉 is the
Fock basis corresponding to the configuration of the particles C.

and spatiotemporal correlations have been shown to dras-
tically change due to the anisotropy [45–48]. Anisotropic
models of active lattice gas have also appeared in the context
of flocking [49,50], where a macroscopic number of parti-
cles collectively move in one direction [51]. Yet, despite the
simplicity of these models, the relation between the activity-
induced phase transitions and the anomalous behaviors owing
to the spatial anisotropy has not been extensively discussed.

In this work, we introduce a quantum many-body model
on a lattice with an analog of uniaxial activity. First, we
show that this minimally simple model embeds a classical
interacting particle model within its parameter space, where
the self-driving property of the particles is encoded in the non-
Hermiticity of the Hamiltonian. We find that the embedded
classical model undergoes anisotropic MIPS with interesting
properties even in the seemingly trivial homogeneous phase;
long-range correlation that has a characteristic singularity
in the structure factor. Outside of the classical model, the
activity-induced phase transitions appear as the property of
the ground state of the quantum many-body model. By inves-
tigating the quantum phase diagram via Monte Carlo (MC)
simulations, we find that the model exhibits flocking and
microphase-separated phases that do not appear in the embed-
ded classical model, and further show the relation of these
phases to the dynamical phases. Finally, we remark on the
possibility of implementing the model in an ultracold atomic
gas experiment. This work demonstrates how activity-induced
phase transitions, so far exclusively studied in classical mod-
els, can occur also as quantum phase transitions.

II. NON-HERMITIAN HARD-CORE BOSONS
AND CLASSICAL ACTIVE LATTICE GAS

The model we study here (Fig. 1) involves quantum hard-
core bosons with “spin” s (= ±1) in a Lx × Ly rectangular

lattice with periodic boundary condition (PBC):

H (J, ε,U1,U2, h) = −J
∑
〈i, j〉,s

(a†
i,sa j,s + a†

j,sai,s)

− εJ
∑

i,s

s(a†
i,sai−x̂,s − a†

i,sai+x̂,s) − h
∑

i,s

a†
i,sai,−s

− U1

∑
〈i, j〉

n̂in̂ j − U2

∑
i

m̂i(n̂i+x̂ − n̂i−x̂ ) + (4J + h)N,

(1)

where n̂i,s := a†
i,sai,s is the local density of particles with

spin s, n̂i := n̂i,+ + n̂i,−, and m̂i := n̂i,+ − n̂i,−. x̂ is the unit
horizontal translation, and N is the fixed total number of
particles. The second term in (1) describes the spin-dependent
asymmetric hopping (J > 0 and −1 � ε � 1), which is non-
Hermitian for ε �= 0. The fourth and fifth terms represent
the spin-independent and dependent nearest-neighbor inter-
actions, respectively, with their general form discussed in
Appendix D 1. The U2 term represents a nearest-neighbor
coupling between the local magnetization m̂i and the density
gradient n̂i+x̂ − n̂i−x̂, which favors positive (negative) magne-
tization at the left (right) boundary of a cluster of particles
for U2 > 0 [see typical configurations in Fig. 6(b)]. The U2

term is necessary to connect the quantum Hamiltonian (1) to
the classical stochastic model (see Appendix A), although the
precise form is likely not important in observing the activity-
induced phase transition. We take h > 0 and consider a partial
Fock space where multiple particles cannot occupy a single
site regardless of their spins.

The physical interpretation of a non-Hermitian quantum
system is ambiguous due to the complex energy spectrum.
For the case of (1), however, its eigenvalue with the small-
est real part is unique and real (which we call E0), and the
corresponding eigenstate can be taken to have all its elements
real and positive (which we denote as |ψ0〉). This is due to the
Perron-Frobenius theorem, which can be applied since the off-
diagonal elements of H in the Fock representation are all real
and nonpositive. We can also show that E0 is bounded from
below (see Appendix D 3). In this work, we focus on how the
ground state |ψ0〉 (with the ground-state energy E0) changes
according to the change of parameters in H . Throughout this
paper, we set h̄ = 1, so that energy has the dimension of the
inverse of time.

III. ANISOTROPIC ACTIVE LATTICE GAS

Within the parameter space of (1), there is a special
subspace defined by U1 = 2J and U2 = εJ , where the Hamil-
tonian can be mapped [52,53] to the transition rate matrix
of an active lattice gas model (ALG) (see Appendix A). The
ALG here is an N-particle model where the particles are ex-
clusively hopping within the Lx × Ly rectangular lattice with
the PBC [Fig. 2(a)]. Each particle has a spin s (= ±1) as its
internal variable, which sets the rate of asymmetric hopping in
the x direction as (1 + εs)J and (1 − εs)J for the positive and
negative directions, respectively. The y-directional hopping
rate is J , the spin flipping rate is h, and we define the density
as ρ := N/(LxLy) (0 < ρ < 1).
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FIG. 2. (a) Anisotropic ALG. Each particle with spin hops to the nearest-neighbor site with the spin-dependent rate or flips its spin with the
rate h. (b) Heatmap of the steady-state order parameter 〈φ〉 in the ρ − ε plane. Typical configurations of the PS and homogeneous states are also
shown. (c) ε dependence of 〈φ〉 for different values of ρ, which is another plot of (b). (d) Time dependence of φ at a discontinuous transition
point (ρ = 0.3 and ε = 0.667) with typical snapshots of bistable PS and homogeneous states. For (b), (c), and (d), we set Lx = Ly = 60.

Before considering the full quantum model (1), we
characterize the static and dynamical properties of the
ALG as a model of anisotropic active matter. In the
following, we set h = 0.025J in MC simulations (see
Appendix B 1). As we increase ε, the ALG shows a
phase transition from the homogeneous state to the
phase-separated (PS) state [see the typical configurations
in Fig. 2(b)], where the particles moving in the +x or −x
direction are blocked by others moving in the opposite
direction. Similar types of phase transitions have been
discussed in two-species driven lattice gas models [54–57]
and recently regarded as a MIPS transition in an ALG
[30]. We define the order parameter for the PS state as
〈φ〉 := 〈|∑ j exp(−2π ix j/Lx )n(r j )|〉 sin(π/Lx )/[sin(πρ)Ly]
[58,59], where r j [:= (x j, y j )] and n(r j ) are the spatial
coordinate and occupancy of the site j, respectively, 〈· · ·〉 is
the ensemble average in the steady state, and 〈φ〉 = 1 for the
fully PS state. For Lx = Ly = 60, we obtain the ρ − ε phase
diagram as a heatmap of 〈φ〉 [Fig. 2(b)]. The ε dependence
of 〈φ〉 [Fig. 2(c)] and the bistability at the transition point
[Fig. 2(d)] suggest that the transition is discontinuous for
low density (ρ � 0.4), as observed in similar models [57],
though further investigation is needed to clarify whether the
transition is still discontinuous in the thermodynamic limit.
On the other hand, 〈φ〉 is a continuous function of ε in the
density region with ρ � 0.4 [Fig. 2(c)].

A. Long-range correlation in the homogeneous state

According to the studies on driven lattice gas models
and coarse-grained Langevin models [45,47,48], long-range
density correlation is generically believed to appear in the
nonequilibrium steady state with spatial anisotropy of dy-
namics. To examine whether the ALG shows long-range
density correlation in the homogeneous steady state, we calcu-
late the structure factor S(k) := ∑

j exp(−ik · r j )C(r j ), where
C(r) := (LxLy)−1 ∑

i 〈[n(ri + r) − ρ][n(ri ) − ρ]〉 is the corre-
lation function that should be short-ranged in the equilibrium
limit (ε → 0). As illustrated in Fig. 3(a) and colored dots
in Fig. 3(c) for Lx = Ly = 200, ρ = 0.6, and ε = 0.2, we
find a singularity of S(k) at k = 0, i.e., S(kx → 0, ky = 0) >

S(kx = 0, ky → 0), which means that the long-range density
correlation exists as in driven lattice gas models [45].

To understand the singularity of S(k), we apply the path-
integral method [60–63] and derive the Langevin equation for
the spin-density field ρs(r, t ) (see Appendix B 2):

∂tρs = J (∇2ρs − ρ−s∇2ρs + ρs∇2ρ−s)

− 2sεJ∂x[(1 − ρ+ − ρ−)ρs] − h(ρs − ρ−s) + ξs, (2)

where the lattice constant is set to unity, 〈ξs(r, t )〉 = 0, and
〈ξs(r, t )ξs′ (r′, t ′)〉 = δ(t − t ′)Ms,s′δ(r − r′) with a differential
operator Ms,s′ := δs,s′ [−2J∇ · (1 − ρ+ − ρ−)ρs∇] + (2δs,s′ −
1)h(ρ+ + ρ−). Linearizing Eq. (2) [64–66] and adiabati-
cally eliminating the fast variable ρ+(r, t ) − ρ−(r, t ), we
obtain the linear Langevin equation for the density fluctuation
ϕ(r, t ) := ρ+(r, t ) + ρ−(r, t ) − ρ, which can be solved in the
Fourier space using ϕ(k, t ) := ∫

d2r exp(−ik · r)ϕ(r, t ) (see
Appendix B 3). Under these approximations, we can calculate
the structure factor Slin(k) := (LxLy)−1 limt→∞ 〈|ϕ(k, t )|2〉,

FIG. 3. (a) Contour plot of the structure factor S(k) obtained nu-
merically at ρ = 0.6 and ε = 0.2 (homogeneous state). (b) Contour
plot of the linearized structure factor Slin (k) [Eq. (3)] for the same
parameters as (a). (c) Quantitative comparison between S(k) (dots)
and Slin (k) (lines) for the same parameters as (a). Note S(k = 0) = 0
due to the particle number conservation. For (a) and (c), we used
Lx = Ly = 200.
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FIG. 4. (a) Coarsening process toward phase separation. Each snapshot is a quarter square of the original system with Lx = Ly = 3200.
(b) Space and time dependence of the density correlation functions along the x axis (Cx) and the y axis (Cy). (c) Rescaled correlation functions
as functions of the rescaled coordinates. Time evolution of the domain sizes Rx (t ) and Ry(t ) is shown in the inset, where the fitted line for the
well-scaled region (103 MC steps � t � 105 MC steps) is also shown. For all figures, we set ρ = 0.6 and ε = 0.9.

leading to

Slin(k) = (1 − ρ)ρ

× [2h+J (1−ρ)k2]k2+4ε2J (1−ρ)kx
2

[2h+J (1−ρ)k2]k2 − 4ε2J (1 − ρ)(2ρ − 1)kx
2 .

(3)

As shown in Fig. 3(b) and colored lines in Fig. 3(c),
Slin(k) captures the qualitative feature observed in the
simulation. In particular, the singularity at k = 0 is quanti-
fied [47] by Slin(kx → 0, ky = 0)/Slin(kx = 0, ky → 0) − 1 =
4ε2Jρ(1 − ρ)/[h − 2ε2J (1 − ρ)(2ρ − 1)], which is nonzero
if ε �= 0. Thus the spatial anisotropy associated with the de-
tailed balance violation in the ALG leads to the long-range
density correlation.

B. Dynamic scaling in the phase-separated state

We next investigate how the anisotropy appears in the dy-
namics of the PS state by focusing on the coarsening process
toward phase separation [Fig. 4(a)]. We introduce Cx(x, t ) :=
C(x, y = 0, t ) and Cy(y, t ) := C(x = 0, y, t ), where C(r, t ) is
the time-dependent density correlation function. Defining the
typical domain size Rx(t ) along the x axis as Cx(Rx(t ), t ) =
Cx(x → 0, t )/2 and Ry(t ) in a similar way [67], we examine
the rescaled correlation function Cx(x, t )/Cx(x → 0, t ) as a
function of x/Rx(t ) and the counterpart for Cy(y, t ).

For Lx = Ly = 3200, ρ = 0.6, and ε = 0.9, we find a good
scaling behavior for 103 � t � 105, where time t is measured
in units of 1 MC step [Figs. 4(b) and 4(c)]. Moreover, in the
same time range, the growth dynamics shows an anisotropic
power law as Rx(t ) ∼ tαx and Ry(t ) ∼ tαy with αx < αy [insets
in Fig. 4(c)]. Such anisotropic growth law with αx < αy holds
for different values of ρ or ε (see Appendix B 4).

C. Critical point properties

Recent simulations [39,40] and theories [39] of the MIPS
transition have suggested that the isotropic MIPS critical point
seems to show the Ising universality, i.e., the universality for
equilibrium phase separation. In contrast, the effects of spatial
anisotropy that we have described both in the homogeneous
and PS states suggest that the universality of the anisotropic
MIPS critical point in the ALG is different from the Ising
universality. Furthermore, it is in fact still unclear whether
the critical point of the isotropic MIPS generically belongs
to the Ising universality class [38,41], since the macroscopic
MIPS may be replaced by the microphase separation, or the
bubbly phase separation [42,43], as observed in large-scale
simulations [44]. In our ALG, we did not find the anisotropic
counterpart of the bubbly phase separation even in simula-
tions of relatively large systems: (Lx, Ly) = (1200, 400) (see
Appendix B 4).

According to the studies on anisotropic nonequilibrium
systems in two dimensions [45], there may exist two different
exponents related to the divergence of the correlation length
at criticality, νx and νy. Based on Eq. (2), we find that the
effective model which should describe the critical dynamics
of the ALG coincides with that of the two-temperature lattice
gas model (see Appendix B 5), in which case the exponents
satisfy νy/νx 
 2 [68–71].

To numerically estimate the critical exponents β, νx, and
νy for the ALG, we assume νy/νx = 2 and use the anisotropic
finite-size scaling analysis [58,59]. Briefly, we consider
the scaling hypothesis as 〈φn〉 = Lx

−nβ/νx Fn(L1/νx
x (ε − εc), S),

where Fn is a scaling function, εc is the critical point, and
S := Ly/Lx

νy/νx = Ly/Lx
2. We take S = 1/152 with varying

Lx. We set ρ = 0.6 as a rough estimate of the bottom point
of the binodal curve based on Figs. 2(b) and 2(c). The results
below did not qualitatively change when we took ρ = 0.65
(see Appendix B 6).
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FIG. 5. (a) ε dependence of the Binder ratio Q for ρ = 0.6 and
different system sizes with fixed Ly/L2

x = 1/152. The solid lines are
guides for the eyes. (b) ε dependence of 〈φ〉 for the same parameters
as (a). (c) Q as a function of the rescaled ε with the best-fitted
εc (
 0.362) and νx (
 0.654). (d) Rescaled 〈φ〉 as a function of
the rescaled ε with the best-fitted β (
 0.393) and the same values
of εc and νx as (c).

We find that the Binder ratio Q(ε, Lx ) := 〈φ2〉2
/ 〈φ4〉

shows a crossing point [Fig. 5(a)], which is consistent with
the scaling hypothesis. Fitting Q(ε, Lx ) with second-order
polynomials (see Appendix B 6), we obtain εc 
 0.36238(4)
and νx 
 0.65(1), where the value in the bracket is the fitting
error on the last significant figure. Then, fitting 〈φ〉 (ε, Lx )
[Fig. 5(b)] in a similar way, we find β 
 0.3928(8). By rescal-
ing, we confirm that Q and 〈φ〉 respect the scaling function,
consistent with the scaling hypothesis [Figs. 5(c) and 5(d)].
Note that slight changes of νx and β (e.g., νx = 0.6 and
β = 0.35) still give consistent scaling results for the system
sizes used here (see Appendix B 6). The obtained values of νx

and β are comparable to those of the two-temperature lattice
gas model [νx 
 0.62(3) and β 
 0.33(2)] [71] and two-loop
renormalization group calculation of the corresponding effec-
tive Langevin model (νx 
 0.626 and β 
 0.315) [68,69,71].
Therefore our ALG model shows consistent results with the
two-temperature lattice gas model within the tested regime.

IV. QUANTUM PHASE DIAGRAM AND DYNAMICAL
PHASE TRANSITION

From the viewpoint of the full quantum model, the classical
condition (U1 = 2J and U2 = εJ) induces E0 = 0. The corre-
sponding right eigenstate |ψ0〉 is equivalent to the steady-state
distribution of the ALG (Fig. 1), and the left eigenstate is
the coherent state, 〈ψ ′

0| = 〈P| := 〈0| exp(
∑

i,s ai,s). For the
case of ε = 0 and U2 = 0, H is Hermitian and equivalent to
the ferromagnetic XXZ model with fixed magnetization [72]

(see Appendix D 2), where a first-order transition between the
superfluid and phase-separated states occurs at the Heisenberg
point (U1 = 2J) [73]. The Heisenberg point is also special in
that the right and left ground states are both coherent states.

To explore how the tendency toward MIPS comes into play
beyond the classical condition, we conducted the diffusion
Monte Carlo (DMC) simulation [74]. We chose horizontally
elongated systems (e.g., 50 × 5) to reveal the typical configu-
rations of the quantum states (see the insets in Fig. 6) within
the numerically limited system size. In short, we run the
Monte Carlo simulation for the ALG but with the additional
steps of resampling the states based on the calculated weights
of the paths. This works since the Hamiltonian can be divided
into two parts H = −W − D, where W := −H (J, ε,U1 =
2J,U2 = εJ, h) corresponds to the classical dynamics and D,
being a diagonal matrix, can be interpreted as the resampling
weights (see Appendix C).

To discuss the quantum phases, we focus on physical quan-
tities A({n̂i,s}) which are functions of the configuration of the
particles and calculate 〈A〉C := 〈P|A({n̂i,s})|ψ0〉 / 〈P|ψ0〉. PS
states are characterized by

φPS := (LxLy)−1
∑
〈i, j〉

〈(n̂i − ρ)(n̂ j − ρ)〉C . (4)

For microphase-separated (mPS) states, in which the number
of clusters is O(Lx ) [see the upper configuration in Fig. 6(b)],
we utilize φmPS as the order parameter, which is the density of
clusters with oppositely polarized edges:

φmPS := Lx
−1

Lx∑
i=1

〈
m̂X

i

(
n̂X

i+1 − n̂X
i−1

)〉
C , (5)

where n̂X
i := Ly

−1 ∑Ly

j=1 n̂ix̂+ jŷ and m̂X
i := Ly

−1 ∑Ly

j=1 m̂ix̂+ jŷ.
In the large-size limit (Lx, Ly → ∞), φPS > 0 and φmPS = 0
for the PS state, while φPS > 0 and |φmPS| > 0 for the mPS
state.

A. Quantum phase transitions

We first find that there is a discontinuous phase transi-
tion induced by slightly increasing U1 from 2J . As shown in
Fig. 6(a), φPS increases rapidly as a function of U1 at around
U1 = 2J for a broad range of ε (= 0, 0.2, 0.6) and U2 (= εJ ),
with the ground-state energy E0 having a kink at U1 = 2J .
This line of phase separation transition extends from the first-
order transition in the XXZ model (ε = 0) [72,73]. Second,
for high enough ε (= 0.6), a drop in φPS and an increase in
φmPS occur simultaneously as U2 crosses εJ [Fig. 6(b)]. As
also indicated from the typical configuration and the kink in
E0 [Fig. 6(b)], this is expected to be a discontinuous transition
between the PS and mPS states. For low ε (= 0, 0.2), in
contrast, we do not see this transition [Fig. 6(b)]. We ob-
served similar transitions in a one-dimensional (1D) setup,
even though the corresponding classical model does not show
MIPS (see Appendix D 6).

Next, we consider increasing ε while fixing U1 = 2J and
U2 = 0. Intriguingly, we find that a ferromagnetic order ap-
pears without phase separation for high ε (� 0.4), indicated
by M2 := N−2 〈(∑i m̂i )2〉C [Fig. 7(a)]. Such polar order,
which should be accompanied by flow due to the asymmetric
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FIG. 6. (a) U1 dependence with U2 = εJ and (b) U2 dependence with U1 = 2J of the order parameters (φPS and φmPS) and the ground-state
energy (E0) for ρ = 0.5, h = 0.025J , and ε = 0, 0.2, 0.6 in 50 × 5 systems with typical configurations. In the figures of E0, we also plotted
the analytical results of 〈H〉C for (a) a disordered state (dashed) and a PS state (dotted) or (b) a mPS state with one (dashed) or four (dotted)
clusters (see Appendix D 4).

hopping, is reminiscent of the flocking of self-propelled par-
ticles observed, e.g., in the Vicsek model [75], although our
model (1) does not include explicit polar interactions. We
stress that the mPS and polar states observed in the quantum
model are not stable in the embedded classical model in any
parameter region [see Fig. 2(b) for the phase diagram of the
classical model].

To investigate whether the polar order remains in larger
systems, we further performed simulations in 1D systems. The
size dependence of M2 and φPS in 1D systems [Fig. 7(b)]
shows that the polar state is destabilized and instead the PS

FIG. 7. (a) ε dependence of the squared magnetization M2 and
typical configurations in 50 × 5 systems. (b) ε dependence of M2

and φPS in 1D systems with Lx = 20, 40, 60, 80, and 100. In both
(a) and (b), we set ρ = 0.5, h = 0.025J , U1 = 2J , and U2 = 0.

state appears as the system size becomes larger. In addition,
the discontinuous changes in M2 and φPS indicate the bista-
bility of the polar and PS states in finite systems. Similarly,
in large two-dimensional systems, the PS state can replace the
polar state, as observed in the U2 dependence of M2 and φPS

for the system with size 50 × 5 (see Appendix D 5). Therefore
we find that the non-Hermitian asymmetric hopping terms
alone (with U2 = 0) will lead to either the polar state or the
PS state, which are the quantum analogs of the flocking and
MIPS states, respectively.

In Fig. 8, we show the phase diagram for a system with size
30 × 3. First, Fig. 8(a) is the U2 − ε phase diagram around
the classical line (U1 = 2J and U2 = εJ) indicated in red. In
addition to the classical MIPS, the PS-mPS transition occurs
when crossing the classical line at high ε [see Fig. 6(b)]. Next,
Figs. 8(b) and 8(c) display the U1 − U2 phase diagrams around
the classical line. For low ε (= 0.2) [Fig. 8(b)], we find that
the U1-induced phase separation transition [Fig. 6(a)] occurs
robustly against U2-perturbation from the classical line. In
contrast, for high ε (= 0.6) [Fig. 8(c)], slight changes in U1

and U2 around the classical line can lead to the mPS and polar
states.

The full phase diagram is difficult to explore since the
DMC simulation becomes less reliable when deviations
of the parameters from the classical line (U1 − 2J and
U2 − εJ) are large [see the approximation in Eq. (C2)].
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FIG. 8. Ground-state phase diagrams of the quantum model. (a)
U2-ε phase diagram for U1 = 2J around the classical line (red box),
with PS (φPS > 0.1 and φmPS � 0.1), mPS (φmPS > 0.1), P (polar,
M2 > 0.1), and D (disordered, otherwise) states. U1 − U2 phase dia-
grams for (b) ε = 0.2 and (c) ε = 0.6 around the cross section of the
classical line (red box). In all figures, we set ρ = 0.5 and h = 0.025J .

Nevertheless, there are symmetries in this system
that indicate the positions of the phase boundaries
in a wider parameter region (Fig. 9). First, we have
E0(J,−ε,U1,−U2, h) = E0(J, ε,U1,U2, h) which is
due to H (J, ε,U1,U2, h) = Û †H (J,−ε,U1,−U2, h)Û ,
where Û is the unitary operator of spin reversal. We
also have E0(J,−ε,U1,U2, h) = E0(J, ε,U1,U2, h) since
H (J,−ε,U1,U2, h)† = H (J, ε,U1,U2, h). Since the
analytical property of E0 indicates the positions of the
phase boundaries, we expect that the boundaries calculated
in Fig. 8 may have corresponding phase boundaries in ε < 0
and/or U2 < 0 regions. For example, there should be a
transition for large enough |ε| in crossing the dual classical
line defined by U1 = 2J and U2 = −εJ , which is where
E0 = 0 and |ψ0〉 = |P〉 (Fig. 9).

B. Connection to dynamical phase transition in classical kinetics

The scheme of the DMC implies an interesting connection
between the quantum model and the classical kinetics. For
the ALG with the transition rate matrix W , we denote the
configuration of the particles at time t as Ct = {ni,s(t )}, and
its stochastic trajectory as Ct = Ck (tk � t < tk+1) with tk
being the time point of the kth jump. For a path-dependent
quantity B̄τ := ∫ τ

0 dtBCt ,Ct + ∑
k BCk ,Ck+1 defined using an ar-

bitrary real matrix B that acts on the Fock space, we introduce

λW (B) := lim
τ→∞

1
τ

ln 〈exp(B̄τ )〉W
, (6)

where the ensemble average 〈· · ·〉W is taken over the tra-
jectories in the ALG. λW (B) is equivalent to the dominant

FIG. 9. Schematic of the U2-ε plane at U1 = 2J . The Hamilto-
nian has two symmetries (see the main text), meaning that the points
indicated by squares all have the same value of E0. The classical line
(U2 = εJ) and the dual classical line (U2 = −εJ) have E0 = 0. The
same Hamiltonian (e.g., black square) can be described in multiple
ways of classical stochastic dynamics (e.g., W and W̃ ) with bias (e.g.,
green and magenta arrows).

eigenvalue of a biased transition rate matrix [76,77]:

W B
C,C′ := (1 − δC,C′ )WC,C′eBC,C′ + δC,C′ (WC,C′ + BC,C′ ). (7)

Typical paths that appear in the biased dynamics can become
dramatically different from the original dynamics, which is
the hallmark of dynamical phase transition that can be cap-
tured by the (non)analytical behavior of λW (B) [77]. Biased
kinetics and dynamical phase transition have been studied
with interests in exploring glassy systems and in character-
izing phases in models of active matter [78–80].

The quantum Hamiltonian (1) can be interpreted as the
transition rate matrix with bias by writing H = −W B, where
the bias is B = u1F + u2G with FC,C′ := 〈C| ∑〈i, j〉 n̂in̂ j |C′〉
and GC,C′ := 〈C| ∑i m̂i(n̂i+x̂ − n̂i−x̂ ) |C′〉 being diagonal ma-
trices. Here, |C〉 is the Fock basis corresponding to the
configuration C, and u1 := U1 − 2J and u2 := U2 − εJ quan-
tify the displacement from the classical line. We then arrive
at

E0(J, ε,U1,U2, h) = −λW (u1F + u2G), (8)

which means that the quantum phase transitions, captured by
the property of E0, are equivalent to the dynamical phase
transitions induced by the bias u1F + u2G. The bias here has
a clear interpretation: increasing u1 and u2 favors larger φPS

and φmPS, respectively.
More generally, we may consider an arbitrary pair of

a transition rate matrix W̃ and bias B̃ that satisfies H =
−W̃ B̃. One interesting choice is W̃ = −H (J = U1/2, ε =
2U2/U1,U1,U2, h), which is a matrix with the same diagonal
elements as −H but with the off-diagonal elements tuned so
that

∑
C W̃C,C′ = 0. The corresponding bias will be

B̃C,C′ = |VC,C′ | ln
J

J0
+ ln

1 + εVC,C′

1 + ε0VC,C′
, (9)
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which is nondiagonal and non-Hermitian (Fig. 9). Here, V is
a skew-Hermitian matrix given by

VC,C′ =
∑

i,s

s 〈C| (a†
i,sai−x̂,s − a†

i,sai+x̂,s) |C′〉 (10)

Introducing the entropy production by its commonly used
definition [76]:

σC,C′ (W ′) := ln
W ′
C,C′

W ′
C′,C

, (11)

we find

B̃ − B̃† = σ (W̃ B̃) − σ (W̃ ), (12)

which indicates that the difference of entropy production
defined in the biased and unbiased kinetics is exactly the
non-Hermiticity of the bias B̃. We also note that there is a
fluctuation theorem-like relation [76]:

λW̃ (B̃) = λW̃ (B̃† − σ (W̃ )), (13)

which follows from (W̃ B̃)† = W̃ −σ (W̃ )+B̃†
. This sym-

metry, which is nothing but the E0(J,−ε,U1,U2, h) =
E0(J, ε,U1,U2, h) symmetry, is depicted as magenta arrows
in Fig. 9.

We have observed the discontinuous transitions in cross-
ing the classical line for ρ = 0.5 (Fig. 6), while the order
parameter continuously changes through the MIPS transition
along the classical line for the same ρ [Fig. 2(c)]. Similarly,
models of glasses [77,81] and active matter [79] which do not
undergo discontinuous transitions within the unbiased mod-
els (i.e., along the classical line in our setup) can undergo
discontinuous dynamical phase transitions. Furthermore, the
ε-dependent transition toward the flocking phase (Fig. 7)
can be understood as the consequence of biasing the kinet-
ics toward larger B̃, which encourages more spin-dependent
asymmetric hopping and therefore dissipation. Consistent
with this, dynamical phase transition induced by biasing to-
ward higher dissipation has been reported in the studies of
active Brownian particles [78–80].

V. RELEVANCE TO EXPERIMENTS

In ultracold atom experiments, the Bose-Hubbard model
has already been simulated, including the quantum gas
microscope which allows the measurement of the spatial con-
figuration of the quantum states [16,82,83]. We here remark
on several challenges that lie ahead in order to observe the
activity-induced phase transitions using such settings.

A. Quantum experiments and preparation of the ground state

Although the non-Hermitian terms are difficult to imple-
ment in general, the asymmetric hopping terms can be realized
by introducing a coherent coupling between the original
square lattice and a dissipative auxiliary lattice, as proposed
in Ref. [21] (Fig. 10). Such an open system is described by
the quantum master equation, which can be shown to reduce
to a non-Hermitian quantum mechanical system by post-
selected quantum trajectories [15,21,84–86]. The direction of
the asymmetric hopping can be controlled by the direction

FIG. 10. Experimental implementation of the asymmetric hop-
ping in cold atomic systems. The original optical lattice (dark blue),
the dissipative optical lattice (light blue), the coherent coupling be-
tween two lattices (red and green arrows) and the running wave in
the x direction (orange line) are introduced and bosonic atoms (blue
balls) are loaded in the optical lattices.

of the running wave as in Fig. 10, and the spin-dependent
asymmetric hopping in Eq. (1) should in principle be possible
by spin-selective optical lattices [83].

Implementing nearest-neighbor interactions is also chal-
lenging for optical lattice settings, although there are various
proposals such as the use of optical cavity [87], Rydberg states
[88], dipolar interaction [89], and Floquet engineering [90] to
overcome the difficulty.

In our model, the nearest neighbor terms do not need to
be fine-tuned in order to observe the activity-induced phase
transitions. For example, the DMC simulation in a 1D system
[Fig. 7(b)] suggests that phase separation or polar order can be
induced upon increasing ε even when U2 is fixed at zero. The
results of exact diagonalization of a small system imply that
ε-induced phase transitions can also occur for U1 = U2 = 0
(Figs. 11 and 25).

Another nontrivial step in experiment is to prepare the
ground state |ψ0〉, the eigenstate with the smallest real part
of the energy eigenvalue. This state is not necessarily real-
ized at low temperature in a non-Hermitian system since the
state with the largest imaginary part of the energy eigenvalue
will dominate in the long-time limit. A workaround to this
problem is the adiabatic preparation, as has been proposed in
Refs. [26,91], for example. The idea will be to first prepare
the Hermitian system (ε = 0) and realize the low-temperature
state in a closed quantum system. The dissipation is then intro-
duced adiabatically, i.e., turn on the asymmetric hopping term
very slowly. This protocol is applicable to our setup since the
Perron-Frobenius theorem guarantees the uniqueness and the
realness of the ground state energy, meaning that the energy
gap � = |E1 − E0| should remain nonzero in a finite system
through this process at least for a finite time. Although the
adiabatic theorem is invalid in the strict sense, it has been
shown that, when there is a finite gap �, the state keeps sitting
on the same state for a finite time under varying the parameters
slowly [92].
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FIG. 11. U1-U2 phase diagrams for ε = 0.6 in small 1D systems
(Lx = 12), with PS (φPS > 0.05 and φmPS � 0.3), mPS (φmPS > 0.3),
P (M2 > 0.2), SF (superfluid, φSF > 0.2), and D (otherwise) states.
The order parameters are calculated by exact diagonalization, using
〈· · ·〉C [(a) and (b)] or 〈· · ·〉Q [(c) and (d)], for the PBC [(a) and
(c)] or OBC [(b) and (d)]. Superfluid states cannot be identified
in DMC calculations or by using 〈· · ·〉C (see the main text and
Appendix E). In all figures, we set ρ = 0.5 and h = 0.025J .

B. Measurable quantities and their relation to the results
from the Monte Carlo simulation

The measurable quantity in open quantum systems is
〈· · ·〉Q := 〈ψ0| · · · |ψ0〉 rather than 〈· · ·〉C [15,84–86]. Further-
more, typical cold atom experiments are in open boundary
condition (OBC) [83], in which case the exact mapping to
a classical system does not exist (see Appendix D 1). To
address these points, we conducted exact diagonalization for
a small 1D system to check how redefining the order param-
eters using 〈· · ·〉Q and the different boundary conditions will
change the result. For each of 〈· · ·〉Q and 〈· · ·〉C, we define
the order parameters, φPS, φmPS, and M2. For 〈· · ·〉Q, we also
define the order parameter for the superfluid (SF) state, which
is characterized by the off-diagonal long-range correlation,
as φSF := Lx

−1 ∑
s

∑
|i− j|=Lx/2 〈a†

i,sa j,s〉Q
. Note that φSF for

〈· · ·〉C is meaningless since the SF order and the density order
are equivalent (〈a†

i,sa j,s〉C
= 〈n̂i,sn̂ j,s〉C).

As shown in the phase diagram (Fig. 11), we found that
all of the phases exist in the various setups, with an ad-
ditional polar-SF phase which can only be captured by an
off-diagonal order parameter, indicating that experiments with
small systems can already lead to interesting results. The
phase diagrams for other parameters with both PBC and OBC
are given in Fig. 25 (Appendix E), where we quantify another
choice of the expectation value 〈· · ·〉LR := 〈ψ ′

0| · · · |ψ0〉 with
〈ψ ′

0| being the left ground state [91]. All the phase diagrams
are qualitatively similar, indicating that our results do not
depend strongly on the choice of the expectation values and
the boundary conditions.

VI. DISCUSSION

Here we have shown that a quantum many-body system
can undergo activity-induced phase transition in a similar
manner as in the classical MIPS but with a richer phase di-

agram. The fact that the addition of a simple spin-dependent
hopping can lead to nontrivial phases indicates the potential
of open quantum systems. Models with asymmetric hopping
have been studied extensively in the recent context of non-
Hermitian topological phases [21,93]. It will be interesting to
consider the topological characterization of phases in strongly
interacting systems such as in the model studied here.

In the model we have introduced, we have considered
the contributions from both the deviation from equilibrium
(Hermitian) and the classical condition within the same frame-
work. This approach should be useful in importing insights
from nonequilibrium classical theory to quantum many-body
physics. Specifically, the correspondence between the quan-
tum Hamiltonian and the classical transition rate matrix with
bias indicates that dynamical phase transitions in general clas-
sical kinetics can in principle be probed by zero-temperature
phase transitions in quantum experiments. This connection
is so far restricted to a stoquastic Hamiltonian (i.e., matrix
with all its off-diagonal terms being real and nonpositive);
exploring other models of quantum active matter, especially
nonstoquastic models that have no classical analogs, will be
an interesting next step.
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APPENDIX A: MAPPING TO THE CLASSICAL MODEL

We will show that the Hamiltonian (1) is mapped to the
active lattice gas model (ALG) under the classical condi-
tion (U1 = 2J and U2 = εJ). First, defining W := −H (U1 =
2J,U2 = εJ ), we can obtain

W = P̂

{
J

∑
〈i, j〉,s

(a†
i,sa j,s + a†

j,sai,s)

+ εJ
∑

i,s

s(a†
i,sai−x̂,s − a†

i,sai+x̂,s)

+ h
∑

i,s

a†
i,sai,−s − J

∑
〈i, j〉,s

[n̂i,s(1 − n̂ j ) + n̂ j,s(1 − n̂i )]

− εJ
∑

i,s

s[n̂i,s(1−n̂i+x̂ )−n̂i,s(1 − n̂i−x̂ )] − h
∑

i,s

n̂i,s

}
P̂.

(A1)
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FIG. 12. (a) Space and time dependence of the density correlation functions Cx and Cy (upper figures) and their rescaled plots (lower
figures) with the time dependence of the typical domain sizes Rx and Ry, for ρ = 0.4 and ε = 0.9. (b) Similar plots to (a) for ρ = 0.6 and
ε = 0.6. For all figures, we set Lx = Ly = 3200. See Figs. 4(b) and 4(c) for ρ = 0.6 and ε = 0.9.

Here, we explicitly introduce the projection operator P̂ to a
partial Fock space where the total particle number is N with
no multiple occupancy.

Using WC,C′ := 〈C|W |C′〉, where |C〉 is the Fock basis cor-
responding to a N-particle configuration C (:= {ni,s}), we can
show that (i)

∑
CWC,C′ = 0 and (ii) WC,C′ � 0 for C �= C′.

Thus we can think of WC,C′ as a transition rate matrix of a
classical Markov process which yields the master equation:

dP(C, t )

dt
=

∑
C′

WC,C′P(C′, t ), (A2)

where P(C, t ) is the probability of configuration C at time
t . The first three terms of (A1) (nondiagonal elements of
WC,C′ ) represent the symmetric hopping rate, spin-dependent
change in the hopping rate, and the spin flipping rate; the last
three terms of (A1) (diagonal elements of WC,C′) represent the
corresponding escape rates.

Using a state vector |ψ (t )〉 = ∑
C P(C, t ) |C〉 accord-

ing to the Doi-Peliti method [52,53], we can find that
(A2) is nothing but the imaginary-time Schrödinger equa-
tion, d |ψ (t )〉 /dt = −H (U1 = 2J,U2 = εJ ) |ψ (t )〉. Thus the
steady state of the ALG represented by |ψ (t → ∞)〉 is equiv-
alent to the ground state of the Hamiltonian, |ψ0〉. Also,
using the coherent state 〈P| = 〈0| exp(

∑
i,s ai,s), we can ex-

press the expectation value of a classical physical quantity
A({ni,s}) as 〈A〉 (t ) = ∑

C A(C)P(C, t ) = 〈P|A({n̂i,s})|ψ (t )〉.
Especially for the steady state (t → ∞), we obtain 〈A〉 (t →
∞) = 〈P|A({n̂i,s})|ψ0〉 = 〈A〉C.

APPENDIX B: DETAILS OF ANALYTICAL
AND NUMERICAL RESULTS FOR ALG

1. Monte Carlo simulation

Setting a time step �t [= O(N−1)], we first randomly
choose a particle from N particles. Then, we flip the particle’s

spin from s to −s with probability hN�t or move the particle
to a neighboring empty site with probability s(1 + ε)JN�t ,
s(1 − ε)JN�t , or JN�t depending on the hopping direction.
We repeat this procedure M (:= mN ) times, which we call m
MC steps, until the total time T (:= mN�t) is reached.

In simulations, we took �t = 1/[N (4J + h)] with h =
0.025J . For Figs. 2(b) and 2(c), we used m = 2 × 106, ran
50 independent simulations, and took 51 samples from each
simulation for averaging. For Figs. 3(a) and 3(c), we used
m = 106 and ran 12000 independent simulations for averag-
ing. For Figs. 4(b) and 4(c) as well as Fig. 12, we ran ten
independent simulations for averaging. We explain the details
of simulations for Fig. 5 in Appendix B 6. In all simulations,
we set the disordered state with no spatial correlation as the
initial state.

2. Langevin equation for spin-density field

Considering the ALG, we can obtain the probability den-
sity for a dynamical path of configurations {n j,s(t )}t∈[0,T ],
where n j,s(t ) is the occupancy of the site j and spin s at time
t , as [60]

P[n j,s] =
∫

Dñ j,s exp(−S[n j,s, ñ j,s]), (B1)

where
∫

Dñ j,s(· · · ) is the functional integral over all the pos-
sible dynamical paths of the conjugate field {ñ j,s(t )}t∈[0,T ].
Here, the action S is given as

S := −i
∫ T

0
dt

∑
j,s

ñ j,s∂t n j,s

−
∫ T

0
dt

∑
j,s

n j,s{J
( j)∑
k

(1 − nk )[ei(ñ j,s−ñk,s ) − 1]

+ h[ei(ñ j,s−ñ j,−s ) − 1]}
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−
∫ T

0
dt

∑
j,s

n j,sJεs
{
(1 − n j+x̂ )

[
ei(ñ j,s−ñ j+x̂,s ) − 1

]
− (1 − n j−x̂ )

[
ei(ñ j,s−ñ j−x̂,s ) − 1

]}
, (B2)

where
∑( j)

k (· · · ) is the summation over the sites adjacent to
the site j. See Ref. [39] for the similar path-integral formula-
tion [60] applied to the isotropic ALG.

Assuming that ρs(r, t ) [:= nj,s(t )] and ρ̃s(r, t ) [:= ñ j,s(t )]
are slowly varying on a scale of the lattice constant a, we ap-
proximate the action S up to O(a2). We also discard O((ñ j,s −
ñ j,−s)3) and higher-order terms to consider only the Gaussian
noise in the resulting Langevin equation. Then, we can rewrite
the action as S 
 S(1)

cont[ρs, ρ̃s] + S(2)
cont[ρs, ρ̃s], where

S(1)
cont := −i

∫ T

0
dt

∫
d2r
a2

∑
s

ρ̃s{∂tρs−Ja2(∇2ρs−ρ−s∇2ρs

+ ρs∇2ρ−s) + 2aεJs∂x[(1 − ρ+ − ρ−)ρs]

+ hs(ρ+ − ρ−)} (B3)

and

S(2)
cont := 1

2

∫ T

0
dt

∫
d2r
a2

[∑
s

2Ja2(1 − ρ+ − ρ−)ρs(∇ρ̃s)2

+ h(ρ+ + ρ−)(ρ̃+ − ρ̃−)2

]
. (B4)

Introducing noise variables ξs(r, t ), we transform the path
probability P[ρs], which is the continuum counterpart of
P[ni,s], as [60]

P[ρs] =
∫

Dρ̃sDξs exp
(−S(1)

cont[ρs, ρ̃s] − S(2)′
cont[ρs, ρ̃s, ξs]

)
,

(B5)
where

S(2)′
cont :=

∫ T

0
dt

∫
d2r
a2

[
1

2

∑
s,s′

ξs(M
−1)s,s′ξs′ + i

∑
s

ρ̃sξs

]
.

(B6)
Here, Ms,s′ is a differential operator given by Ms,s′ :=
δs,s′ [−2J∇ · (1 − ρ+ − ρ−)ρs∇] + (2δs,s′ − 1)h(ρ+ +
ρ−). Following the approach developed by Martin, Siggia,
Rose, Janssen, and de Dominicis (MSRJD) [61–63], we can
obtain the Langevin equation that is equivalent to Eq. (B5) as

∂tρs = J (∇2ρs − ρ−s∇2ρs + ρs∇2ρ−s)

− 2sεJ∂x[(1 − ρ+ − ρ−)ρs] − h(ρs − ρ−s) + ξs,

(B7)

where we set a = 1, ξs(r, t ) is the Gaussian white noise with
〈ξs(r, t )〉 = 0, and 〈ξs(r, t )ξs′ (r′, t ′)〉 = a2δ(t − t ′)Ms,s′δ(r −
r′). This equation describes the stochastic dynamics of the
coarse-grained variable, ρs(r, t ).

3. Linearization of Langevin equation

Defining the total density ρtot (r, t ) := ρ+(r, t ) + ρ−(r, t )
and the magnetization m(r, t ) := ρ+(r, t ) − ρ−(r, t ), we can
rewrite Eq. (2) [or (B7)] as

∂tρtot = J∇2ρtot − 2εJ∂x[(1 − ρtot )m] + ξρ (B8)

and

∂t m = J[(1 − ρtot )∇2m + m∇2ρtot]

− 2εJ∂x[(1 − ρtot )ρtot] − 2hm + ξm. (B9)

Here, ξρ (r, t ) := ξ+(r, t ) + ξ−(r, t ) and ξm(r, t ) := ξ+(r, t ) −
ξ−(r, t ). Since m is a fast mode which decays exponentially
according to the −2hm term in Eq. (B9), we can set ∂t m = 0
to examine long-time evolution of ρtot, which is a slow mode
due to the particle number conservation.

Using the density fluctuation ϕ(r, t ) := ρtot (r, t ) − ρ, we
can rewrite Eq. (B8) as

∂tϕ = J∇2ϕ − 2εJ (1 − ρ)∂xm + 2εJ∂x(ϕm) + ξρ. (B10)

Setting ∂t m = 0 in Eq. (B9), we can linearize m(r, t ) with
respect to ϕ(r, t ) as

m 
 [2h − J (1 − ρ)∇2]−1[2εJ (2ρ − 1)∂xϕ + ξm], (B11)

where we neglect the ϕ dependence of the noise [64–66].
Substituting Eq. (B11) into Eq. (B10), we can obtain the
linearized equation of ϕ(r, t ) as

∂tϕ 
 J∇2ϕ − 4ε2J2(1 − ρ)(2ρ − 1)

× [2h − J (1 − ρ)∇2]−1∂x
2ϕ + ξϕ, (B12)

where ξϕ := ξρ − 2εJ (1 − ρ)[2h − J (1 − ρ)∇2]−1∂xξm,
〈ξϕ (r, t )〉 = 0, and

〈ξϕ (r, t )ξϕ (r′, t ′)〉 = −2J (1 − ρ)ρ∇2δ(r − r′)δ(t − t ′)

−8ε2J2(1−ρ)2ρ[2h−J (1−ρ)∇2]−1∂x
2δ(r − r′)δ(t − t ′).

(B13)

Applying Fourier transformation, ϕ(k, t ) := ∫
d2r

exp(−ik · r)ϕ(r, t ), we can solve Eq. (B12) and finally obtain
the structure factor, Slin(k) := (LxLy)−1 limt→∞ 〈|ϕ(k, t )|2〉,

FIG. 13. Typical time evolution of the ALG with (Lx, Ly ) = (1200, 400) for (a) ρ = 0.8, ε = 0.9, and h = 0.03; (b) ρ = 0.8, ε = 0.9, and
h = 0.08.
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FIG. 14. Time dependence of the order parameter φ averaged over independent simulations for ρ = 0.6 and ε = 0.362 (
 εc ). The number
of performed independent simulations is 10000 for (Lx, Ly ) = (90, 36) and (120, 64); 4000 for (Lx, Ly ) = (150, 100); 2000 for (Lx, Ly ) =
(180, 144); 1000 for (Lx, Ly ) = (210, 196). For further averaging, we took 51 samples from the time region with purple color at equal intervals.

as

Slin(k) = (1 − ρ)ρ

× [2h + J (1 − ρ)k2]k2 + 4ε2J (1 − ρ)k2
x

[2h+J (1 − ρ)k2]k2−4ε2J (1−ρ)(2ρ − 1)kx
2 .

(B14)

4. Anisotropic growth in PS state

In Fig. 12, We show the space and time dependence of
the density correlation function for (ρ, ε) = (0.4, 0.9) and
(0.6, 0.6), which are different from the parameters used for
Fig. 4. We can see that the anisotropic power law of the
typical domain size, Rx(t ) ∼ tαx and Ry(t ) ∼ tαy with αx < αy,
holds both for (ρ, ε) = (0.4, 0.9) and (0.6, 0.6) as observed
for (ρ, ε) = (0.6, 0.9) (Fig. 4), though the exponent seems
nonuniversal.

To examine whether the counterpart of the bubbly phase
separation, which has been observed in the isotropic ALG
[44], can appear in the anisotropic ALG, we performed sim-
ulations using systems with (Lx, Ly) = (1200, 400). We did
not find evidence of an analog of the bubbly phase separation,
where the bubbles of the low-density phase should be nu-
cleated inside the bulk high-density phase, though the steady
state has not been reached by the end of the simulation (107

MC steps) [see Figs. 13(a) and 13(b) for typical snapshots for
(ρ, ε, h) = (0.8, 0.9, 0.03) and (0.8, 0.9, 0.08), respectively].

5. Effective model for critical dynamics

Setting ∂t m = 0 by focusing on long-time evolution and
using ϕ(r, t ) = ρtot (r, t ) − ρ as in Appendix B 3, we can iter-
atively solve Eq. (B9) as

m = 1

2h
[2εJ (2ρ − 1)∂xϕ + 2εJ∂xϕ

2 + ξm]

+ J

2h
[(1 − ρ)∇2m + ∇ · (−ϕ∇m + m∇ϕ)]

= 1

2h
[2εJ (2ρ − 1)∂xϕ + 2εJ∂xϕ

2 + ξm]

+ J

4h2
(1 − ρ)[2εJ (2ρ − 1)∇2∂xϕ]

+ O(∇4∂xϕ,∇2∂xϕ
2,∇2ξm). (B15)

Substituting Eq. (B15) into Eq. (B10), we can obtain

∂tϕ = J

[
1 − 2ε2J

h
(1 − ρ)(2ρ − 1)

]
∂2

x ϕ + J∂2
y ϕ

− ε2J3

h2
(1 − ρ)2(2ρ − 1)∂4

x ϕ

+ ε2J2

h
(4ρ − 3)∂x

2ϕ2 + 4ε2J2

3h
∂x

2ϕ3

+
√

2J (1 − ρ)ρ

[
1 + 2ε2J

h
(1 − ρ)

]
∂xη

+ O
(
∂x

2∂y
2ϕ, ∂x

6ϕ, ∂x
4ϕ2, ∂yη, ∂x

2η,
√

ϕ∂xη
)
,

(B16)

where η(r, t ) satisfies 〈η(r, t )〉 = 0 and 〈η(r, t )η(r′, t ′)〉 =
δ(r − r′)δ(t − t ′). Note that, neglecting the noise η, we
can obtain the spinodal line εsp(ρ) from 1 = 2εsp(ρ)2J (1 −
ρ)(2ρ − 1)/h and the mean-field critical point as ρMF

c = 3/4
and εMF

c = ±2
√

h/J .
Applying the MSRJD approach to Eq. (B16), we can show

that the probability density for a dynamical path of configura-
tions {ϕ(t )}t∈[0,T ] is given by

P[ϕ] =
∫

D(iϕ̃) exp(−Sϕ[ϕ, ϕ̃]). (B17)

FIG. 15. The Binder cumulant Q and the order parameter 〈φ〉
obtained from simulations (colored dots), which correspond to
Figs. 5(a) and 5(b), and the best-fitted curves (colored lines).
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FIG. 16. Rescaled Q and 〈φ〉 for the best-fitted parameters with νx and β fixed: (a) νx = 0.55 and β = 0.3–0.45, (b) νx = 0.6 and β =
0.3–0.45, (c) νx = 0.65 and β = 0.3–0.45, and (d) νx = 0.7 and β = 0.3–0.45. We used the same simulation data as in Fig. 5, and the best-fitted
critical point is εc 
 0.362 for (a) through (d).

Here, the action is given by

Sϕ :=
∫ T

0
dt

∫
d2r

[
ϕ̃
(
∂tϕ − τx∂

2
x ϕ − τy∂

2
y ϕ + a∂x

4ϕ

− v∂2
x ϕ2 − u∂2

x ϕ3) + cϕ̃∂2
x ϕ̃ + (h.o.t.

)]
, (B18)

where we generalize the coupling constants for each
term in Eq. (B16) as J[1 − 2ε2J (1 − ρ)(2ρ − 1)/h] → τx,
J → τy, ε2J3(1 − ρ)2(2ρ − 1)/h2 → a, ε2J2(4ρ − 3)/h →
v, 4ε2J2/(3h) → u, and J (1 − ρ)ρ[1 + 2ε2J (1 − ρ)/h] →
c. In Eq. (B18), (h.o.t.) corresponds to the higher-order terms
in Eq. (B16), which are irrelevant in the renormalization group
(RG) sense, as shown below.

We consider the tree-level RG analysis for Eq. (B18).
Considering the scale transformation x → b−1x (b > 1)
and requiring the invariance of τy, a, and c under the

transformation, we can obtain the scaling of other quantities
as

y → b−2y
t → b−4t
ϕ → b1/2ϕ

ϕ̃ → b5/2ϕ̃

τx → b2τx

v → b3/2v

u → bu

, (B19)

suggesting that τx, v, and u are relevant variables.
In particular, τx ∝ (ε − εc) around the critical point.
Further, we can write each term of (h.o.t.) in
Eq. (B18) as dγxγyγϕ

ϕ̃∂x
γx ∂y

γyϕγϕ or eδxδyδϕ
ϕ̃∂x

δx ∂y
δyϕδϕ ϕ̃,

and the scaling of the coupling constants is
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FIG. 17. Counterparts of Fig. 5 for ρ = 0.65 with Ly/L2
x =

1/152. (a) ε and system size dependence of the Binder ratio Q. The
solid lines are guides for the eyes. (b) ε and system size dependence
of 〈φ〉. (c) Q as a function of the rescaled ε with the best-fitted
εc (
 0.363) and νx (
 0.664). (d) Rescaled 〈φ〉 as a function of
the rescaled ε with the best-fitted β (
 0.366) and the same values
of εc and νx as (c).

obtained as

dγxγyγϕ
→ b9/2−γx−2γy−γϕ/2dγxγyγϕ

eδxδyδϕ
→ b2−δx−2δy−δϕ/2eδxδyδϕ

. (B20)

Since γx + 2γy + γϕ/2 � 5 and δx + 2δy + δϕ/2 � 5/2,
dγxγyγϕ

and eδxδyδϕ
are irrelevant variables.

Omitting the irrelevant variables and adjusting the density
ρ so that v = 0 in Eq. (B18), we obtain the effective action for
the critical dynamics of the ALG,

S′
ϕ :=

∫ T

0
dt

∫
d2r

[
ϕ̃(∂tϕ − τx∂

2
x ϕ − τy∂

2
y ϕ + a∂x

4ϕ

− u∂2
x ϕ3) + cϕ̃∂2

x ϕ̃
]
, (B21)

which coincides with that of the two-temperature lattice gas
model [68–71].

6. Finite-size scaling analysis

For Fig. 5, we performed 1000–10000 independent simula-
tions and took 51 samples from each simulation for averaging.
In Fig. 14, we show the time dependence of the order parame-
ter φ averaged over independent simulations for ε = 0.362 (

εc) and the time region used for further averaging. Similar
time dependence was obtained also for other values of ε.

To find the critical point εc and the critical expo-
nents νx and β from the obtained data [Figs. 5(a) and
5(b)], we performed curve fitting with a Julia package
LsqFit.jl. We first fitted the data of the Binder ratio Q(ε, Lx )
with the formula, Q(0) + Q(1)Lx

1/νx (ε − εc) + Q(2)Lx
2/νx (ε −

εc)2, based on the second-order expansion of the scal-
ing form Q(ε, Lx ) = FQ(Lx

1/νx (ε − εc)). Here, the fitting
parameters are Q(0), Q(1), Q(2), εc, and νx. Then, using
the obtained εc and νx, we fitted the data of 〈φ〉 (ε, Lx )
with the formula, φ(0)Lx

−β/νx + φ(1)Lx
−β/νx+1/νx (ε − εc) +

φ(2)Lx
−β/νx+2/νx (ε − εc)2, based on the second-order expan-

sion of the scaling form 〈φ〉 (ε, Lx ) = Lx
−β/νx F1(Lx

1/νx (ε −
εc)). Here, the fitting parameters are φ(0), φ(1), φ(2), and β.
We show the best-fitted curves for Q(ε, Lx ) and 〈φ〉 (ε, Lx ) in
Fig. 15, and the best-fitted parameters are εc 
 0.36238(4),
νx 
 0.65(1), and β 
 0.3928(8) as mentioned in Sec. III C,
where the value in the bracket is the fitting error on the last
significant figure.

To check the deviation of the scaling behavior against
slight changes in the estimated critical exponents, we also
tried another curve fitting with νx and β fixed. Here, the
fitting formulas are the same as before, but the fitting param-
eters are (Q(0), Q(1), Q(2), εc) in fitting Q(ε, Lx ) and (φ(0),
φ(1), φ(2)) in fitting 〈φ〉 (ε, Lx ). Plotting the rescaled curves
similarly to Figs. 5(c) and 5(d) for several values of νx and
β (Fig. 16), we find that the curves seem well-scaled for a
certain range of exponents, including (νx, β ) = (0.6, 0.35),
which, within uncertainty, coincide with those observed for
the two-temperature lattice gas model [71].

We further performed MC simulations and the finite-size
scaling analysis for ρ = 0.65 with S = Ly/Lx

2 = 1/152 in
the same way as for ρ = 0.6. The counterparts of Fig. 5 for
ρ = 0.65 are shown in Fig. 17. The best-fitted parameters are
εc = 0.36304(7), νx = 0.66(2), and β = 0.366(1), which are
qualitatively similar to the case of ρ = 0.6, given the well-
scaled range of exponents for ρ = 0.6 (Fig. 16).

APPENDIX C: DIFFUSION MONTE CARLO SIMULATION

For the quantum model [Eq. (1)], we first divide the Hamil-
tonian into two parts H = −W − D, where W is given by (A1)

FIG. 18. Schematic figures of representative states. (a) In the fPS state, a single cluster with random spins is formed and its circumference
is minimized. (b) In the fpmPS state, there are Ncl clusters with oppositely polarized edges. (c) For large enough U2 (� J, h,U1), the fpmPS
state is stable with the maximal number of clusters, Ncl = ρLx/2.
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FIG. 19. (a) U1 dependence of the order parameters, φPS and φmPS, obtained with the disordered (solid line with circles) or the PS (dashed
line with triangles) initial state for ε = 0, 0.2, 0.6. (b) Time evolution of φPS and E0 in simulations, obtained with the disordered initial state
for ε = 0.6 and U1/J = 1.8, 2, and 2.2. In both (a) and (b), we considered 50 × 5 systems and used ρ = 0.5, h = 0.025J , and U2 = εJ .
Simulation parameters are �t = 1/[N (4J + h)], Nc = 5 × 103, and M = 105N as used in Fig. 6(a) of the main text (see Appendix C). Note
that, since we set h̄ = 1, time and inverse of energy have the same dimension.

and D is diagonal in the Fock space. To numerically calculate
the quantity 〈A〉C = 〈P|A({n̂i,s})|ψ0〉 / 〈P|ψ0〉 for the ground
state |ψ0〉, we transform 〈A〉C as

〈A〉C = lim
T →∞

〈P|A({n̂i,s})e(W +D)T |ψini〉
〈P|e(W +D)T |ψini〉

= lim
T →∞

∑
C,C0

A(C) 〈C|e(W +D)T |C0〉 Pini(C0)∑
C,C0

〈C|e(W +D)T |C0〉 Pini(C0)
, (C1)

where |ψini〉 := ∑
C Pini(C) |C〉 with Pini(C) � 0 is an arbi-

trary initial state. Instead of taking T → ∞, we consider a
finite but large enough T for the initial state to relax to the
ground state.

Splitting the total time T as T = M�t with a time step
�t [= O(N−1)] and writing C = CM for convenience, we can
divide the time evolution into small steps:

〈C|e(W +D)T |C0〉

=
∑

C1,··· ,CM−1

M∏
m=1

〈Cm|e(W +D)�t |Cm−1〉

≈
∑

C1,··· ,CM−1

M∏
m=1

(δCm,Cm−1 + WCm,Cm−1�t )(1 + DCm−1�t ),

(C2)

where DC := 〈C|D|C〉 and the approximation in the third
line is correct up to O(�t ). Since δCm,Cm−1 + WCm,Cm−1�t is
a stochastic matrix for the ALG, we can approximately cal-
culate (C2) by assigning the weight

∏M
m=1(1 + DCm−1�t ) to

the sampled path C0 → C1 → · · · → CM in the Monte Carlo
(MC) simulations of the ALG.

To efficiently sample the configurations that have
high probability weights but rarely appear in the MC sim-
ulation, we use the resampling technique [74]. We consider
a set of configurations, {C(i)

m }Nc
i=1, which evolve indepen-

dently through the MC dynamics, where Nc is the total
number of clones. Correspondingly, we introduce a set
of cumulative weights, {w(i)

m }Nc
i=1, according to the paths

{C(i)
0 → · · · → C(i)

m }Nc
i=1. Whenever the effective sample size

[94], (
∑Nc

i=1 w(i)
m )2/

∑Nc
i=1(w(i)

m )2, becomes smaller than 0.5Nc

during the MC dynamics, we perform resampling of configu-
rations from the distribution of {C(i)

m }Nc
i=1 weighted by {w(i)

m }Nc
i=1

and then reset the weights as w(i)
m = 1 for all i. Using the

final-time configurations and weights, {C(i)
M }Nc

i=1 and {w(i)
M }Nc

i=1,
we estimate 〈A〉C as

〈A〉C ≈
∑Nc

i=1 w
(i)
M A

(
C(i)

M

)
∑Nc

i=1 w
(i)
M

. (C3)

In 2D simulations, we typically took �t = 1/[N (4J + h)]
and used (Nc, M ) = (5 × 103, 105N ) for Fig. 6(a); (Nc, M ) =
(105, 104N ) for Figs. 6(b) and 7(a); and (Nc, M ) = (2 ×
104, 2 × 104N ) for Fig. 8. Here, we took large clone num-
bers to reduce possible systematic errors (see [95,96] for
systematic errors in the DMC and comparisons with ex-
act results). In 1D simulations for Fig. 7(b), we took
�t = 1/[N (2J + h)] and (Nc, M ) = (105, 104N ) (see Fig. 20
for the Nc dependence in small 1D systems). In all
simulations, we set the disordered state with no spatial
correlation as the initial state, while we confirmed that
there is no qualitative dependence on the initial state (see
Appendix D 5).

APPENDIX D: PROPERTIES OF THE MODEL
AND DETAILS OF THE ANALYSIS

1. Generalized quantum model and classical condition

We consider a generalized version of the two-component
hard-core boson model (1) in the main text:

Hgen = P̂

(
−

∑
i

∑
l=x,y

∑
s,r=±

J (l )
s,r a†

i+rl̂,s
ai,s −

∑
i

∑
a=0,1,2,3

∑
s,s′=±

× haσ
a
s,s′a†

i,sai,s′ −
∑

i

∑
l=x,y

∑
s,r=±

U (l )
s,r n̂i,sn̂i+rl̂

)
P̂,

(D1)

where σ 0 is the 2 × 2 identity matrix, σ a (a = 1, 2, 3) are the
Pauli matrices, and P̂ is the projection to a partial Fock space
where the total particle number is N with no multiple occu-
pancy. We assume [ai,s, a†

j,s′ ] = [ai,s, a j,s′ ] = [a†
i,s, a†

j,s′ ] = 0
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for (i, s) �= ( j, s′); {ai,s, a†
i,s} = 1 and ai,s

2 = (a†
i,s)

2 = 0. The
first term of Eq. (D1) represents hopping, which is, in general,
non-Hermitian and dependent on the spin and/or the hopping
direction. The second and third terms represent the effect
of external fields and the generalized nearest-neighbor inter-
actions, respectively. For J (l )

s,r = (1 + srεδl,x )J , ha = −(4J +
h)δa,0 + hδa,1, and U (l )

s,r = U1/2 + srU2δl,x, we can reproduce
the model (1) in the main text.

Here, we take U (l )
s,r = J (l )

s,r , h0 = −∑
l,s,r J (l )

s,r /2 − h1, h2 =
0, and h3 = −∑

l,s,r sJ (l )
s,r /2 with arbitrary J (l )

s,r > 0 and h1 >

0, which is the generalized classical condition (see the main
text and Appendix A). Defining W := −Hgen under this clas-

sical condition, we can obtain

W = P̂

{∑
i

∑
l=x,y

∑
s,r=±

J (l )
s,r [a†

i+rl̂,s
ai,s − n̂i,s(1 − n̂i+rl̂ )]

+
∑

i

∑
s=±

h1(a†
i,sai,−s − n̂i,s)

}
P̂. (D2)

Defining WC,C′ := 〈C|W |C′〉, where |C〉 is the Fock basis, we
can show that (i)

∑
CWC,C′ = 0 and (ii) WC,C′ � 0 for C �= C′,

and thus we can interpret WC,C′ as a transition rate matrix of
a classical Markov process. Under this interpretation, J (l )

s,r is

FIG. 20. Comparison of the results obtained by DMC simulations (red dots) and exact diagonalization (black crosses) for small 1D systems
with Lx = 12, ρ = 0.5, h = 0.025J , U1 = 2J , and U2 = 0. From left to right, we plot the ground-state energy, squared magnetization, and order
parameters for phase separation and microphase separation. Each row corresponds to the different number of clones used in DMC simulations:
(a) Nc = 103, (b) 104, (c) 105, and (d) 106. The simulation parameters are �t = 1/[N (2J + h)] and M = 104N . Note that the parameters used
in (c) are the same as those for Fig. 7(b), except for the system size.
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FIG. 21. U2 dependence of φPS, φmPS, and M2. We used ρ = 0.5, ε = 0.6, h = 0.025J , and U1 = 2J in 30 × 3 and 50 × 5 systems, with
the PS (solid line with circles) or the polar (dashed line with triangles) initial state. Simulation parameters are �t = 1/[N (4J + h)], Nc = 105,
and M = 104N .

the hopping rate of a particle with spin s from a site i to the
adjacent site i + rl̂ , and h1 is the spin flipping rate.

Lastly, we briefly discuss the quantum model (1) in the
main text for the open boundary condition (OBC). OBC in
a quantum system is when the hopping to the outside of the
Lx × Ly region (�) is prohibited and there are no interac-
tions between the particles inside and the outside of �. This
is different to the OBC in the classical system such as in
ALG, meaning that there is no classical line in the case of
OBC. We conducted exact diagonalization calculations for a
small 1D quantum system to check the effect of this open
boundary condition on the phase diagram (see Appendix E
and Fig. 25 for more details). On the other hand, we can think
of a quantum system that corresponds to the ALG with OBC
by setting U1 = 2J and U2 = εJ and adding a boundary term:
WC,C′ = − 〈C|H + Hbd|C′〉 with Hbd := −JP̂[

∑
i∈∂�\∂∂� n̂i +

2
∑

i∈∂∂� n̂i + ε
∑Ly

j=1(m̂Lxx̂+ jŷ − m̂1x̂+ jŷ)]P̂. Here we denoted
the boundary points of � as ∂� and the four corner points as
∂∂�.

2. Correspondence to the ferromagnetic XXZ model

We consider the case where ε = 0 and U2 = 0. Since there
is no spin dependence in this model, it is equivalent to the

single-component hard-core boson model (J > 0 and U1 >

0):

HHCB = −J
∑
〈i, j〉

(a†
i a j + a†

j ai ) − U1

∑
〈i, j〉

n̂in̂ j + const. (D3)

Mapping the Fock bases to spin-1/2 bases as |nj = 0〉 →
|sz

j = −1/2〉 and |nj = 1〉 → |sz
j = +1/2〉, or equivalently,

aj → Ŝ−
j and a†

j → Ŝ+
j with Ŝ±

j := Ŝx
j ± iŜy

j , we obtain

HHCB → HXXZ = −
∑
〈i, j〉

[
2J

(
Ŝx

i Ŝx
j+Ŝy

i Ŝy
j

) + U1Ŝz
i Ŝz

j

] + const.

(D4)

For U1 > 0, HXXZ represents the ferromagnetic XXZ model.
Here, the total particle number N and the system size LxLy

in the hard-core boson model are related to the total mag-
netization Mz

tot in the XXZ model as Mz
tot = N − LxLy/2. In

particular, when U1 = 2J , HXXZ is nothing but the ferromag-
netic Heisenberg Hamiltonian [72].

3. Lower bound of the ground state energy

As in Sec. IV and Appendix C, we divide the Hamiltonian
into two parts as H = −W − D, where W is the classical

FIG. 22. (a) ρ dependence of φ1D for different values of ε (in increments of 0.1) in the 1D ALG with Lx = 30, 100, and 400. (b) Lx

dependence of φ1D for ρ = 0.5 and ε = 1, which indicates φ1D ∼ Lx
−0.54 for large Lx . In both (a) and (b), we used h = 0.05J . Also, we used

�t = 1/[N (2J + h)] and took 104 samples with M = 104N for Lx = 30, 50, 100; 5 × 103 samples with M = 2 × 104N for Lx = 200; and
3 × 103 samples with M = 5 × 104N for Lx = 400.
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FIG. 23. (a) U1 dependence with U2 = εJ and (b) U2 dependence with U1 = 2J of φPS, φmPS, and E0 for ρ = 0.5, h = 0.025J , and ε =
0, 0.2, and 0.6 in 1D systems (Lx = 100). The classical condition is indicated with the gray vertical line. For reference, in the figures of E0,
we also plotted 〈H〉C for (a) the disordered state with no spatial correlation (dashed) and the fPS state (dotted) or (b) the fpmPS states with
Ncl = 1 (dashed), Ncl = 6 (dotted), and Ncl = 13 (dash-dotted). We set �t = 1/[N (2J + h)] and took Nc = 104 and M = 2 × 105N for (a),
while Nc = 105 and M = 104N for (b).

transition rate matrix and D is a diagonal matrix that repre-
sents the deviation from the classical line. Defining −d as the
smallest diagonal element of W + D, W + D + dI is a non-
negative matrix, where I is the identity matrix. According to
the Perron-Frobenius theorem, the eigenvalue with the largest
real part for W + D + dI (i.e., −E0 + d) is bounded from
above as

−E0 + d � max
j

∑
i

(W + D + dI )i j . (D5)

Since
∑

i Wi j = 0,
∑

i Di j = Dj j , and
∑

i Ii j = 1, we obtain a
lower bound of the ground state energy as E0 � − max j D j j .

4. Energy of different states

For an arbitrary state |ψ〉 = ∑
C P(C) |C〉, where |C〉 is the

Fock basis, we can calculate 〈H〉C as

〈H〉C =
∑
C

[
(2J − U1)

∑
〈i, j〉

nin j

+ (εJ − U2)
∑

i

mi(ni+x̂ − ni−x̂ )

]
P(C)

/ ∑
C

P(C).

(D6)

Here, ni and mi are the local density and magnetization for the
configuration C, respectively.

FIG. 24. Ground-state phase diagrams of the 1D quantum model. (a) U2-ε phase diagram for U1 = 2J around the classical line (red box)
with PS (φPS > 0.1 and φmPS � 0.1), mPS (φmPS > 0.1), P (polar, M2 > 0.1), and D (disordered, otherwise) states. (b) U1-U2 phase diagrams
for ε = 0, 0.2, 0.6 around the cross section of the classical line (red box). In all figures, we set ρ = 0.5 and h = 0.025J . Simulation parameters
are �t = 1/[N (2J + h)], Nc = 104, and M = 104N .
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FIG. 25. U1-U2 phase diagrams in small 1D systems. We used Lx = 12 and (a) ε = 0, (b) 0.2, and (c) 0.6, with PS (φPS > 0.05 and
φmPS � 0.3), mPS (φmPS > 0.3), P (polar, M2 > 0.2), SF (superfluid, φSF > 0.2), and D (disordered, otherwise) states. The order parameters
are calculated by exact diagonalization, using (i, ii) 〈· · ·〉C, (iii, iv) 〈· · ·〉Q, or (v, vi) 〈· · ·〉LR, for the PBC (i, iii, v) or OBC (ii, iv, vi).

In Fig. 6, we plotted 〈H〉C calculated for the disordered
state with no spatial correlation, the fully phase-separated
(fPS) state, and the fully polarized microphase-separated
(fpmPS) state (Fig. 18). First, the disordered state with
no spatial correlation is defined as |ψ〉 = (

∑
i,s a†

i,s)N |0〉,
and the corresponding energy is 〈H〉C = 2(2J − U1)ρ2LxLy

by neglecting o(LxLy), which we plot in Fig. 6(a) (dashed
line). Second, we define a fPS state as |ψ〉 = ∏

i∈�(a†
i,+ +

a†
i,−) |0〉, where � is an area containing N sites and

minimizing the circumference [Fig. 18(a)]. The corre-
sponding energy is 〈H〉C = 2(2J − U1)ρLxLy by neglecting

o(LxLy), which we plot in Fig. 6(a) (dotted line). Lastly,
we define a fpmPS state with Ncl clusters, assuming
commensurability, as |ψ〉 = ∏Ncl

n=1[
∏

i∈�n\(∂�L
n ∪∂�R

n )(a
†
i,+ +

a†
i,−)

∏
i∈∂�L

n
a†

i,+
∏

i∈∂�R
n

a†
i,−] |0〉, where �n is the nth rectan-

gular area and ∂�L(R)
n is its left (right) boundary [Fig. 18(b)].

The corresponding energy is 〈H〉C = (2J − U1)(2ρLxLy −
NclLy) + 2(εJ − U2)NclLy, which we plot with Ncl = 1
(dashed line) and with Ncl = 4 (dotted line) in Fig. 6(b). Note
that, for U2 � J, h,U1 (>0), a fpmPS state with Ncl = ρLx/2
[Fig. 18(c)] is the ground state within the first-order perturba-
tion of h/U2, J/U2, and U1/U2.
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5. Convergence of simulations and
asymmetric-hopping-induced phase separation

In the diffusion Monte Carlo (DMC) simulations, we
checked the convergence to the steady state by examining the
initial-state dependence of the results and the relaxation of the
order parameters and the ground-state energy. As an illustra-
tion, we show the U1 dependence of φPS and φmPS obtained
with the fPS initial state, compared with that obtained with
the disordered initial state [Fig. 19(a) and also see Fig. 6(a)
in the main text]. Apart from statistical errors, we do not see
differences due to initial conditions for the case of system
size 30 × 3, but there is a discrepancy in the case of 50 × 5
(see also Fig. 21). This is likely due to the number of clones
(Nc) being insufficient for the large system size simulation
[96]. Further, we show an example of the time dependence
of φPS and E0 evolving from the disordered initial state in the
DMC simulations [Fig. 19(b)], which indicates that the steady
state is achieved in the final state. Note that, for U1 = 2J and
U2 = εJ (classical condition), E0 is trivially zero according to
the probability conservation.

To confirm the validity of our DMC simulation, we also
checked the consistency with exact diagonalization of the 1D
counterpart of the Hamiltonian (1). As examples, we compare
the ε dependence of the ground-state energy and order param-
eters obtained by DMC simulations and exact diagonalization
for Lx = 12, varying the number of clones Nc (Fig. 20). The
accuracy of the DMC simulation improves as Nc is increased,
apart from statistical errors and systematic errors that occur
due to the deviation from the classical line (ε = 0 in Fig. 20)
being large [see the approximation in Eq. (C2)].

We also show the U2 dependence of the order parameters
for systems with size 30 × 3 and 50 × 5 (Fig. 21). We can see
that the polar state with finite M2 is destabilized and instead
the PS state with finite φPS dominates broader parameter re-
gions as the system becomes larger, though the dependence
on the initial state remains around the phase boundary in the
50 × 5 system. Thus the PS state may replace the polar state
even for U2 = 0 in larger systems, and thus the asymmetric-
hopping-induced phase separation can occur as observed in
1D systems [Fig. 7(b) in the main text].

6. 1D model

For the 1D counterpart of the ALG, we show
the ρ and ε dependence [Fig. 22(a)] and the size
dependence [Fig. 22(b)] of the order parameter of

phase separation, φ1D [:= − min C(r)], where C(r)
[:= Lx

−1 ∑
i 〈[n(xi + r) − ρ][n(xi ) − ρ]〉] is the 1D density

correlation function. The data suggest that the macroscopic
MIPS is not stable in the thermodynamic limit (φ1D → 0 for
Lx → ∞). This result is consistent with preceding studies of
similar 1D models [31,33,97], where the macroscopic MIPS
does not occur due to the spontaneous formation of domain
boundaries.

For the quantum model, Figs. 23 and 24 show the 1D
counterparts of Figs. 6 and 8 in the main text, respectively.
We can see that the discontinuous transition occurs in crossing
the classical line (Fig. 23) as observed in 2D systems, and
the topology of the phase diagrams (Fig. 24) is also simi-
lar. Note that in 1D systems with finite ε or U2, the mPS
order parameter φmPS [:= Lx

−1 ∑Lx
i=1 〈m̂i(n̂i+1 − n̂i−1)〉C] is

generically nonzero even for Lx → ∞, and consequently the
disordered and mPS states are indistinguishable from the sym-
metry perspective.

APPENDIX E: QUANTUM PHASE DIAGRAMS IN SMALL
1D SYSTEMS

To clarify how the phase diagrams depend on the definition
of order parameters and the boundary condition, we calculated
the order parameters using exact diagonalization in small 1D
systems. On top of the expectation values defined in the main
text, we consider 〈· · ·〉LR = 〈ψ ′

0| · · · |ψ0〉 with 〈ψ ′
0| being the

left ground state. We additionally define the order parameters,
φPS, φmPS, M2, and φSF for 〈· · ·〉LR.

The results are summarized in the phase diagrams
(Fig. 25). First, we find that all the states predicted using
〈· · ·〉C with the PBC [(i) in Figs. 25(a)–25(c)] appear, regard-
less of the definition of order parameters or the boundary
condition. Thus the DMC simulation, which is applicable
to larger systems as demonstrated in the main text, is use-
ful in qualitatively predicting the phase diagram (apart from
the SF order) in the experimentally relevant case, where we
use 〈· · ·〉Q with the OBC. Next, focusing on the cases with
the PBC, we see that the SF state appears for ε = 0 [(iii,
v) in Fig. 25(a)] consistently with the previous studies of
the Hermitian hard-core boson models [72]. Interestingly, the
SF state with polar order is stable for finite ε [(iii, v) in
Figs. 25(b) and 25(c)]. Lastly, since the OBC prevents the
particles from flowing, the polar order is suppressed [(ii, iv,
vi) in Fig. 25(b)] unless ε is large enough [(ii, iv, vi) in
Fig. 25(c)].
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