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Active rheology and anticommensuration effects for driven probe particles on two-dimensional
periodic pinning substrates
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For an assembly of particles interacting with a two-dimensional periodic substrate, a series of commensuration
effects can arise when the number of particles is an integer multiple of the number of substrate minima. Such
commensuration effects can appear for vortices in type-II superconductors with periodic pinning or for colloidal
particles on optical landscapes. Under bulk external driving, the pinning or drag on the particles is strongly
enhanced at commensuration. Here we consider the active rheology of a single particle driven through an
assembly of particles coupled to a periodic substrate at different commensurate conditions. For increasing density
at fixed driving force, we observe nonmonotonic drag along with what we call an anticommensuration effect
where the drag or pinning effectiveness is reduced in commensurate states, opposite from the behavior typically
observed under bulk driving. The velocity enhancement or drag reduction appears when the background particles
form a crystalline state that is coupled more strongly to the substrate than to the driven particle, while under
incommensurate conditions, the background particles are disordered and produce enhanced drag on the probe
particle. The velocity noise of the driven particle has a narrow band signature at commensuration and a broad
band signature away from commensuration. We map out the regions in which viscous flow, periodic flow, and
a pinned phase appear. We show that the effects we observe are robust on both square and triangular substrate
arrays and for both vortices in type-II superconductors and colloidal particles on optical landscapes.
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I. INTRODUCTION

A wide variety of systems can be described in terms of
a collection of interacting particles coupled to a periodic
substrate. Commensuration effects arise when the number
of particles is an integer or rational fractional multiple of
the number of substrate minima and the system forms a
highly ordered crystalline state [1–9]. At incommensurate
fillings, the particles can remain in a lattice that floats above
a weak substrate, or the particle positions can be disordered
by a stronger substrate; in each case, the effectiveness of
the pinning is reduced [1,6,7,9]. For fillings just outside of
commensuration, the system can be mostly ordered and con-
tain a small number of localized excitations or solitons [8,9].
Under an applied drive, at commensurate conditions the de-
pinning threshold above which motion occurs shifts to higher
drives, while for incommensurate conditions, the depinning
threshold is depressed or can show distinct steps due to the
separate depinning of the solitons and the bulk particles; ad-
ditionally, if the particles are already moving, the velocity
is strongly suppressed at commensuration and is largest for
incommensurate conditions [8–12]. The ordering of the parti-
cles at commensuration depends on the dimensionality and
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geometry of the periodic substrate. For a two-dimensional
(2D) particle assembly on a quasi-one-dimensional (q1D)
substrate, smooth transitions occur between ordered commen-
surate and disordered incommensurate states, such as crystal
and smectic states [13–15], while for a 2D system with a 2D
periodic substrate, the commensurate effects can be sharper
and consist of transitions between various types of 2D crystals
[2,4–6,8,9,16–19]. Examples of 2D particle systems coupled
to a 2D periodic substrate include vortices in type-II supercon-
ductors with periodic pinning, [2,9–11,16,17,20–27], vortices
in Bose-Einstein condensates with optical traps [5], colloidal
particles on optical traps [8,18,19,19,28,29] or etched sur-
faces [6,12,30,31], active matter on patterned substrates [32],
cold atom systems [33], dusty plasmas on 2D arrays [34],
skyrmions in nanostructured samples [35,36], coupled nano-
magnetic islands [37], and numerous types of atomic or
frictional systems [7,38–40]. In many of these systems, when
driving is applied, dynamic transitions can produce signatures
in the velocity-force curves [7–12,24,38,40,41] and structural
changes can occur in the particle positions at the depinning
threshold or for higher drives [9,12,24,31,41,42]. The effect
of varied commensuration conditions on pinning has been
heavily studied for vortices in type-II superconductors, where
the ratio of the number of particles to the number of pinning
sites can be varied easily by changing the magnetic field,
and where peaks in the critical currents or reduced vortex
velocities appear at the matching fields [9–11,16,17,20,22,25–
27,43] and at fractional matching fillings [21–24]. Peaks in
the depinning force at commensurate fillings have also been
studied for colloidal systems [6,8,12].
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In studies of depinning effects at commensurate and in-
commensurate fields in the systems above, the driving was
applied to all of the particles at the same time; however, in
many systems it is possible to drive only a single individual
particle through the sample. Measurement of the dynamics
of a single driven probe particle though a medium of other
background particles is known as active rheology [44–50].
Here, an individual particle is dragged under different con-
ditions such as constant force, constant velocity, or increasing
force, and the resulting pinning threshold or viscous drag can
be measured as the system parameters are varied. In colloidal
assemblies, active rheology has been applied to glassy sys-
tems [45,49,51–53], where there can be an onset of a finite
depinning threshold or a rapid increase in the drag as the glass
transition is approached. For granular systems, investigations
have revealed how the drag, pinning, and fluctuations on an
individual driven grain change as the jamming transition is
approached, along with the range out to which the surround-
ing particles become disordered as the driven particle moves
through the sample [54–56]. Other studies have revealed the
changes in the motion [57] or the viscoelastic response [58] of
the driven particle as a transition occurs from elastic to plastic
distortions in the surrounding medium. For systems such as
superconducting vortices or magnetic skyrmions, individual
driven particles can interact both with the other particles and
also with a substrate in the form of a pinning landscape
[59–63]. The most studied example of this involves the drag-
ging of individual vortices in order to examine vortex-pinning
and vortex-vortex interactions [59–61,64–67]. The depinning
threshold for the individually driven vortex can be nonzero
even in the absence of random pinning due to the elasticity of
the surrounding vortex lattice, while when random pinning is
added to the system, the depinning threshold is enhanced [68].

For individually dragged vortices moving over periodic
pinning arrays containing pinned vortices, stick-slip motion
can appear, and the dynamics of the driven vortex can vary
depending on the orientation of the driving direction with
respect to the symmetry of the underlying pinning array [69].
It has also been proposed that for individually driven vortices
on a periodic pinning array in a system which hosts Majorana
fermions, it is possible to take advantage of the different dy-
namics to create various types of quantum logic gates [70]. An
open question is how the dynamics or drag on a driven particle
such as a superconducting vortex changes as the system is
tuned from an incommensurate to a commensurate state. One
possibility is that the drag will be enhanced at matching, as
found in bulk driven systems.

Although active rheology has been studied extensively for
systems in the absence of a substrate, far less is known about
when happens when a periodic substrate is present. Here we
examine superconducting vortices and colloidal particles in-
teracting with 2D square and triangular pinning arrays, where
we drive a single particle through the medium for varied filling
fractions and driving forces. At a constant driving force and in
the absence of pinning, the mobility of the probe particle de-
creases monotonically with increasing system density due to
increased collisions with the background particles; however,
when the periodic pinning array is present, a series of velocity
peaks appear at commensurate fillings when the system forms
an ordered lattice. We call these peaks anticommenensuration

effects since for bulk driving in most systems with pinning, the
velocity of the particles is reduced at the matching conditions.
For our single driven particle, the velocity enhancement arises
when the surrounding particles become more strongly coupled
to the substrate than to the probe particle under a match-
ing condition. At incommensurate fields where the system
is disordered, the probe particle interacts more strongly with
the background particles and experiences a higher effective
drag force. At a matching condition, the velocity of the probe
particle exhibits a periodic or narrow band noise signature,
while at incommensurate fillings, the probe particle motion is
disordered or chaotic, giving rise to a broad band noise signal.
We also find that the pinning effect on the probe particle is
reduced at the matching conditions. As function of pinning
force and filling fraction, we map out the pinned, viscous flow,
and ordered flow phases. In general, under a constant drive the
probe particle moves at a higher velocity in the presence of
pinning than in the absence of pinning since the background
particles cannot be entrained by the probe particle when they
are trapped by pinning sites. In the case of colloidal particles,
as the effective charge of the particles is reduced, we observe
a transition from a pinned state to an unpinned state. This is
the opposite of the behavior found in bulk driven systems,
where a weakening of the colloid-colloid interactions causes
the colloids to become more strongly coupled to the substrate.

II. SIMULATION AND SYSTEM

We consider a two-dimensional system containing N parti-
cles along with a periodic array of Np pinning sites in the form
of potential energy minima that can each capture a single par-
ticle. A matching condition occurs when the ratio f = N/Np is
an integer, and it is known from previous studies of supercon-
ducting vortices and colloidal particles that at such fillings,
the particles form an ordered crystal state [2,5,6,8,9,12,16–
18]. At incommensurate fillings, the system is disordered or
contains localized regions of excitations. It is also possible for
ordered crystalline states to appear at certain fractional match-
ing conditions such as f = 1/2 on a square pinning array or
f = 1/3 on a triangular pinning array [21,22,24]. In the first
part of the work, we focus on vortices in type-II supercon-
ductors with periodic pinning, where there has been extensive
numerical modeling [9,17,22,24,42,69,70] and experimental
studies [2,9,16,20,21] examining the commensuration effects
under bulk driving. Here we instead drive only a single vortex.
The equation of motion for vortex i is given by

αd vi = Fvv
i + Fp

i + FD
i , (1)

where vi = dri/dt is the velocity and ri is the position of
vortex i. The dynamics is overdamped and we set the damping
constant αd equal to unity. Vortex-vortex interactions are de-
scribed by the term Fvv

i = ∑N
j=1 K1(ri j )r̂i j , where ri j = |ri −

r j |, r̂i j = (ri − r j )/ri j , and K1 is the modified Bessel func-
tion which decays exponentially for large r. Pinning sites are
modeled as parabolic traps with a maximum range of rp that

produce a pinning force described by Fp
i = ∑Np

k=1(Fp/rp)(ri −
r(p)

k )�(rp − |ri − r(p)
k |). Here Fp is the maximum pinning

force and � is the Heaviside step function. A driving force
FD = FDx̂ is applied to only one vortex with i = D and is

013190-2



ACTIVE RHEOLOGY AND ANTICOMMENSURATION … PHYSICAL REVIEW RESEARCH 4, 013190 (2022)

always aligned with the x direction; the driving force on all
of the other vortices with i �= D is set to zero.

For the driven or probe vortex, we measure the net ve-
locity V = vi=D · x̂. At a given driving force, we consider
both time series data and the time averaged velocity 〈V 〉 =
τ−1 ∑τ

ti=1 V (ti ), where the averaging time τ = 1 × 105 sim-
ulation time steps. We consider only a single realization for
each parameter set and do not average over realizations. In
some cases, we apply a constant drive, while in other cases
we sweep the driving force from zero to a maximum value
in order to measure the depinning force Fc and the effective
drag. The initial positions of the vortices are obtained using
simulated annealing [17], where the sample is initialized at a
high temperature using random Langevin kicks and gradually
cooled to zero in order to obtain a low energy state. This
process is repeated to obtain starting configurations for differ-
ent filling factors f . In superconducting systems, the vortex
density is proportional to the magnetic field B and the filling
factor is measured relative to the 1 : 1 vortex to pinning site
matching condition known as the matching field Bφ , such that
f = B/Bφ . The sample is of size L × L with L = 36λ, where
λ is the London penetration depth, and has periodic boundary
conditions in the x and y directions. Note that according to
standard simulation practice, for a square pinning lattice, the
sample is of equal size in the x and y directions, but for
a triangular pinning lattice, the length of the sample along
the y direction is reduced slightly in order to accommodate
a triangular lattice without any defects. We fix the pinning
density to np = Np/L2 = 0.5 and the pinning radius to rp =
0.35. We have previously used these parameters to investigate
commensuration effects for bulk driven vortices, where peaks
in the critical depinning force appear at commensurate fields
[17,24,71,72].

For the colloidal system, we use similar overdamped
dynamics but replace the Bessel function interaction by a
screened Coulomb or Yukawa potential of the form U (ri j ) ∝
Q2 exp(−κri j )/ri j , where Q is the charge on an individual
colloidal particle [18,19]. Here, the strength of the colloid-
colloid interaction can be varied by changing the charge Q,
such as by modifying the ion concentration of the solution.

Regarding our choice of notation for the filling fraction f ,
in most of this work we use the expression f = B/Bφ since
this notation is commonly employed in the superconducting
vortex literature. In the simulation we vary B/Bφ by changing
the number of vortices N in the sample. For the square pinning
array, there are always Np = 625 pinning sites, and for the
triangular pinning array there are always Np = 648 pinning
sites, so the plots can also be read by substituting “N/Np” for
“B/Bφ” since the tick marks will be unchanged.

III. RESULTS

We first consider a superconducting system with a single
driven vortex. In Fig. 1, we plot a subsection of the sample
showing the positions of the bulk vortices and pinning sites
along with the trajectory of the driven vortex at f = B/Bφ =
1.0 and Fp = 0.25. Here the bulk vortices form an ordered
commensurate state in which each pinning site captures one
vortex and the driven probe particle moves along a 1D channel
in the interstitial region.

x

y

FIG. 1. Image of a subsection of the superconducting vortex sys-
tem showing a square pinning array (open circles), the bulk vortices
(blue circles), the driven vortex (red circle), and the vortex trajecto-
ries (lines) in a sample with f = B/Bφ = 1.0 or a 1:1 matching of
bulk vortices to pinning sites. Here, FD = 1.0 and Fp = 0.25. The
size of the pinning sites has been adjusted for clarity.

In Fig. 2(a), we plot the average velocity of the driven
particle 〈V 〉 at an applied drive of FD = 1.0 as a func-
tion of B/Bφ for a square pinning array with Fp = 0.0
(no pinning) and Fp = 0.03. When there is no pinning, 〈V 〉
decreases monotonically approximately as 〈V 〉 ∝ B1/2 from
〈V 〉 = 1.0 at B/Bφ = 0.0 to 〈V 〉 = 0.3 at B/Bφ = 6.0. This
behavior arises due to the increased number and strength of
interactions between the driven vortex and the background
vortices as the magnetic field, and thus the vortex density,
increases. In the presence of a square pinning array with Fp =
0.03, small peaks appear in 〈V 〉 at B/Bφ = 1.0, 3.0, and 6.0,
along with a very weak peak at B/Bφ = 4.0. At these fillings,
the system forms an ordered lattice. From previous studies
of vortices in a square periodic pinning array, it is known
that ordered lattices appear only for certain matching fields
and not for all matching fields, while the particle ordering
also depends on the pinning strength [17]. Specifically, for
a square pinning array of sufficiently strong pinning sites,
a square vortex lattice is stabilized at B/Bφ = 1.0, 2.0, and
5.0, a triangular vortex lattice appears at B/Bφ = 4.0 and 6.0,
and peaks in the depinning force occur at all of these fields
under bulk driving [17]. For the square pinning lattice with
Fp = 0.03 in Fig. 2(a), the pinning is not strong enough to
stabilize a square lattice at B/Bφ = 2.0 and a floating distorted
triangular lattice appears instead. This lattice is weakly pinned
so there is no peak in 〈V 〉 at this filling. Triangular vortex
orderings occur at B/Bφ = 3.0 and 6.0, giving sharp peaks
in 〈V 〉, while there is only unstable triangular ordering at
B/Bφ = 4.0, producing a weak peak. In Fig. 2(b), we plot 〈V 〉
versus B/Bφ for a square pinning array with a stronger pinning
force of Fp = 0.25 where the orderings are more similar to
those found in previous studies [17], with a vortex lattice that
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FIG. 2. (a) The average velocity 〈V 〉 of the driven particle versus
B/Bφ at FD = 1.0. The blue line is the same in all panels and is from
a sample with Fp = 0.0 or no pinning, which shows a monotonic
decrease in 〈V 〉 with increasing B/Bφ . The red lines are for finite pin-
ning. (a) A square pinning array with Fp = 0.03. (b) A square pinning
array with Fp = 0.25, where there are velocity peaks at B/Bφ = 1/2,
1.0, 2.0, 4.0, and 6.0, along with weaker peaks at B/Bφ = 2.0 and
5.0. (c) A triangular pinning array with Fp = 0.03, where there are
velocity peaks at B/Bφ = 1.0, 3.0, 4.0, and 6.0, as well as a missing
peak at B/Bφ = 2.0. (d) A triangular pinning array with Fp = 0.25.
In general, the samples containing finite pinning also have a larger
average 〈V 〉 compared to samples without pinning.

is square at B/Bφ = 1.0 and 2.0 and triangular at B/Bφ = 4.0
and 6.0. At B/Bφ = 3.0, the vortex lattice is neither square nor
triangular, but has dimer ordering [17], while at B/Bφ = 5.0,
the vortex lattice is mostly square but contains numerous grain
boundaries. Fields with square or triangular vortex lattices
are accompanied by a peak in the vortex velocity, and there
is a missing velocity peak at B/Bφ = 3.0. In previous work
with bulk driven systems, the formation of a square vortex
lattice under the influence of strong pinning is correlated with
the appearance of peaks in the critical depinning force and
a reduction in the velocity of flowing vortices. There was
also a missing peak in the depinning force at B/Bφ = 3.0.
The previous work combined with our new results indicates
that the formation of ordered vortex lattices at commensurate
fields produces enhanced pinning (indicated by a peak in the
critical depinning and a dip in the vortex velocity) for bulk
driven systems but reduced pinning (indicated by a peak in
the vortex velocity) for individually driven vortices. We note
that there is also a submatching velocity peak at B/Bφ = 1/2
in Fig. 2(b).

In Fig. 2(c), we plot 〈V 〉 versus B/Bφ for the pin-free
sample and for a sample containing a weak triangular pinning
lattice with Fp = 0.03. In the presence of pinning, peaks in
the velocity appear at B/Bφ = 1.0, 3.0, 4.0, and 6.0 that are
more prominent than the peaks observed for a square pinning
lattice. In previous work on bulk driven vortices, commensu-
rate effects produce enhanced pinning (rather than enhanced
velocity) at B/Bφ = 1.0, 3.0, and 4.0, but not at B/Bφ = 2.0,
since for the latter filling the vortices form a partially ordered
honeycomb lattice rather than a triangular lattice. For the
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FIG. 3. 〈V 〉 versus B/Bφ for the system in Fig. 2(a) with a square
pinning array at FD = 1.0 and (a) Fp = 0.375, (b) 0.5, (c) 0.625, and
(d) 0.75. Here the commensurate conditions correspond to fields at
which there is a peak in the velocity. For larger Fp, there are windows
of field over which the system becomes pinned with 〈V 〉 = 0.

individually driven vortex, Fig. 2 indicates that the net velocity
is generally lower in the absence of pinning and higher in the
presence of pinning, which is the opposite of the behavior
generally found for bulk driving. Additionally, the peak ve-
locity is shifted slightly above the matching field rather than
occurring exactly at the matching field. In Fig. 2(d), we plot
〈V 〉 versus B/Bφ for a stronger triangular pinning array with
Fp = 0.25. Here there is a broad velocity enhancement peak
over the range 3.0 < B/Bφ < 4.5, where the system forms a
triangular lattice with varied orientations.

The overall behavior in Fig. 2 is the opposite of what is
found for bulk driving, where at commensurate fillings the
driven particles are less coupled to the substrate and move
more rapidly. The drag on an individually driven particle
arises due to interactions with the surrounding background
particles, and for incommensurate fillings, these particles are
more disordered and less coupled to the substrate, permitting
them to couple more effectively to the driven particle and
generate a larger drag effect. When pinning is present, the
background particles couple to the substrate and cannot be en-
trained as easily by the driven particle, which reduces the drag.
Under commensurate conditions, the surrounding particles are
very strongly coupled to the substrate and poorly coupled to
the driven particle. As a result, the driven particle is more
mobile at the matching fields, which we call an anticommen-
suration effect. The peaks in the velocity fall at fields slightly
above matching because just below matching, the background
particles form a commensurate lattice with vacancies that act
as effective trapping sites for the driven particle. In contrast,
slightly above commensuration, there are some interstitials in
the commensurate configuration which are unable to trap the
driven particle.

In Fig. 3, we plot 〈V 〉 versus FD for the system in Fig. 2(a,b)
with a square pinning lattice at different pinning strengths.
At Fp = 0.375 in Fig. 3(a), strong velocity peaks appear at
B/Bφ = 1/2, 1.0, 2.0, and 4.0, while for Fp = 0.5 in Fig. 3(b),
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FIG. 4. 〈V 〉 versus B/Bφ for the system in Fig. 2(a) with a square
pinning array at FD = 1.0 at (a) Fp = 0.875 and (b) Fp = 1.0, where
the widths of the pinned regions increase with increasing Fp.

the peak locations remain robust but several regions have
opened in which the driven particle is pinned with a velocity of
〈V 〉 = 0. One pinned region appears just above B/Bφ = 1/2,
while another is found near B/Bφ = 1.5. For Fp = 0.625 in
Fig. 3(c), there are a growing number of pinned regions,
while peaks in 〈V 〉 appear at B/Bφ = 1/2, 1.0, and just above
2.0. For Fp = 0.75 in Fig. 3(d), the pinned regions have ex-
panded while velocity peaks persist at B/Bφ = 1.2 and just
above B/Bφ = 2.0 and B/Bφ = 4.0. These results indicate
that strong pinning effectiveness appears in the incommen-
surate phase, which is the opposite of the behavior observed
in a bulk driven system. Since FD > Fp for all of the samples
in Fig. 3, the effective drag or pinning of the driven vortex
is produced by a combination of trapping directly at pinning
sites and interactions with background pinned vortices.

In Figs. 4(a) and 4(b), we show 〈V 〉 versus B/Bφ for sam-
ples with a square pinning array at higher pinning strengths
of Fp = 0.875 and 1.0. At Fp = 0.875 in Fig. 4(a), there is a
small region close to B/Bφ = 0.0 where the driven vortex only
interacts with the pinning sites and remains unpinned since
FD > Fp. In this regime, 〈V 〉 = 0.79 < FD since the driven
particle is still slowed by the interactions with the pinning
sites. Just above B/Bφ = 1.0, we find another pinned region
which extends up to B/Bφ = 2.5. For a higher Fp = 1.0 in
Fig. 4(b), individual pinning sites can trap the driven vortex
since we now have Fp = FD, and a large pinned regime ex-
tends from 0 � B/Bφ < 2.75.

To characterize the dynamics of the driven particle, we
examine detailed velocity time series as well as images of the
sample. In Fig. 5(a), we illustrate the system in Fig. 3(a) at
Fp = 0.375 for a low field of B/Bφ = 0.05, where the driven
particle motion is localized along a single row of pinning, and
there are only weak interactions with the background vortices.
In Fig. 6(a), we plot the time series of the velocity V (t )
for the sample in Fig. 5(a). The signal is periodic since the
driven vortex moves directly over the pinning sites in a single
row, while there are modulations of the signal at longer time
scales due to the occasional interactions with the background
vortices. Figure 6(b) shows the Fourier transform F (ω) of the
time series in Fig. 6(a),

F (ω) =
∫

V (t )e−iωt dt . (2)

Here F (ω) exhibits a strong periodic or narrow band noise
feature due to the periodic motion of the driven vortex.

x(a)

y

x(b)

y

FIG. 5. Image of a subsection of the superconducting vortex
system with a square pinning array (open circles), bulk vortices
(blue circles), the driven vortex (red circle), and the vortex tra-
jectories (lines) for the system in Fig. 3(a) with Fp = 0.375 and
FD = 1.0. The size of the pinning sites has been adjusted for clarity.
(a) B/Bφ = 0.05 where the driven particle moves along a pinning row
and has little interaction with the other vortices. (b) B/Bφ = 0.414,
an incommensurate regime, where the flow is much more disordered
with multiple collisions occurring between the driven vortex and the
background vortices.

Figure 5(b) shows the vortex trajectories at B/Bφ = 0.414 in
the incommensurate region, where the motion of the driven
particle is much more random due to strong interactions with
numerous background vortices, which produce considerable
random winding of the trajectory in the direction transverse
to the drive. The driven vortex follows a different trajectory
each time it passes through the periodic boundary conditions,
suggesting that the flow has a chaotic character. The cor-
responding velocity time series in Fig. 6(c) contains strong
random fluctuations, while the Fourier transform F (ω) in
Fig. 6(d) is broad and has lost the sharp peaks observed
at B/Bφ = 0.05. When B/Bφ = 0.5, the background vortices
adopt an ordered checkerboard ordering [21,24], and the
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FIG. 6. [(a) and (c)] Time series of the driven particle velocity
V and [(b) and (d)] the corresponding Fourier transform F (ω) for
the system in Fig. 5 with a square pinning array at Fp = 0.375 and
FD = 1.0. [(a) and (b)] At B/Bφ = 0.05, the motion is periodic,
producing a series of peaks in S(ω). [(c) and (d)] At B/Bφ = 0.414,
the velocity signal is more disordered and the corresponding F (ω)
has much broader noise features.
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FIG. 7. (a) Time series of the velocity V of the driven particle for
the system from Fig. 1 with Fp = 0.375 and FD = 1.0 at B/Bφ = 1.0
(blue) and B/Bφ = 0.828 (red). (b) The same for B/Bφ = 1.0 (blue)
and B/Bφ = 1.55 (red). In each case, the velocity at the commensu-
rate filling of B/Bφ = 1 is periodic and has a higher average value
than the velocity at the incommensurate fillings.

driven particle moves along an ordered 1D path without colli-
sions, similar to the trajectory shown in Fig. 1.

To illustrate more clearly the change in the velocity fluc-
tuations of the driven particle depending upon whether the
filling is commensurate or not, in Fig. 7(a), we plot a time
series of the velocity V of the driven particle for the system
from Fig. 1 with Fp = 0.375 and FD = 1.0 at a commen-
surate state of B/Bφ = 1.0 and an incommensurate state of
B/Bφ = 0.828. For the incommensurate field, the average ve-
locity is lower and the signal is more disordered, while for
B/Bφ = 1.0, the signal is periodic and has a higher average
value. At B/Bφ = 1.0, the driven particle moves in a 1D path
as illustrated in Fig. 1, and the oscillatory part of the velocity
signal arises from the periodic interactions of the driven par-
ticle with the vortices at the pinning sites. Even though there
are more background vortices with which the driven particle
could interact at B/Bφ = 1.0 than at B/Bφ = 0.828, the ve-
locity is higher for B/Bφ = 1.0 since the ordered nature of the
commensurate flow reduces the number of effective collisions
between the driven particle and the background vortices. In
Fig. 7(b), we compare the velocity time series in the same
sample at B/Bφ = 1.0 with that of the higher incommensurate
field B/Bφ = 1.55. Here, the velocity is again reduced in
magnitude and more chaotic in nature at the incommensurate
filling than at the 1 : 1 matching field.

In Fig. 8, we show the power spectrum S(ω), which is the
absolute square of F (ω), for the samples in Fig. 7(a). At the
commensurate field of B/Bφ = 1.0, S(ω) has a strict narrow
band character, while at the incommensurate field of B/Bφ =
0.828, the velocity noise is broad band, as indicated by the
solid line which is a fit to S(ω) ∝ ω−1.75. There are still some
weaker periodic peaks for B/Bφ = 0.828 since there is still a
periodic component of the velocity induced by the substrate,
and the positions of these peaks match the positions of the
peaks found for B/Bφ = 1.0; however, the overall noise power
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FIG. 8. (a) The power spectra S(ω) for the samples in
Fig. 7(a) with Fp = 0.375 and FD = 1.0 at the commensurate field
B/Bφ = 1.0 (blue), where the noise is strictly narrow band, and at
the incommensurate field B/Bφ = 0.828, where the noise is broad.
The solid line is a fit to S(ω) ∝ ω−1.75.

is much larger for the incommensurate system, indicating that
the driven particle velocity fluctuations extend out to much
longer time scales. The presence of broad band noise or ω−α

noise in driven systems with random disorder is associated
with plastic or disordered flow, while narrow band noise is
associated with ordered flow [9]. The velocity noise power
spectrum for the incommensurate system with B/Bφ = 1.55
has broad band features similar to those shown for B/Bφ =
0.828. Our results indicate that at the incommensurate fields,
the flow has plastic characteristics since the driven particle
generates position exchanges among the background vortices.
Due to the periodic boundary conditions, the driven particle
moves repeatedly through the sample; however, during each
passage the vortex positions are rearranged by plastic events,
so the landscape experienced by the driven particle changes
over time, producing the large low frequency velocity noise.
In contrast, under commensurate conditions the background
particles are fixed and the driven particle experiences the same
background during each pass through the sample. It is also
possible for strictly periodic flow to occur for fillings slightly
away from commensuration, B/Bφ = 1.0 ± ε, when a small
number of vacancies or interstitials are present in the back-
ground lattice. As long as ε is small enough that the vacancies
or interstitials are well spaced and immobile, the driven par-
ticle experiences a periodic potential from the background
lattice at one frequency, along with lower frequency peri-
odic perturbations from the interstitials or vacancies. When
ε becomes too large, interactions among the interstitials or
vacancies begin to occur and plastic deformations of the
background lattice become possible, causing the system to
transition to a broad band velocity noise regime of the type
shown in Fig. 8.

In Fig. 9, we plot the velocity time series for filling
fractions at and on either side of the B/Bφ = 1.0 matching
field, where the velocities have been shifted vertically for
clarity. The velocity fluctuations below matching for B/Bφ =
0.9328 are much stronger than those found above matching
for B/Bφ = 1.24 and B/Bφ = 1.29. Here, the vacancy sites
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FIG. 9. (a) The time series of the driven particle velocity V for
the system in Fig. 7(a) with Fp = 0.375 and FD = 1.0 at B/Bφ =
0.9328 (light blue), 1.0 (dark blue), 1.24 (orange), and 1.29 (green).
The curves have been shifted vertically for clarity. The most ordered
motion occurs for B/Bφ = 1.0.

which form below matching can act as trapping sites for the
driven particle, permitting strong perturbations of the motion
to occur. In contrast, for B/Bφ = 1.24 the average velocity is
relatively high and the fluctuations are reduced in magnitude,
since these fluctuations are produced by the much weaker
interactions of the driven particle with interstitial vortices. For
B/Bφ = 1.29, the density of interstitial vortices has become
large enough that the interstitials begin to interact with each
other, permitting plastic motion to occur and resulting in
stronger periodic velocity drops of the driven particle.

In general, we find that for commensurate states associated
with peaks in the average velocity 〈V 〉, the flow of the driven
particle is ordered and exhibits a periodic velocity signature,
while at incommensurate fillings, the flow is plastic and has a
broad band noise signal. In Figs. 10(a) and 10(b), we plot the
velocity time series V (t ) and power spectrum S(ω) for the sys-
tem in Fig. 3(a) with Fp = 0.375 and FD = 1.0 at B/Bφ = 3.0.
For this filling, there is no peak in 〈V 〉 and the background
vortices do not form an ordered square or triangular lattice
but instead adopt a disordered structure. As the probe particle
passes through the sample, it generates strong plastic defor-
mations of the background vortices, and the velocity noise
has a broad band character. For B/Bφ = 4.03 in Figs. 10(c)
and 10(d), slightly above the fourth matching field where a
peak in 〈V 〉 appears in Fig. 3(a), the background vortices
form a triangular lattice that contains a few grain boundaries.
Here, the driven particle spends most of its time traversing
ordered portions of the lattice and exhibits a dip in V each time
it crosses one of the grain boundaries. The power spectrum
indicates that two separate periodicities are combined in the
velocity signal. The higher frequency peaks are associated
with the motion of the driven particle through the periodic
commensurate vortex lattice, while the lower frequency nar-
row band noise is produced by the periodic motion of the
probe particle over the grain boundaries. A given grain bound-
ary can move gradually over time since it can be entrained
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FIG. 10. [(a), (c), and (e)] The velocity time series V (t ) and [(b),
(d), and (f)] the corresponding power spectra S(ω) for the system in
Fig. 3(a) with Fp = 0.375 and FD = 1.0. [(a) and (b)] B/Bφ = 3.0,
where the system is disordered. [(c) and (d)] B/Bφ = 4.03, where
the system is ordered. [(e) and (f)] B/Bφ = 4.4576, where the vortex
positions are more disordered and the velocity power spectrum has a
broad band character.

briefly by the probe particle, producing a drop in the probe
particle velocity. At B/Bφ = 4.4576 in Figs. 10(e) and 10(f),
the vortex positions are more disordered and the velocity time
series has chaotic features, while the power spectrum has a
broad band noise shape.

In Fig. 11(a), we show the bulk vortices, pinning sites,
driven vortex, and vortex trajectories for a portion of a system
with Fp = 0.375 and FD = 1.0 at B/Bφ = 1.55. The back-
ground vortices are disordered and the trajectory of the probe
particle is also disordered, giving the strongly fluctuating ve-
locity signature shown in Fig. 7(b) and producing broad band
velocity noise. At B/Bφ = 2.0, where there is a peak in 〈V 〉
and the background vortices form an ordered square lattice,
Fig. 11(b) indicates that the driven particle moves through
the interstitial region along a sinuous path modulated by the
interstitial vortices, resulting in a narrow band noise signa-
ture. In Fig. 11(c) at B/Bφ = 3.0, the background vortices are
not crystalline, consistent with the absence of a peak in 〈V 〉
at this filling. The driven vortex follows a disordered path
and exhibits broad band noise. Figure 11(d) shows that for
B/Bφ = 4.03, the background vortices form a polycrystalline
lattice and the flow is mostly ordered, giving the narrow band
noise illustrated in Figs. 10(c) and 10(d).

Based on the features in 〈V 〉 and S(ω), we construct a
dynamic phase diagram as a function of pinning strength Fp

versus B/Bφ with FD = 1.0 in Fig. 12, where we highlight the
pinned, viscous flow or broad band noise, and narrow band
noise regimes. Only the largest pinned phases are marked;
there are several smaller pinned phases which are not shown
on the figure. For finite Fp, at low fillings the system is always
in a periodic motion state since the driven particle moves
along the pinning rows as shown in Fig. 5(a). Similar periodic
oscillations arise around B/Bφ = 1/2, 1.0, 2.0, and 4.0. The
pinned regions reach their greatest extent for incommensurate
fillings, consistent with our observation that the effectiveness
of the pinning is generally reduced at commensurate fillings.
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FIG. 11. Image of a subsection of the superconducting vortex
system with a square pinning array (open circles), bulk vortices (blue
circles), the driven vortex (red circle), and the vortex trajectories for
a system with Fp = 0.375 and FD = 1.0. The size of the pinning sites
has been adjusted for clarity. (a) Disordered flow at B/Bφ = 1.55.
(b) Ordered flow at B/Bφ = 2.0. (c) Disordered flow at B/Bφ = 3.0.
(d) Ordered flow at B/Bφ = 4.03.

For low fillings, the driven particle does not become pinned
until FD � Fp. For B/Bφ > 3.0, there are windows of B/Bφ

over which the driven particle never becomes pinned, since
all of the pinning sites are occupied and the driven particle
can only be pinned through caging by interactions with neigh-
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FIG. 12. (a) Dynamic phase diagram as a function of pinning
strength Fp vs filling B/Bφ highlighting the pinned phase (brown),
the viscous flow or broad band noise phase (blue), and the periodic
flow or narrow band noise phase (orange) for the system from Figs. 3
and 4 with FD = 1.0. Only the largest pinned regions are marked;
smaller pinned regimes are not shown.
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FIG. 13. (a) 〈V 〉 vs driving force FD for the system in Fig. 3
at B/Bφ = 1.0 with Fp = 0.0 (blue circles) and Fp = 0.375 (red
squares). (b) 〈V 〉 vs FD for the same system at Fp = 0.375 for
B/Bφ = 0.9328 (green circles), 1.0 (red squares), and 1.55 (light blue
diamonds). (c) The critical depinning force Fc vs B/Bφ for the same
system.

boring vortices. At lower pinning strengths, the flow is not
periodic even at the matching fields since as the driven particle
moves it can interact strongly enough with the background
vortices to generate plastic flow events.

We next consider the drive dependence and pinning tran-
sition for the driven particle. In Fig. 13(a), we plot the
velocity-force curve 〈V 〉 versus FD of the driven vortex for the
system in Fig. 3 at B/Bφ = 1.0 for Fp = 0.0 and Fp = 0.375.
In the sample with no pinning, there is still a finite depinning
transition just above FD = 0.1 produced by the caging of
the driven vortex due to its interactions with the surrounding
vortex lattice. When Fp = 0.375, the depinning transition oc-
curs at Fp = 0.5, about five times higher than in the sample
without pinning, and is much sharper. In the pin-free sample,
the depinning transition is plastic and depinning occurs when
vortices in the surrounding lattice become able to exchange
places with each other. For the finite pinning sample, the
depinning is elastic and the driven particle moves without
creating any plastic distortions in the surrounding lattice. This
motion can be viewed as a single particle traveling over a fixed
square 2D substrate. Once the particle is moving, 〈V 〉 is higher
for the sample containing pinning than for the sample with-
out pinning. The pinning prevents the surrounding vortices
from being dragged by the driven particle or from exchanging
places with each other in plastic events, both of which are
processes which increase the drag on the driven particle. This
is consistent with the results in Fig. 2 where 〈V 〉 is lower for a
sample with finite pinning than for a sample with no pinning.

In Fig. 13(b), we plot 〈V 〉 versus FD for the system
with Fp = 0.375 at B/Bφ = 0.9328, 1.0, and 1.55. The de-
pinning threshold is lowest when B/Bφ = 1.0, and in the
flowing phase, 〈V 〉 is smaller at incommensurate fillings than
at the commensurate filling. Figure 13(c) shows the critical
depinning force Fc versus B/Bφ obtained from a series of
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FIG. 14. 〈V 〉 vs Fp at B/Bφ = 1.0 for the system in Fig. 3 at FD =
1.0, 0.825, 0.75, 0.625, 0.5, 0.375, and 0.25, from top to bottom,
showing that for fixed drive, there is a regime in which 〈V 〉 increases
with increasing Fp.

velocity-force curves for the system in Fig. 13(b). For B/Bφ <

0.075, we find Fc = Fp since the depinning occurs in the
single particle limit and is controlled only by direct depinning
from the pinning sites, with vortex-vortex interactions playing
no role. For 0.075 � B/Bφ < 1/2, the depinning threshold
reaches its largest value of Fc = 0.725, produced by a com-
bination of direct pinning effects and additional interstitial
pinning due to interactions with the neighboring vortices. At
B/Bφ = 1/2, where the system forms a checkerboard ordered
state, the driven particle moves along a 1D path between the
pinning sites and the only pinning arises from interactions
with other vortices. Here the driven particle does not move
directly into a pinned vortex; instead, it flows around the side
of the pinned vortex where it experiences a smaller repulsive
force. For 1/2 < B/Bφ < 1.0, the system is disordered and
the driven particle experiences pinning from both the pin-
ning sites and the pinned vortices. The depinning force drops
again at B/Bφ = 1.0 when the driven particle follows a 1D
path between the pinning sites, as illustrated in Fig. 1. For
B/Bφ > 1.0, most of the pinning sites are occupied so Fc is
generally lower. There is another drop in Fc at B/Bφ = 2.0
where the driven particle traverses a quasi-1D path between
the pinning rows, as shown in Fig. 11(b), while for B/Bφ >

2.0, Fc increases again. This result indicates that the depinning
threshold for the single driven vortex is lowest at matching
fields where there is an ordered configuration of background
vortices, which is opposite to the behavior found for bulk
driven vortices.

For constant FD within the moving phase, the velocity
response increases with increasing Fp, opposite to what is
observed in most systems with increasing pinning force [9].
In Fig. 14, we plot 〈V 〉 versus Fp at B/Bφ = 1.0 for the system
in Fig. 3 at FD = 1.0, 0.825, 0.75, 0.625, 0.5, 0.375, and 0.25.
For a fixed driving force, the velocity is low at Fp = 0 and
increases with increasing Fp before reaching a saturation and
then dropping to zero when Fp becomes large enough. For
all the curves, when Fp < 0.06 the system is in a viscous
or plastic flow regime since the pinning is no longer strong
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FIG. 15. (a) 〈V 〉 vs B/Bφ for a system with a triangular pinning
array at FD = 1.0 and Fp = (a) 0.375, (b) 0.5, (c) 0.625, and (d) 0.75.
A series of peaks in 〈V 〉 appear at matching fields for which the
system forms an ordered lattice.

enough to hold the background vortices in place. At higher
Fp, the background vortices become pinned and the system
enters a periodic channel flow regime.

IV. TRIANGULAR PINNING

We next consider the average velocity 〈V 〉 of a single par-
ticle driven through a background of vortices interacting with
a triangular pinning array under constant drive. In Fig. 15, we
plot 〈V 〉 versus B/Bφ for a system with a triangular pinning ar-
ray at FD = 1.0 and Fp = 0.375, 0.5, 0.625, and 0.75. At Fp =
0.375 in Fig. 15(a), there are large peaks in 〈V 〉 at B/Bφ = 1.0
and 4.0 along with smaller peaks at B/Bφ = 1/3 and 3.0.
There is no peak at B/Bφ = 1/2 since for this filling the
background vortices form a polycrystalline disordered state.
For Fp = 0.5 in Fig. 15(b), we observe the same trend, but
the peak at B/Bφ = 3.0 is more prominent since the system
can achieve better ordering at this field when the pinning is
stronger. Additionally, a peak begins to emerge at B/Bφ = 1/2
due to the formation of a stripe-like pattern. From previous
studies of vortex ordering on triangular arrays, it is known that
an ordered state can occur at B/Bφ = 1/3 and a partially or-
dered state can form at B/Bφ = 1/2 [24]. At B/Bφ = 3.0 and
4.0, the background vortices form a triangular lattice, but the
orientation of this lattice at B/Bφ = 3.0 involves the appear-
ance of a zigzag pattern in the interstitial region [17] which
makes it more difficult for the driven particle to pass through
the sample. In contrast, at B/Bφ = 4.0 the triangular lattice is
oriented such that there are 1D chains of interstitial vortices
along the x direction [17], making it possible for the driven
particle to slide easily alongside the chain without weaving
into the y direction. At B/Bφ = 5.0, the background vortex
positions are disordered and there is no peak in 〈V 〉. Previous
work showed that a triangular lattice oriented similarly to the
lattice observed at B/Bφ = 4.0 appears at B/Bφ = 9.0 but that
there are two rows of interstitial vortices instead of only one
[42], so we expect that there would be another peak in 〈V 〉
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FIG. 16. (a) 〈V 〉 vs B/Bφ for a system with a triangular pinning
array at FD = 1.0 and Fp = (a) 0.875 and (b) 1.0.

at this higher filling. For Fp = 0.625 in Fig. 15(c), there are
some regions such as 1/2 < B/Bφ < 1.0. where the system
is pinned and 〈V 〉 = 0. A smaller velocity peak appears at
B/Bφ = 2.0 where the background vortices attempt to form an
ordered honeycomb state [17], while the peaks in 〈V 〉 remain
robust at B/Bφ = 3.0 and 4.0. At Fp = 0.75 in Fig. 15(d),
an unpinned region persists for the lowest values of B/Bφ ,
while the pinned region now extends above B/Bφ = 1.0. For
higher pinning forces, the number and extent of pinned re-
gions grows. We illustrate this in Fig. 16 where we plot 〈V 〉
versus B/Bφ for samples with Fp = 0.875 and Fp = 1.0. In
each case, the peaks in 〈V 〉 near B/Bφ = 3.0 and 4.0 remain
present.

In Fig. 17(a), we show the vortex positions and trajectories
for the system in Fig. 15(a) with Fp = 0.375, FD = 1.0, and
B/Bφ = 1.0. For this filling, the background vortices form a
commensurate triangular lattice and the driven particle moves
in a sinusoidal fashion through the interstitial region. At
B/Bφ = 1.5 in Fig. 17(b), the system is in a disordered state
and the driven particle follows a much more random path. We
note that the velocity noise for the probe particle on a triangu-
lar pinning array has features similar to those described above
for the square pinning array. Under commensurate conditions,
there is a peak in 〈V 〉, the motion of the probe particle is
periodic, and the velocity noise has a narrow band character,
while for incommensurate states, the vortex configurations are

x(a)

y

x(b)

y

FIG. 17. Image of a subsection of the superconducting vortex
system with a triangular pinning array (open circles), bulk vortices
(blue circles), the driven vortex (red circle), and the vortex trajecto-
ries for the system in Fig. 15(a) with Fp = 0.375 and FD = 1.0. The
size of the pinning sites has been adjusted for clarity. (a) Ordered
flow at B/Bφ = 1.0. (b) Disordered flow at B/Bφ = 1.5.
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FIG. 18. (a) 〈V 〉 vs Nc/Np for a driven probe particle moving
through a background of colloidal particles interacting with a square
pinning array, where Nc is the number of colloids and Np is the
number of pinning sites, for a system with colloidal charge Q = 0.01,
Fp = 0.25, and FD = 1.0. (b) 〈V 〉 versus colloidal charge Q for
the same system at Nc/Np = 1.0, Fp = 0.25, and FD = 1.0. At low
Q, the driven particle is able to move without generating distortions
in the background lattice in the ordered flow state. At high Q, the sys-
tem is elastic and forms a triangular solid as illustrated in Fig. 19(a),
and the driven particle is pinned. For intermediate Q, the system
forms a partially commensurate state of the type shown in Fig. 19(b).

disordered, there is no peak in 〈V 〉, and the velocity noise is
broad band.

V. COLLOIDAL PARTICLES

We next consider the case of a driven colloidal probe
particle moving through a background colloidal lattice that
is interacting with a square pinning array. Here the Bessel
function vortex-vortex interaction is replaced with a screened
Yukawa colloid-colloid interaction potential of the form
U (r) = Q exp(−κr)/r. In Fig. 18, we plot 〈V 〉 versus Nc/Np,
the ratio of the number of colloids Nc to the number of
pinning sites Np, for a system with a colloidal charge of
Q = 0.01, Fp = 0.25, and FD = 1.0. Peaks in 〈V 〉 appear at
fillings Nc/Np = 1.0 and 2.0, similar to what is observed in
the superconducting vortex system.

The charge on the colloidal particles can be varied, making
it possible to hold the colloid density fixed while passing
from the strongly charged limit, in which the background
colloids form a stiff triangular lattice that floats above the
substrate, to the weakly charged limit, in which the pinning
site locations dominate the behavior. In most bulk driven
systems with pinning, increasing the interactions between the
particles causes the depinning threshold to drop, and a tran-
sition can occur from plastic depinning, where a portion of
the particles are trapped by pinning sites while the remaining
particles begin to move, to elastic depinning, where all of the
particles move simultaneously and maintain the same neigh-
bors [9]. In general, the elastic depinning threshold is much
lower than the plastic depinning threshold. For a single driven
probe particle, we find the opposite behavior, in which the
driven particle becomes pinned when the background colloid
interactions become strong enough for elastic behavior to
emerge.

In Fig. 18(b), we plot 〈V 〉 versus Q for the system in
Fig. 18(a) at Nc/Np = 1.0, Fp = 0.25, and FD = 1.0. For Q >

0.05, the system forms a floating triangular solid of the type
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FIG. 19. Image of a subsection of the colloidal system with a
square pinning array (open circles), bulk vortices (blue circles), the
driven vortex (red circle), and the vortex trajectories for the system
in Fig. 18 with Fp = 0.25, and FD = 1.0. The size of the pinning
sites has been adjusted for clarity. (a) The pinned phase at Q = 0.1
where the system forms a floating triangular solid. (b) The partially
commensurate phase at Q = 0.0375 where the flow is plastic.

illustrated in Fig. 19(a) at Q = 0.1. Here the interactions
between the colloidal particles are so strong that the elastic
energy of the colloidal lattice overcomes the pinning energy
of the substrate, and the background colloids float above the
substrate potential instead of sitting in the pinning sites. Under
these conditions, the driven particle cannot tear plastically
past the background colloids and must instead push the entire
system as a unit, so 〈V 〉 is close to zero. For 0.01 < Q < 0.05,
the pinning energy begins to play a role and the background
colloids form a partially commensurate or polycrystalline
solid in which portions of the colloids are commensurate with
the underlying pinning substrate while other portions are not.
The driven particle depins plastically, generating distortions
in the background colloids as illustrated in Fig. 19(b) for
Q = 0.0375. The plastic deformations produce a large drag
on the driven particle, giving a reduced 〈V 〉. At Q = 0.01,
the background colloidal particles form a commensurate solid
similar to that shown in Fig. 1, and the driven particle flows
along a 1D channel without producing any plastic distortion
in the lattice. As Q is decreased further, 〈V 〉 continues to in-
crease since the drag on the driven particle diminishes, and the
system enters a weakly interacting limit in which the flow is
along a strictly 1D channel. At even lower Q, each pinning site
can begin to trap multiple particles; however, since FD > Fp,
the driven particle will continue to flow even if it occasionally
passes through an empty pinning site.

VI. DISCUSSION

There are some limited examples in the literature of com-
mensurate states that produce peaks instead of dips in the
transport velocity at commensurate fillings. In the work of
Poccia et al. [73] on superconducting vortices moving over
a square pinning array, at matching fields the differential
resistance showed dips at low current, indicating enhanced
pinning or reduced vortex velocities, but at higher currents
these dips became peaks, indicating that the vortices are
moving faster at the commensurate fillings than at the in-
commensurate fields. Poccia et al. described these results in
terms of a dynamic Mott transition. It is possible that for low

currents, the vortex motion is dominated by the commensurate
vortices trapped at the pinning sites, but for higher currents,
there could be additional interstitial vortices induced by the
current, and these additional vortices could flow through the
ordered pinned vortices in a manner similar to the motion
shown in Fig. 1. At incommensurate fields, there are still
additional current-induced vortices when higher currents are
applied, but the vortex lattice is already disordered so the ad-
ditional drag induced by these extra vortices is not noticeable.
Jiang et al. also found a similar transition from dips to peaks
in the differential resistance of Nb films with periodic pinning
arrays as a function of increasing drive [74]. A key difference
between these experimental results and what we observe in
our simulations is that the velocity peaks we find occur even
for low drives, indicating that the system is always behaving
in an anticommensurate fashion, whereas in Refs. [73,74],
the velocity is enhanced at matching conditions only for high
drives.

Regarding classification of commensurate and incommen-
surate states, in Ref. [1] a commensurate structure is defined
to occur when the average lattice spacing a is a simple rational
fraction of the substrate period b. Depending on the strength of
the substrate, the system may pass through an infinite number
of commensurate states without locking to any of them, or it
may lock to certain commensurate states; in addition, there
may or may not be incommensurate states between the com-
mensurate states. One may try to use a simple criterion such
as a relation between lattice unit cell vectors of the vortices
and the pinning substrate to decide whether a commensurate
state is expected to appear; however, this neglects the complex
grain boundary and dislocation structures that can arise in the
actual system at certain fillings. Examples of such structures
can be found for commensurate states in Ref. [42] and for
incommensurate states in Ref. [6]. A full treatment of the
complexity of the commensuration behavior is outside the
scope of the present work but is an interesting direction for
future study.

In our work, we always drive along a symmetry direction of
the pinning array; however, the results could change for driv-
ing along other directions. In the case of the square pinning
array, driving along the positive or negative y direction should
produce the same effects as driving along the x direction due
to the lattice symmetry. We also expect similar effects to
appear for driving along other angles at which it is possible for
the driven particle to follow a 1D path without encountering a
pinning site, such as for driving at 45◦ from the x direction. In
previous work, it was shown that particles move more easily
along what are known as commensurate angles on a square
lattice given by θ = arctan(n/m) with integer m and n [75,76],
so if the driving of the individual particle is aligned with an
incommensurate angle, the behavior might be more similar
to what is observed for driving an individual particle over
random disorder.

In our model, the pinning is represented as localized sites
which can capture at most one particle. Other types of pinning
arrays also exist, such as egg carton potentials which have
no interstitial regions [18,19]. For such a potential, at higher
fillings including f = 2, each potential minimum could cap-
ture two particles which would form a dimer like state. We
expect that anticommensuration effects would still occur in
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these potentials, since at matching conditions the background
particles would be more strongly coupled to the substrate than
to the driven particle, just as in the case of our localized
pinning sites.

Our results should be general to the broader class of sys-
tems that exhibit commensurability effects and that include
an individually driven particle. Our results are also relevant
for understanding the dynamics near commensurate states in
the presence of some form of doping, such as an additional
particle with different properties or a different size compared
to the other particles. Under incommensurate conditions, the
drag on these doping particles would be increased, but the
drag would be reduced in and near commensurate states. Sim-
ilar effects could occur in systems containing multiple species
that interact with each other and with a periodic substrate. If
one species becomes more strongly coupled to the substrate,
such as at matching conditions, the drag on the other species
could be reduced. Such behavior could be relevant for mul-
ticomponent Bose-Einstein condensates or colloidal systems
with multiple species.

VII. SUMMARY

We have examined the active rheology for a driven particle
moving through an assembly of other particles in the presence
of a periodic pinning substrate. Under bulk driving, it was
previously observed that a series of commensuration effects in
the form of a peak in the depinning force or a dip in the veloc-
ity occur when the number of particles is an integer or rational
fractional multiple of the number of pinning sites. In this ac-
tive rheology study, where only a single particle is driven, we
measure the velocity of the driven particle at a fixed driving
force and varied filling factors for both vortices in type-II su-
perconductors and colloidal particles interacting with periodic
pinning arrays. We find an interesting anticommensuration
effect in which the velocity of the driven particle exhibits
peaks instead of dips at the commensurate configurations, a
behavior which is the opposite of what is observed in bulk
driven systems. Under nonmatching conditions, the system
forms a disordered state in which the driven particle entrains a
greater number of background particles and/or experiences a
greater number of collisions with pinning sites. We show that
peaks in the velocity only occur at matching fields for which
the system forms an ordered lattice. Under these conditions,
the background particles form an ordered lattice which is more
strongly coupled to the substrate than to the driven particle,
causing a reduction in the drag on the driven particle. The
probe particle motion at commensurate conditions is ordered
and the velocity has a narrow band noise signature, while

at incommensurate fillings, the motion is disordered and the
noise signature becomes broad band. In general, the probe
particle has a larger velocity in the presence of pinning than
in the absence of pinning regardless of whether the filling is
commensurate or incommensurate. The velocity-force curves
indicate that at commensuration, the depinning threshold is
reduced and the velocity in the moving phase is enhanced. In
some cases, we also find dips in the probe particle velocity and
depinning force at fractional fillings such as f = 1/2. Within
the moving phase, the velocity of the probe particle under
constant driving increases with increasing pinning force, a
behavior opposite from what is found in bulk driven systems.
We show that these effects are robust for both square and trian-
gular pinning arrays. We also find similar effects for colloidal
particles interacting with a square substrate for varied filling
factors. In the case of colloidal particles, when the colloid-
colloid interactions are strengthened by increasing the charge
on each colloid, the background colloidal particles form a
triangular lattice which floats above the pinning substrate, and
the probe particle becomes pinned within this lattice, while
for lower charges and weaker colloid-colloid interactions, the
probe particle can depin and the system enters either a plastic
flow or ordered flow regime. This is the opposite of what is
observed in bulk driven systems, where weak particle-particle
interactions result in strong coupling to the substrate and an
enhanced pinning effect, while strong particle-particle inter-
actions produce a highly elastic particle lattice with weak
coupling to the substrate and a reduced pinning effect. Our re-
sults should be general to a range of systems in which particles
are coupled to periodic substrates. The anticommensuration
effects may also explain recent observations of vortex motion
in periodic pinning arrays, where there is a transition from
dips to peaks in the vortex velocity at matching fields as the
applied drive is increased. Our results could also be relevant
to certain systems of multiple species coupled to a substrate
in which the drag on one species is reduced at commensurate
conditions when one species couples strongly to the substrate
while the other species does not.
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