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Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current
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In this paper, we study the spin Nernst effect of magnons in the nonlinear response regime. We derive the
formula for the nonlinear magnon spin Nernst current by solving the Boltzmann equation and find out that it is
described by an extended Berry curvature dipole of magnons. The nonlinear magnon spin Nernst effect is ex-
pected to occur in various Néel antiferromagnetic materials even without the Dzyaloshinskii-Moriya interaction.
In particular, the nonlinear spin Nernst current in the honeycomb and diamond lattice antiferromagnets can be
controlled by strain/pressure.
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I. INTRODUCTION

The Berry phase and curvature play an essential role in
modern condensed matter physics; e.g., they are responsible
for polarization, orbital magnetism, and various types of Hall
effects [1]. In particular, it is well-known that in the linear
response regime, the Hall effect [2,3] and the spin Hall effect
[4–7] are described by the integral of Berry curvature (BC).
Recently, transport phenomena have been further explored by
taking into account the nonlinear response contributions. A
remarkable study is the nonlinear Hall effect [8]. Even in ma-
terials with time-reversal symmetry, transverse electric current
can emerge as the second-order response to an electric field
[8–24]. It originates from a dipole moment of the BC in the
crystal momentum space, named the Berry curvature dipole
(BCD) [8], which appears in the systems breaking inversion
and rotational symmetries.

Even in bosonic systems, it has also been clarified that
the Berry phase and curvature are relevant to their physics,
by the theoretical studies and experimental observation of the
thermal Hall effect of magnons [25–43], which are bosonic
quasiparticles of spin waves. In association with the Berry
curvature in magnets, various topological magnon systems
have been proposed; e.g., magnonic analogs of spin Hall
insulators [44–47], three-dimensional topological insulators
[48], topological crystalline insulators [49], and Dirac and
Weyl semimetals [50–58], which provide a venue for the
unprecedented transport phenomena in insulating magnetic
materials. Among them, it is worthy to note that the magnon
spin Nernst effect (SNE) [44–46,59] has been observed in
antiferromagnets (AFMs) [60], which makes it possible to
generate the spin current of magnons with long coherence and
promise their potential applications in spintronics [61,62].
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Despite a number of studies on magnon systems, repre-
sentative transport phenomena, e.g., thermal Hall effect and
SNE of magnons, have been considered mostly in the mag-
nets with the Dzyaloshinskii-Moriya interaction (DMI) or
noncollinear spin configurations, which give rise to complex
hopping matrix elements in the magnon Hamiltonian. This is
because their manifestation as a linear response requires the
integration of the magnon BC over the whole Brillouin zone to
be nonzero. In order to relax the restrictions on such magnon
transport phenomena, we should explore the region beyond
the linear response regime as one option. As in the case of
electronic systems, by investigating the magnon nonlinear
response, nontrivial transport phenomena are expected to be
discovered in magnets even without the DMI or noncollinear
spin configuration. So far, the nonlinear Hall effect [63], spin
Seebeck effect [64], and optical response [65,66] of magnons
have been proposed. However, research on the nonlinear re-
sponse of magnons is just beginning to emerge.

In this paper, we study the magnon second-order response
to the temperature gradient by solving the Boltzmann equa-
tion and show that the nonlinear magnon spin Nernst current
can be described by an extended BCD. As shown later, the
extended BCD is easily found in collinear Néel AFMs without
the DMI, whereas the manifestation of BC, which is respon-
sible for the linear magnon SNE and thermal Hall effect,
requires the DMI or noncollinear spin configuration. There-
fore, it is expected that various Néel AFMs even without the
DMI can exhibit the nonlinear SNE of magnons, while the
magnon thermal Hall effect, as well as the linear magnon
SNE, is absent. As a demonstration, we apply the obtained
formula to the strained honeycomb lattice AFM without the
DMI. A remarkable result is that the direction of the spin cur-
rent can be controlled by tuning the strain. We also investigate
several other models for Néel AFMs and find the presence
of the extended BCD, which results in the nonlinear magnon
SNE.

II. EXPRESSION OF NONLINEAR SPIN NERNST
CURRENT

First, we derive the formula for the magnon spin Nernst
current up to the second-order response to the temperature
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gradient. We begin with the expression of the transverse
magnon current in Ref. [26]:

Jy = − 1

h̄V

∑
n,k

�n(k)
∫ ∞

0
dε

∂

∂x
ρ(En(k) + ε, T (x)), (1)

where En(k), �n(k), ρ(E , T (x)) are the energy eigenvalue,
BC of the nth band with the wave vector k, and a distribution
function for magnons with the energy E under the temperature
T (x), respectively. Here, we assume a steady state where both

ends of the system are in contact with heat baths at different
temperatures. In such a case, it is known that the distribution
of temperature can be written as a linear function of a position
[67]. Bearing this in mind, we henceforth assume that the
temperature gradient is applied in the x direction as T (x) =
T0 − x∇T [68]. The constants T0 and ∇T denote the average
temperature and the temperature gradient, respectively.

Next, we consider the Boltzmann equation to derive the
formula for the nonlinear response from Eq. (1). The Boltz-
mann equation in the relaxation time approximation [69–71]
is written as follows:

∂

∂t
ρ(En(k) + ε, T (x)) + ẋ · ∂

∂x
ρ(En(k) + ε, T (x)) + k̇ · ∂

∂k
ρ(En(k) + ε, T (x))

= −ρ(En(k) + ε, T (x)) − ρ0(En(k) + ε, T (x))

τ
, (2)

where τ and ρ0(E , T (x)) are the relaxation time of magnons and the equilibrium distribution function defined as ρ0(E , T (x)) =
[eE/T (x) − 1]−1, respectively. Here, ẋ and k̇ are the time-derivatives of the position and the wave vector, respectively. On the
left-hand side of Eq. (2), the first and third terms drop out because we assume the steady state and the system without external
field hereafter. Thus, Eq. (2) can be deformed as

ρ(En(k) + ε, T (x)) = ρ0(En(k) + ε, T (x)) − τ ẋ
∂

∂x
ρ0(En(k) + ε, T (x)). (3)

Here, the velocity ẋ is written as (1/h̄)∂kx En(k). Replacing ∂/∂x with −∇T ∂/∂T0 due to T (x) = T0 − x∇T , we obtain the
x-derivative of Eq. (3) up to the second order in ∇T as follows:

∂

∂x
ρ(En(k) + ε, T (x)) = − ∇T

∂

∂T0
ρ0(En(k) + ε, T0) + x(∇T )2 ∂2

∂T 2
0

ρ0(En(k) + ε, T0)

− τ

h̄
(∇T )2 ∂En(k)

∂kx

∂2

∂T 2
0

ρ0(En(k) + ε, T0) + O((∇T )3). (4)

The second term on the right-hand side of Eq. (4) vanishes in the whole space since it is an odd function of x. Hereafter, we take
the Boltzmann constant as kB = 1. Substituting Eq. (4) to Eq. (1), we obtain the expression of the transverse magnon current as
up to a second-order response to the temperature gradient ∇T :

Jy = ∇T

h̄V

∑
n,k

�n(k)
∂

∂T0

∫ ∞

0
dερ0(En(k) + ε, T0) + τ (∇T )2

h̄2V

∑
n,k

�n(k)
∂En(k)

∂kx

∂2

∂T 2
0

∫ ∞

0
dερ0(En(k) + ε, T0) + O((∇T )3).

(5)

Here, by using the function c1(ρ0) := (1 + ρ0)ln(1 + ρ0) −
ρ0lnρ0, we can write down the following equation:

∂

∂T0

∫ ∞

0
dερ0(En(k) + ε, T0) = c1(ρ0(En(k), T0)). (6)

By using Eq. (6) and replacing the sum over k with the integral
over the first Brillouin zone, the second term in the right-hand
side of Eq. (5) can be rewritten as follows:

∑
n,k

�n(k)
∂En(k)

∂kx

∂2

∂T 2
0

∫ ∞

0
dερ0(En(k) + ε, T0)

=
∑
n,k

�n(k)
∂En(k)

∂kx

∂

∂T0
c1(ρ(En(k), T0))

= −
∑

n

∫
BZ

d2k�n(k)
∂En(k)

∂kx

En(k)

T0

∂c1(ρ0(En(k), T0))

∂En(k)

= − 1

T0

∑
n

∫
BZ

d2kEn(k)�n(k)
∂

∂kx
c1(ρ0(En(k), T0))

= 1

T0

∑
n

∫
BZ

d2kc1(ρ0(En(k), T0))
∂

∂kx
(En(k)�n(k)).

(7)

In the second equality of Eq. (7), we replaced the T0-
derivative acting on the function c1(ρ0(En(k), T0)) with
(−En(k)/T0)∂/∂En(k) since the T0 dependence is given in
the form of ρ0(En(k), T0) = [eEn (k)/T0 − 1]−1. By substituting
Eqs. (6) and (7) to Eq. (5), we obtain the transverse magnon
current up to the second-order of the temperature gradient ∇T
as follows:

Jy = ∇T

h̄V

∑
n

∫
BZ

d2kc1(ρ0(En(k), T0))�n(k)
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+ τ (∇T )2

h̄2V T0

∑
n

∫
BZ
d2kc1(ρ0(En(k), T0))

∂

∂kx
(En(k)�n(k))

+ O((∇T )3). (8)

We note that the first term on the right-hand side has been
obtained in Ref. [26]. The second term describes the nonlinear
response in magnon systems.

In the following, we focus on the magnons in Néel AFMs,
assuming that the spins are aligned in the z direction. In terms
of magnons, the systems have PT -symmetry due to the per-
fect staggered magnetization; i.e., the magnon Hamiltonian
H (k) satisfies the following equation

(PT )−1�zH (k)PT = �zH (k), (9)

where P and T are parity and time-reversal operators, respec-
tively. The matrix �z is defined as �z = σz ⊗ 1N , where σi

(i = x, y, z), N , and 1N are the i component of the Pauli
matrix, the number of the sublattices in the unit cell, and
N-dimensional identity matrix, respectively. We note that in
bosonic Bogoliubov–de Gennes (BdG) systems which contain
pairing terms, we have to diagonalize not Hermitian matrix
H (k) but non-Hermitian matrix �zH (k) appearing in Eq. (9)
to leave the commutation relations of boson operators un-
changed [72]. As long as the systems conserve the total spin
in the z direction Sz, we always have two degenerate magnon
states related by the PT operator.

We here write the eigenvectors and BC of magnons
with the up (down) spin dipole moment as ψn,↑(↓)(k) and
�n,↑(↓)(k), respectively. Since each magnon excitation carries
the spin angular momentum ±h̄ in systems with conservation
of the total spin along the z direction, the magnon spin Nernst
current JS

y = h̄(Jy,↑ − Jy,↓) can be written as follows:

JS
y = ∇T

V

∑
n

∫
BZ
d2kc1(ρ0(En(k), T0)) (�n,↑(k)−�n,↓(k))

+ τ (∇T )2

h̄V T0

∑
n

∫
BZ

d2kc1(ρ0(En(k), T0))

× ∂

∂kx
[En(k)(�n,↑(k)−�n,↓(k))]

+ O((∇T )3), (10)

where the magnon BC is defined as �n,↑(↓)(k) =
−2Im[(∂kx ψ↑(↓)(k))†�z(∂kyψ↑(↓)(k))], slightly different
from BC in fermionic systems due to the non-Hermiticity
of the matrix �zH (k) in the magnon BdG systems
[72]. We remark that the spin Nernst current as a
second-order response is described in terms of not the
BCD Dx

n,↑(↓)(k) := ∂kx �n,↑(↓)(k), but the BCD-like quantity:
D̄x

n,↑(↓)(k) := ∂kx [En(k)�n,↑(↓)(k)], which we call the
extended BCD. One can see the structure similar to this term
in the formula for the nonlinear Nernst effect of electrons
[19]. We also note that the magnon thermal Hall current
defined in Ref. [26] is absent because �n,↑(k) = −�n,↓(k)
holds due to PT symmetry.

FIG. 1. Honeycomb lattice AFMs extended along the (a) x di-
rection and (b) y direction, which correspond to (a) J1 < J2 and
(b) J1 > J2. Red and blue circles denote spins pointing upward and
downward, respectively.

III. MODEL

As the first model exhibiting the nonlinear magnon SNE,
we consider a honeycomb lattice AFM with strain, which is
illustrated in Fig. 1. The Hamiltonian of the AFM is written
as follows:

H = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j − κ
∑

i

(
Sz

i

)2
, (11)

where Si = (Sx
i , Sy

i , Sz
i ) denotes the spin at site i. Here, 〈i j〉2

and 〈i j〉1 are the nearest-neighbor vertical bonds and the
other ones shown in Fig. 1, respectively. The third term is an
easy-axis anisotropy in the z direction. By applying Holstein-
Primakoff and Fourier transformations, we can obtain the
magnon Hamiltonian as follows:

H = 1

2

∑
k

ψ†(k)H (k)ψ(k),

H (k) =

⎛
⎜⎝

d 0 0 γ (k)
0 d γ ∗(k) 0
0 γ (k) d 0

γ ∗(k) 0 0 d

⎞
⎟⎠,

ψ†(k) = [b†
↑(k), b†

↓(k), b↑(−k), b↓(−k)]. (12)

Here, d and γ (k) are defined as d = 2J1S + J2S +
2κS and γ (k) = 2J1Seiky/2

√
3 cos(kx/2) + J2Se−iky/

√
3, respec-

tively, where S is the spin magnitude. The operator b↑(↓)(k) is
the annihilation operator of magnons with the spin dipole mo-
ments upward (downward), i.e., magnons from spins pointing
downward (upward). The parity and time-reversal operators
of this model are defined as P = 12 ⊗ σx and T = K , respec-
tively. Here, K is the complex conjugation operator. One can
easily confirm that the Hamiltonian H (k) satisfies the PT
symmetry in Eq. (9).

Owing to the simple and typical model (11), we can find
the candidate materials of the honeycomb AFMs. For ex-
ample, the honeycomb antiferromagnets 2-Cl-3,6-F2-V [73]
and Mn[C10H6(OH)(COO)]2×2H2O [74] would be candi-
dates modeled by Eq. (11) with 0.7 < J2/J1 < 1.0 and J2 =
2J1, respectively. We note that the materials possess bond
dependences inherently. Thus, the nonlinear magnon SNE is
expected to exhibit even without the strain.
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FIG. 2. (a), (b) Band structure E↑(k), (c), (d) BC �↑(k), and
(e), (f) extended BCD ∂kx [E↑(k)�↑(k)] of magnons with the up
spin dipole moment in the strained honeycomb lattice AFM. The
parameters in (a), (c), and (e) are chosen to be J1S = 0.5, J2S = 1.0,
and κS = 0.01, which is the case described in Fig. 1(a). In (b),
(d), and (f), we take the parameters to be J1S = 1.5, J2S = 1.0, and
κS = 0.01, corresponding to Fig. 1(b).

IV. NONLINEAR MAGNON SPIN NERNST EFFECT

Figure 2 shows the band structure, BC, and the ex-
tended BCD of magnons with up spin dipole moment in the
strained honeycomb AFM. Those of magnons with down spin
dipole moment are determined by E↓(k) = E↑(k), �↓(k) =
−�↑(k), and D̄x

↓(k) = −D̄x
↑(k), respectively. As shown in

Figs. 2(c) and 2(d), BC of magnons is antisymmetric about
the � point. This property corresponds to a finite extended
BCD [see Figs. 2(e) and 2(f)] which appears due to breaking
inversion and rotational symmetries.

Figure 3 shows the coefficient of the nonlinear magnon
SNE given by Eq. (10) in the honeycomb AFM as a func-
tion of the coupling constant J1. As expected, the coefficient
becomes zero for J1 = 0 and J1 = J2 (corresponding to the
system with the threefold rotational symmetry restored). It
is noteworthy that spin current flows in the +y direction and
the −y direction in the cases of J1 < J2 and J1 > J2, respec-
tively. It implies that the direction of the spin current can be
controlled by tuning the strain. Here, in which directions the
transverse current is driven can be understood intuitively in
terms of the balance of the coupling constants of the nearest-
neighbor bonds; i.e., the transverse magnon current tends to

1
0

0.5 1.51.0

−0.05

−0.15

−0.1

FIG. 3. Coefficient of the nonlinear magnon SNE in the honey-
comb AFM as a function of the coupling constant J1. The coupling
constant J2, the easy-axis anisotropy, and the average temperature
are taken to be J2S = 1.0, and κS = 0.01, and T0 = 0.1, respectively.
Here, we take the factor τ/(h̄V T0 ) to be unity.

flow in the direction of the stronger nearest-neighbor bonds
corresponding eventually to the +y/−y direction in total. We
also note that magnon SNE in the linear response regime is
absent due to the system without the DMI [75]. In addition,
the system does not exhibit the magnon thermal Hall effect
due to �↓(k) = −�↑(k) and E↓(k) = E↑(k).

V. ORDER ESTIMATION OF NONLINEAR SPIN NERNST
CURRENT

Let us discuss the order of the nonlinear magnon SNE,
by comparing it to the linear one observed in the honeycomb
antiferromagnet MnPS3 [60] with the DMI. We consider the
following Hamiltonian for the antiferromagnet MnPS3:

H = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j

+ D
∑
〈〈i j〉〉

ξi j (Si × S j )z − κ
∑

i

(Sz
i )2, (13)

where the third term is the DMI between the second-nearest-
neighbor spins. The sign convention of the DMI ξi j is shown
in Fig. 4. Other terms are the same as those in model (11).

FIG. 4. Honeycomb lattice corresponding to the antiferromag-
net MnPS3 expressed by Eq. (13). The sign convention ξi j = +1
(= −ξ ji) for i → j is indicated by the orange arrows. The spin
configuration is the same as in Fig. 1.
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FIG. 5. Numerical results of (a) I1 and (b) I2 defined as Eqs. (16)
and (18), respectively. The parameters J1 and D are chosen to be
(a) J1 = 1.54 meV and D = 0.36 meV, and (b) J1 = 2.0 meV and
D = 0, respectively. In both (a) and (b), the other parameters J2, κ ,
and S are taken as J2 = 1.54 meV, κS = 0.0086 meV, and S = 5/2,
respectively. We note that I1 is dimensionless.

By applying Holstein-Primakoff and Fourier transformations,
we obtain the magnon Hamiltonian for model (13), which is
written as in the same form as in Eq. (12) with the additional
term (k) derived from the DMI, i.e.,

H (k) =

⎛
⎜⎝

d − (k) 0 0 γ (k)
0 d + (k) γ ∗(k) 0
0 γ (k) d + (k) 0

γ ∗(k) 0 0 d − (k)

⎞
⎟⎠,

(14)

(k) = 2DS

[
−2 sin

(
1

2
kx

)
cos

(√
3

2
ky

)
+ sin(kx )

]
. (15)

The experiment [60] shows a good agreement with the
theoretical study [59], in which the parameters of MnPS3

are considered as J1 = J2 = 1.54 meV, D = 0.36 meV, κS =
0.0086 meV, and S = 5/2 [76]. To estimate the order of linear
spin Nernst current, we ignore the second- and the third-
nearest-neighbor Heisenberg interactions taken into account
in Ref. [59], whose coupling constants are less than one-
fourth of the nearest-neighbor ones. Since the antiferromagnet
MnPS3 possesses the nonnegligible DMI, the spin current
observed in MnPS3 [60] is mainly attributed to the linear SNE,
which is described by the first term in Eq. (10). Here, we write
the part of the integral in this term as follows:

I1 :=
∑

n

∫
BZ

d2kc1(ρ0(En(k), T0))(�n,↑(k) − �n,↓(k)).

(16)

Figure 5(a) shows the numerical result of I1 as a function of
temperature T0 in model (13). From the figure, the order of the
spin current at T0 = 20 K can be written as follows:

JS
L = ∇T

V
× I1 ∼ ∇T

V
× 10−1. (17)

Next, we estimate the order of nonlinear SNE in model (13)
where the DMI is set to zero, which is equivalent to model
(11). We here assume that the coupling constant J1 in Eq. (11)
is changed as J1 = 1.54 → 2.0 meV. In such a case, i.e., for
D = 0 and J1 = J2, the system exhibits not the linear magnon
SNE but the nonlinear one, which is described by the second
term in Eq. (10). Here, we define the part of the integral of this

term with the prefactor 1/T0 as I2, i.e.,

I2 := 1

T0

∑
n

∫
BZ

d2kc1(ρ0(En(k), T0))

× ∂

∂kx
[En(k)(�n,↑(k) − �n,↓(k))]. (18)

The numerical result of I2 as a function of T0 is shown in
Fig. 5(b). From this figure, we can evaluate the nonlinear spin
current at T0 = 20 K as

JS
NL = τ (∇T )2

h̄V
× I2 ∼ τ (∇T )2

h̄V
× (10−1 meV nm K−1).

(19)

Since the linear spin Nernst current in Eq. (17) was observed
with the electric voltage VL ∼ 1 μV through the inverse spin
Hall effect at T0 = 20 K (see Fig. 3(c) in Ref. [60]), we can
estimate the voltage VNL by the nonlinear spin Nernst current
in Eq. (19) in the following by taking their ratio:

VNL ∼ VL × JS
NL

JS
L

∼ 1 μV × (τ (∇T )2/h̄V ) × (10−1 meV nm K−1)

(∇T/V ) × 100

∼ 10n+6 μV. (20)

Here, we assume that the lifetime of magnons and the applied
temperature gradient are τ ∼ 10n s and ∇T ∼ 10−6 K nm−1

which is estimated by the experiment in Ref. [60], re-
spectively. In experiments, the minimum voltage detectable
through the inverse Hall effect is roughly 10−3 μV [77], and
thus we can detect the nonlinear SNE if the magnon lifetime
is τ � 1 ns. In model (11), the velocity of magnons at the
� point is estimated as v = (∂/h̄∂ki )E↑(k) ∼ 1012 nm s−1.
Then, the corresponding mean free path for VNL ∼ 10−3 μV
(τ ∼ 1 ns) is l ∼ 1 μm, which is achievable in magnets.

VI. NONLINEAR MAGNON SPIN NERNST EFFECT
IN VARIOUS ANTIFERROMAGNETS

In this part, we showcase the magnon extended BCD and
nonlinear spin Nernst current in several AFMs; square lattice
AFMs with bond dependences and diamond lattice AFM un-
der pressure [see Fig. 6]. The forms of the Hamiltonians in
these three cases are the same as Eq. (11). Figure 6 shows
which nearest-neighbor bonds correspond to 〈i j〉1 and 〈i j〉2 in
the Hamiltonians.

By applying Holstein-Primakoff and Fourier transforma-
tions to Eq. (11), we obtain magnon Hamiltonians for these
AFMs which are the same form as Eq. (12) with different
d and γ (k). In the case of the square lattice AFMs with
staggered-bond dependence [see Fig. 6(a)], d and γ (k) in
Eq. (12) is defined as follows:

d = 3J1S + J2S + 2κS, (21)

γ (k) = J1Seikx/
√

2 + J1Seiky/
√

2

+ J2Se−ikx/
√

2 + J1Se−iky/
√

2. (22)
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FIG. 6. Square lattice AFMs with (a) staggered and (b) zigzag-
bond dependences. The nearest-neighbor bonds 〈i j〉1 and 〈i j〉2 in
Eq. (11) correspond to the ones denoted by the thin and thick lines,
respectively. (c) Diamond lattice AFM under pressure from the z
direction. The bonds 〈i j〉2 and 〈i j〉1 in Eq. (11) correspond to the
vertical and the other three ones, respectively. Red and blue circles
represent spins pointing in the +z and −z directions, respectively.

Those of the square lattice AFMs with zigzag-bond depen-
dence [see Fig. 6(b)] are given by

d = 2J1S + 2J2S + 2κS, (23)

γ (k) = J1Seikx/
√

2 + J1Seiky/
√

2

+ J2Se−ikx/
√

2 + J2Se−iky/
√

2. (24)

In the case of diamond lattice AFM [see Fig. 6(c)], d and γ (k)
are written as follows:

d = 3J1S + J2S + 2κS, (25)

γ (k) = J1Seik·a0 + J1Seik·a1 + J1Seik·a2 + J2Seik·a3 , (26)

where a0 = (0, 1√
3
,− 1

2
√

6
), a1 = (− 1

2 ,− 1
2
√

3
,− 1

2
√

6
), a2 =

( 1
2 ,− 1

2
√

3
,− 1

2
√

6
), and a3 = (0, 0, 3

4

√
2
3 ). One can easily make

sure that these AFMs also have PT symmetry thanks to the
same form of the magnon Hamiltonian as that expressed in
Eq. (12).

Figure 7 shows BC and the extended BCD of magnons
in these systems. For the diamond lattice AFM, we plot
the x component of BC and the extended BCD defined
as �x

↑(k) = −2Im[(∂kyψ↑(k))†�z(∂kzψ↑(k))] and D̄xy
↑ (k) =

∂ky [E↑(k)�x
↑(k)] in the kx = 0 plane, respectively. They are

relevant for nonlinear magnon SNE in three dimensions, as
seen later [Eq. (27)]. As in the case of honeycomb lattice
AFM, the energy eigenvalue, BC, and the extended BCD

(a) (b)

(c) (d)

(e) (f)
0.2

0.1

0

−0.1

−0.2

FIG. 7. (a),(c) BC �↑(k) and (b),(d) extended BCD D̄y
↑(k) =

∂ky [E↑(k)�↑(k)] of magnons with the up spin dipole moment
in the square lattice AFM. (a) and (b) [(c) and (d)] are re-
sults for the staggered-bond (zigzag-bond) dependence described
in Fig. 6(a) [Fig. 6(b)]. (e) and (f) show the x component of BC
�x

↑(0, ky, kz ) and the extended BCD D̄xy
↑ (0, ky, kz ) of magnons in the

diamond lattice AFM under pressure, respectively. The parameters in
these systems are chosen to be J1S = 1.0, J2S = 1.2, and κS = 0.01.

of magnons with down spin dipole moment in the square
(diamond) lattice AFM are determined by E↓(k) = E↑(k),
�↓(k) = −�↑(k) (�x

↓(k) = −�x
↑(k)), and D̄x

↓(k) = −D̄x
↑(k)

(D̄xy
↓ (k) = −D̄xy

↑ (k)), respectively. As shown in Fig. 7, the
extended BCD mainly appears around the � point, which
contributes to the nonlinear SNE.

Figure 8 shows the coefficients of nonlinear magnon SNE
in these systems as a function of the coupling constant J2.
For the case of the diamond lattice AFM, we generalize the
formula Eq. (10) to that in three dimensions; i.e.,

JS
z = ∇T

V

∑
n

∫
BZ

d3kc1(ρ0(En(k), T0))
(
�x

n,↑(k) − �x
n,↓(k)

)

+ τ (∇T )2

h̄V T0

∑
n

∫
BZ

d3kc1(ρ0(En(k), T0))

× ∂

∂ky

(
En(k)

(
�x

n,↑(k) − �x
n,↓(k)

))

+ O((∇T )3). (27)
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0.01 0.01

(a) (b)

FIG. 8. Coefficients of nonlinear magnon SNE in the square
lattice AFMs with the (a) staggered, (b) zigzag-bond dependences,
and (c) the diamond lattice AFM under pressure. The temperature
gradient is applied in the y direction as T (y) = T0 − y∇T . In the
case of diamond lattice AFM, the spin Nernst current flows to the
+z direction (−z direction) for J1 < J2 (J1 > J2). We set J1S = 1.0,
κS = 0.01, T0 = 0.1 and take the factor τ/(h̄V T0 ) = 1 for (a), (b),
and (c).

As shown in Fig. 8, the nonlinear SNE of magnons occurs in
the square and diamond lattice AFMs while the coefficients
become zero for the symmetric case, i.e., J1 = J2. We here
emphasize that Fig. 8(c) implies the pressure-tunable spin
current can generate in the diamond lattice AFM as well as
the honeycomb lattice AFM.

The quasi-two-dimensional AFMs Cu(en)(H2O)2SO4 is a
candidate material of the square lattice antiferromagnet with
zigzag bond dependence, in which the coupling constants
are estimated as J1 = 10J2 ∼ 0.30 meV [78]. We can also
find candidate materials of the diamond lattice AFMs exhibit-
ing Néel order, such as CoRh2O4 [79], MnAl2O4 [80], and
(ET)Ag4(CN)5 [81]. In particular, (ET)Ag4(CN)5 is a molec-
ular compound, and can be distorted by applying pressure
without difficulty. Thus, the pressure-tunable spin current is
expected in the AFM.

VII. SUMMARY

In this paper, we have derived the formula for the magnon
spin Nernst current as a second-order response and found
that it is characterized by the extended BCD. We then have
applied the obtained formula to the strained honeycomb lattice
AFMs and found out that the direction of spin current can be
controlled by tuning the strain. We have also calculated the
extended BCD of magnons and confirmed that the nonlinear
magnon SNE appears in the square lattice AFMs with bond
dependences and the diamond lattice AFM under pressure.
Even without the DMI, the nonlinear magnon SNE is ex-
pected to be brought about in various Néel AFMs when the
inversion and rotational symmetries are broken by such as
strain/pressure. Here, we note that distortion can induce the
DMI, and thus the systems have the potential for exhibiting the
linear SNE. However, if materials consist of light elements,
they can show mainly not the linear but nonlinear SNE be-
cause the strain-induced DMI would be negligible.

Our study reveals that the pure spin current can be gener-
ated in various Néel AFMs. Owing to the simple setup, we can
find a number of candidate antiferromagnetic materials ex-
hibiting nonlinear magnon SNE; e.g., AFMs on a honeycomb
lattice [73,74,82–86], square lattice with zigzag bond depen-
dence [78], and diamond lattice [79–81]. We here emphasize
that our proposal for the nonlinear magnon SNE provides one
of a few possible ways to generate the spin current in materials
composed of light elements such as organic materials [87,88]
where the DMI is negligible. Since such organic materials
[73,81] are easily deformed mechanically, we expect to have
a controllable pure spin current by strain or pressure, which
expands the possibilities of applications in spintronics.
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