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Spin-resolved spectroscopy of helical Andreev bound states
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We propose a versatile setup that allows performing spin-resolved spectroscopy of helical Andreev bound
states, proving their existence and therefore the topological nature of the Josephson junction that hosts them.
The latter is realized on the helical edge of a 2D topological insulator, proximitized with two superconducting
electrodes. The spectroscopic analysis is enabled by a quantum point contact, which couples the junction with
another helical edge acting as a spin-sensitive probe. By means of straightforward transport measurements,
it is possible to detect the particular spin structure of the helical Andreev bound state and to shine light on the
mechanism responsible for their existence, i.e., the presence of protected Andreev reflection within the Josephson
junction. We discuss the robustness of this helical Andreev spectrometer with respect to processes that weaken
spin to charge conversion.
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I. INTRODUCTION

Two-dimensional topological insulators (2DTIs) have been
receiving a lot of attention since their first discovery [1–4]
and represent a prominent example of topological systems.
They feature a 2D insulating bulk with topologically pro-
tected 1D helical edge states, which propagate in opposite
directions and have opposite spin orientation [5]. Because of
this remarkable feature, known as spin-momentum locking,
2DTIs are a precious resource in view of their functionalities
in spintronics [6–9]. Moreover, helical edges proximitized by
superconductors are predicted to realize topological supercon-
ductivity [10–12], a fundamentally interesting phenomenon
with multiple applications, ranging from topological quan-
tum computation [13–17] to low-temperature thermal devices
[18–22]. To date, 2DTIs have been proposed and realized
in a variety of materials [23–31]. One of the most ma-
ture platforms is represented by HgTe quantum wells where
robust ballistic transport on the edges has been experimen-
tally observed [1,32–34] and superconducting contacts have
been successfully fabricated [35]. The latter advancement has
allowed for the realization of 2DTI-based Josephson junc-
tions (JJs) and to the subsequent observation of fractional
Josephson effect [36–38] and superconducting edge transport
[35,37].

A distinctive feature of a JJ defined in a 2DTI is the
presence of helical Andreev bound states (hABSs) [37,39–
42]. They consist of two particular forms of mid-gap states
with a specific spin structure and a protected crossing at
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zero energy. Due to spin-momentum locking and perfect
Andreev reflection (AR), each hABS is either a perfect su-
perposition of polarized electrons with spin up and holes
with spin down or vice versa. Their existence represents a
hallmark of 2DTI-based JJs and eventually leads to a rich
phenomenology, including the theoretically predicted appear-
ance of a zero-energy Majorana Kramers pair [43,44], as well
as the experimentally observed 4π periodic current-phase re-
lation [36–38,45], and the even-odd effect in the diffraction
pattern [31,46,47]. Unfortunately, experimental signatures of
these phenomena can be obscured by nontopological effects
[48–50]. It is therefore an open question how to directly probe
the existence of hABSs and thus the topological origin of the
JJ [51–53].

We propose a feasible setup to perform spectroscopy of
Andreev bound states [54–56] in a spin-sensitive way, by
taking advantage of a recent experimental breakthrough in
HgTe-based 2DTIs, the realization of a quantum point contact
(QPC) that couples the two helical edges of a 2DTI [57].
On one of the edges, say the upper one, we define a JJ by
adding two superconducting contacts. On the lower edge,
we exploit helicity to detect the spin orientation of electrons
by purely electrical means. The resulting setup allows for a
spin-resolved DC tunneling spectroscopy of hABSs within a
single integrated device. We demonstrate the robustness of
our proposal by investigating the influence of spin-flipping
tunneling events in the QPC as well as the effect of spurious
electronic backscattering within the JJ.

II. SETUP

The setup is sketched in Fig. 1(a). It consists of a 2DTI
(gray region) featuring helical edge states (blue and red lines).
Two standard s-wave superconducting electrodes (depicted in
green) induce superconducting correlations on two parts of the
upper helical edge of the 2DTI via the proximity effect [46]
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FIG. 1. (a) Schematic of the setup. Green (yellow) rectangles
represent superconducting (normal) leads. The 2DTI (gray) features
helical edge states, shown with blue (spin-up) and red (spin-down)
line/arrows. (b) The two classes of hABSs: Solid (dotted) lines
represent electrons (holes). (c) Labeling of the electronic amplitudes,
incoming (α) or outgoing (β) with respect to the QPC.

and thus define a JJ that extends from x = −D/2 to x = D/2.
The tunneling of Cooper pairs between each superconducting
electrode and the helical channels underneath locally gaps
the latter by inducing an effective pairing potential �r eiχr ,
with r = R/L indicating the left/right superconductor [58].
The phase difference χ = χR − χL can be controlled by con-
necting the two electrodes with a superconducting bridge (not
shown in the schematic) and tuning the magnetic flux, which
threads the resulting asymmetric SQUID [59–61]. As for the
bottom edge, it is contacted with two metallic leads (depicted
in yellow and labeled C1 and C2), which allow performing
transport measurements. We assume the JJ to be long enough
so that it can accommodate a QPC, located at x = x̄, that
tunnel couples the lower edge with the upper one (see the
purple lines).

The upper and lower helical edges are described by the free
Hamiltonian with linear dispersion

H0 = v
∑

σ

∑
r

∫
dx ψ†

rσ (x)(−ir∂x )ψrσ (x). (1)

Throughout the paper, we set h̄ = 1 unless stated differently.
Without loss of generality, we assume channels with positive
helicity (rσ > 0) to be on the lower edge and vice versa.
The x coordinate describes the position along each edge. The
operator ψ†

rσ creates an electron with spin σ =↑,↓≡ ±1
on right-moving (r = R ≡ 1) or left-moving (r = L ≡ −1)
channels.

III. HELICAL ANDREEV BOUND STATES

Within our JJ, particles/holes impinging against a super-
conducting region necessarily undergo perfect AR [62], i.e.,
they are completely reflected back as holes/particles with
opposite spin, as schematically depicted in Fig. 1(b). That is
indeed the only allowed single-particle process in absence of
TR-breaking scatterers and for a large enough bulk gap of the
2DTI. The amplitude αc

rσ of a reflected electron/hole (c =
e/h ≡ ±1) with spin σ and propagation direction r = R/L, is

thus related to the one of the incoming hole/electron simply
by a phase shift (see Appendix A)

αc
rσ = −iσc e−ic χr̃ ei
r̃ (E )β c̃

r̃σ̃ , (2)

where E is the energy and the tilde notation indicates the
opposite values, i.e., ẽ = h, R̃ = L, ↑̃ =↓ and vice versa.
The amplitude of the hole/particle impinging on the r̃
superconductor is denoted by β c̃

r̃σ̃ and we introduce the func-
tion 
r (E ) = π/2 + EDv−1 − arccos(E/�r ). A schematic
overview of the scattering amplitude labeling is provided in
Fig. 1(c) [63].

Due to the helical nature of the weak link, and the conse-
quent presence of perfect AR, the mid-gap states hosted by
the JJ acquire a particular structure and are dubbed hABSs.
To better highlight their properties, we temporarily ignore the
presence of the QPC. In this case, given Eq. (2), it is straight-
forward to show that the JJ hosts a bound state whenever
the compatibly condition − exp[i(νχ + 
R(E ) + 
L(E ))] =
1 is satisfied [62,64]. The quantity ν = rc = ±1 distinguishes
between two decoupled classes of hABSs, related by TR,
featuring the energy-phase relations

χ = ±(π − 
L(E ) − 
R(E )) (mod 2π ). (3)

Importantly, each class has a specific spin structure: hABSs
with ν = +1 (ν = −1) consist only of right-moving spin-
down electrons (holes) and left-moving spin-up holes (elec-
trons), illustrated in Fig. 1(b).

IV. SPIN-RESOLVED ANDREEV SPECTROSCOPY

We now demonstrate how the intriguing structure of
hABSs can be directly probed by means of the QPC sketched
in Fig. 1(a). We model it by the point-like tunneling Hamilto-
nian [65–69]

HQPC = 2vλp

∑
σ

ψ
†
Rσ ψLσ + 2vλ f

∑
r

r ψ
†
r↑ψr↓ + H.c., (4)

where the fermionic operators are evaluated at the position x̄
of the QPC. This Hamiltonian consists of both spin-preserving
(amplitude λp) and spin-flipping (amplitude λ f ) tunneling
terms. The latter can exists only if spin-axial symmetry is
broken, a condition that cannot be excluded at the QPC where
the pinching of the edges can induce a local modification of
the spin-orbit coupling [65,69]. Therefore, we also consider
the effects of a small but finite λ f . For the QPC Hamiltonian
to be TR invariant, which is the case considered here, the
amplitudes λp and λ f must be real.

We derive the transport properties on the lower edge using
the scattering matrix formalism. The combined effect of the
QPC and AR within the JJ results in the relation (see Appen-
dices B and C)⎛

⎜⎜⎜⎝
βe

R

βe
L

βh
R

βh
L

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t ee
→ ree

↪→ ceh
→ aeh

↪→
ree
←↩ t ee

← aeh
←↩ ceh

←
che
→ ahe

↪→ t hh
→ rhh

↪→
ahe

←↩ che
← rhh

←↩ t hh
←

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

αe
R

αe
L

αh
R

αh
L

⎞
⎟⎟⎟⎠ (5)

between outgoing and incoming amplitudes on the lower
edge (we suppress the redundant spin index) [65,66]. It
features four kinds of energy-dependent coefficients, which
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FIG. 2. [(a)–(c)] Nonlocal differential conductances
G12/21(E , χ ) for the parameters: λp = 0.25, x̄ = 1ξL , �L = �,
�R = 1.2�, D = 6ξL , with the coherence length ξL = v/(π�L ).
In (a) we plot G12 for λ f = 0. In (b) and (c) we plot G12 and G21,
respectively, with λ f = 0.15. In (d) we plot |δGν |(π/2)| [see Eq. (8)]
as a function of λp and λ f /λp. All plots share the same color bar, in
units of e2/h.

refer to four distinct physical processes: transmission of
electrons/holes (t), backscattering of electrons/holes (r), An-
dreev reflection (a), and Andreev transmission (c). Those
coefficients, whose analytical expressions are derived and pre-
sented in Appendices B and C, are directly related to transport
properties of the lower edge. At first, we focus on the nonlocal
differential conductances

G12(V1, χ ) = dI2

dV1
= e2

h
(|t ee

→|2 − |che
→|2),

G21(V2, χ ) = dI1

dV2
= e2

h
(|t ee

←|2 − |che
←|2), (6)

describing the transmission between contacts C1 and C2 [70].
If the two edges are decoupled (i.e., λ f = λp = 0), G12/21 are
both quantized at e2/h. By contrast, when tunneling across
the QPC is allowed, we expect deviations from the quantized
values whenever the hABSs formed on the upper edge couple
to the lower one. This is clearly shown in Fig. 2, where we
plot G12/21 for a variety of system parameters.

If only spin-preserving tunneling is allowed (i.e., λ f = 0),
the QPC operates as a perfect spin-resolved Andreev spec-
trometer: G12 (G21) is indeed only sensitive to electronic states
on the upper edge with spin-up (spin-down). This allows us to
perfectly distinguish between the two classes of hABSs, as
G12 (G21) exclusively reveals the energy-phase relation of the
ν = −1 (ν = +1) class. In particular, we predict G12(E , χ ) =
G21(E ,−χ ) with [71]

G12(E , χ ) =
[

1 + 8λ4
p(

λ4
p − 1

)2
(1 + cos(
L + 
R − χ ))

]−1

.

(7)

This result is displayed in Fig. 2(a) where, to highlight the
robustness of the setup against geometrical asymmetries, we
consider a finite x̄ �= 0 and �R �= �L [72,73]. In this regime,
our device can therefore provide a compelling proof of the
existence of hABSs and directly probe their particular spin
structure.

Importantly, the proposed setup is robust with respect to
the two main effects that lead to deviations from the ideal
scenario discussed above: (i) limited spin-resolving power of
the detector due to a finite spin-flipping amplitude λ f at the
QPC; (ii) presence of spurious reflection mechanisms within
the JJ. In the following, we carefully analyze both of them.

V. ROBUSTNESS AGAINST SPIN-FLIP EVENTS

Our device retains a strong spin sensitivity even in presence
of finite λ f . This is shown, for example, in Figs. 2(b) and
2(c), where we plot G12 [panel (b)] and G21 [panel (c)] for
λp = 0.25 and a relatively large λ f = 0.15. Each conductance
is sensitive to both classes of hABSs, since a given spin chan-
nel on the lower edge is now coupled to both spin orientations
on the upper edge. However, reductions from the quantized
value are particularly pronounced only for one of them. The
qualitative distinction between the two classes is facilitated
by the presence of regions featuring negative values of the
conductance, resulting from the onset of the Andreev trans-
mission processes discussed in the next paragraph. To achieve
analytical progress, we consider the (reasonable) assumption
�R = �L = � that allows us to derive a compact expression
for δGν (χ ) = G12(Eν, χ ) − G21(Eν, χ ),

δGν (χ ) = e2

h

ν
(
λ2

p − λ2
f

)
(�2 − 1)2 sin(χ )2

4�3 cos(χ )2 + �(�2 + 1)2 sin(χ )2
, (8)

with � = λ2
p + λ2

f and Eν satisfying the energy-phase rela-
tions 
(Eν ) = (π − νχ )/2 of the hABSs. As expected, the
difference vanishes for χ = 0, π (when the hABSs are de-
generate) and for λp = λ f (when the tunneling at the QPC
becomes spin independent). By contrast, the maximum ab-
solute value of δGν (χ ) is reached for χ = π/2, 3π/2. In
Fig. 2(d), we plot |δGν (π/2)| as a function of λp and λ f /λp

and show that it remains significantly larger than zero even
when λ f represents a sizable fraction of λp. Therefore, even
for finite λ f , the asymmetry between G12 and G21 remains
a good indicator of the existence of two classes of Andreev
bound states, with complementary spin-structure and energy-
phase relation. Only in the specific case λp = λ f , tunneling
at the QPC becomes completely spin independent. Then, it is
not possible anymore to distinguish between the two hABS
classes.

Figures 2(b) and 2(c) show another intriguing feature:
When both tunneling amplitudes are finite, it is possible
to observe negative values of G12/21 (green-yellow regions).
Indeed, for λp, λ f �= 0, Andreev transmission processes che

↔
are allowed at the QPC and they can dominate over the
standard transmission. This is particularly evident close to
the energy-phase relations of the hABSs, where the standard
transmission is suppressed. Focusing on E = 0 and χ = π ,
in Appendix C we derive the simple relation 0 � (G12/21 ∝
−λ2

pλ
2
f ) � −e2/h, stemming from the presence of a Kramers
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FIG. 3. Differential conductances in presence of electronic
backscattering on the upper edge, induced by a magnetic impurity
with m = 0.05 and located at xM = 2ξL . The other parameters are
the same as in Figs. 2(b) and 2(c). The conductances are in units of
e2/h. Plots (a) and (b) share the same color bar with Fig. 2.

pair of Majorana zero modes (obtained from a proper linear
combination of the degenerate hABSs) [43,44]. In general,
however, negative values of G12/21 can be found at all energies
below the gap, and even in absence of hABSs, see Figs. 3(a)
and 3(b) and Ref. [74].

VI. SPURIOUS BACKSCATTERING TERMS

To study the effects of spurious backscattering mechanisms
within the JJ, we begin by considering the example provided
in Figs. 3(a) and 3(b). There, we plot the conductances G12/21

obtained for the same parameters used in Figs. 2(b) and 2(c)
but considering the additional presence of a weak magnetic
impurity within the JJ. The latter, described by the Hamilto-
nian HM = 2vm ψ

†
L↑(xM )ψR↓(xM ) + H.c., induces electronic

backscattering at x = xM and therefore hybridizes the hABSs.
For a small impurity strength m = 0.05 
 1, the resulting
mid-gap states retain a significant spin polarization, which
emerges as a strong asymmetry between the two nonlocal
conductances in Figs. 3(a) and 3(b). While this underlines
once more the high spin sensitivity of our device, a direct
comparison with Figs. 2(b) and 2(c) shows that a qualitative
analysis of G12/21 alone might not be able to clearly distin-
guish between the two cases. In this respect, we stress that a
violation of

G12/21(E , χ ) = G12/21(−E ,−χ ) (9)

represents a proof for the absence of hABSs. However, the
converse is not true (as shown in Appendix F) and this calls
for a more in-depth analysis of the conductances.

Our device provides us with an additional tool that can
efficiently detect the presence of spurious electronic backscat-
tering within the JJ, allowing us to distinguish between the
presence of hABSs and other mid-gap states. In particular,
our setup naturally allows for the measurement of the local

differential conductances

G11(V1, χ ) = dI1

dV1
= e2

h
(1 − |ree

←↩|2 + |ahe
←↩|2),

G22(V2, χ ) = dI2

dV2
= e2

h
(1 − |ree

↪→|2 + |ahe
↪→|2), (10)

that can be combined to define

� = G12 + G11 − G21 − G22

= 2(|ree
↪→|2 + |che

←|2 − |ree
←↩|2 − |che

→|2). (11)

The four independent quantities G12/21/11 and � are plotted in
Fig. 3. The presence of hABSs implies � = 0. Indeed, as each
hABS consists only of electrons with a specific spin orienta-
tion, there is only one way for electrons to tunnel from (into)
that hABS. In particular, the reflection of an electron emerging
from contact Cj necessarily involves one spin-flipping and
one spin-preserving tunneling event, regardless of j = 1, 2.
The same applies for the Andreev transmission and leads
to |ree

↪→|2 = |ree
←↩|2 and |che

←|2 = |che
→|2 (see Appendix D). By

contrast, mid-gap states with nonhelical features offer more
channels for the electrons to tunnel between the edges. This
results in deviations from � = 0 as shown in Fig. 3(d). We
thus claim that the consistent observation of a vanishing � =
0 over a wide range of parameters represents a proof of the
presence of hABSs.

To properly demonstrate this, we consider the presence
of generic backscattering processes between the two helical
channels of the upper edge. To this end, we replace the AR-
induced constraints on the scattering amplitudes in Eq. (2)
with the more general conditions(

αe
rσ

αh
rσ

)
=

(
cos(θr )eiξ ee

r sin(θr )eiξ eh
r

sin(θr )eiξ he

r cos(θr )eiξ hh
r

)(
βe

r̃σ̃

βh
r̃σ̃

)
, (12)

describing generic complete reflection processes happening
to the left (r = L) or to the right (r = R) of the QPC.
The parameters θr (mod π ) control the nature of these pro-
cesses, which can continuously range from the pure electronic
backscattering limit (θr = 0) to the pure AR scenario con-
sidered in Eq. (2) and corresponding to θr = π/2 [with
ξ eh/he

r (E ) = ∓(χr + rπ/2) + 
r (E )]. The analytical expres-
sions of the four differential conductances, determined by
imposing Eq. (12), show that the exclusive presence of AR
(and thus of hABSs) implies a vanishing � = 0 (see Ap-
pendix D for more details). Moreover, with the possible
exception of fine-tuned points in the parameter space, we
demonstrate that � = 0 also guarantees θR = θL = π/2 [75],
and thus the presence of pure AR (see Appendix D). There-
fore, the experimental observation of � = 0 over a wide range
of parameters, e.g., over the (E − χ ) diagram and for different
samples featuring different JJ length, QPC transparency and
position, represents a proof of the exclusive presence of AR
within the JJ. This, in turn, assures that the mid-gap states
probed by our spin-resolved Andreev spectrometer are indeed
hABSs.

VII. DISCUSSION

We argue that our proposal is within experimental reach,
given the degree of maturity of HgTe-based 2DTI devices. The
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edge states exhibit ballistic mean free paths that exceed sev-
eral micrometers [1,38]. We, therefore, expect that inelastic
scattering, which would be detrimental both for the formation
of hABS and for their detection, should not play a major
role in a realization of our proposal based on HgTe. Joseph-
son junctions have been successfully realized, for example
with Al contacts, featuring an estimated coherence length
ξ � 600 nm and superconducting gap � ∼ 40 μeV [37,38].
As the physical width of a QPC is typically of the order of
100 nm [57], the geometrical constraints of our proposal can
be satisfied. Importantly, our results are robust with respect to
geometrical asymmetries in the setup, as confirmed by Figs. 2
and 3 that have been obtained for an asymmetric position of
the QPC and asymmetric pairing potentials �L �= �R.
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APPENDIX A: PERFECT ANDREEV REFLECTIONS

The aim of this Appendix is to derive Eq. (2), which de-
scribes the phases associated with AR within a JJ. In the setup
considered in Fig. 1(a), the JJ is defined on the upper edge
of a 2DTI, which has negative helicity, that is rσ = ζ = −1.
However, for the sake of generality, in the following, we
investigate a single helical edge with a generic helicity ζ (for
this reason we can drop the index r of the fermionic fields).
Its Hamiltonian reads (in this Appendix we assume v = 1)

Hζ =
∫

dx
∑

σ

ζσψ†
σ (x)(−i∂x )ψσ (x). (A1)

In the portions of the helical system, which are proximitized
by a standard superconductor, an additional proximity-
induced pairing is present

H� =
∫

dx �(x)[e−iχψ
†
↑(x)ψ†

↓(x) + eiχψ↓(x)ψ↑(x)].

(A2)
The resulting Hamiltonian density in the Bogoliubov-de
Gennes (BdG) form reads

Hζ
BdG =

⎛
⎜⎜⎝

ζ p 0 0 �(x)e−iχ

0 −ζ p −�(x)e−iχ 0
0 −�(x)eiχ ζ p 0

�(x)eiχ 0 0 −ζ p

⎞
⎟⎟⎠

(A3)

with p = −i∂x and written in the basis � =
(ψ↑, ψ↓, ψ

†
↑, ψ

†
↓ )T .

Focusing on a given proximitized region (and assuming
the superconducting pairing to be homogeneous), the BdG
equation of the system is given by

E

(
uσ

vσ̃

)
= σ

(
ζ p �e−iχ

�eiχ −ζ p

)(
uσ

vσ̃

)
, (A4)

or equivalently

−i∂x

(
uσ

−vσ̃

)
= ζ

(
σE �e−iχ

−�eiχ −σE

)(
uσ

−vσ̃

)
, (A5)

where we denote the eigenvectors of Hζ
BdG, with eigenvalue

E , as φ = (u↑, u↓, v↑, v↓)T . Its solutions read(
uσ

vσ̃

)
= A+eκx

(
e−iχ (ζσE − iκ )

ζ�

)

+ A−e−κx

(
e−iχ (ζσE + iκ )

ζ�

)
, (A6)

where we introduce κ = √
�2 − E2. By contrast, in the non-

proximitized helical region, we have � = 0 and the solutions
of the BdG equations are simply plane waves(

uσ

vσ̃

)
=

(
AeiζσEx

Be−iζσEx

)
=

(
Ae−iζ σ̃Ex

Beiζ σ̃Ex

)
. (A7)

Let us now consider the reflections from two semi-infinite
superconductors located at x = xr , with r = R, L. At first, we
focus on an incident electronic plane wave with energy E and
amplitude βe

rσ [see Fig. 1(c) for a sketch of our notation]. The
Andreev reflected hole has an amplitude given by the solution
of

βe
rσ eirExr = Ce−iχr (rE + riκr )

αh
r̃σ̃ e−irExr = Crσ�r, (A8)

which gives us

αh
r̃σ̃ = ei2rExr eiχr

σ�r

E + iκr
βe

rσ

= σei2rExr eiχr e−i arccos(E/�r )βe
rσ . (A9)

As for the scattering of holes with energy E and amplitude
βh

r̃σ̃ , we get

αe
r̃σ̃ e−irExr = Ce−iχr (−rE + riκr )

βh
rσ eirExr = −Crσ̃�r, (A10)

which results in

αe
r̃σ̃ = ei2rExr e−iχr

E − iκr

σ̃�r
βh

rσ

= σ̃ei2rExr e−iχr e−i arccos(E/�r )βh
rσ . (A11)

Note that we use the identity (|E | < �)

�

E + i
√

�2 − E2
= exp

[
−i arccos

�

E

]
. (A12)

In summary, we obtain (c = e/h = ±1, ẽ = h)

αc
rσ = cσ exp [−icχr̃ + 2r̃iExr̃ − i arccos(E/�r̃ )]β c̃

r̃σ̃ .

(A13)

The parameters χr and �r are the superconducting phase
and pairing potential of the right (r = R) and left (r = L)
superconducting lead. Note that, if the two superconductors
are located at xr = rD/2, one simply gets 2r̃iExr̃ = iED re-
gardless of the value of r. Equation (A13) demonstrates the
validity of Eq. (2).
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Incidentally, we observe that Eq. (A13) is compatible with
particle-hole symmetry. The latter exchanges particles and
holes αc

rσ → αc̃
rσ and βc

rσ → β c̃
rσ , adds a complex conjugation

i → −i, and flips the sign of the energy E → −E . It is easy
to verify that (A13) is invariant under particle-hole symmetry

αc
rσ = cσ exp [−icχr̃ + 2r̃iExr̃]

�r̃

E + iκr̃
β c̃

r̃σ̃

P.H.⇒ αc̃
rσ = −cσ exp [+icχr̃ + 2r̃iExr̃]

�r̃

E + iκr̃
βc

r̃σ̃ . (A14)

As for time-reversal symmetry, it add a complex conjugation
i → −i, exchanges incoming and outgoing states, flips the
propagation direction and the spin, and add a spin-dependent
sign to the amplitudes, i.e., αc

rσ → σβc
r̃σ̃ and βc

rσ → σαc
r̃σ̃ .

Equation (A13) is not invariant under time-reversal symmetry,
since the latter flips the sign of the superconducting phases. In
particular, one obtains

αc
rσ = cσ exp [−icχr̃ + 2r̃iExr̃]

�r̃

E + iκr̃
β c̃

r̃σ̃

T .R.⇒ αc
rσ = cσ exp [+icχr̃ + 2r̃iExr̃]

�r̃

E + iκr̃
β c̃

r̃σ̃ . (A15)

APPENDIX B: SCATTERING MATRIX OF THE QPC

The goal of this Appendix is to derive the scattering matrix
of the QPC, both for electron (Se

QPC) and hole (Sh
QPC) states,

starting from the Hamiltonian H0 of the helical edges [see
Eq. (1)] and from the one describing tunneling at the QPC
HQPC [see Eq. (4)] located at x = x̄. We remind the reader
that, in order for the QPC to be time-reversal invariant, we
consider real amplitudes for both spin-preserving (λp) and
spin-flipping (λ f ) tunneling amplitudes. It is straightforward
to compute the equations of motion of the field operators, i.e.,
i∂tψrσ = −[H0 + HQPC, ψrσ ], that give

i∂tψrσ = −iϑrv∂xψrσ + 2vδ(x − x̄)(λpψr̃σ + ϑrλ f ψrσ̃ )
(B1)

where ↑̃ =↓, R̃ = L and vice versa. By using the plane-wave
ansatz

ψrσ (x) = e−iEt

√
h̄v

{
αrσ eirEx/v r(x − x̄) < 0
βrσ eirEx/v r(x − x̄) > 0

, (B2)

we can relate incoming and outgoing amplitudes as

i(βrσ − αrσ )

= λpe−2ϑr iE x̄/v (βr̃σ + αr̃σ ) + ϑrλ f (βrσ̃ + αrσ̃ ). (B3)

By rearranging terms, we get

⎛
⎜⎜⎝

i λ f −λpe2iE x̄/v

λ f i −λpe2iE x̄/v

−λpe−2iE x̄/v i −λ f

−λpe−2iE x̄/v −λ f i

⎞
⎟⎟⎠

⎛
⎜⎝

βL↑
βL↓
βR↑
βR↓

⎞
⎟⎠

=

⎛
⎜⎜⎝

i −λ f λpe2iE x̄/v

−λ f i λpe2iE x̄/v

λpe−2iE x̄/v i λ f

λpe−2iE x̄/v λ f i

⎞
⎟⎟⎠

⎛
⎜⎝

αL↑
αL↓
αR↑
αR↓

⎞
⎟⎠, (B4)

which allows us to readily derive the electronic scattering
matrix Se

QPC as

⎛
⎜⎜⎝

βe
L↑

βe
L↓

βe
R↑

βe
R↓

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�p f � f f �pb 0
� f f �p f 0 �pb

−�∗
pb 0 �p f −� f f

0 −�∗
pb −� f f �p f

⎞
⎟⎟⎠

⎛
⎜⎜⎝

αe
L↑

αe
L↓

αe
R↑

αe
R↓

⎞
⎟⎟⎠
(B5)

with

�p f = 1 − λ2
f − λ2

p

1 + λ2
f + λ2

p

, (B6)

� f f = 2iλ f

1 + λ2
f + λ2

p

, (B7)

�pb = − 2iλpe2iE x̄/v

1 + λ2
f + λ2

p

. (B8)

In presence of superconductivity, it is convenient to compute
the scattering matrix also for incoming and outgoing holes.
In this case, the amplitudes αh

rσ and βh
rσ are related by the

scattering matrix Sh(λp, λ f ) = Se(−λp,−λ f ), i.e.,⎛
⎜⎜⎜⎝

βh
L↑

βh
L↓

βh
R↑

βh
R↓

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�p f −� f f −�pb 0

−� f f �p f 0 −�pb

�∗
pb 0 �p f � f f

0 �∗
pb � f f �p f

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

αh
L↑

αh
L↓

αh
R↑

αh
R↓

⎞
⎟⎟⎟⎠.

(B9)

APPENDIX C: SCATTERING MATRIX
ON THE LOWER EDGE

In this Appendix, we combine the perfect AR on the upper
edge with the scattering at the QPC, aiming at deriving the
scattering matrix for the amplitudes on the lower helical edge.
By solving the resulting linear system for βe

R↑, βe
L↓, βh

R↑, and
βh

L↓ we readily obtain Eq. (5). The latter reads⎛
⎜⎜⎜⎝

βe
R

βe
L

βh
R

βh
L

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t ee
→ ree

↪→ ceh
→ aeh

↪→
ree
←↩ t ee

← aeh
←↩ ceh

←
che
→ ahe

↪→ t hh
→ rhh

↪→
ahe

←↩ che
← rhh

←↩ t hh
←

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

αe
R

αe
L

αh
R

αh
L

⎞
⎟⎟⎟⎠ (C1)
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where we suppressed the redundant spin index, which is fixed
by the (positive) helicity of the lower helical edge.

It is interesting to show and comment on the analytical
expression of the transmission and reflections coefficients.

To this end, it is particularly convenient to use the functions

r (E ) functions defined in the main text. The coefficients
associated with an incoming electron with spin-up (i.e., from
the C1 lead) reads

t ee
→ =

(
λ2

p + λ2
f

)2 − 1

�

[
ei(χ+2
R+2
L )

(
λ2

p + λ2
p − 1

)2 + eiχ
(
λ2

p + λ2
p + 1

)2

+ ei(
L+
R+2χ )
(
λ4

p + 2λ2
p

(
λ2

f − 1
) + (

1 + λ2
f

)2) + ei(
L+
R )
(
λ4

f + 2λ2
f

(
λ2

p − 1
) + (

1 + λ2
p

)2)]
(C2)

ree
←↩ = 4e2iE x̄/v

�
ei(
L+
R )(e2iχ − 1)λ f λp

((
λ2

p + λ2
f

)2 − 1
)

(C3)

che
→ = 8λ f λpeiχ

�

[(
λ2

p + λ2
f − 1

)2
ei3(
L+
R )/2 sin

4Ex̄/v + χ + 
L − 
R

2

+ (
λ2

p + λ2
f + 1

)2
ei(
L+
R )/2 sin

4Ex̄/v + 
L − 
R − χ

2

]
(C4)

ahe
←↩ = −4ieiχ/2

�

[
λ2

f

(
λ2

p + λ2
f − 1

)2
ei(
L+2
R ) + λ2

p

(
λ2

p + λ2
f − 1

)2
ei(4Ex̄/v+2
L+
R+χ )

+ λ2
f

(
λ2

p + λ2
f + 1

)2
ei(
R+χ ) + λ2

p

(
λ2

p + λ2
f + 1

)2
ei(
L+4Ex̄/v)

]
(C5)

with the denominator

� = [(
λ2

p + λ2
f + 1

)2 + (
λ2

p + λ2
f − 1

)2
ei(
L+
R+χ )][(λ2

p + λ2
f + 1

)2
eiχ + (

λ2
p + λ2

f − 1
)2

ei(
L+
R )]. (C6)

The other coefficients of the scattering matrix are given by

t hh/ee
← = t ee/hh

→ (C7)

t ee
←(λp, λ f ) = t ee

→(λ f , λp) (C8)

rhh
←↩ = −ree

←↩ (C9)

rhh
↪→ = −ree

↪→ = −e−4iE x̄/vree
←↩ (C10)

che/eh
← = −che/eh

→ (C11)

ceh
→(−χ ) = −e−2iχ che

→(χ ) (C12)

aeh
←↩(−χ ) = −e−2iχ ahe

←↩(χ ) (C13)

aeh
↪→(−χ ) = −e−2iχ ahe

↪→(χ ) (C14)

ahe
↪→(λp, λ f ) = −e−4iE x̄/vahe

←↩(λ f , λp). (C15)

Note that the modulus squared of the standard transmission
and reflection coefficients does not depend on the position x̄ of
the QPC. By contrast, the Andreev transmission and reflection
coefficients do depend on x̄ at finite energy. We also point out
that Andreev transmission c and standard reflection r are both
proportional to λpλ f : Those processes are therefore present
only when both spin-preserving and spin-flipping tunneling
events are allowed. As expected, the standard reflections van-
ish for χ = 0, π , i.e., when the whole system is time-reversal
symmetric and backscattering within a single helical edge is
therefore forbidden.

1. Particular values of phase and energy

We observe that the standard transmission coefficient van-
ishes for χ = π and E = 0 (which implies 
L = 
R = 0)
that is, when the JJ host a Kramers pair of Majorana zero
modes and only Andreev processes are allowed. In this case,
the other coefficients reads

ree
←↩ = 0 (C16)

che
→ = −2λ f λp

λ2
f + λ2

p

(C17)

ahe
←↩ = λ2

f − λ2
p

λ2
f + λ2

p

, (C18)

which lead to G12(0, π ) = G21(0, π ) = −(e2/h) 4λ2
f λ

2
p/

(λ2
f + λ2

p)2. As stated in the main text, we thus have
−e2/h � G12(0, π ) = G21(0, π ) � 0 and the value of −e2/h
is reached for λp = λ f .

It is illustrative to consider the case �R = �L, which leads
to 
L = 
R = 
. In this case, given the general relation in
Eq. (3), the energy-phase relation for the ν class of ABSs is
simply given by


ν (χ ) = (π − νχ )/2. (C19)

By plugging this relation into the expressions of the coef-
ficients, the latter greatly simplify. This allows us to obtain
more concise expressions for the conductances. In particular,
if we consider the difference between the two nonlocal con-
ductances G12 and G21, computed for the same χ and for the
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same energy E , which satisfy 
(E ) = 
ν (χ ), we get

δG(χ, ν) = ν
e2

h

[(
λ2

p − λ2
f

)((
λ2

p + λ2
f

)2 − 1
)2

sin(χ )2]
× [

4
(
λ2

f + λ2
p

)3
cos(χ )2

+ (
λ2

p + λ2
f

)((
λ2

p + λ2
f

)2 − 1
)2

sin(χ )2]−1
.

(C20)

Such an expression vanishes for χ = 0, π , i.e., when ABSs
belonging to different classes are present at the same time, and
reaches its largest absolute value for χ = ±π/2. For χ = π/2
and ν = +1, we obtain the expression reported in Eq. (8).

APPENDIX D: SPURIOUS BACKSCATTERING
ON THE UPPER EDGE

By combining the scattering at the QPC, described in
Eqs. (B5) and (B9), with the generic reflection matrix in
Eq. (12), it is straightforward to compute the coefficients of
the resulting scattering matrix on the lower edge [whose struc-
ture is shown in Eq. (5)]. The analytical expressions of those
coefficients, which allow us to compute the conductances
discussed in the main text, are extremely lengthy and it is
not convenient to explicitly write them here. It is, however,
extremely useful to consider particular combinations of those
coefficients, such as the quantity � defined in Eq. (11). Since
the scattering matrix is unitary, the modulus squared of the
coefficients of Andreev reflections (|ahe|) can be expressed in
terms of the others. This allows us to write

� = G12 + G11 − G21 − G22

= (|t ee
→|2 − |che

→|2) − (|t ee
←|2 − |che

←|2)

+ (1 − |ree
←↩|2 + |ahe

←↩|2) − (1 − |ree
↪→|2 + |ahe

↪→|2)

= (|t ee
→|2 − |che

→|2) − (|t ee
←|2 − |che

←|2)

+ (2 − 2|ree
←↩|2 − |t ee

→|2 − |che
→|2)

− (2 − 2|ree
↪→|2 − |t ee

←|2 − |che
←|2)

= 2[|ree
↪→|2 + |che

←|2 − |ree
←↩|2 − |che

→|2]. (D1)

Given Eqs. (C10) and (C11), it is straightforward to show that
the presence of hABSs necessarily leads to |ree

↪→|2 = |ree
←↩|2 and

|che
←|2 = |che

→|2, and thus to � = 0. Importantly, in the main
text we claim that � = 0 also implies the existence of hABSs.
Before giving a more mathematical proof of this statement,
we discuss the physical picture behind it.

1. Physical intuition

Let us carefully analyze the reflection coefficients for elec-
trons emerging from the contacts C1 and C2, i.e., ree

←↩ and ree
↪→.

In particular, we want to highlight the differences between
two scenarios. In case (I), we consider the presence of hABSs
on the upper edge. In case (II), we consider the existence
of a completely different mid-gap state on the upper edge,
resulting from the presence of perfect electronic backscat-
tering to the left of the QPC. Case (II) could stem from the
presence of a magnetic barrier placed to the left of the QPC
or, equivalently, to a point-like magnetic impurity, described

FIG. 4. Sketch of the processes that contribute to the reflection
at the QPC of electrons on the lower edge. As in Fig. 1, blue (red)
lines indicate spin-up (spin-down) channels, while solid (dotted) line
indicate electron (hole) channels. Moreover, green (yellow) rectan-
gles indicate superconducting (normal) electrodes. Spin-preserving
(spin-flipping) tunneling events at the QPC are denoted by orange
circles (pink diamonds). In (a)–(d) we consider the presence of a
single hABS with ν = −1, i.e., consisting of left-moving spin-up
electrons and right-moving spin-down holes. In (e)–(h) we consider
a bound state resulting from the presence of a strong magnetic region
(dark gray) to the left of the QPC, which induces perfect electronic
backscattering. In (i), according to Eq. (B5), we show the amplitudes
associated with each tunneling event.

by the Hamiltonian HM in the main text, in the limit m = 1
(see Appendix E for more details).

These two cases allow us to show how the nature of the
bound state located on the upper edge has a direct effect on
the possible paths that an incoming electron, from the lower
edge, can follow before being eventually reflected back. Those
paths are sketched in Fig. 4, where spin-preserving and spin-
flipping tunnelings at the QPC are highlighted with orange
circles and pink diamonds, respectively. The corresponding
amplitudes, according to Eq. (B5), are summarized for clarity
in Fig. 4(i). Unitary reflections happening at the interfaces
with superconductors (in green) are depicted with curved lines
and associated with the complex phases ρ±

L/R. Analogously,
unitary reflections at the interface with the magnetic barrier
(in gray) are associated with the complex phases ρ

e/h
M . Note

that spin-preserving forward-scattering events at the QPC [as-
sociated with the amplitude �p f in Eq. (B5)] are not explicitly
shown. The reflection coefficients ree

←↩ and ree
↪→ can be cal-

culated by summing all the amplitudes associated with the
allowed paths.

Let us focus on case (I), sketched in Figs. 4(a)–4(d). A
spin-up electron impinging on the QPC from contact C1 can
tunnel to the upper edge either via a spin-flipping [panel (a)] or
spin-preserving [panel (c)] tunneling event, coupling to one of
the two different classes of hABSs with ν = +1 and ν = −1.
However, the only way for this electron to be reflected to
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contact C1 is to tunnel back into the lower edge with via a tun-
neling event of opposite nature. The whole reflection process,
therefore, necessarily consists of both a spin-preserving and
a spin-flipping tunneling event at the QPC. By summing over
all the possible paths, we can express the reflection amplitude
as

ree
←↩ = −

∑
ν=±

ν�pb�p f � f f ρν
Lρν

R

∞∑
k=0

(
ρν

Lρν
R�2

p f

)k

= −�pb�p f � f f

∑
ν=±

νρν
Lρν

R

1 − ρν
Lρν

R�2
p f

, (D2)

where we take into account the possibility of k additional
reflections between the two superconductors on the upper
edge. As for spin-down electrons coming from contact C2, the
case depicted in Figs. 4(b)–4(d), we obtain

ree
↪→ = +�∗

pb�p f � f f

∑
ν=±

νρν
Lρν

R

1 − ρν
Lρν

R�2
p f

(D3)

These expressions, which are compatible with Eqs. (C3) and
(C10), merely differ by a global phase and they clearly satisfy
|ree

←↩|2 = |ree
↪→|2.

The scattering processes are distinctively different in case
(II), displayed in Figs. 4(e)–4(h). Again, a spin-up electron
coming from the contact C1 can tunnel to the upper edge
both via a spin-preserving [panel (e)] and via a spin-flipping
tunneling event [panel (g)]. However, regardless of the nature
of this first tunneling event, the electron can tunnel back to
the lower edge and reach contact C1 in two different ways,
i.e., by preserving of flipping its spin. As a result, there are
four different kinds of paths that contribute to ree

←↩. Their sum
reads

ree
←↩ = 1

1 − ρe
Mρ+

R ρh
Mρ−

R �4
p f

[
�pbρ

e
M�pb

+�pbρ
e
Mρ+

R ρh
Mρ−

R �3
p f � f f

−� f f ρ
+
R ρh

Mρ−
R �2

p f � f f

−� f f ρ
e
Mρ+

R ρh
Mρ−

R �3
p f �pb

]
= 1

1 − ρe
Mρ+

R ρh
Mρ−

R �4
p f

[
�2

pbρ
e
M − �2

f f �
2
p f ρ

+
R ρh

Mρ−
R

]
.

(D4)

As for spin-down electrons coming from contact C2, by look-
ing at Figs. 4(f)–4(h), we get

ree
↪→ = 1

1 − ρe
Mρ+

R ρh
Mρ−

R �4
p f

[
(�∗

pb)2�2
p f ρ

+
R ρh

Mρ−
R − �2

f f ρ
e
M

]
.

(D5)

Those two terms differ more than just for a global phase factor,
leading to |ree

←↩|2 �= |ree
↪→|2. The same argument applies to the

Andreev transmission coefficients. Hence, a mid-gap state
consisting of electronic channels with both spin orientations
(i.e., not an hABS), which we mimic in our model by the
presence of a magnetic scatterer, results in � �= 0.

2. General proof

In the following, under general assumptions, we demon-
strate that � = 0 implies θr = 0, π/2 (mod π ), thus proving
the existence of hABSs. To this end, we analytically compute
� as a function of all the parameters of the systems with the
generic reflection matrices [see Eq. (12)], i.e.,

�(λp, λ f , E , x̄, θL, ξ ee
L , ξ eh

L , ξ he
L , ξ hh

L , . . .

θR, ξ ee
R , ξ eh

R , ξ he
R , ξ hh

R ) = N
D . (D6)

The denominator D is a bounded function and the numerator
N is a polynomial in λp and λ f . Requiring that � = 0 re-
gardless of the specific value of the tunneling amplitudes at
the QPC is equivalent to require that each coefficient Cn,m that
multiplies λn

pλ
m
f in N vanishes. Among the several resulting

conditions that have to be met, we focus on one of them,
C2,6 + 2C4,6 = 0, which can be conveniently expressed as

f (x̄, E , ηL, ηR) + f (−x̄, E , ηR, ηL ) = 0, (D7)

with

f (x̄, E , ηL, ηR) = cos(θL ) sin(θR)
[
2 sin(θL )

×(
cos

(
2Ex̄ + ξ ee

L − ξ eh
L − ξ he

R

)
− cos

(
2Ex̄ + ξ ee

L − ξ eh
R − ξ he

L

)
+ cos

(
2Ex̄ − ξ ee

L + ξ he
L − ξ he

R

)
+ cos

(
2Ex + ξ he

L − ξ he
R − ξ hh

L

))
+2 sin(θR)

(
cos

(
2Ex̄ + ξ ee

L

)
+ cos

(
2Ex̄ + ξ hh

L

))]
, (D8)

and where we introduce the variable ηr that stands for
θr, ξ

ee
r , ξ eh

r , ξ he
r , ξ hh

r . Equation (D7) is clearly verified for θL =
θR = 0 or θL = θR = π/2. However, for generic values of θL

and θR, because of the intricate dependence on ηr and the
position of the QPC x̄, we expect that Eq. (D7) can only be
valid for specific fine-tuned points in the parameter space. In
order to rule out the possibility that the observation of � = 0
stems from the fact of having hit one these fine-tuned points,
we recommend to measure � for several different parameter
choices. In particular, the (E − χ ) diagram could be sampled
[as in Fig. 3(d)] and several samples could be inspected, fea-
turing, e.g., different QPC transparencies (i.e., different λp and
λ f ), QPC positions (i.e., different x̄) and JJ length D. In this
sense, the consistent observation of � = 0 over a wide range
of parameters represents a proof of θr = 0, π/2. Note that it
is straightforward to distinguish between these two limiting
cases and to rule out the θr = 0 scenario. For example, since
the latter does not allow for any Andreev process, negative
values of G12/21 would not be possible. Their observation,
together with � = 0, represents therefore a proof of the ex-
istence of hABSs.

To better discuss the robustness of our analysis and stress
the importance of sampling multiple points in parameter
space, we numerically compute the maximum value of |�|
over the whole (E − χ ) diagram, which we denote with �max,
for several different scenarios. In Fig. 5, we consider the
presence of a single magnetic impurity, as in Fig. 3. We plot
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FIG. 5. Values of �max (in units of e2/h), as a function of dif-
ferent parameters, in presence of a single magnetic impurity with
strength m and located at xM = 2ξL [with ξL = v/(π�L )]. All the
panels share the same color bar. In panel (a), we study the depen-
dence of �max on the tunneling amplitude λp and on the ratio λ f /λp

between spin-flipping and spin-preserving tunneling amplitudes at
the QPC. Panel (b) highlights the very weak dependence of �max

on D and x̄ (both in units of ξL). In panel (c), we consider different
impurity strengths, by varying both the magnitude |m| and the phase
ϕm = arg(m). Each panel shares its fixed parameters with Fig. 3,
that is D = 6ξL , �L = �, �R = 1.2�, x̄ = ξL , m = 0.05, xM = 2ξL ,
λp = 0.25, λ f = 0.15.

�max for different combinations of parameters: λp and λp/λ f

[Fig. 5(a)], x̄ and D [Fig. 5(b)], and |m| and ϕm = arg(m)
[Fig. 5(c)]. Note that ϕm controls the direction of the impurity
magnetization, which lies on the plane perpendicular to the
spin-quantization axis. These plots show the robustness of
the results displayed in Fig. 3, where we observe �max ∼
0.2 e2/h. The quantity �max remains indeed considerably and
consistently different from zero, with the exception of the
trivial limits |m| → 0 (i.e., without magnetic impurity) and
λ f , λp → 0 (i.e., without QPC).

In Fig. 6, we perform a similar analysis considering
the presence of two magnetic impurities with strengths mi

(i = 1, 2), each one described by the Hamiltonian HM =
2vmi ψ

†
↑(xMi )ψ↓(xMi ) + H.c. [see Eq. (E1)], and located on

the two sides of the QPC (i.e., −D/2 < xM1 < x̄ < xM2 <

D/2). In this case, we identify one specific scenario that
results in � = 0, even in presence of magnetic scatterers.
It corresponds to the the fully symmetric configuration with
real m1 = m2, �L = �R, x̄ = 0, and xM2 = −xM1 (see the
white spots in both panels of Fig. 6). Importantly, however,
small deviations from this fine-tuned scenario lead to a rapid
increase of �max to detectable finite values. In particular, in
Fig. 6(a), we show how variations in phase and magnitude of

FIG. 6. Values of �max (in units of e2/h), as a function of dif-
ferent parameters, in presence of two magnetic impurities, with
strengths m1 and m2, located on both sides of the QPC (i.e., xM1 <

x̄ < xM2 ). The two panels share the same color bar. In panel (a),
we study the dependence of �max on the strength of impurity 1,
by varying both its magnitude |m1| and phase ϕm1 = arg(m1), while
keeping m2 = 0.05 fixed. The QPC is at x̄ = 0 and the impurities
are located at xM2 = −xM1 = 2ξL . In panel (b), we plot �max as a
function of the positions of the QPC (x̄) and the impurity 2 (xM2 ),
both in units of ξL , for m1 = m2 = 0.05 and xM1 = −2ξL . Both panels
share the remaining parameters, which read D = 6ξL , �L = �R =
�, λp = 0.25, λ f = 0.15.

m1, while keeping m2 = 0.5 fixed, result in a finite �max. In
Fig. 6(b), we show how, even for symmetric and real strengths
m1 = m2 = 0.05, it is still possible to get finite �max just by
changing the QPC position x̄ and/or the position of one impu-
rity (xM2 ), while keeping the other one fixed at xM1 = −2ξL.

APPENDIX E: MAGNETIC IMPURITY

Here, we consider the effect of a delta-like magnetic
impurity along the upper helical edge, described by the Hamil-
tonian (we suppress the redundant index r)

HM = 2vm ψ
†
↑(xM )ψ↓(xM ) + H.c.. (E1)

The equations of motion for the field operators, i.e., i∂tψσ =
−[Hζ=−1 + HM, ψσ ], become

i∂tψ↑ = +iv∂xψ↑ + 2mvδ(x − xM )ψ↓ (E2)

i∂tψ↓ = −iv∂xψ↓ + 2m∗vδ(x − xM )ψ↑. (E3)

Using again the plane wave ansatz

ψσ (x) = e−iEt

√
h̄v

{
τ e
σ e−iσEx/v σ (x − xM ) > 0

ωe
σ e−iσEx/v σ (x − xM ) < 0

, (E4)

we can relate the incoming (τ ) and outgoing amplitudes (ω)
as

i(ωe
↑ − τ e

↑) = me2iExM/v (ωe
↓ + τ e

↓), (E5)

i(ωe
↓ − τ e

↓) = m∗e−2iExM/v (ωe
↑ + τ e

↑). (E6)
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The resulting (electronic) scattering matrix reads(
ωe

↑
ωe

↓

)
= 1

1 + |m|2
(

1 − |m|2 −2ie2iExM/vm
−2ie−2iExM/vm∗ 1 − |m|2

)(
τ e
↑

τ e
↓

)
. (E7)

We observe that, for m = 1, the transmission coefficients vanish. In this limit, therefore, the magnetic impurity described by HM

induces perfect electronic backscattering (with spin flip) at x = xM . Introducing the hole amplitudes, we get⎛
⎜⎜⎜⎝

ωe
↑

ωe
↓

ωh
↑

ωh
↓

⎞
⎟⎟⎟⎠ = SM(m, xM , E )

⎛
⎜⎜⎜⎝

τ e
↑

τ e
↓

τ h
↑

τ h
↓

⎞
⎟⎟⎟⎠ (E8)

with

SM(m, xM , E ) = 1

1 + |m|2

⎛
⎜⎜⎝

1 − |m|2 −2ie2iExM/vm 0 0
−2ie−2iExM/vm∗ 1 − |m|2 0 0

0 0 1 − |m|2 2ie2iExM/vm∗

0 0 2ie−2iExM/vm 1 − |m|2

⎞
⎟⎟⎠. (E9)

APPENDIX F: PROPERTIES OF THE NONLOCAL
DIFFERENTIAL CONDUCTANCES

The aim of this Appendix is to address the properties of the
nonlocal differential conductances G12/21(E , χ ), with respect
to the inversion of E and/or χ .

1. Energy inversion

From the observation of Figs. 2(a)–2(c), one can imme-
diately notice the asymmetry G12/21(E , χ ) �= G12/21(−E , χ ).
The latter stems precisely from the capability of our system to
selectively detect only one class of hABS (and not its particle-
hole symmetric partner, with opposite spin structure). This
feature is strictly present for λ f = 0 [Fig. 2(a)]. However, the
asymmetry survives also in presence of a weak to moderate
λ f < λp [see Figs. 2(b) and 2(c)]. It disappears only for the
special case λ f = λp, i.e., when the tunneling at the QPC is
completely spin insensitive and both classes of hABS give the
same signal in the conductances.

2. Energy and phase inversion

Interestingly, in presence of perfect hABSs, the nonlocal
differential conductance satisfy

G12/21(E , χ ) = G12/21(−E ,−χ ). (F1)

This is a direct consequence of the energy-phase relation of
each class of hABS [see Eq. (3)], which is indeed invariant
under the transformation (note that the functions 
r are odd
with respect to E)

E → −E

χ → −χ. (F2)

At the mathematical level, we observe that the transformation
(F2) modifies the reflection coefficients at the QPC and at
the superconducting interfaces as [see Eq. (2) and Eqs. (B5)–
(B9)]

SQPC(E , λp, λ f ) = SQPC(−E ,−λp,−λ f )∗ (F3)

αc
rσ

β c̃
r̃σ̃

∣∣∣∣
(E ,χ )

= −
[
αc

rσ

β c̃
r̃σ̃

∣∣∣∣
(−E ,−χ )

]∗
. (F4)

Those changes are irrelevant for the computation of the abso-
lute values of the transmission and reflection coefficients on
the lower edge [i.e., t, r, c, a in Eq. (C1)]. As a consequence,
they have no effect on the differential conductances either, as
confirmed by the analytical expressions of the coefficients in
Eqs. (C2)–(C15).

The situation is different, however, in presence of ad-
ditional scattering mechanisms on the upper edge. For the
sake of concreteness, let us focus on the presence of
magnetic impurities. In this case, the transformation (F2)

FIG. 7. Differential conductances (in units of e2/h) in presence
of electronic backscattering on the upper edge, induced by a mag-
netic impurity with m = 0.05 i and located at xM = 2ξL [with ξL =
v/(π�L )]. The remaining parameters are the same as in Figs. 2(b),
2(c), and 3. They read D = 6ξL , λp = 0.25, λ f = 0.15, x̄ = ξL , �L =
�, �R = 1.2�.
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modifies the corresponding scattering matrix as SM(E , m) =
SM(−E ,−m∗)∗ [see Eq. (E9)]. Every amplitude appearing
in Eq. (C1) results from the interference of paths featuring
different numbers of reflections on the magnetic impurity.
As long as m is not imaginary, therefore, the transformation
m → −m∗ modifies the interference and thus the differential
conductances. This explains why, the relation G12/21(E , χ ) =
G12/21(−E ,−χ ) does not hold in Fig. 3. However, it is possi-
ble to construct scattering mechanisms that preserve Eq. (F1)
while still hybridizing and destroying the hABSs. It is the

case, for example, for magnetic impurities with imaginary
m, i.e., impurities with magnetization along the y direction
(assuming the spin-quantization axis to be along z). Such a
scenario is analyzed in Fig. 7, where we plot the differential
conductances G12/21/11 and � using the same parameters con-
sidered in Fig. 3, but with an imaginary m = 0.05 i. The two
nonlocal conductances G12/21 clearly satisfy Eq. (F1), even
in presence of magnetic scatterers. Importantly, the absence
of hABSs is correctly signaled by the quantity � [Fig. 7(d)],
which features large deviations from zero.
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