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One of the most fundamental open problems in physics is the unification of general relativity and quantum
theory to a theory of quantum gravity. An aspect that might become relevant in such a theory is that the
dynamical nature of causal structure present in general relativity displays quantum uncertainty. This may lead to a
phenomenon known as indefinite or quantum causal structure, as captured by the process matrix formalism. Due
to the generality of that framework, however, for many process matrices there is no clear physical interpretation.
A popular approach towards a quantum theory of gravity is the Page-Wootters formalism, which associates to
time a Hilbert space structure similar to spatial position. By explicitly introducing a quantum clock, it allows to
describe time-evolution of systems via correlations between this clock and said systems encoded in history states.
In this paper we combine the process matrix framework with a generalization of the Page-Wootters formalism
in which one considers several agents, each with their own discrete quantum clock. We describe how to extract
process matrices from scenarios involving such agents with quantum clocks, and analyze their properties. The
description via a history state with multiple clocks imposes constraints on the implementation of process matrices
and on the perspectives of the agents as described via causal reference frames. While it allows for scenarios where
different definite causal orders are coherently controlled, we explain why certain noncausal processes might not
be implementable within this setting.
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I. INTRODUCTION

Indefinite causal structure is an extension of the usual no-
tion of causal structure that is expected to become relevant
in quantum gravity: In general relativity, causal structure is
dynamical instead of fixed and attributing quantum properties
[1–8] would imply the existence of exotic causal structures,
like superpositions of space-times and superpositions of the
order of events. The process matrix framework [9,10] was
invented to systematically describe such indefinite or quantum
causal structures. However, many processes that arise in this
framework have no clear physical interpretation and it is not
known which of them are realizable in nature. It has, therefore,
been suggested that only processes, which reversibly map a
well defined causal past to a well defined causal future with
possibly indefinite causal order in between, are physical [10].
For such processes, it has been shown that one can always find
a causal reference frame that represents the perspective of an
agent within the causal structure [11]. While the agent’s event
is local in their causal frame of reference, the events of other
agents may be “smeared” over the causal past and future of
the event. Still the question which processes are realizable in
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nature remains open. Some noncausal processes can violate
device-independent causal inequalities [12–14], although no
physical interpretation for such processes are known. Other
processes, for example the so-called quantum switch [15–17],
where the order of operations is controlled by a quantum
system, cannot violate causal inequalities but exhibit indef-
inite causal order that can be identified by causal witnesses
[18]. Moreover, it is possible to experimentally implement
such coherent quantum control of causal order [16,17,19–24].
Overall, however, many mathematically consistent process
matrices are believed to be unphysical, yet there are only very
few reasonable postulates, like [10], that actually allow to rule
out some processes as unphysical.

A crucial obstacle in finding a complete theory of quantum
gravity is caused by the different role of time in general
relativity and quantum theory. As an approach to bridge this
conceptual gap, one can use a timeless formalism [25–35],
which we refer to as the Page-Wootters formalism in this pa-
per. In this formalism, one also associates a Hilbert space with
time, which can be interpreted as a quantum clock. One de-
scribes the physics of the extended system including the clock
by using history states, which are obtained via a Wheeler-
DeWitt-like equation using a constraint operator. These
history states encode dynamics as correlations between the
main system and the quantum clock. In Ref. [35], the authors
considered a generalized Page-Wootters approach using sev-
eral clocks. The authors found that history states arising from
solving a Hamiltonian constraint for gravitationally interact-
ing clocks can give rise to indefinite causal order and studied
the time evolution according to the perspectives of different
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clocks. In particular, they showed how the Page-Wootters
formalism can recover the so-called gravitational quantum
switch [5]. Their approach works for important examples, but
it is not clear in general which process (if any) is implemented
by a given history state, or what is the set of noncausal pro-
cesses that can be implemented within such a framework. The
observations in [35] motivate us to investigate the relation
between causal order and several quantum clocks in further
detail, and develop a full framework that systematically com-
bines the process matrix and the Page-Wootters formalism.
A refined description of indefinite causal structure that ex-
plicitly models the agents’ perceptions of time might help to
discover physical scenarios that give rise to indefinite causal
structure. In particular, a well-defined combination of these
two approaches might lead to new consistency conditions that
allow to rule out some process matrices as unphysical.

Even beyond the search for criteria for physical process
matrices, the combination of process matrices with the Page-
Wootters formalism is an interesting topic by itself. Both
frameworks can be seen as approaches towards quantum grav-
ity. However, so far they were mostly isolated and independent
from each other, although they are not incompatible. The
Page-Wootters formalism can be regarded as an independent
formulation of quantum theory, similar to the path-integral
formulation. It is an interesting question which processes
can be naturally implemented within a particular formula-
tion of quantum theory. It is known that any quantum circuit
(i.e., a definite causal order) can be implemented within the
Page-Wootters formalism as a Feynman’s quantum computer
and a single (i.e., global) quantum clock [36–39]. Can the
formalism also account for more general causal structures
such as coherently controlled causal orders or even those that
lead to the violation of causal inequalities? To approach this
question, in the present paper, we present a general definition
of what it means for a history state to implement a pure
process matrix [10], for the case of finite dimensional systems
and many clocks. We describe how to extract the agents’
perspectives from the history states, which corresponds to
a refinement of the concept of causal reference frames [11]
that explicitly includes the quantum clocks. We show that
arbitrary coherently controlled causal order can be extracted
from our framework when different clocks tick at different
rates (for example, due to time dilation effects). Moreover,
we analyze the additional restrictions that the history states
impose on the extracted process matrices. These restrictions
might be regarded as reasons why some processes cannot be
implemented in nature. While the Page-Wootters formalism
with many clocks can enable the extraction of processes with
definite causal order and quantum controlled causal order, it
additionally provides insights into why some processes might
not be realizable within the framework. We consider discrete
instead of continuous clocks because this allows us to express
the perspectives of the agents using circuits. Our approach
does not start by defining a constraint operator and solving it;
instead we work directly at the level of history states. We de-
velop a systematic framework that combines process matrices
and Page-Wootters history states with several discrete clocks.
We describe how to model scenarios where these clocks are
associated with agents that are initially all part of a definite
space-time causal structure. Then the agents might enter a
“region” of quantum causal structure, where the global order

of events is no longer well defined. At the end, however, all
agents return to a definite causal structure.

The paper is structured as follows: We first recapitulate
important aspects of the process matrix formalism (including
causal reference frames) and the Page-Wootters formalisms
in Secs. II and III before we motivate and introduce our
framework, which combines these two approaches, in detail
in Sec. IV. In that context, we derive several mathematical
properties of our setting, in particular restrictions on process
matrices. In Sec. V, we first construct examples involving
varying clock speeds and indefinite causal structure before we
show how to implement arbitrary quantum-controlled causal
order in our setting. At the end of Sec. V we discuss why
another well-known, noncausal process might not be imple-
mentable in our framework. Finally, we discuss our findings
in Sec. VI.

II. PROCESS MATRICES AND CAUSAL
REFERENCE FRAMES

In this section we give a short introduction to the opera-
tional setting of the process matrix formalism and explain the
parts of the framework that are important for the rest of the
paper.

The basic operational setting of the process matrix for-
malism concerns several agents (here N of them), labeled
A1 . . . AN , each of them inside their own (small) laboratory
where the usual rules of quantum theory are valid. The out-
side “environment”, which relates the various agents, is not
assumed to be causally definite, for example it could be a
superposition of space-time structures. During the protocol,
each agent receives a quantum system from the “environ-
ment”, applies a quantum instrument, i.e., a probabilistic
quantum channel (for example, a measurement or a pure quan-
tum channel) to that system and then sends it out again. This
well defined local time ordering inside the laboratory can be
thought of as being tracked by a clock associated with each
agent, the bipartite case is depicted in Fig. 1(a). The process
matrix G is the mathematical object that encodes the observed
outcome probabilities for any choice of local quantum instru-
ments. Process matrices describing definite causal order, i.e.,
the global order of operations performed by different agents is
well defined, are equivalent to higher order quantum maps or
quantum combs [40–44]. In general, however, they allow sce-
narios with indefinite causal order, where no such global order
exists, and are in that sense generalizations of quantum combs.

In [10], processes (called quantum superchannels in [44])
are formalized as maps from a global past to a global fu-
ture, that depend on the agents’ operations. In addition to the
agent’s systems, whose Hilbert spaces are labeled A1 . . . , AN ,
we introduce ancillary systems A′

1, . . . , A′
N . The ancillary

system can be used, for example, as a quantum memory
recording a measurement outcome. Each agent is allowed to
act with a quantum channel on their system and their ancilla,
i.e., a completely positive trace-preserving map (CPTP) CAj :
L(AjA′

j ) → L(AjA′
j ). One assumes that the ancillas have triv-

ial evolution except when the respective operations of the
agents are applied. Then, a process (or quantum superchannel)
is a multilinear map G that maps the agents’ quantum channels
to a quantum channel, while acting as the identity on all the
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FIG. 1. Example of bipartite processes: The two agents (here called A and B) are each situated in their own laboratory. Each agent obtains
a system from the environment, acts on it with a quantum instrument and then sends it out again. While inside the laboratories the order of
events is well defined, there need not be a well-defined global ordering imposed by the environment. The outcome statistics of the operations
performed by A and B is described by a process matrix G, see (a). These quantum instruments of A and B can be represented as unitaries
UA,UB by introducing ancillary systems A′, B′. A pure process G is a (multilinear) supermap that gives an induced unitary transformation on
S ⊗ A′ ⊗ B′ when the agents are applying unitary operations UA,UB, see (b). (a) Basic setting; (b) A pure process.

ancillary systems [just as in Fig. 1(b), but with the unitaries
replaced by quantum channels]. This map encodes the causal
structure given by the environment.

In this paper, we only consider pure processes. Using
Stinespring’s dilation theorem [45,46] one can represent the
quantum operations of the agents as unitaries UA1 . . .UAN act-
ing on the respective system and ancilla that the agents obtain
from the environment. The ancillas serve as both purifying
systems and as memories recording the outcomes. We say that
a process G is a pure process if it is a unitary preserving map,
i.e., G(UA1 . . .UAN ) is unitary for any unitaries UA1 . . .UAN ,
while acting as the identity on the ancillary systems. The basic
mathematical structure of a bipartite pure process is depicted
in Fig. 1(b).

Since many noncausal process matrices lack a clear in-
terpretation and it is not clear whether they are compatible
with the known physical laws, it has been suggested that
only purifiable processes, which means they can be obtained
from pure processes, are physical [10]. Such processes can
be regarded as reversible transformations from a well defined
causal past to a well-defined causal future, with indefinite
causal order in between. We note that the quantum switch is an
example of a pure process, as shown explicitly in [10], and it
is physically realizable either in gravitational [5,35] or optical
setups [16,17,19–24].

The notion of causal reference frames [11] was introduced
as an equivalent description of the pure process matrix formal-
ism. The causal reference frame represents the perspective of
an agent inside a (possibly indefinite) causal structure. More
concretely, one imagines the perspective of an agent, say A1,
as follows: The crucial moment for agent A1 is when he or she
applies unitary UA1 . The evolution starting from the beginning
of the protocol up to that moment is described by a unitary
�A1 (UA2 . . .UAN ), which is called the causal past of A and
can depend on the instruments of all other agents. Then A1

enforces time evolution via UA1 on the input to his or her

laboratory and the ancilla A′
1, while all other degrees of

freedom evolve in an uncorrelated way. The evolution
of these other degrees of freedom can be absorbed into
�A1 (UA2 . . .UAN ) such that without loss of generality we can
assume that during A1’s time of action, evolution is given by
UA ⊗ 1. Afterwards the evolution up to the end of the protocol
is described by a unitary �A1 (UA2 . . .UAN ), which is called the
causal future of A1. It can again depend on the instruments
of all other agents. As shown in Ref. [11] all pure processes
admit a decomposition in causal reference frames, i.e., if G is
a pure process, then G can be written as

G
(
UA1 . . .UAN

)
= �A1

(
UA2 . . .UAN

)(
UA1⊗1

)
�A1

(
UA2 . . .UAN

)
, (1)

where �A1 (UA2 . . .UAN ),�A1 (UA2 . . .UAN ) are unitaries that
depend on all unitaries other than UA1 and that describe the
time evolution according to A1’s point of view. A similar de-
composition exists from the point of view of all other agents.
In the present paper we take a similar approach, but we make
the addition of a localized quantum clock associated to each
agent, and explain how the perspectives of various agents can
arise from a perspective neutral history state as given by the
Page-Wootters formalism.

III. THE PAGE-WOOTTERS FORMALISM

In this section we give a brief general overview of the
Page-Wootters formalism for continuous as well as dis-
crete quantum clocks. A possible justification for considering
quantum clocks with discrete Hilbert spaces comes from ar-
guments involving the Bekenstein bound [47] that Hilbert
space is fundamentally finite-dimensional [48,49]. Also, it can
be argued that all information that can ever be acquired via
measurements is finite and that therefore on the fundamental
level physics should be discrete as well and indeed, finite
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[50]. Furthermore, we get significant technical simplifications
due to the fact that for finite-dimensional Hilbert spaces,
the physical Hilbert space is a subspace of the kinematical
Hilbert space, while this is not the case for infinite dimensions
[33,51]. Most importantly for our purpose, the assumption of
finite dimensional clocks allows us to get a physical picture
of indefinite causal structure in form of generalizations of
quantum circuits.

In addition to the usual system Hilbert space HS the Page-
Wootters formalism introduces an additional Hilbert space
Hc associated with time that can be interpreted as an ideal
quantum clock. In analogy to position in nonrelativistic quan-
tum mechanics Hc can be chosen to be spanned by square
integrable functions on the real line; informally it is common
in physics to imagine this Hilbert space as Hc = span{|t〉 | t ∈
R}. In analogy to the usual momentum operator, one can
define an operator p̂t as the generator of translations on Hc.
In the time representation, i.e., 〈t |ψ〉, it is given by p̂t =
−i ∂

∂t . Let ĤS be the Hamiltonian of the system and consider
the constraint operator Ĉ := p̂t + ĤS . Let |�〉〉 be a state
on Hc ⊗ HS that satisfies the Wheeler-DeWitt-like constraint
equation Ĉ|�〉〉 = 0. Such states |�〉〉 are often called phys-
ical states. Without worrying about normalizability, one can
formally expand |�〉〉 by using the time basis as

|�〉〉 =
∫

dt |t〉 ⊗ |ψ (t )〉. (2)

With this expansion it becomes clear why states |�〉〉 are also
called history states: For each time t , they encode a system
state |ψ (t )〉 and an ordered time sequence t0 < t1 < t2 cor-
responds to the history of the state given by |ψ (t0)〉, |ψ (t1)〉
and |ψ (t2)〉. Plugging the expansion Eq. (2) into the constraint
equation, one can show that the system state satisfies

i
∂

∂t
|ψ (t )〉 = HS|ψ (t )〉, (3)

which is the standard Schrödinger equation. Therefore, this
approach recovers the usual quantum formalism. In general,
solutions to the constraint equation can be obtained via an
operator

P̂ :=
∫

R
ds e−isĈ, (4)

which gives a valid physical (or history) state, i.e., solution
to the constrain equation Ĉ(P̂|φ〉) = 0, when applied to ar-
bitrary states |φ〉 ∈ Hc ⊗ HS . For this reason the operator
P̂ is sometimes called the physical projector [52], although
it is not a projector in the strict mathematical sense. More-
over, 〈t2|P̂|t1〉 = U (t2, t1) is a unitary operator on HS and in
case of there being no interaction term between clock and
system, i.e., Ĉ = ĤS + p̂t , it can be shown that it gives the
time evolution according to the Schrödinger equation, i.e.,
〈t2|P̂|t1〉 = e−i(t2−t1 )HS .

The Page-Wootters formalism has been adapted to regular
(i.e., causal) quantum circuits, see for example [36–39]. It
uses one finite dimensional quantum clock and is described
by the constraint equation

Ĉ|�〉〉 =
∑

t

Ĥt |�〉〉 = 0, (5)

where the Hamiltonians

Ĥt = − 1
2 (|t〉〈t − 1| ⊗ Ut + |t − 1〉

× 〈t | ⊗ U †
t − |t − 1〉〈t − 1| − |t〉〈t |), (6)

can be understood as making the clock tick once and applying
some unitary Ut to the system. In other words, at time t the
circuit applies gate Ut . Solutions to Eq. (5) are history states
of this quantum circuit in the form

|�〉〉 = 1√
T + 1

T∑
t=0

|t〉c⊗Ut . . .U0|φ〉S =
T∑

t=0

|t〉c⊗|ψ (t )〉S,

(7)

with |φ〉 ∈ HS being the circuit’s input, see Fig. 2. When
projecting the clock onto the final time the system is in the
state |ψ〉 = UT . . .U1|φ〉, which corresponds to the output of
the circuit under consideration. While it is not straightforward
to write a physical projector analogous to the continuous case
in Eq. (4), we can define a projection operator onto the space
of solutions to the constraint equation by

P̂ :=
∑

i

|�i〉〉〈〈�i|, (8)

where the |�i〉〉 are given according to Eq. (7) with initial
states |φi〉 taken from an orthonormal basis for HS . P̂ is the
projector onto the space of physical states, which contrarily to
the continuous case is now a proper subspace of Hc⊗HS . Note
that similarly to the continuous case we can relate the physical
projector to the unitary evolution of the circuit between the
respective times by

〈t2|P̂|t1〉 = 1

T + 1
Ut2 · · ·Ut1+1. (9)

In what follows we will associate a discrete clock cX with
each agent X ∈ {A1 . . . AN }, which gives rise to history states
of the form

|�〉〉 =
TA1 ...TAN∑

tA1 =0,...tAN =0

∣∣tA1 , . . . tAN

〉 ⊗ ∣∣ψ (tA1 . . . tAN )
〉
S

=
TA1 ...TAN∑

tA1 =0,...tAN =0

∣∣tA1

〉
. . .

∣∣tAN

〉⊗MtA1 ...tAN
|φ〉, (10)

where |φ〉 is the initial state of the system. Intuitively, the
matrices MtA1 ,...tAN

encode what happens to the system between
the initial time and the time when the collection of clocks
shows the respective values. By projecting onto a certain clock
state 〈tX |�〉〉 we will obtain conditional or perspectival states
that correspond to the state agent X assigns to everything
other than their own clock at time tX . In the next section we
present what we consider reasonable physical assumptions the
conditional states and hence the history state have to fulfill.
We will almost exclusively consider the history states |�〉〉 as
they explicitly represent the perspectives of the agents and the
systems and we can directly impose physical requirements on
them. The constraint operator Ĉ can then be implicitly defined
afterwards as an operator that annihilates this family of history
states. Whether this constraint operator has a simple form,
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FIG. 2. The main idea of a Page-Wootters formulation of a quantum circuit. One considers a quantum clock that keeps track of the number
of computational steps that have happened so far. At computational step t , the circuit applies the gate Ut . The input to the quantum circuit is
|φ〉 and the output of the circuit is |ψ〉 = UT · · ·U0|φ〉.

or has desirable properties such as locality, is an interesting
question that is nevertheless not pursued in this paper.

IV. PROCESS MATRICES WITHIN A TIMELESS
FORMALISM

A. The operational setting and postulates

In this section, we develop our framework that allows to
model experiments described by pure process matrices within
a generalized Page-Wootters approach.

As in the pure process matrix formalism we will describe
scenarios with multiple agents being parts of a well-defined
standard global causal past and future. In addition to the
usual process matrix approach, the progress of time within
the agents’ laboratories is described by quantum clocks with
Hilbert spaces HcA1

. . .HcAN
. We refer to the set of all clock

variables collectively as Hc. The idea of a well defined global,
causal past and future common to all agents is formalized by
the assumption that at the beginning as well as at the end
of the protocol all the clocks experience at least one well-
synchronized time step, see Fig. 3(a). During the protocol,
each agent applies his or her quantum instrument on a part
of a system, which is common to all agents. As done in [10]
we will assume that each agent has access to an ancillary
degree of freedom, denoted by Hilbert spaces HA′

1
. . .HA′

N

of unspecified dimension, to implement their quantum instru-
ment. This ancillary system allows to represent the quantum
instrument as a unitary within our pure history state approach.
The ancilla acts as the environment for a dilation and as
memory recording measurement outcomes. We assume that
the ancilla systems are initialized to |0〉 that they have trivial
time evolution, except at the moment when the correspond-
ing quantum instrument is applied. We collectively label the
ancillas as HS′ := HA′

1
⊗ · · · ⊗ HA′

N
.

In addition to the agents, their ancillas and quantum clocks,
we also consider another quantum system that participates in
the protocol, described by a Hilbert space HS . This quantum
system represents the degrees of freedom that play an active
role in the protocol, but are not directly associated with the
agents or their laboratories. As in the formalism for pure
processes, we assume that this quantum system is an input
to the causal structure from the global past. We will often call
it the main system and we denote its initial state by |ψ〉S .

Hence our history states live on Hc ⊗ HS ⊗ HS′ . We as-
sume that the clocks are initialized to time 0 at the start of the
protocol and show times TA, TB, . . . TN at the end. Then our
history states can be expanded in the form

|�〉〉 =
TA1 ...TAN∑

tA1 =0,...tAN =0

∣∣tA1 , . . . tAN

〉
c ⊗ ∣∣ψ (tA1 . . . tAN )

〉
SS′ . (11)

Now we can formalize our requirements on the timeless
state describing the protocol depicted in Fig. 3. As mentioned
before all clocks and ancillas are initialized to the states |0〉
and, therefore, we can write:

S.1 |ψ (0, 0, . . . )〉 = |ψ〉S|0〉S′ , where |0〉S′ = |0〉A′
1
⊗

|0〉A′
2
⊗ · · · ⊗ |0〉A′

N
is a fixed ancillary state and |ψ〉S is an

arbitrary state of the system.
At the beginning and end of the experiment, physics should

be given by a standard space-time causal structure. Hence, at
the beginning and in the end, we assume the clocks of the
agents are well synchronized. In particular the clocks perform
at least one synchronized step before and after they are part
of any exotic causal structure. We further assume that during
these initial and final well-synchronized time-steps nothing
happens to the main system and formulate this in terms of
agent A for the sake of readability. Note that this does not
conceptually single out agent A but can equally be written for
any of the agents.

S.2 |ψ (0, . . . , tX , . . . )〉 	= 0 only for tX = 0 ∀X 	= A
and |ψ (TA1 , . . . , tX , . . . )〉 	= 0 only for tX = TX ∀X 	=
A and furthermore |ψ (1, 1 . . . 1)〉 = |ψ (0, 0, . . . , 0)〉 and
|ψ (TA1 − 1, TA2 − 1, . . . , TAN − 1)〉 = |ψ (TA1 , TA2 , . . . , TAN )〉.

Analogous to the pure process matrices formalism de-
scribed in Sec. II, we model the input from the environment
as parts of the main system, i.e., we assume that the input
to agent X lives on a subspace HX ⊆ HS , and X ’s quantum
instrument is described by a unitary UX , which acts on the
received part of the main system and X ’s ancilla, i.e., UX

acts on HX ⊗ HX ′ . Note that different HX do not need to be
different or orthogonal, in fact all of them might even be the
full main system Hilbert space HS .

Next, we discuss the aspect of our discrete clocks formal-
ism that differs the most from the continuous case, and justify
the introduction of normalisation operators in order to relate
the timeless state |�〉〉 with the local perspective of the agents.
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FIG. 3. The protocol of an experiment involving quantum causal structure from a global (a) and a local (b) point of view. At the beginning
and end of the experiment, the agents are assumed to be in a definite, space-time causal structure. This is expressed by having their clocks
tick in synchronization. However, in between the agents and the main system enter a possibly indefinite causal structure in which the clocks,
the main system, and the laboratories might get entangled with each other. The ancillary systems for the laboratories are not shown. Inside
the laboratories standard quantum theory is valid and therefore each agent X , only sees the other agents and the main system as part of a
quantum causal structure. At some time t∗

X − 1, X receives the part of the main system described by HX from the environment. X applies
unitary operation UX to this part of the main system and potential ancillas. Afterwards, X sends that part of the main system back into the
environment at time t∗

X . The actions of all agents together lead to the process G being applied to the main system at the end of the protocol.
(a) Global perspective; (b) X’s perspective.

As in Ref. [35] we condition the history state |�〉〉 on X ’s
clock showing time tX , i.e., cX 〈tX |�〉〉, to describe what agent
X sees at time tX . In principle, the inner product in the kine-
matical Hilbert space is not necessarily the same as the inner
product for the Hilbert space associated to the perspective of
agent X [33]. Indeed in the usual Page-Wooters formalism
with infinite dimensional systems, the physical Hilbert space
is not a proper subspace of the kinematical Hilbert space; this
necessitates to define a new inner product for the perspectival
states. Moreover, even in the finite-dimensional setting that
we study here, in scenarios involving clocks with varying
relative ticking speeds, one runs into normalization issues if
one simply uses the kinematical inner product for the per-
spectival states. To see this, consider (temporarily switching
to continuous clocks to illustrate our point) the example of the
history state |�〉〉 = ∫

dtA|tA〉cA ⊗ |2tA〉cB in which one clock
runs twice as fast as the other [53]. For A’s perspective we find
cA〈tA|�〉〉 = |2tA〉. However, for B’s perspective we find

cB〈tB|�〉〉 =
∫

dtA|tA〉〈tB|2tA〉

= 1

2

∫
dt ′

B

∣∣∣∣1

2
t ′
B

〉
〈tB|t ′

B〉 = 1

2
|1/2 tB〉,

where the prefactor 1
2 comes from the measure via the change

of the integration variable. In this example, the clock ticking
rates are constant. However, in general the rates might change
dynamically and the corresponding prefactor will depend on
time. Hence, different agents will need different renormaliza-
tions, which in the infinite dimensional case can be accounted
for in the definition of the inner products for the perspectival
states. For the finite-dimensional case with discrete clocks this
motivates the introduction of normalization operators N (X )

tX
in order to relate the normalization of the bipartite history
state with the normalization of the time-dependent perspec-
tival states. Normalization issues for discrete clocks related to
the process of discretization itself are discussed in detail in
Appendix A.

We assume that the state agent X sees at time tX is

|ψX (tX )〉 = N (X )
tX 〈tX |�〉〉 = 〈tX |cX ⊗ N (X )

tX |�〉〉, (12)

where N (X )
tX ∈ L(Hc\X ⊗ HS ⊗ HS′ ) is the normalization op-

erator that relates the perspective-neutral description to the
perspective of agent X at time tX . Here, Hc\X is the Hilbert
space formed by all clocks except the clock of agent X .

A priori, the normalization operators make this approach
extremely general. In principle, they could give us any state
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|ψX (tX )〉 that we want. Therefore it is important that we im-
pose some extra conditions. First of all, as the normalization
operators generalize normalization constants, they should be
linear, positive and invertible. Moreover, we wish that all the
relevant physics concerning the initial system state |ψ〉S and
the agents’ operations is encoded in the history state, not the
normalization operators. The normalization operator should
just correct the normalization depending on the clocks. There-
fore, we demand that the operators N (X )

tX are independent of the
initial system state |ψ〉 and the choice of quantum instruments
by the agents.

N.1 N (X )
tX is an invertible, linear, positive operator. It is

independent of the input state |ψ〉S and the local operations
UA1 . . .UAN .

Without the latter restriction, one could use N (X )
tX to in-

troduce copies of the initial state |ψ〉S or apply copies of
the agents’ instruments to violate the no-cloning principle.
We further assume that the normalization operator does not
perturb how one agent sees the clocks of the other agents:

N.2 The normalization operator has the form

N (X )
tX =

∑
tA1 ,...,t̂X ,...tAN

∣∣tA1 , . . . t̂X , . . . tAN

〉〈
tA1 , . . . t̂X , . . . tAN

∣∣
⊗ n(X )

tA1 ,...̂tX ,...tAN
⊗ 1S′ (13)

where the sum is taken over all clocks except the clock of
agent X , which is omitted, as indicated by t̂X . The operator
n(X )

tA1 ,...̂tX ,...tAN
is a linear, invertible, and positive operator acting

on HS (but not on the ancillas HS′ ).
This assumption is motivated by the requirement that the

history state should represent the relevant physics and rela-
tions of the clocks. As their name implies, the normalization
operators should adjust the normalization, but not introduce
new clock physics.

Our previous requirement of well-synchronized clocks at
the beginning and end of the experiment additionally implies
that the respective normalization operators should just be
identity operators.

N.3 N (X )
1 = N (X )

0 = 1 as well as N (X )
TX −1 = N (X )

TX
= 1 ∀X .

Finally, we have to explain how the perspectival states
N (X )

tX 〈tX |�〉〉 are related to each other. We will assume that
each agent X sees a unitary time evolution as dictated by quan-
tum theory in a pure state framework. This means we assume
that for all tX , t ′

X there exists a unitary operator UX (tX , t ′
X ) such

that

|ψX (tX )〉 = UX (tX , t ′
X )|ψX (t ′

X )〉. (14)

Furthermore, just like in usual quantum theory, UX (t, t ′)
should not depend on the initial system state |ψ〉S .

U.1 UX (t, t ′) is a unitary operator, independent of the ini-
tial state |ψ〉S .

Moreover, time evolution from t ′′ to t ′ to t is the same as
time evolution from t ′′ to t .

U.2 UX (t, t ′)UX (t ′, t ′′) = UX (t, t ′′), ∀t, t ′, t ′′.
Next we discuss the crucial assumption that connects our

framework to the formalism of pure processes. In the process
matrix framework, one assumes that during the protocol each
agent eventually receives a quantum system from the environ-
ment. We will assume that each agent is promised that they

will receive this quantum system at a specific time t∗
X − 1.

As explained before, we model that quantum system to be a
part of the main system, described by subspaces HA1 . . .HAN

of the main system space HS . Each agent X acts with their
local operation UX on that system and their ancilla [i.e.,
UX ∈ L(HX ⊗ HX ′ )] and then sends out the system at t∗

X . In
particular, this is the only time the agents use their quantum
instrument. While the agents enforce evolution via their in-
strument, the remaining degrees of freedom should evolve in
an uncorrelated way. This leads us to our final requirement,
which is analogous within our framework to the existence of
a causal frame decomposition Eq. (1) of process matrices.

U.3 X ’s quantum instrument is used at the so called time
of action t∗

X , i.e.,

UX (t∗
X , t∗

X − 1) = UX ⊗ Rest(X ). (15)

Furthermore at other times t 	= t∗
X the evolution operator

UX (t, t − 1) is independent of UX and only acts as the identity
on the ancilla of X , i.e., on HX ′ .

Our assumptions introduce a transformation that maps the
initial state |ψ (0, . . . , 0)〉 to the final state |ψ (TA1 , . . . , TAN )〉.
This transformation depends on the agents’ actions UX and is
visualized in Fig. 3. Our last assumption is that this transfor-
mation can be extended to a full process [10], i.e., quantum
superchannel [44]. This means that it must be possible to
interpret the quantum causal structure as a process, even if
we describe the agents’ operations as channels instead of
(purified) unitaries.

We make the assumption that our Postulates S.2, N.1, N.2,
N.3, U.1, U.2, and U.3 continue to be satisfied if the ancillary
systems are initialized to states other than |0〉A′

j
, and that we

can continue to use the same normalization operators N (X )
tX

and perspectival time evolutions UX (tX + 1, tX ) as for the
initialization |0, . . . , 0〉S′ . This is no substantial conceptual re-
striction, because none of these postulates explicitly refers to
any particular initial ancillary system state. Postulate S.1 just
defines the particular choice of initialization for the protocol.

This concludes the description of the operational setting
and of our assumptions. We will subsequently investigate the
mathematical and physical implications of our setting and
postulates.

B. History states lead to pure processes

First, we show that the evolution of the main system and
the ancillas must be given by a pure process. For that purpose
we have to analyze the relation between the initial and the
final state, in particular with respect to the operations of the
agents. This can be done by taking the perspective of an
agent, for example A1, and applying our unitary time evolution
postulates:∣∣TA2 . . . TAN

〉
c\A1

⊗∣∣ψ (TA1 , TA2 , . . . TAN )
〉

= (
UA1

(
TA1 , t∗

A1

)(
UA1 ⊗ Rest(A1 )

)
UA1

(
t∗
A1

− 1, 0
))

× (|0, . . . 0〉c\A1
⊗|ψ (0, 0, . . . 0)〉) (16)

We can define a map G that describes how the final system
and ancilla state is related to the initial state:

|ψ (TA1 . . . TAN )〉 =: G(UA1 . . .UAN )|ψ (0, 0, . . . 0)〉. (17)
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Equation (16) shows that G(UA1 . . .UAN ) is a unitary that
maps the initial system and ancilla state to the final state and
that it is multilinear in the local operations. Furthermore, this
decomposition shows that the only change in the state of the
ancilla of Aj is caused by Aj’s local operation. We assumed
that this map can be extended to a full process. We conclude
that G is a pure process as defined in [10,44] with the differ-
ence that Eq. (16) represents a refined causal reference frame
decomposition that explicitly includes the quantum clocks,
compare to Eq. (1).

The fact that we obtain pure processes has important con-
sequences: According to [44,54], in the bipartite case our
setting implies that no violation of device-independent causal
inequalities can occur: The bipartite pure process can only be
causally ordered or quantum-controlled causal order.

C. Additional restrictions for the local perspectives of the agents

Let us further investigate the relation between our frame-
work and the original causal reference frame framework of
[11], in particular the relation between Eqs. (1) and (16), in
further detail. Both frameworks work with purifications, in
particular the actions of the agents are described by purified
unitaries UA1 . . .UAN and the relevant process matrices turn
out to be the pure processes. The crucial objects of the causal
reference frame framework are the unitaries that describe the
past before and the future after an agent’s action. More specif-
ically, from the point of view of agent X , the evolution from
the beginning of the protocol up to the time of X ’s action is
described by the unitary �X . In our framework, this unitary
corresponds to UX (t∗

X − 1, 0). The evolution directly after X ’s
action up to the end of the protocol is described by �X , which
in our framework corresponds to UX (TX , t∗

X ).
The crucial difference between our framework and that

of causal reference frames is that we explicitly model the
quantum clocks and explain how the agents’ perspectives arise
from a perspective neutral history state. This gives us a refined
description of the agents’ perspectives because we explicitly
model individual time steps tX → tX + 1 in between the be-
ginning of the experiment, the time of action and the end of the
protocol. In Ref. [11] the causal past and future unitaries �X

and �X are allowed to be arbitrary as long as they combine
to the pure process G via Eq. (1). However, in our setting the
history state induces further compatibility constraints on the
perspectives of the agents.

We will now present one such constraint that is particu-
larly restrictive: Affine-linearity in the operations of the other
agents. Consider a history state as in Eq. (11). We can write∣∣ψ(

tA1 . . . tAN

)〉 = MtA1 ...tAN
|ψ (0, 0, . . . 0)〉, (18)

with

MtA1 ...tAN
= c\A1

〈
tA2 , . . . tAN

∣∣(N (A1 )
tA1

)−1UA1

(
tA1 , 0

)|0, . . . 0〉c\A1
.

(19)

Similar equations hold for the other agents. From our assump-
tions, we can see that MtA1 ...tAN

is constant in UA1 for tA1 < t∗
A1

and linear in UA1 for tA1 � t∗
A1

, because the same is true for
UA1 (tA1 , 0). We can relate the time evolutions of two different

agents (here A1 and A2) via

UA2 (tA2 , 0)|0, 0, . . . 0〉c\A2

=
∑

tA1 ,tA3 ,...tAN

N (A2 )
tA2

|tA1 , tA3 , . . . tAN 〉c\A2
MtA1 ,...tAN

. (20)

The dependence of MtA1 ,...tAN
on UA1 shows that

UA2 (tA2 , 0)|0, 0, . . .〉 is a sum of functions linear in UA1

or constant in UA1 , i.e., UA2 (tA2 , 0)|0, 0, . . .〉 is affine-linear
in UA1 . The same argument can be made for all other agents.
Hence we get that any time evolution UX (tX , 0) as seen by
agent X (with all clocks initialized to time 0) has to be an
affine-linear function of the operations of all other agents.
This affine linearity is a severe restriction and a potential
obstacle for implementing some noncausal processes in this
framework. In Sec. V D we will apply this insight to an
example involving an exotic tripartite process [10,55] to see
that a causal reference frame decomposition for this process
in Ref. [11] is incompatible with our framework.

D. Discrete constraint operators and physical projectors

Finally, we will briefly discuss constraint operators and physi-
cal projectors in our framework since they are among the main
objects of interest in the Page-Wootters formalism presented
in Sec. III. By construction, our history states form a subspace
HH ⊂ Hc ⊗ HS ⊗ HS′ and by linearity, α|�〉〉 + β|� ′〉〉 is
the history state associated with the input state α|ψ〉S +
β|ψ ′〉S , as one can see, e.g., from Eq. (18). Therefore, we can
define a constraint operator Ĉ as Ĉ = 1 − P̂H where P̂H is the
orthogonal projector onto HH . Then the kernel of Ĉ is given
by HH .

We note that in general, P̂H in our framework cannot be
written analogous to the case of a standard quantum circuit
with one clock, see Eq. (8). More specifically, for an orthonor-
mal basis |ψ j〉S , the corresponding history states

|� j〉〉 =
∑

tA1 ...tAN

∣∣tA1 . . . tAN

〉⊗∣∣ψ j
(
tA1 . . . tAN

)〉
S

=
TA1∑

tA1 =0

∣∣tA1

〉(
N (A1 )

tA1

)−1∣∣ψA1, j
(
tA1

)〉

=
TA1∑

tA1 =0

∣∣tA1

〉(
N (A1 )

tA1

)−1UA1

(
tA1 , 0

)|0, 0, . . .〉⊗|ψ j〉S

may fail to be orthogonal due to the normalization operators:

〈〈�k|� j〉〉 =
TA1∑

tA1 =0

〈ψk|S⊗〈0, 0, . . . 0|UA1

(
tA1 , 0

)†[(
N (A1 )

tA1

)−1]†

× (
N (A1 )

tA1

)−1UA1 (tA1 , 0)|0, 0, . . . 0〉⊗|ψ j〉S.

In that sense, the map from initial states to history states is not
necessarily unitary, in contrast to the unitary evolution of the
main system and ancilla state, see Eq. (17).
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FIG. 4. Example of a setting involving a clock with changing
ticking rate. The two agents A and B each receive a part of the input
system and experience one synchronized time step. After that the
clock of A starts ticking slower and A applies their unitary UA to their
subsystem of state |φ〉. This is followed by some unitary evolution V
of the full system, which is independent of the two agents. Then B
applies their unitary UB to his or her subsystem and finally, at the end
of the protocol, the two clocks tick in synchronization once more.

We can, however, write P̂H in a form more reminiscent of
the original Page-Wootters framework, compare Eq. (4), as

P̂H = 1

T

T −1∑
k=0

exp

(
−2π iĈ

k

T

)
, (21)

where T is an integer (we could take T = TA1 ). This can
be seen by noting that Ĉ is a Hermitian matrix with only
eigenvalues 0 or 1. If |φ0〉 is an eigenvector of Ĉ with Ĉ|φ0〉 =
0, we have P̂H |φ0〉 = |φ0〉, while if Ĉ|φ1〉 = |φ1〉 we have
P̂H |φ1〉 = 1

T

∑T −1
k=0 e−2π i k

T |φ1〉 = 0, showing P̂H = 1 − Ĉ. As
discussed in Appendix B it is not clear whether P̂H in Eq. (21)
can be linked to the perspectival unitaries UX (t ′

X , tX ) similar
to Eq. (9).

V. CAUSAL AND NONCAUSAL PAGE-WOOTTERS
CIRCUITS

In this section we now apply our framework to give several
examples of physical scenarios that go beyond the standard
setting of circuits with well-synchronized clocks. First, in
Sec. V A, we consider a setup inspired by the famous twin
paradox in which the clocks of two agents are still in a
well-defined relation to each other, but tick at different rates.
Afterwards, in Sec. V B, we describe a scenario for the bi-
partite quantum switch as a prototypical example of a known
class of noncausal processes. There, a control quantum sys-
tem determines the tick rates of the agents’ clocks and more
importantly the order of the agents’ operations. In Sec. V C,
we go beyond the example of the bipartite switch and show
that arbitrary coherently controlled causal orders can be real-
ized in our framework. Finally, in Sec. V D, we consider an
interesting pure, noncausal process that is further known to
violate causal inequalities [10,13,55]. We will argue that this
process cannot be implemented as a superposition of classical
histories and that the causal reference frame decomposition
from Ref. [11] cannot be adapted to our setting.

A. A history state for a scenario with varying clock ticking rates

Our first example of an interesting process that fits into our
setting but is not a standard circuit is inspired by the famous
twin paradox. Specifically we consider a scenario that features
varying clock speeds of two agents A and B where during the
protocol the clock of one ticks slower than the clock of the
other, reminiscent of the one twin that leaves earth traveling
at relativistic speed and returns to find his or her sibling older
than they are themselves.

Here the two agents act on subsystems SA and SB of the
input quantum state |φ〉 ∈ HS with unitary operations UA and
UB respectively. The causal order in this example is well
defined and we consider the case where A acts before B.
Moreover, between A’s and B’s time of action some global
evolution V of the system happens, which is independent of
the two agents. In the beginning and at the end the agents’
clocks tick at the same speed, but in between the clock of
A ticks more slowly than that of B. The scenario is depicted
in Fig. 4 and captured by the following history state |�〉〉 ∈
HcA ⊗ HcB ⊗ HSA ⊗ HSB .

|�〉〉 = |0A, 0B〉c⊗|φ〉 + |1A, 1B〉c⊗|φ〉 + |2A, 2B〉c⊗(UA ⊗ 1)|φ〉 + |2A, 3B〉c⊗(UA ⊗ 1)|φ〉 + |3A, 4B〉c⊗V (UA ⊗ 1)|φ〉
+ |3A, 5B〉c⊗V (UA ⊗ 1)|φ〉 + |4A, 6B〉c⊗(1 ⊗ UB)V (UA ⊗ 1)|φ〉 + |4A, 7B〉c⊗G(UA,UB)|φ〉
+ |5A, 8B〉c⊗G(UA,UB)|φ〉 + |6A, 9B〉c⊗G(UA,UB)|φ〉 (22)

where G(UA,UB) = (1⊗UB)V (UA⊗1). The perspectival states for the two agents including the nontrivial normalization opera-
tors are

|ψA(0)〉 = |0B〉cB⊗|φ〉, |ψA(1)〉 = |1B〉cB⊗|φ〉, |ψB(0)〉 = |0A〉cA⊗|φ〉, |ψB(1)〉 = |1A〉cA⊗|φ〉,

|ψA(2)〉 = 1√
2

(|2B〉 + |3B〉)cB⊗(UA⊗1)|φ〉, |ψB(2)〉 = |2A〉cA⊗(UA⊗1)|φ〉

with N (A)
2 = 1√

2
1S, = |ψB(3)〉,
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|ψA(3)〉 = 1√
2

(|4B〉 + |5B〉)cB⊗V (UA⊗1)|φ〉 |ψB(4)〉 = |3A〉cA⊗V (UA⊗1)|φ〉

with N (A)
3 = 1√

2
1S, = |ψB(5)〉,

|ψA(4)〉 = 1√
2

(|6B〉 + |7B〉)cB⊗(1⊗UB)V (UA⊗1)|φ〉 |ψB(6)〉 = |4A〉cA⊗(1⊗UB)V (UA⊗1)|φ〉

with N (A)
4 = 1√

2
1S, = |ψB(7)〉,

|ψA(5)〉 = |8B〉cB⊗G(UA,UB)|φ〉, |ψB(8)〉 = |5A〉cA⊗G(UA,UB)|φ〉,
|ψA(6)〉 = |9B〉cB⊗G(UA,UB)|φ〉, |ψB(9)〉 = |6A〉cA⊗G(UA,UB)|φ〉. (23)

Note that the normalization operators are nontrivial for precisely those times where the clock of A ticks slower than the clock
of B. The states in Eqs. (23) can be reproduced by the following unitary evolutions with respect to the two agents

UB(1, 0) = TcA ⊗ 1S,

UA(1, 0) = TcB ⊗ 1S, UB(2, 1) = TcA ⊗ (UA ⊗ 1)S,

UA(2, 1) = (T ′
2 )cB ⊗ (UA ⊗ 1)S, UB(3, 2) = 1,

UA(3, 2) = (T 2)cB ⊗ VS, UB(4, 3) = TcA ⊗ VS,

UA(4, 3) = (T 2)cB ⊗ (1 ⊗ UB)S, UB(5, 4) = 1,

UA(5, 4) = (T ′
6 )cB ⊗ 1S, UB(6, 5) = TcA ⊗ (1 ⊗ UB)S,

UA(6, 5) = TcB ⊗ 1S, UB(7, 6) = 1

UB(8, 7) = TcA ⊗ 1S = UB(9, 8),

(24)

where T is the unitary that makes the clock of the other agent tick, i.e., T : |t〉 �→ |t + 1〉. Similarly, T ′
i is any

unitary that acts as |i − 1〉 �→ 1/
√

2(|i〉 + |i + 1〉), 1/
√

2(|i〉 + |i + 1〉) �→ |i + 2〉. We see that our axioms are fulfilled and
the times of action are t�

A = 2 and t�
B = 6 respectively. As one can see in Eqs. (24), from A’s perspective B’s clock seems to tick

at double the rate in the middle of the process, while from the point of view of B, A’s clock seems partially frozen in time.

B. The quantum switch

Our second example describes the probably best known noncausal process, namely the bipartite quantum switch [15]. A
schematic picture as well as the two perspectival circuits analogous to the causal reference frame decomposition given in
Ref. [11] are shown in Fig. 5. The bipartite quantum switch can be modeled by a history state complying with our axioms
starting with an initial state |φ〉S ∈ HSc ⊗ HSt consisting of a control ancilla and a target system. Both agents are acting on the
target system Hilbert space; HA = HB = HSt .

A history state of the quantum switch is given by

|�〉〉 = |0A, 0B〉c ⊗ |φ〉 + |1A, 1B〉c ⊗ |φ〉 + |2A, 2B〉c ⊗ |φ〉 + |3A, 2B〉c ⊗ (|0〉〈0| ⊗ 1)|φ〉 + |2A, 3B〉c ⊗ (|1〉〈1| ⊗ 1)|φ〉
+ |4A, 3B〉c ⊗ (|0〉〈0| ⊗ UA)|φ〉 + |3A, 4B〉c(|1〉〈1| ⊗ UB)|φ〉 + |5A, 4B〉c ⊗ (|0〉〈0| ⊗ UBUA)|φ〉
+ |4A, 5B〉c ⊗ (|1〉〈1| ⊗ UAUB)|φ〉 + |5A, 5B〉c ⊗ (|0〉〈0| ⊗ UBUA + |1〉〈1| ⊗ UAUB)|φ〉
+ |6A, 6B〉c ⊗ G(UA,UB)|φ〉 + |7A, 7B〉c ⊗ G(UA,UB)|φ〉, (25)

where G(UA,UB) = |0〉〈0| ⊗ UBUA + |1〉〈1| ⊗ UAUB is the (pure) process matrix. Intuitively the history state in Eq. (25)
describes the scenario where, depending on the value of the control, different time orderings (A’s clock ticks at a faster rate
than B’s or vice versa) are initiated by desynchronizing initially synchronized clocks. For the two-time orderings different orders
of the agents’ operations (either UA or UB first) are applied. Finally the clocks are resynchronized, again making use of the
control degree of freedom, such that they can tick together at the end of the protocol. We obtain the following perspectival states

|ψA(0)〉 = |0B〉cB⊗|φ〉 |ψB(0)〉 = |0A〉cA⊗|φ〉
|ψA(1)〉 = |1B〉cB⊗|φ〉 |ψB(1)〉 = |1A〉cA⊗|φ〉
|ψA(2)〉 = |2B〉cB⊗(|0〉〈0| ⊗ 1)|φ〉 |ψB(2)〉 = |2A〉cA⊗(|1〉〈1| ⊗ 1)|φ〉

+ 1√
2

(|2B〉 + |3B〉)cB⊗(|1〉〈1| ⊗ 1)|φ〉 + 1√
2

(|2A〉 + |3A〉)cA⊗(|0〉〈0| ⊗ 1)|φ〉
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FIG. 5. The bipartite quantum switch: Depending on the value of a control qubit the two unitaries UA, UB are applied to the target system
in different order (top). According to the perspectives of the two agents, A or B apply their own unitary to the target system at time t∗

A or t∗
B

respectively, while the other agent’s unitary is applied either before or after that depending on the value of the control system (bottom). The
perspectival circuits equal the causal reference frames for the quantum switch given in Ref. [11].

with N (A)
2 = |0〉〈0|Sc + 1√

2
|1〉〈1|Sc with N (B)

2 = 1√
2
|0〉〈0|Sc + |1〉〈1|Sc

|ψA(3)〉 = |2B〉cB⊗(|0〉〈0| ⊗ 1)|φ〉 |ψB(3)〉 = |2A〉cA⊗(|1〉〈1| ⊗ 1)|φ〉
+ |4B〉cB⊗(|1〉〈1| ⊗ UB)|φ〉 + |4A〉cA⊗(|0〉〈0| ⊗ UA)|φ〉

|ψA(4)〉 = |3B〉cB ⊗ (|0〉〈0| ⊗ UA)|φ〉 |ψB(4)〉 = |3A〉cA ⊗ (|1〉〈1| ⊗ UB)|φ〉
+ |5B〉cB ⊗ (|1〉〈1| ⊗ UAUB)|φ〉 + |5A〉cA ⊗ (|0〉〈0| ⊗ UBUA)|φ〉

|ψA(5)〉 = 1√
2

(|4B〉 + |5B〉)cB ⊗ (|0〉〈0| ⊗ UBUA)|φ〉 |ψB(5)〉 = 1√
2

(|4A〉 + |5A〉)cA ⊗ (|1〉〈1| ⊗ UAUB)|φ〉

+ |5B〉cB ⊗ (|1〉〈1| ⊗ UAUB)|φ〉 + |5A〉cA ⊗ (|0〉〈0| ⊗ UBUA)|φ〉

with N (A)
5 = 1√

2
|0〉〈0|Sc + |1〉〈1|Sc with N (B)

5 = |0〉〈0|Sc + 1√
2
|1〉〈1|Sc

|ψA(6)〉 = |6B〉cB ⊗ G(UA,UB)|φ〉 |ψB(6)〉 = |6A〉cA ⊗ G(UA,UB)|φ〉
|ψA(7)〉 = |7B〉cB ⊗ G(UA,UB)|φ〉 |ψB(7)〉 = |7A〉cA ⊗ G(UA,UB)|φ〉 (26)

which can be related to each other by unitaries

UA(1, 0) = TcB⊗1S UB(1, 0) = TcA⊗1S

UA(2, 1) = TcB⊗(|0〉〈0|⊗1)S + (T ′
2 )cB⊗(|1〉〈1|⊗1)S UB(2, 1) = TcA⊗(|1〉〈1|⊗1)S + (T ′

2 )cA⊗(|0〉〈0|⊗1)S

UA(3, 2) = 1cB⊗(|0〉〈0|⊗1)S + (T ′
2 )cB⊗(|1〉〈1|⊗UB)S UB(3, 2) = 1cA⊗(|1〉〈1|⊗1) + (T ′

2 )cA⊗(|0〉〈0|⊗UA)

UA(4, 3) = TcB⊗(1⊗UA)S UB(4, 3) = TcA⊗(1⊗UB)S

UA(5, 4) = (T ′
4 )cB⊗(|0〉〈0|⊗UB)S + 1cB⊗(|1〉〈1|⊗1)S UB(5, 4) = (T ′

4 )cA⊗(|1〉〈1|⊗UA)S + 1cA⊗(|0〉〈0|⊗1)S

UA(6, 5) = (T ′
4 )cB⊗(|0〉〈0|⊗1)S + TcB⊗(|1〉〈1|⊗1)S UB(6, 5) = (T ′

4 )cA⊗(|1〉〈1|⊗1)S + TcA⊗(|0〉〈0|⊗1)S

UA(7, 6) = TcB⊗1S UB(7, 6) = TcA⊗1S. (27)

where T and T ′
i are the same as in the previous example. It is

straightforward to see that all our axioms are fulfilled. Note
that the unitaries in Eqs. (27) are not unique but were chosen
such that the perspectives of the agents resemble the causal
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A1 A2 A3P F

V0 V1 V2 V3

|ν〉

P A1 A2 A3 F

FIG. 6. A tripartite quantum comb: A general processes with fixed causal order is a map on the actions of three agents A1, A2, and A3 (left).
Time passes from left to right, where P stands for past and F for future, and, hence, A1 acts before A2 and agent A3 acts last. The agents’ actions
are quantum instruments, which must be inserted into the slots of the comb. Every comb can be implemented as sequence of unitary channels
with memory when adding an additional environment system with input |ν〉 and discarding part of the output (right) [42–45]. For pure combs
no extra environment input or discarding operation is required [44].

reference frames of the two agents presented in Ref. [11]. For
both A and B the time of action is t�

A = 4 = t�
B and depending

on the value of the control the other agent applies their
unitary either before or after t�

A or t�
B respectively, compare to

Fig. 5.

C. General coherent control of causal order

The quantum switch from the previous section is a famous
example for an important class of processes with indefinite
causal structure, namely processes with coherently controlled
causal order [56,57]. There, for each value of the control sys-
tem |k〉 ∈ HSc, one associates a process with definite causal
order or quantum comb G̃k [42,43] and the definite causal
order is different for at least two different k [58]. We will now
present the general idea for implementing such processes in
our framework, while the mathematical details are given in
Appendix C.

Consider M pure combs G̃k , 1 � k � M controlled by an
M-dimensional control system, with control state |k〉Sc mean-
ing that G̃k will be implemented. We will label the N agents
as A1, . . . , AN and their unitary operations as U1, . . . ,UN . As
explained in Ref. [44], quantum combs can be represented
by a sequence of channels with memory, see Fig. 6 for a
tripartite example, and we can write processes with coherently
controlled causal order as

G(U1, . . . ,UN ) =
M∑

k=1

|k〉〈k|Sc ⊗ G̃k (U1, . . . ,UN ) (28)

=
M∑

k=1

|k〉〈k|Sc ⊗ V (k)
N Uπk (N )V

(k)
N−1Uπk (N−1) . . .V

(k)
1 Uπk (1)V

(k)
0 ,

(29)

where the V (k)
0 , . . . ,V (k)

N are unitaries corresponding to pu-
rified channels with memory, which act trivially on the
ancillas S′ = A′

1 ⊗ · · · ⊗ A′
N the agents use. The unitaries

Uπk (1) . . .Uπk (N ) are a permutation of the agents’ unitaries
U1, . . . ,UN , which represent the particular definite causal or-
der realized in the comb G̃k . As one can see, G is unitary and
multilinear in the operations of the agents. Such processes
were also considered in [56,57].

Now we describe the history state implementing
G(U1, . . . ,UN ) given by Eq. (29). The input state
|ψ〉S ∈ HSc ⊗ HSp comprises a control system (∈ HSc)
and another system (∈ HSp), which represent the input to the
combs from the global past. We decompose the protocol and,
hence, the history state into three parts as

|�〉〉 = |�desync〉〉 + |�combs〉〉 + |�resync〉〉, (30)

where |�desync〉〉 describes the beginning of the protocol,
where we use the control degree of freedom to desynchronize
the clocks such that the agents are put into the right order.
Afterwards the different combs are applied depending on the
value of the control in |�combs〉〉. At last, the resynchronization
of the agents’ clocks is described by |�resync〉〉. The strategy is
depicted in Fig. 7.

During the desynchronization of the clocks nothing hap-
pens to the input to the combs and we can write

|�desync〉〉 = |0, . . . , 0〉c ⊗ |ψ〉S + |1, . . . , 1〉c

⊗ |ψ〉S + |2, . . . , 2〉c ⊗ |ψ〉S

+
M∑

k=1

T0∑
j=3

∣∣t (k)
1 ( j), . . . , t (k)

N ( j)
〉
c

⊗ (|k〉〈k|Sc ⊗ 1Sp)|ψ〉S, (31)

where, as we will see, T0 := t∗ − 2, with t∗ being the time of
action for all agents. The t (k)

i ( j) give different time orderings
by freezing different clocks for different amounts of time steps
during which the other clocks keep ticking. More precisely, if
an agent will act as the mth agent in the comb with the control
value |k〉SC , then the clock of that agent gets frozen for 2(m −
1) time steps. This ensures that two consecutive agents are two
time steps apart from each other when they enter |�combs〉〉.
While one agent’s clock is frozen, the clocks of the other
agents march on. See Appendix C for the detailed clock freez-
ing and desynchronization protocol. Afterwards, we include
additional synchronized ticks at the end of the desynchro-
nization step to ensure that for all k the clock freezes are far
away from the application of the combs. This together with
the fact that the agents’ operations Uj have not been used, yet,
gives perspectival, controlled unitaries that act nontrivially
only on the clocks of the other agents, i.e., UAj (t, t − 1) =∑M

k=1 u
Aj

c,k (t, t − 1) ⊗ |k〉〈k|Sc ⊗ 1Sp. Here, u
Aj

c,k (t, t − 1) are
the unitaries that only act on the clocks of the other agents.

In |�combs〉〉 the clocks will continue to tick in synchro-
nization by means of the unitary T introduced in Sec. V A
while, given a control value k, the unitaries of the comb G̃k

are applied one after the other. All the agents, for a given k,
see the following sequence of unitaries at the respective time
steps:

V (k)
0 ⊗ T ⊗(N−1), Uπk (1) ⊗ T ⊗(N−1), V (k)

1 ⊗ T ⊗(N−1), Uπk (2)

⊗ T ⊗(N−1), . . . , Uπk (N ) ⊗ T ⊗(N−1), V (k)
N ⊗ T ⊗(N−1)

(32)
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FIG. 7. The strategy for implementing coherently controlled causal order: The protocol consists of three steps, which are all conditioned
on the control value, namely desynchronization, application of the combs, and resynchronization. The time of action t∗ is chosen the same
for all agents. To be able to implement the comb of a given k, the clocks of the agents get desynchronized such that the agents will act in the
right order. This is achieved by first freezing the clocks of all but the agent Aπk (1) one after the other. By “freezing” we mean that all readings
of clocks other than that of agent Aπk (1) are not changing while the clock of agent Aπk (1) ticks. First the clock of the agent acting second gets
frozen followed by that of the agent acting third etc. The clock freezes are indicated in purple. The duration of the freeze depends on when the
agent will act. After the desired orderings have been implemented, the combs get applied while all clocks tick in synchronization. First one
applies the first unitary with memory of the comb, then the first agent acts (their clock shows t∗). Then the second comb unitary is applied
followed by second agents’ action etc. At last the clocks get resynchronized again by using the desynchronization protocol, but with the role
of the agents reversed.

Further details are again in Appendix C. The time differ-
ences caused by freezing the clocks ensure that the time of
action t∗ satisfies t∗ = T0 + 2 for all agents.

For the resynchronization in |�resync〉〉 we repeat the proce-
dure from |�desync〉〉, but with the role of the agents inverted,
i.e., t (k)

πk (m) �→ t (k)
πk (N+1−m). In the end, all the clocks tick in

synchronization and show the same time. Like the desynchro-
nization this last part of the protocol is independent of the
agents’ operations Uj and our axioms are fulfilled. Hence, any
coherent control of causal order as described by Eq. (29) can
be implemented in our framework.

D. About an exotic process

A notorious example of a tripartite pure process with in-
definite causal order from [10,55] is known to violate causal
inequalities. Said process is not an example of coherent con-
trol of causal order. It is often referred to as the Lugano
process. The time reversed version of the Lugano process was
discussed in Ref. [11] and can be written as

G(UA,UB,UC )| j j j〉 = UA ⊗ UB ⊗ UC | j j j〉 (33)

G(UA,UB,UC )| j01〉 = XUA ⊗ UB ⊗ UC | j01〉 (34)

G(UA,UB,UC )|1 j0〉 = UA ⊗ XUB ⊗ UC |1 j0〉 (35)

G(UA,UB,UC )|01 j〉 = UA ⊗ UB ⊗ XUC |01 j〉 (36)

where j ∈ {0, 1} and X = σX is the Pauli-X matrix. Defining
projectors PA = ∑

j | j01〉〈 j01|, PB = ∑
j |1 j0〉〈1 j0|, PC =∑

j |01 j〉〈01 j|, and P⊥ = ∑
j | j j j〉〈 j j j| one gets

G(UA,UB,UC )|φ〉
= (UA ⊗ UB ⊗ UCP⊥ + XUA ⊗ UB ⊗ UCPA

+ UA ⊗ XUB ⊗ UCPB + UA ⊗ UB ⊗ XUCPC )|φ〉. (37)

One crucial difference between the reversed Lugano pro-
cess and the noncausal processes discussed in Sec. V C is
the lack of a control degree of freedom. Therefore, it is not
possible to directly adapt the history state procedure that we
used for coherently controlled causal order to the reversed
Lugano process. Instead, the main system itself has to control
the desynchronization process. One can try to, similarly to
the quantum switch, use the projectors PA, PB, PC , and P⊥ to
define a controlled operation that desynchronizes the clocks.
Afterwards, one can use the clocks as a control system to
define another controlled operation that applies the unitary
operations (33)–(36) for the different control values. However,
the resynchronization cannot be done independently of the
unitaries UA, UB, and UC . More specifically, the described
procedure will lead to a term in the history state of the form

|�〉〉 = · · · + |γ⊥〉c ⊗ (UA ⊗ UB ⊗ UCP⊥)|φ〉S

+ |γA〉c ⊗ (XUA ⊗ UB ⊗ UCPA)|φ〉S

+ |γB〉c ⊗ (UA ⊗ XUB ⊗ UCPB)|φ〉S

+ |γC〉c ⊗ (UA ⊗ UB ⊗ XUCPC )|φ〉S + . . .

with some clock states |γ⊥〉c, |γA〉c, |γB〉c, and |γC〉c, which
represent the different time orderings. The question is how
to complete the history state, i.e., how to resynchronize the
clocks. We are only allowed to use the agents’ operations
once and this has already happened. The states UA ⊗ UB ⊗
UCP⊥|φ〉S , XUA ⊗ UB ⊗ UCPA|φ〉S , UA ⊗ XUB ⊗ UCPB|φ〉S ,
and UA ⊗ UB ⊗ XUCPC |φ〉S all depend on UA,UB,UC in dif-
ferent, nontrivial ways. This means any overall map using
them to “resynchronize” the clocks will nontrivially depend
on UA,UB, and UC as well. This in turn leads to a nontrivial
dependence of UX (tX , tX − 1) on UX for all X ∈ {A, B,C} dur-
ing the resynchronization part towards the end of the protocol,
i.e., for tX > t∗

X , which is a violation of Assumption U.3.
Reference [11] presented a causal reference frame decom-

position of the reverse Lugano process, which for agent A
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FIG. 8. The causal reference frame of agent A inside the time
reversed Lugano process as given in [11] (B’s and C’s perspectival
circuits look analogous). There is no control degree of freedom. All
three agents act on different subsystems of the input system |φ〉, but
in a way that depends on the subsystems the other agents act on.
Because of the gates that are not affine-linear in UB and UC this causal
reference frame decomposition is incompatible with our setting.

is shown in Fig. 8. It uses perspectival circuits with gates
that are not affine-linear in the respective unitaries of the
other agents, U †

B XUB and U †
C XUC for A’s perspective. How-

ever, the corresponding perspectival states are forbidden in
our framework due to the requirement of affine-linearity for
MtA,tB,tC (UA,UB,UC ) discussed in Sec. IV C.

Note, however, that the two impossible implementations
of the process G(UA,UB,UC ) discussed above, namely the
causal reference frame decomposition of [11] according to
Fig. 8 and the desynchronization-resynchronization-protocol,
are not necessarily the only strategies for how to describe the
reverse Lugano process within our noncausal Page-Wootters
framework. Determining whether this process can be realized
in this framework remains an open problem left for future
work.

VI. CONCLUSION

In this paper we showed how the Page-Wootters approach
and the process matrix formalism may be combined to give a
history state description of noncausal processes. We consid-
ered an operational setting that allows for probing indefinite
causal structure. In this setting we explicitly modeled the
passage of time as perceived by different agents using dis-
crete quantum clocks. This allowed us to use a history state
approach to which we added a set of well-motivated axioms
about the protocol and the perspectives of the agents. As a
consequence of these axioms, the causal structures arising
in our setting are described by pure process matrices. A
well-known result from previous literature about pure pro-
cess matrices implies that in the bipartite case, no violation
of device-independent causal inequalities can occur in our
setting. Nonetheless, we could show that important physical
scenarios beyond causal circuits and beyond nonrelativistic
clocks fit into our framework. More specifically, we showed
how to describe a scenario inspired by the twin paradox in-
volving varying clock ticking speeds with our approach. But
most importantly, we proved that all processes representing
coherent control of causal order (e.g., the quantum switch)
can be implemented using our description.

We showed how to extract the time-evolution correspond-
ing to the perspective of any given agent. This lead us to a
refinement of the causal reference frame picture of Ref. [11]
in which also the quantum clocks are explicitly modeled. The
presence of these clocks and a perspective-neutral history state
impose extra conditions on the causal reference frames. As an
example, we showed that the evolution described by the causal
past needs to be affine-linear in the operations of the other
agents. We applied this extra condition to rule out, within
our setting, a specific causal reference decomposition of the
so-called time-reversed Lugano process provided in [11].

We conclude by pointing out a few directions for future
research. While we focused on discrete clocks, this framework
can be adapted to continuous clocks, extending the approach
of Ref. [35] to a systematic operational protocol that allows
for the extraction of process matrices. In order to model the
protocol for probing causal structure, we worked directly with
history states instead of starting with a constraint operator or
physical projector. As a consequence, the relation between the
physical projector and the perspectival unitaries UX (t ′, t ) is an
open question. Resolving this question might reveal further
constraints on the history states, possibly restricting the set of
process matrices that can be described by our framework. An
important class of noncausal processes that lack a physical
interpretation are those that violate causal inequalities (e.g.,
the aforementioned Lugano process). If one could show that
these processes do not fit into our setting, this would hint at
such processes not being physical.
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APPENDIX A: DISCRETIZATION AND
NORMALIZATION OPERATORS

An important difference between continuous and discrete
clocks is the fact that integrals

∫
dt pick up prefactors

when changing the integration variable while sums do not
pick up such a prefactor under change of summation in-
dex. Consider again the example from the main text of the
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history state |�〉〉 = ∫
dtA|tA〉cA ⊗ |2tA〉cB with perspectival

states cA〈tA|�〉〉 = |2tA〉 and cB〈tB|�〉〉 = ∫
dtA|tA〉〈tB|2tA〉 =

1
2 |1/2 tB〉. If we consider a naive discretization of the
above example of the form |�〉〉 = ∑

k |k〉cA ⊗ |2k〉cB we
find cA〈tA|�〉〉 = |2tA〉 and for even values of tB we find
cB〈tB|�〉〉 = |1/2 tB〉. Hence, the continuous and discrete ver-
sion of cB〈tB|�〉〉 differ by a factor 1

2 .
The second important issue arises from the use of approx-

imations like time-binning, i.e., to assign every continuous
time state |t〉 to the closest discrete time state, for discretiza-
tion. Such procedures are not injective: Continuous times
|t + δt〉 and |t〉 with very small δt will in general get mapped
to the same discrete time state. This means that the discretiza-
tion procedure itself can change the normalization and inner
product of states. Such artifacts of the discretization procedure
can be countered by the introduction of normalization opera-
tors.

For well-synchronized clocks with constant and same tick-
ing speed, the aforementioned discretization artifacts can
usually be avoided. However, we will show now issues one
encounters in the context of different or varying clock tick-
ing speeds. As a warm-up, let us consider again a history
state of a clock that ticks twice as fast as another clock:∫

dt |t〉cA ⊗ |2t〉cB . A first guess for a discretization might be
something of the form |�〉〉 = ∑

k |k〉cA ⊗ |2k〉cB with k taking
integer values. This would not be an acceptable discretization
in our approach: Our postulates demand that agent B sees a
state for each time value of their clock, and that this state
evolves via unitary time evolution. However, cB〈t |�〉〉 = 0 for
t odd makes this impossible.

One possible approach to fix this issue might be to instead
use |�〉〉 = ∑

k |k〉cA ⊗ |k〉cB and keep a note that says that the
times on B’s clock must be multiplied by another factor of 2 to
obtain the “real” time of Bob. Such a fix is very unappealing
and goes against the idea that the clock states directly reflect
the time of the agents, up to rounding error. Also, in the
context of varying ticking rates the implementation of such
a fixing strategy can become very complicated. The situation
becomes even worse in the context of superpositions of histo-
ries: Here, the mapping of |k〉cB to the actual value of Bob’s
clock might depend on the branch of the superposition and the
same |k〉cB might correspond to vastly different times on B’s
clock. An example might be a history state that is a superpo-
sition of A’s clock being twice as fast and and B’s clock being
twice as fast, i.e.,

∫
dt (α|2t〉 ⊗ |t〉 + β|t〉 ⊗ |2t〉). Obviously,

now a “fix” like
∑

k (α|k〉 ⊗ |k〉 + β|k〉 ⊗ |k〉) cannot work.
Let us look for a good history state that can describe

discrete clocks of different ticking rates. We would like the
clock states to directly tell us the time of the clock. Also,
as we argued before, our discretization of clocks is not al-
lowed to leave out any times. Then, to describe clocks of
different speeds, one is left with the option to instead repeat
times: A discretization of

∫
dt |2t〉cA ⊗ |t〉cB might be |�〉〉 =∑

k |k〉cA ⊗ |� k
2�〉cB , with �•� meaning “rounded down”. As a

specific example, let us consider the state

|�〉〉 = |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 + |2〉 ⊗ |1〉 + |3〉 ⊗ |2〉
+ |4〉 ⊗ |2〉 + |5〉 ⊗ |3〉 . . . (A1)

Note that, this state does not satisfy all our axioms for history
states from the main text and it is intended as an illustration;
all degrees of freedom other than the clocks have been ne-
glected. This procedure of repeating times does have a nice
interpretation: One can interpret the clock states |k〉 as the
number of ticks the agent has heard so far. As A’s clock is
twice as fast, B hears the first tick when A already hears the
second.

Let us see what the states for the different perspectives look
like. We have

cA〈0|�〉〉 = |0〉cB , cA〈1|�〉〉 = |1〉cB , cA〈2|�〉〉 = |1〉cB ,

cA〈3|�〉〉 = |2〉cB , cA〈4|�〉〉 = |2〉cB , . . .

This fits to the interpretation that whenever B hears one tick, A
already hears the second tick. Note that the states are properly
normalized. For B’s perspective we find

cB〈0|�〉〉 = |0〉cA , cB〈1|�〉〉 = |1〉cA + |2〉cA ,

cB〈2|�〉〉 = |3〉cA + |4〉cA , . . .

First we note that these states are not properly normalized. But
this can be easily fixed with a normalization operator N (B)

tB =
1√
2
1 for tb > 0. Indeed, this normalization factor arises be-

cause we map continuous times |k + �t〉cB , with k an integer,
0 � �t < 1, to the same discrete state |k〉cB , as mentioned
previously. Furthermore we note that B “coherently interpo-
lates” between the two times of A that are consistent with
B’s time. Also this is reasonable: As B cannot have “which-
time”-information about A’s clock without a measurement (in
analogy to which-path-information), B puts the two possible
times in superposition.

APPENDIX B: ABOUT THE PHYSICAL PROJECTOR
AND ITS RELATION TO UNITARY TIME EVOLUTION

It is unclear whether the unitaries UX (t ′
X , tX ) can always

be chosen such that they satisfy a nice relationship, similar to
Eq. (9), with P̂H . The examples considered in Ref. [35] would
seem to suggest an equation of the form

〈t ′
X |P̂H |tX 〉 ?= (

N (X )
t ′

)−1UX (t ′
X , tX )N (X )

t . (B1)

However, we will show now that there exist choices of history
states |�〉〉 and time evolutions UX (t ′

X , tX ) that are compatible
with our framework as presented in Sec. IV A, but do not
satisfy Eq. (B1).

If Eq. (B1) was true we could alternatively write

P̂ =
∑
t,t ′

|t ′〉〈t |TA ⊗ (
N (A)

t ′
)−1UA(t ′, t )N (A)

t , (B2)

and a similar decomposition held for all other agents. Looking
at two different ways to write out 〈t ′

A|〈t ′
B|P|tA〉|tB〉, we have

〈t ′
B|N−1

A (t ′
A)UA(t ′

A, tA)NA(tA)|tB〉
= 〈t ′

A|N−1
B (t ′

B)UB(t ′
B, tB)NB(tB)|tA〉. (B3)

By explicitly plugging in normalization operators NX and uni-
taries UX from example in Sec. V B we can see that Eq. (B3)
does not hold for this representation of the quantum switch.
More specifically, taking t ′

B = 3, tB = 2, t ′
A = 5, tA = 4, we
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obtain

〈tB = 3|N−1
A (5)UA(5, 4)NA(4)|tB = 2〉

=
√

2(〈3|T ′
4 |2〉)|0〉〈0| ⊗ UB =

√
2|0〉〈0| ⊗ UB, (B4)

which is not equal to

〈tA = 5|N−1
B (3)UB(3, 2)NB(2)|tA = 4〉

= 1√
2

(〈5|T ′
2 |4〉)|0〉〈0| ⊗ UA = 1√

2
|0〉〈0| ⊗ UA. (B5)

Here, we extended T ′
i from the main text to act like the

clock ticking operator T , when applied to | j〉 with j 	= i −
1, i, i + 1.

This example, however, does not mean that it is impossible
to satisfy Eq. (B1). In our operational setting, we assumed
that the ancillas and clocks are initialized to the states |0〉.
Therefore, the states that emerge during the protocol do not
probe the full input space of the UX (t ′

X , tX ). In other words,
there are several choices for UX (t ′

X , tX ) that are compatible
with our assumptions in Sec. IV A. We leave for future work
the question of whether there exists a choice of UX (t ′

X , tX ) that
simultaneously satisfies our postulates and a relation similar
to Eq. (B1).

APPENDIX C: COHERENTLY CONTROLLED CAUSAL
ORDER FOR AN ARBITRARY NUMBER OF AGENTS

In this Appendix we show explicitly how to implement
coherently controlled causal order for an arbitrary number of
agents. We start with some general considerations concerning
the coherent superposition of quantum combs. Afterwards we
present each of the three conceptual steps of the implemen-
tation, i.e., desynchronization, application of the combs, and
resynchronization, in detail.

First of all, in order to put quantum combs in controlled
superposition they have to satisfy compatibility conditions.
We assume that the input space and output space of an agent
should be independent of the comb index k. Otherwise, an
agent could narrow down the control value by determining
the input or output dimension. Likewise, the dimension of the
main system S, i.e., the dimension of the input to the comb
from the global past and the dimension of the comb output to
the global future, should be independent of the comb index k.
Furthermore, we assume that the input and output space of an
agent have the same dimension and that the memories of the
combs are chosen such that their dimensions are independent
of the comb index k. If the original combs do not satisfy these
assumptions, the dimensions can be extended (for example by
the use of ancillas) such that afterwards the combs dimensions
do satisfy these requirements.

In order to implement quantum combs and their superpo-
sitions in our framework we use the fact that they can be
modeled by sequences of unitary channels with memory, see
Fig. 6 in the main text. More precisely, a general quantum
comb G̃k is given by a sequence of unitaries V (k)

0 ,..., V (k)
N with

memory and an environment input state |ν (k)〉 and an environ-
ment output system, over which the partial trace is taken at the
end [44]. For our purpose we will consider an extended main
input system that now also contains the environment inputs

FIG. 9. The relation between pure and mixed combs: The dila-
tion environment input |ν〉 is treated as part of an extended main
system that is the input to the causal structure. The partial trace over
the environment output is only applied after the main protocol has
finished. The unitaries with memory are a pure comb that we handle
just as in the previous sections. One can assume that the environment
inputs for all combs are all the same, or that each comb has its own
one and that the environment inputs of the other combs get discarded.

|ν (k)〉Ek . We assume that the dilations are chosen such that the
environment input |ν (k)〉Ek = |ν〉E is the same for all combs.
Hence, the input to the causal structure is |ψ̃〉S̃ = |ψ〉S ⊗ |ν〉E .
Since the dilation environment will be discarded only after
the main protocol has finished, we can model superpositions
of pure combs only and trace out the environment after the
implementation (a pure comb is a sequence of unitaries with
memory [44]). A schematic picture for the bipartite case is
shown in Fig. 9. In general, the resulting process can depend
on the choice of purification. In other words, there may be sev-
eral ways how to dilate and coherently control mixed combs

FIG. 10. This figure shows the general scenario for coherently
controlled causal order in the tripartite case (see also [56,57]). The
process G consists of a control degree of freedom, whose value k
controls, which comb G̃k is implemented. The order of the agents
Aj in comb G̃k is described by a permutation πk , i.e., the mth agent
in comb G̃k is agent Aπk (m). The combs G̃k are assumed to be pure,
implemented via unitaries V (k)

j with memories and have have been
extended (e.g., via ancillas) such that all the relevant dimensions are
independent of k. This means the global past P and the global future
F are independent of k. Furthermore, the dimension of the comb
memory Eπk (m) running parallel to agent Aπk (m) is independent of k.
The agents’ operations Uj are shown in purple. They can act on the
ancilla A′

j of the respective agent, but not on the ancillas of the other
agents or the comb memory.
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FIG. 11. This figure shows the clock times during the desynchronization procedure for the special case N = 4. Time passes from left to
right. Time freezing is marked in color. After the shown times only well-synchronized ticks happen.

and we consider the particular choice a part of the definition
of what it means to coherently control mixed combs.

Each of the combs G̃k has a definite order of the agents
that we describe via a permutation πk . More specifically, the
jth agent in comb k is given by Aπk ( j). The V (k)

j act trivially
on the agents’ ancillas S′ = A′

1 ⊗ · · · ⊗ A′
N , while the agents’

unitaries Uj do not act on the memory of the comb, see Fig. 10
for the tripartite example. The comb memory wire parallel to
the action of agent Aj is called Ej . As mentioned above, we
assume that its dimension is independent of the comb index k
and, hence, the combs can be written as

G̃k (U1,U2, . . .UN )

= (
V (k)

N ⊗ 1S′
)(

Uπk (N ) ⊗ 1Eπk (N )

)(
V (k)

N−1 ⊗ 1S′
)

. . .
(
V (k)

1 ⊗ 1S′
)
(Uπk (1) ⊗ 1Eπk (1) )

(
V (k)

0 ⊗ 1S′
)
. (C1)

Leaving identity operations on the ancillas implicit for nota-
tional convenience we thus arrive at Eq. (29) from the main
text.

In what follows we describe a general procedure for
writing down a history state complying with our axioms from
Sec. IV A. While there are potentially many ways to write
down such history states, our goal was to pick one with with a
notation that is as simple as possible for an arbitrary number
of agents. This means the procedure will not be as efficient or
short as possible, but will use indices and notation that make
it easier to discuss the local perspectives later on.

As written in the main text the history state decomposes
into three parts as

|�〉〉 = |�desync〉〉 + |�combs〉〉 + |�resync〉〉, (C2)

and we will now consider each part separately.

1. Desynchronizing the clocks

In the first step of the protocol we use the control degree of freedom to desynchronize the clocks such that the agents are
put into the right order. It will be helpful to manipulate the clocks such that consecutive agents are two ticks apart because
between the actions of two consecutive agents there is a unitary V (k)

j of the comb. To desynchronize the clocks, we will partially
freeze them in time. More specifically, we start from |0, 0, . . . , 0〉 ⊗ |ψ〉S . At first all the clocks make two synchronized step to
|2, 2, . . . , 2〉 ⊗ |ψ〉S . For the desynchronization procedure we consider a history state of the following form:

|�desync〉〉 = |0, 0, . . . , 0〉c ⊗ |ψ〉S + |1, 1, . . . , 1〉c ⊗ |ψ〉S +
M∑

k=1

T0∑
j=2

|t ( j)(k)
1 , t ( j)(k)

2 , . . . , t ( j)(k)
N 〉c ⊗ (|k〉〈k| ⊗ 1)|ψ〉S (C3)

There are many desynchronization procedures one can choose from. Our goal is to pick one with with a notation that is as
simple as possible for an arbitrary amount of agents. This means the procedure will not be as efficient or short as possible, but
will use indices and notation that make it easier to discuss the local perspectives later on. One such procedure works as follows:

The clock of the fastest agent, i.e., πk (1), continues to tick at the same rate as before. This we describe via

t ( j)(k)
πk (1) = j (C4)

For notational simplicity, we will desynchronize the clocks one after the other. Consider integers 2 � m � N . We use the time
range described by 2(m − 2) · N + 2 � j � 2(m − 1) · N + 1 to slow down the clock of agent πk (m). More specifically, at times
2(m − 2) · N + 2 � j � 2(m − 2) · N + 2(m − 1) + 2, the clock of agent m completely freezes, while the clocks of the other
agents march on. Except for that freezing period, the clock ticks at a normal rate. Overall, this can be described as follows
(m � 2):

t ( j)(k)
πk (m) =

⎧⎨
⎩

j for j � 2(m − 2)N + 2
2(m − 2) · N + 2 for 2(m − 2)N + 2 � j � 2(m − 2)N + 2(m − 1) + 2
j − 2(m − 1) for j � 2(m − 2)N + 2(m − 1) + 3.

(C5)

We choose the largest j to be

T0 := 2(N − 2)N + 2(N − 1) + 4 + 2(N + 1) = 2N2 + 4, (C6)

which includes 2(N + 1) more well-synchronized ticks to make sure that for all k the clocks freezes are far way from the
application of the combs. The desynchronization procedure is shown for N = 4 in Fig. 11.
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First, we note that two consecutive agents πk (m) and πk (m + 1) are indeed two time steps apart at the end:

[ j − 2([m + 1] − 1)] − [ j − 2(m − 1)] = −2

Moreover, we made sure to construct the history state such that only one clock freezes simultaneously, i.e., time freezes of
different clocks are well-separated from each other and that no times are skipped.

Next, let us consider the local perspectives, i.e., ca〈t |�desync〉〉. Let us expand |ψ〉S = ∑
k |k〉Sc|ψk〉Sp. Then we have

|�desync〉〉 = |0, 0, . . . , 0〉c ⊗ |ψ〉S + |1, 1, . . . , 1〉c ⊗ |ψ〉S +
M∑

k=1

T0∑
j=2

∣∣t ( j)(k)
1 , t ( j)(k)

2 , . . . , t ( j)(k)
N

〉
c ⊗ |k〉Sc|ψk〉Sp (C7)

We now need to define the normalisation operators N
Aj
t and the unitaries UAj (t, t ′) relating the perspectival states at different

times. Without loss of generality, we will show how to construct those for the point of view of A1. Define

αk (t ) =
∥∥∥∥∥〈t |c1

T0∑
j=2

∣∣t ( j)(k)
1 , t ( j)(k)

2 , . . . , t ( j)(k)
N

〉
c

∥∥∥∥∥. (C8)

Note that for any 1 < t < TA1 , where TA1 is the largest time A1 sees during the desynchronization phase, we have that αk (t ) 	= 0
because no time is skipped during desynchronization. We can therefore define

N (A1 )
t =

∑
k

1

αk (t )
|k〉〈k|Sc , (C9)

as the normalization operator, which then gives the perspectival state

|ψA1 (t )〉 =
∑

k

|ξk〉c|k〉Sc |ψk〉Sp, (C10)

where |ξk (t )〉c is a normalized state proportional to 〈t |c1

∑T0
j=2 |t ( j)(k)

1 , t ( j)(k)
2 , . . . , t ( j)(k)

N 〉c. It is clear that there exists a unitary

relating |ψA
1 (t )〉 with |ψA

1 (t + 1)〉 and that this unitary can be chosen to have the form UA1 (t, t + 1) = ∑
k uA1

c,k ⊗ |k〉〈k|Sc ⊗ 1Sp .

Indeed, we can choose uA1
c,k to be any unitary mapping |ξk (t )〉c �→ |ξk (t + 1)〉, and acting arbitrarily on other states.

2. Application of the combs

Now we consider the application of the combs. The starting point is

M∑
k=1

(|k〉〈k| ⊗ 1)|ψ〉S ⊗ |T0, T0 − 2, . . . , T0 − 2(N − 1)〉cπk (1),...,cπk (N ) , (C11)

with

|t1, t2, . . . , tN 〉cπk (1),...,cπk (N ) := Uπk |t1, t2, . . . , tN 〉c, (C12)

where Uπk is the unitary implementing the permutation on the Hilbert spaces of the local clocks.
For this part of the protocol, the clocks will always tick in synchronization. Then all agents see the following sequence of

time evolutions:

V (k)
0 ⊗ T ⊗(N−1), Uπk (1) ⊗ T ⊗(N−1), V (k)

1 ⊗ T ⊗(N−1), Uπk (2) ⊗ T ⊗(N−1), . . . , Uπk (N ) ⊗ T ⊗(N−1), V (k)
N ⊗ T ⊗(N−1) (C13)

So the time of action for each agent is t∗ = T0 + 2. For completeness, let us describe the time-evolutions the agents see in more
detail. For that purpose, we start at τ := T0 − 2(N − 1). Then the unitary time evolution that agent j sees are given by (p a
non-negative integer)

UAj (τ + p + 1, τ + p) =
M∑

k=1

|k〉〈k|Sc ⊗ T ⊗(N−1) ⊗ W (k)
Aj

(p + 1, p) (C14)

Let m(k)
j be the integer with πk (N − m(k)

j ) = j. Then the unitary W (k)
Aj

(p + 1, p) is given by (N � x � 0 a non-negative integer,
N � y � 1 a positive integer)

W (k)
Aj

(2m(k)
j + 2x + 1, 2m(k)

j + 2x) = V (k)
x ,

W (k)
Aj

(2m(k)
j + 2y, 2m(k)

j + 2y − 1) = Uπk (y),

W (k)
Aj

(p + 1, p) = 1 for other values of p. (C15)
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The corresponding part of the history state looks as follows

|�combs〉〉 =
M∑

k=1

|T0 + 1, T0 − 1, . . . , T0 − 2(N − 1) + 1〉cπk (1),...cπk (N ) ⊗ [|k〉〈k| ⊗ V (k)
0

]|ψ〉S

+
M∑

k=1

N∑
y=1

|T0 + 2y, T0 − 2 + 2y, . . . , T0 − 2(N − 1) + 2y〉cπk (1),...cπk (N ) ⊗ [|k〉〈k| ⊗ (
Uπk (y)V

(k)
y−1 . . .Uπk (1)V

(k)
0

)]|ψ〉S

+
M∑

k=1

N∑
x=1

|T0+1+2x, T0−1+2x, . . . , T0−2(N−1)+1+2x〉cπk (1),...cπk (N ) ⊗ [|k〉〈k| ⊗ (
V (k)

x Uπk (x) . . .Uπk (1)V
(k)

0

)]|ψ〉S

(C16)

Hence, all the combs get applied, see Eq. (C16), each agent has a well defined time of action and the other agent’s unitaries
appear at most linearly in each parties perspective, see Eq. (C13).

3. Resynchronization

Now we consider the final part of the protocol, the resynchronization step. We define

T1 := T0 + 2N + 1 (C17)

such that the starting point is given by∑M
k=1 |T1, T1 − 2, . . . , T1 − 2(N − 1)〉cπk (1),...cπk (N ) ⊗ [|k〉〈k| ⊗ (

V (k)
N Uπk (N ) . . .UAπk (1)V

(k)
0

)]|ψ〉S

To make sure that for all k the clock freezes are far apart from the application of the combs, we first insert 2(N + 1) well-
synchronized ticks. Afterwards, we choose the resynchronization to proceed exactly as the desynchronization, but with the order
of agents reversed. By using the function t ( j)(k)

πk (m) from Eq. (C5), this can be described by the history state

|�resync〉〉 =
M∑

k=1

2(N+1)∑
j=0

|T1 + 1 + j, T1 − 1 + j, . . . , T1 + 1 − 2(N − 1) + j〉cπk (1), ...cπk (N )

⊗ [|k〉〈k| ⊗ (
V (k)

N Uπk (N ) . . .Uπk (1)V
(k)

0

)]|ψ〉S+

+
M∑

k=1

T0∑
j=0

|T1 + 2(N + 1) + 2 + t ( j)(k)
πk (N ), T1 + 2(N + 1) + t ( j)(k)

πk (N−1), . . . , T1 + 6 + t ( j)(k)
πk (1)〉cπk (1), ...cπk (N )

⊗ [|k〉〈k| ⊗ (
V (k)

N Uπk (N ) . . .Uπk (1)V
(k)

0

)]|ψ〉S. (C18)

Just as during the desynchronization process, nothing happens on the system and we can write the perspectival states and
unitaries as |ψAj (t )〉 = ∑

k |ξk〉cG̃k (U1,U2, . . .UN )|k〉Sc |ψk〉Sp and UAj (t, t + 1) = ∑
k V k

c ⊗ |k〉〈k|Sc ⊗ 1Sp .
With this generic protocol we can implement any process describing the coherent control of causal order within our Page-

Wootters framework.
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