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Tunneling vortices induce quantized responses in exciton-condensate/weak excitonic
condensate/exciton-condensate (EC/EC’/EC) junctions
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Junctions composed of excitonic condensate (EC) bilayers exhibit intriguing physics due to the presence of
interlayer tunneling. Together with the excitonic superflow, this tunneling induces a special kind of topological
object which is analogous to the Josephson vortices in extended superconducting Josephson junction. We name
such objects the “tunneling vortices.” In this work we propose to characterize the topological properties of
these vortices in the current-injecting scheme under which multiple vortices can easily be introduced through
current injection from one end of the EC junctions. We find theoretically that current responses demonstrate the
quantized nature of vortices: the ejected currents show periodicity as a function of injected currents(or vortex
numbers). Moreover, the injected-ejected current difference shows plateaus corresponding to different vortex
numbers when varying tunneling strength �t or superfluid density ρS . Since all parameters are experimentally
accessible, we expect real-world demonstrations of these enthralling quantization behaviors to come in the near
future.
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I. INTRODUCTION

Excitons, the electron-hole pairs bound by Coulomb in-
teraction, have never failed to amaze us physicists with
phenomena that only occur when they reach the state of spon-
taneous phase coherence—the excitonic condensate [1,2].
Bilayer structures are then designed to attain such condensates
by separating the constituent electrons and holes of excitons
in two closely spaced layers, extending the exciton lifetime
substantially. The bilayer structures also make possible for
electrical currents of the constituent electrons and holes to be
probed and be controlled individually [3]. Related electrical
transport, including the coherent interlayer tunneling [4–10],
the quantum Hall drag [11–14], and the counterflow super-
currents [15,16], have been intensively studied in quantum
Hall bilayer [17–20] of GaAs starting at the beginning of
the century. In the last decades, vast attention has also been
drawn to bilayers of van der Waals materials [21–29], mainly
that of the graphene base. Their even greater electrical ac-
cessibility and smaller layer separations allow for potentially
high-temperature condensates.

Originating from the nature of bilayers, interlayer tun-
neling gives exciting twists to the excitonic condensation
phenomena. Especially when collaborating with exciton su-
perflow, it can give rise to topologically robust objects. Such
topological objects are governed by sine-Gordon physics and
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are analogous to the Josephson vortices [30] in superconduct-
ing Josephson junctions or even the dynamics of the pendulum
[31]. Here we name this object type the “tunneling vortex.”
We study this type of vortices specifically in the so-called
“EC/EC’/EC” junctions [32–35], junctions composed of two
ideal excitonic condensates (ECs) sandwiching a weak con-
densate EC’ with controllable length. In our previous work
[36–39], a tunneling vortex can be created by imposing a
condensate phase externally to part of the system, and the
vortex will be pinned right at the phase boundary. When the
external phase is not an integer multiple of 2π , it can even
induce vortices that possess fractional charge, resembling the
fractional vortices [40–45] in 0 − κ superconducting Joseph-
son junctions.

In this work we explore a dimension of tunneling vortices
in EC/EC’/EC junctions by employing current injection for
vortex generations. This method facilitates the generation of
multiple vortices which align themselves as a train. A similar
“train” of sine-Gordon-governed topological objects includes
a soliton lattice in a nearly commensurate charge density wave
[46,47] in solids, coupled pendula [31], and the “flux-flow
oscillators” [48–59] in the “flux-flow” regime in extended
superconducting Josephson junctions. The flux-flow oscilla-
tors, for example, can be created by a uniform magnetic field
application [48–52] or by local current injections [60–67].
Our current-injection scheme actually resembles more of the
former in the sense that it creates a nearly uniform phase gra-
dient over the system. That phase gradient produces in space
a 2π phase span, which prompts tunneling current of opposite
directions and creates an electron current circulation—the
tunneling vortex (lower panel of Fig. 1). The tunneling current
also modifies the phase profile in return so that instead of
being a constant gradient (black dash line), the phase profile
now bends into the curve shown as the full red line. The
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FIG. 1. Illustration of tunneling vortices formation in EC/EC’/
EC junction under the current-injecting scheme. (Upper) The coun-
terflow current JL is injected from the left, and ejected current JR

is measured in the right. The injected current induces tunneling
vortices. (Lower) Tunneling currents in opposite directions together
with counterflow supercurrent form a vortex. In the presence of
interlayer tunneling, the phase profile bands from black dashed line
(no tunneling) to red solid line that has a maximum tangent (most
significant supercurrent density) at the center and minimum tangent
at φ = 0 and φ = 2π .

corresponding phase gradient (essentially the supercurrent
density) correspondingly exhibits a ripple instead of horizon-
tal.

The ripple in the supercurrent density can be detected
when a tunneling vortex passes the other end. However, as
required by the sine-Gordon equation, the ripple size is set
by the interlayer tunneling strength, which can be small in
a decent condensate sample. In this work we find a way to
go beyond the sine-Gordon physics and enlarge the current
response of vortex creation. To do that we need a sufficiently
long weak condensate area (EC’) in the EC/EC’/EC junction
to induce the tunneling-assisted Andreev reflection (TAAR)
[38] process inside. That way, not all electrons in EC’ are in
the Andreev bound state but only part of them travel within
EC’ through interlayer tunneling. From the authors’ previous
work [38], when TAAR happens, the average supercurrent in
the left (EC1) and the right EC (EC2) can be different while
the local current conservation remains. That means that the
left-right supercurrent-density difference can then add to the
original ripples to enhance the vortex response. Notice that
TAAR is beyond the sine-Gordon physics and results from our
pseudospin Landau-Lifshitz-Gilbert (LLG) calculation. While
the LLG equation can be simplified to the stationary sine-
Gordon equation in the time-independent limit of a perfect
condensate (with no charge imbalance), it can demonstrate the
physics beyond – the enhanced vortices quantization behavior
in EC/EC’/EC junctions.

II. PSEUDOSPIN LANDAU-LIFSHITZ-GILBERT
(LLG) EQUATION

We use the pseudospin Landau-Lifshitz-Gilbert equation
[36–39,68] to describe the electrical transport in our exci-
tonic condensate systems. This approach has proven to be
most effective yet reliable in describing experimental re-
sults [8,10,39]. It is detailed in the authors’ previous works
[36–38], and here we only guide the readers briefly through
necessary steps for the current discussion.

This method starts by mapping the condensate’s local
SU(2) degree of freedom to an O(3) vector, usually referred
to as the “pseudospin.” In this language the local pseudospin
vectors are determined by two quantities—the vector’s z com-
ponent mz and its azimuthal angle φ. The former corresponds
to the population difference between the two layers, the later
the phase of its condensate wave function.

The dynamics of the pseudospin is described by the LLG
equation,

d �m[X ]

d t
= �m × �Hps[X ] − α

(
�m[X ] × d �m[X ]

dt

)
, (1)

where X indicates the location of pseudospins and α the
Gilbert damping parameter. From this equation we see that the
steady-state physics is essentially governed by the pseudospin
magnetic field �Hps ≡ (2/nh̄) (δE [ �m]/δ �m), with the system’s
energy functional:
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The first term accounts for the energy cost for charge imbal-
ance between layers and is characterized by the anisotropy
parameter β. The second term measures the energy cost to
wind the condensate phase φ with the superfluid density ρS .
The third term describes single-particle interlayer tunneling,
with n being density and �t the tunneling strength. This phe-
nomenological model is originally derived microscopically
using mean-field theory and has been justified by experiments
[8,39]

With the pseudospin magnetic field obtained by E [ �m]
along with the dissipation term, we arrive at the LLG equa-
tion for pseudospins:
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ṁz. (3)

We now tailor the above formulation to model our current-
injecting EC-EC’-EC system. In the discussion below we
assume translationally invariant in the y direction, the di-
rection in the layer plane but perpendicular to the transport
direction. Our system consists of two long ideal excitonic
condensates, EC1 and EC2, sandwiching a weak condensate
(EC’), which has a much shorter length dw. The weak con-
densate is characterized by a lesser superfluid density ρSw,
namely,

ρS (x) =
{
ρS0, −Ls/2 < x < −dw/2, dw/2 < x < Ls/2
ρSw, −dw/2 < x < dw/2,

(4)

where Ls is the length of the system.
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Next we impose injected current jL by the following
boundary conditions:

eρS

h̄
∇φ

∣∣∣
x=−Ls/2

= jL, ∇2φ
∣∣
x=−Ls/2 = 0. (5)

The first one represents the current injection of jL from the
left. It is expressed as a supercurrent contribution because the
normal external current can fully transform into supercurrent
through Andreev reflection immediately at the contact [15].
The second term requires that there be no supercurrent loss at
the left boundary, meaning that the tunneling current has to be
diminished to zero [39]. It has been shown that both injected
current and tunneling current at the boundary are controllable
experimentally [8,10]. With this geometrical information, we
then solve the LLG equation numerically by slowly sweeping
the injected current density jL and see the current response jR
and the spatial profiles of phase and current.

III. TUNNELING VORTICES IN EC/EC’/EC JUNCTIONS

In this section we summarize our results of calculation
and show how the discretized nature of the vortices plays
decisive roles on the current response in the EC/EC’/EC
junctions. The parameters used in this work are β = 0.02E0,
ρS0 = 0.005E0, ρSw = 0.0005E0, and �t = 10−6E0, where E0

is the characteristic energy scale of the system, the Coulomb
energy. Taking the most tested system, quantum Hall bilayer,
as an example, E0 ≡ e2/εl ∼ 7 meV, where l ∼ 18 nm [2] is
the magnetic length [69]. The values we used for β and ρs0

were derived from the mean-field calculation. The tunneling
strength �t usually ranges from 10−8E0 to 10−6E0 in the
current active systems according to the experimental reports
[7,70]. Here we use the larger allowed value (�t = 10−6E0)
unless otherwise specified; this larger value can better demon-
strate the vortices effect. The length of the system used
is Ls = 400 l ∼ 7.2 μm in the absence of EC’. Otherwise,
dw = 30 l ∼ 0.54 μm and Ls = (400 + 30) l ∼ 7.74 μm. The
length of the system does not play a crucial role in this work.
Generally, at the same injected current level, more vortices are
introduced in a longer system. We therefore define a current
unit,

j0 = eρS

h̄

2π

Ls
. (6)

Interpreting directly from this expression, j0 represents the
current required to produce an additional 2π phase winding
in the absence of tunneling. It turns out that j0 also yields the
current density to introduce one more tunneling vortex into
the system, as we will show later. Lastly, all of our results
are obtained by gradually increasing the injected current from
zero at an increased rate of 4×10−7[ j0/(h/E0)].

We start our numerical investigation from fundamental
behaviors in the current-injected scheme in the absence of
the weak condensate. Figure 2 shows the phase profile and
the supercurrent-density profile for the case of jL/ j0 = 5.95
(and no EC’). Looking at the phase profile (upper panel of
Fig. 2) with bare eyes, it appears to be a straight line. However,
the corresponding supercurrent-density profile (essentially the
phase profile’s spatial derivative) shows ripples. These ripples

FIG. 2. For the six-vortex case ( jL/ j0 = 5.95) when dw = 0.
(Upper) Spatial profile of condensate phase relative to that at the left
end φ − φL (black solid line). The relative phase shows a straight
line to bare eyes. The blue dashed lines indicate positions where the
relative phase hits multiples of 2π . (Lower) The spatial profile of
supercurrent density jSC (solid pink line). The supercurrent density
essentially represents the phase gradient that allows the vortex con-
tribution to stand out. Six full ripples in the pink line correspond
to six vortices. The positions where φ − φL = 2Nπ (blue dash line)
coincide with the ripples’ trough.

are in fact the tunneling vortices governed by the sine-Gordon
equation.

Mathematically, in the steady-state limit of the equation for
ṁz in Eq. (3), the equation is reduced to the stationary sine-
Gordon equation (SsGE):

ρS

h̄
∇2φ − 1

2

�t n

h̄
sin φ = 0. (7)

This equation is known to have a family of excited-state so-
lutions, the sine-Gordon solitons, and each corresponds to a
winding of multiples of 2π . Among them, the 1 soliton is the
one with exactly 2π phase winding. This 1 soliton shows a
kink in the phase profile, which corresponds to a peak in the
phase gradient profile. This peak is characterized by a length
scale of

λ =
√

2ρs/n�t , (8)

often referred to as the “Josephson length.” Physically, we
can identify the first term in Eq. (7), namely, (ρS/h̄)∇2φ,
as the gradient of supercurrent density, and the second term
(�t n/2h̄) sin φ is the tunneling current (areal) density. That
means that locally the supercurrent can turn into interlayer
tunneling currents and reduce its magnitude. In the region
where the condensate phase spans from 0 to 2π , the local
tunneling current changes its direction from downward to
upward accordingly, as shown in the lower panel of Fig. 1. The
interplay of counterflow supercurrent and tunneling current
forms a circular electron flow in this region. That is why we
name the 1 soliton in our system a tunneling vortex.

When the external phase gradient is present (but not too
large so as to induce a topological phase transition), the kink
is then buried in the phase gradient, as is often seen in the
flux-flow regime in the superconducting Josephson junction.
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That corresponds to a phase gradient profile showing only the
tip of the original peak (which we refer to as “ripple” later).
Now each vortex no longer claims a whole λ space, but it can
be more closely packed. That is what we observe in Fig. 2.

In the supercurrent-density profile (lower panel of Fig. 2),
we clearly identify six ripples, from trough to trough. The
trough of these ripples lay on the blue dashed lines, marking
the positions at which the exciton phase φ spans integer mul-
tiples of 2π . That is consistent with our understanding that
for every 2π phase span there exists a vortex. Since j0 is the
current density of adding an extra 2π winding, it also adds a
vortex to the system. That means that jL/ j0 links exclusively
to the vortex number in the system.

This vortex picture can be further examined by estimating
the size of local current variation, the crest-to-trough differ-
ence of a ripple. From the current conservation discussed in
the earlier paragraph, the loss in supercurrent has to transform
into interlayer tunneling current. That loss, therefore, cannot
exceed the maximum allowed areal tunneling current density
en�t/(2h̄) times half of the space a ripple claims, namely, half
of linter ≡ Ls/N . That is,

|� j|
j0

� en�t/(2h̄) · linter/2

(eρS/h̄)(2π/Ls)
= L̄2

s

4πN
. (9)

Here L̄s ≡ Ls/λ is the dimensionless system length. Taking
the parameters of Fig. 2, where L̄s = 1.6 and N = 6, the
ripples then have a size of |� j|/ j0 ∼ 0.034, while the read-off
from Fig. 2 is about 0.035. The good agreement supports our
picture. Moreover, careful readers might also notice that the
ripples sit on a background declining from left to right. That
decline actually originates from the dynamic effect of tuning
up the injected current at a finite increased rate and is beyond
the sine-Gordon physics. We have found that by reducing the
increased rate of the injected current, the decline becomes
flattened.

We now discuss the injected-ejected current response (due
to vortices) in the absence of weak condensate. Figure 3 com-
bines two plots: the ejected(injected) current density jR ( jL )
[black solid (dash) lines] and the injected-ejected current-
density difference � j vs jL [red solid line]. In both plots
the blue dashed lines mark the jL with integer numbers of
vortices; here the vortex numbers are obtained by counting
the number of “ripples” in the current-density profiles at that
jL. These blue lines indeed fall in the close vicinity of integer
multiples of jL/ j0, justifying our assumption that the vortices
are noninteracting. Next we find that jR and jL are almost
indistinguishable to the naked eyes; their difference, � j ≡
jR − jL, is then plotted as a support. The |� j| shows wiggles
with a typical amplitude of ∼0.05 j0, and the size of each
wiggle is consistent with the estimation in Eq. (9). Moreover,
we notice that |� j| drops almost to zero at integer numbers
of vortices; the deviation from zero also originates from the
dynamic effect of tuning up injected current. From the sine-
Gordon physics, dropping to zero corresponds to having the
crest on both the left and right ends in the current-density
profile, and the |� j| comes from a net tunneling current that
tilts the midpoints of the ripples, as seen in Fig. 2. When jL/ j0
moves away from integers, the left end moves toward the crest
and |� j| increases until jL/ j0 is a half-integer. The left end is

FIG. 3. The ejected ( jR) vs injected current density ( jL) (main
panel) and � j vs jL (upper panel) when dw = 0. The solid black
line represents the magnitude of the ejected jR while the injected
jL (black dashed line) is also plotted for comparison. The jL values
of which integer number of vortices occur are in blue dashed lines,
which shows consistency with integer jL/ j0 value. The injected-
ejected current-density difference � j is plotted in red in the upper
panel and shows periods of roughly j0 (one vortex) and amplitudes
of around 0.05 j0.

exactly at a crest while the right end is at a trough, and |� j|
reaches its maximum with a value of roughly Ł2

s /4πN [from
Eq. (9)].

Up to this point, we have been focusing on the case of no
weak condensate (EC’). It turns out that the vortex effect can
actually be enhanced in the presence of EC’. We first show the
injected-ejected current response in this EC-EC’-EC system
in Fig. 4; the same color scheme is used here as that in Fig. 3.

FIG. 4. The ejected ( jR) vs injected current density ( jL) (main
panel) and � j vs jL (upper panel) when dw = 0.07Ls. The coloring
scheme is the same as that in Fig. 3. With finite dw , � j is now
greatly enhanced to hold amplitudes of roughly 0.5 j0. The value can
be either positive or negative, meaning that the ejected current can
exceed the injected. It is now with a periodicity of roughly 2 j0 (two
vortices).
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FIG. 5. Supercurrent-density profiles are taken between jL/ j0 =
6 and 8 (one period in the jL vs jR plot). Point A corresponds to the
case of precisely three vortices (ripples) in each EC. From point A
to C, the average supercurrent is larger in EC1 to facilitate vortex
formation in that area; the number of vortices in EC2 stays the same.
From point C to D, the situation is the reverse. The supercurrent
density in EC2 is higher than in EC1 to form vortices in the former.
At point E, one additional vortex is formed in each EC, compared to
point A.

Full vortices here still happen at around the integer jL/ j0; the
difference between jR and jL, though, is noticeably enhanced
in the EC-EC’-EC junction. The ejected current density jR still
shows periodicity but now with a period of 2 j0. That comes
with another unexpected feature that jR can go above jL in
half of the period, while below in another half. This behavior
is seen even more clearly in the � j curve in the same figure.
When the floor of jL/ j0 (vortex number) is odd, the difference
� j is positive, whereas if the floor is even, � j turns negative.

The origin of the above feature is revealed when we inspect
the supercurrent-density profiles taken over a period of 2 j0.
Here we pick a typical period of jL = 6 j0 to 8 j0 and look
specifically at the five points marked A–E in Fig. 5(a). The
number of vortices can be read off by counting the number
of ripples. Note that the dip at the center originates from the
larger capability of tunneling in the weak condensate. From
A to C, the ejected current is lower than that of the injected.
Starting at A, the injected current density jL/ j0 ∼ 6, corre-
sponding to six vortices in the condensate; when referring
to the corresponding supercurrent-density profile, we do see
three full vortices (from trough to trough) in each EC. As jL
increases, jSC in the whole system increases accordingly, but
more so in EC1 than in EC2. The larger average supercurrent

FIG. 6. Cartoon illustration of tunneling-assisted Andreev reflec-
tion (TAAR). The green (blue) arrows indicate the electron (hole)
intralayer flows, and the red arrow shows the interlayer tunneling.
(a) corresponds to B in Fig. 5 in which there is a net electron
tunneling current from top to bottom so that the magnitude of the
electron/hole current in the left EC/EC’ boundary is more significant
than that of the right. (b) corresponds to D in Fig. 5 with opposite tun-
neling current from that of B. The electron/hole current magnitudes
are the reverse of that in (a).

in EC1 makes it easier to introduce an extra vortices in there,
while the smaller average supercurrent in EC2 saves energy.
Notice that this difference of supercurrent in EC1 and EC2
is unique to the EC/EC’/EC junction that does not have an
analogy in the superconducting Josephson junction of the
same geometry. In the superconducting Josephson junction,
the Andreev reflection happens in both the left and right SC/N
interface and conserves supercurrent. In our EC/EC’/EC junc-
tion, the tunneling-assisted Andreev reflection happens when
EC’ is long enough, as detailed in our previous work [38].

Here we illustrate in simple cartoon pictures as in Fig. 6.
B in Fig. 5 corresponds to the cartoon in Fig. 6(a). Exci-
tons (electron-hole, e-h, bound pair) Andreev-reflect at the
left EC/EC’ boundary (green curved line) and transform into
electrons, flowing in opposite directions in the two layers.
Part of the electrons in the top layer, however, cannot reach
the right EC/EC’ interface before going to the bottom layer
through interlayer tunneling (red arrows). These electrons
then flow back to the left EC/EC’ interface, along with the
other electrons originally in the bottom layer. This mechanism
allows the supercurrents to be different between the left and
right EC/EC’ interface while the total current is still conserved
at every point. When entering into the second half of the
period (from C to E), it saves more energy to do the opposite:
introducing the additional vortex to EC2 instead of EC1. That
corresponds to a larger average supercurrent in EC2 than in
EC1, again through TAAR but in the opposite direction [as
illustrated in Fig. 6(b)]. Over the 2 j0 period, we see that
the presence of EC’ enables the tunneling-assisted Andreev
reflection and the average supercurrent in EC1 and EC2 can be
freely tuned in an energy-saving way to introduce vortices—
first in EC1 than in EC2. At the end of the period, the vortex
numbers in both condensates are increased by 1. Notice that
the above-described TAAR is beyond sine-Gordon physics
because when interlayer tunneling prefers one direction to
the other, it involves charge imbalance. That leads to changes
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FIG. 7. For jL/ j0 = 5.95, (a) � j vs tunneling strength �t and
(b) � j vs tunneling strength ρSW. Plateaus in � j are found to
correspond to different numbers of vortices in the system.

in the pseudospin component mz, which is not included in
the sine-Gordon equation but is legitimately present in our
original Landau-Lifshitz-Gilbert equation. It is important to
note again that the current conservation is still fulfilled in
the case and the total charge of the bilayer is conserved
locally.

More interesting tunneling vortex effects are found when
we vary other experimental controllable parameters. Figure 7
shows that the ejected-current responses to tunneling strength
are actually quantized. In this figure we plot the injected-
ejected current difference � j versus the tunneling strength
�t . The plot takes the same set of parameters as that in
Fig. 5(a) (explicitly jL = 5.95), except for the tunneling
strength �t which varies in this plot. It turns out that although
the tunneling strength varies continuously, the � j vs �t curve
breaks into plateaus. Data points in the same plateau then
share the same number of vortices. Explicitly from small to
large �t , squares at the first plateau correspond to three vor-
tices (blue), the second to two vortices (black), the third to one
vortex (green), and the fourth to none (purple) in EC2 alone.
This means that when the interlayer tunneling increases, the
current drop due to TAAR increases—most importantly, in
a quantized fashion. If we model the drop as the current
reduction in EC2 when reducing one vortex in EC2 (of length
roughly Ls/2), each of them should have a size of

eρS

h̄

2π

Ls/2
∼ 2 j0. (10)

This is again consistent with value found in Fig. 7(a). Please
note that although the plot is for a particular jL (point A),
the quantization behavior is, in fact, general that occurs at
all jL.

A similar quantization behavior is also found in the
ejected-current response to the superfluid density at EC’, ρSW.
In Fig. 7(b), � j vs ρSW also at point A ( jL/ j0 = 5.95) shows
ascending plateaus that correspond to less than one (purple),
one (green), two (black), and three (blue) vortices, from small
to large ρSW. The jump between every two plateaus is again
2 j0, which can be argued exactly like that for tunneling
strength. Finally, we note that out of the two quantities, �t

and ρSW, the latter can be a more convenient knob for experi-
ments. The reason is that a bilayer qualified for condensation
usually has a tunneling strength of 10−6 or less, which gives a
relatively smaller room to play around. The superfluid density
ρSW, on the other hand, can be adjusted more easily and over
a broader range by depleting the electron density in one of
the layers. We therefore believe that the vortices’ quantization
behavior has a great potential to be observed through the ρSW

adjustment.
In the end, we would like to comment on related work by

Eastham et al. [71,72]. In their work, Eastham et al. focus on a
randomly disordered but homogeneously structured excitonic
bilayer. Because of the homogeneity in structure, they were
able to consider the superfluid phase alone and obtained a
sine-Gordon-like equation even under their disorder percolat-
ing network model. In our calculation, though, the EC/EC’/EC
structure makes it necessary to consider the z component of
pseudospin. In fact, that is also the origin of the intriguing
phenomena that we report.

IV. SUMMARY

We demonstrate how the current response can manifest
the quantization of tunneling vortices in the current-injection
scheme. In an excitonic condensate, tunneling vortices, in-
duced by interlayer tunneling, cause the ejected current to
differ from the injected current. The injected-ejected current
difference shows a periodicity for every occurrence of one
vortex. This difference is even more profound when inserting
a weak condensate (EC’) to the junction. In such junctions
(EC/EC’/EC), the tunneling-assisted Andreev reflection al-
lows the average supercurrent to differ in EC1 and EC2. The
injected-ejected current difference then shows a periodicity
for each occurrence of two vortices. The quantized nature
of vortices also appears when fixing the injected current and
changing the tunneling strength �t or the superfluid density in
the weak condensate, ρSW. The injected-ejected current differ-
ence shows plateaus when tuning the above two parameters.
The manifestation of that quantization behavior is particularly
viable experimentally.
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