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Photocount statistics of the Josephson parametric amplifier
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Parametric amplifiers are known to squeeze the vacuum state of the electromagnetic field, thus the statistics of
the photocounts at their output should be that of squeezed vacuum. However, several theoretical works predict
a very different statistical distribution. We have measured the photocount statistics of a Josephson parametric
amplifier and recover the expected squeezed vacuum statistics. We explain this discrepancy by showing theoreti-
cally how the photocount statistics is dictated by the detection process. Namely, most experiments will naturally
measure a single mode of the electromagnetic field, while the aforementioned theoretical works implicitly
describe massively multimode detection.
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I. INTRODUCTION

From an experimental perspective, a photon can be de-
scribed as two causally linked events, a creation and an
annihilation. The statistics of photocounts must then depend
both on the emission and the detection modes, and predic-
tions about statistics of photons emitted by any system should
always specify the detection setup.

This fact becomes an important factor in some exper-
iments. Consider, for instance, the output of a Josephson
parametric amplifier (JPA) [1–5]. This type of device is very
much at the forefront of quantum optics in microwaves, as
it constitutes a quantum-limited amplifier in this band and
as such is likely to be used in all quantum computing and
measurement schemes. Understanding the noise characteris-
tics of those devices is critical for these typically small-signal
applications. The JPA is fundamentally the equivalent in the
microwave domain of the optical parametric oscillator (OPO),
for which the statistics of photocounts was computed as early
as 1989 [6], although the variance was not explicitly com-
puted at the time. A more recent paper [7] predicts the full
counting statistics of photocounts emitted by a JPA with an
electromagnetic vacuum input. The result is the same as that
of the previous work [6], and the variance is explicitly given
as 〈δn2〉 = 2〈n〉[(8/γ 2τ 2)〈n〉2 + (5/γ τ )〈n〉 + 1], where γ is
the width of the cavity and τ the integration time for each
count. This result appear to contradict the model of parametric
amplifiers as “vacuum squeezers,” a well-studied quantum
optics fact. The squeezing operator generates pairs of photons,
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and this is reflected in the photocount variance, which reads
〈δn2〉 = 2〈n〉(〈n〉 + 1) [8]. Both formulas agree at very small
signal, yielding 〈δn2〉 � 2〈n〉, twice the classical value. This
reflects the emission of pairs of photons in the squeezing pro-
cess. However, the variance of Ref. [7] dramatically increases
as 〈n〉3 for higher signals. This is a strong departure form the
expected behavior of a squeezed vacuum.

In this paper, we show that the apparent discrepancy is
actually due to the choice of detection scheme in the theoret-
ical works. Namely, the detector is assumed to have infinite
frequency resolution. One consequence is that a very large
(theoretically infinite) number of distinct modes of the elec-
tromagnetic field are measured: The detection is massively
multimode, which impacts the statistics of photocounts, a
result already known in quantum optics [9–11]. Of course,
real measurements are limited both in time and bandwidth.
They inherently possess finite frequency resolution. More im-
portantly, detection will usually be performed in a relatively
narrow band around the cavity of the parametric amplifier,
to remove most of the noise. Such a detection scheme will
naturally measure a single mode of the electromagnetic field.
Here, we show both theoretically and experimentally that the
expected squeezed vacuum statistics is recovered in the latter
case.

The paper is organized as follows. We present an exper-
iment with limited frequency resolution at the output of a
JPA with vacuum input. In contrast with quantum optics, the
discrete photocount statistics is recovered from continuous
voltage measurements [12]. We show that after careful cal-
ibration, we recover a variance and third-order photocount
moment equal to those predicted for a squeezed vacuum,
and not those predicted by Refs. [6,7]. These measurements
are well captured by a simple input-output [13–15] model of
the JPA, followed by a single-mode (non-frequency-resolved)
detector. In contrast, a variant of the model, using the same
input-output relations for the JPA but a multimode (frequency-
resolved) detector, leads to the statistics predicted by Ref. [7].
The distinction is lost in narrow-band experiments, but we
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FIG. 1. Experimental setup used for detection. The flux bias coil
of the paramp is omitted for clarity. Circled letters are calibration
reference points. See text for details.

anticipate that it will play a crucial role in the results of fu-
ture experiments using the new generation of wide bandwidth
JPAs [16,17].

II. EXPERIMENTAL SETUP

The experimental setup is presented in Fig. 1. We study the
signal emitted by a commercial Josephson parametric ampli-
fier (paramp), similar to that of Ref. [18], placed in a dilution
refrigerator at ∼7 mK and driven by two sinusoidal pumps
of frequencies ν1 = 4.5 GHz and ν2 = 7.5 GHz. The output
signal is measured in a small frequency band centered around
(ν1 + ν2)/2 = 6.0 GHz. The dual-pump operation mode [19]
is selected to avoid residual pump signal in the measurement
band, so that the input of the paramp in the measured band-
width can be considered as the vacuum.

The paramp resonance frequency can be tuned by a cur-
rent bias through a superconducting flux coil in the vicinity
of the paramp superconducting quantum interference device
(SQUID) loop (omitted on the schematic for clarity). A 4–
8 GHz bandpass filter protects the paramp from radiation
outside of its operation range. Circulators are used to separate
the input and output fields of the paramp and to isolate it from
the noise of the 3- and 300-K stages. A microwave switch
is used to swap a 50-� resistor in place of the paramp for
calibration purposes.

The paramp output signal is amplified and conveyed to
300 K, where it is downconverted by an in-phase/quadrature
(IQ) mixer with a local oscillator (LO) at frequency ν0 ≈
6.0 GHz. The LO is not phase locked with the pumps. The
downconverted signal is then filtered by a 0.1–168 MHz band-
pass filter and sampled by a fast acquisition card with 14-bit
resolution and 400 MSa/s rate. Histograms of the measured
signal are accumulated and their first six cumulants are com-
puted on the fly during the data acquisition. Each data point
corresponds to 11.5 × 109 voltage measurements.

III. CALIBRATION

Proper calibration is essential to compare experimental
results with theory. Three calibrations are required: that of

the ac power at the sample level, that of the absolute photon
numbers that are detected, calculated for the measured voltage
cumulants Cj , and that of the paramp resonance frequency
versus current in the flux bias coil.

To calibrate the attenuation between the excitation at room
temperature (circle reference A in Fig. 1) and the input port of
the paramp (B ≈ B′), we use a macroscopic R = 50 � resistor
in place of the paramp (using the cryogenic switch). We can
heat that resistor using either a known dc current or an ac bias
and observe the temperature increase by the increased noise
it emits. Thus we can map which dc current is needed to heat
the resistor as much as a given ac voltage, as in Ref. [20]. The
linear relation we observe between them provides us with the
A–B attenuation, 62.7 dB.

To calibrate the effective gain between the output of the
paramp (B) and the data acquisition (C), we measure the A-C
gain by adjusting the paramp dc flux line to put it out of reso-
nance such that it totally reflects an incoming test tone signal
of known amplitude, and subtract the previously obtained A-B
attenuation. We find the B-C gain to be 87.7 dB.

The paramp resonance frequency, which is controlled by
the current applied to the flux bias coil, is calibrated by
measuring the reflected phase on the paramp using a vector
network analyzer in the absence of a pump signal and for very
weak excitation [18,21]. The same measurement also provides
the resonance width γ ∼ 135 MHz.

IV. MEASUREMENTS

In order to probe the photon statistics of the paramp for
different regimes of operations, we explore its parameter
space, flux bias, and pump power, for a fixed measurement
frequency ν0 = (ν1 + ν2)/2 = 6.0 GHz. Experimentally, we
first select a pump power yielding a maximum gain of ap-
proximately 10 dB and adjust the paramp at this operation
point. Then, we sweep the flux bias current and the pump
power around the initial values while measuring the even
cumulants C2k = 〈〈V 2k〉〉 of the voltage fluctuations generated
by the paramp, shown in Fig. 2 for k = 1, 2, and 5 for k = 3.
From these we compute the unitless cumulants C2k/(ZBhν0)k ,
with Z = 50 �, from which we deduce the moments 〈δnk〉 of
the photocount distribution, using the procedure developed in
some of our previous works [12,22]. We show in Fig. 3 the
variance (k = 2) of the photocount distribution as a function
of the average photon number. The third-order moment is
treated in Appendix C (see Figs. 5 and 6). There are actually
many combinations of flux bias and pump power that give the
same average photon number 〈n〉 but different values of 〈δn2〉.
As a consequence, Fig. 3 exhibits clouds of experimental
points and not just a single curve. A particular subset of points
corresponds to the maximum gain of the paramp, i.e., the
largest value of 〈n〉 for each pump power. Those are the best
operating points for the paramp used as an amplifier; they
are represented as blue solid points in Fig. 2(a). Reporting
these points in Fig. 2(b), we observe that they are close to
the maximum of the fourth cumulant C4. In Appendix C, we
also show that they also correspond to a vanishing C6. The
same points are highlighted in Fig. 3 (open circles). We find
that these specific points closely follow the expected relations
for a squeezed vacuum, represented by dashed lines in Figs. 3
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FIG. 2. Measured cumulants of voltage fluctuations generated by
the paramp as a function of its resonance frequency and pump power.
The Frequency axis is controlled by the flux bias. The thick blue solid
line in (a) corresponds to the ridge of C2. The dashed blue line in
(b) corresponds to frequency and pump power equivalent to the blue
line of (a).

and 6. We discuss why theory is best obeyed for these points
in Appendix C.

V. THEORY

To model the JPA, we apply the input-output formal-
ism [13–15] detailed in Appendix A to a single-ended,

FIG. 3. Variance of the photocounts 〈δn2〉 as a function of the
average photon number 〈n〉. Dots are experimental data and each
line represents a given pump power. Open circles correspond to the
maximum of the paramp gain, i.e., the blue line in Fig. 2. The dashed
line corresponds to the theoretical prediction for squeezed vacuum.

frequency-symmetric single-mode cavity. The intracavity
Hamiltonian is assumed to be the squeezing Hamiltonian that
is characteristic of parametric amplifiers [23–26]. The output
electromagnetic modes can be written as a function of the free
input modes bν , in the frame rotating at ν0 and up to a constant
phase, as

Bout(ν) = cosh[η(ν)]bν + eiθ sinh[η(ν)]b†
−ν, (1)

with θ defining a squeezing direction, and η(ν) a squeezing
strength defined in Eq. (A26).

The photon-photon interaction Hamiltonian also shifts the
position of the center peak of the cavity mode by |ξ |(P1 +
P2)/

√
P1 P2, where ξ is the nonlinear coupling inside the

cavity and P1 and P2 are the respective pump powers. This
effect is clearly observed in Fig. 2. The peak can be brought
back to the center of the measurement window by adjusting
a magnetic flux φ. The “ridge” (maximum) of C2 observed in
Fig. 2 corresponds to the condition where φ exactly cancels
the frequency shift.

Using this model, we calculate the moments of the statis-
tics of the photon flux per unit of frequency and time,

〈nk〉 =
∫

dν1 · · · dν2k h∗(ν1)h(ν2) · · · h∗(ν2k−1)h(ν2k )

×〈φi|B†
out (ν1)Bout (ν2) · · · B†

out (ν2k−1)Bout (ν2k )|φi〉,
(2)

for a detector with normalized response function h(ν), with
|φi〉 the input state of the JPA. The response function h(ν)
characterizes the single mode of the electromagnetic field
being detected. In our case, it is well approximated by a
square window of width B = 2 × 168 MHz, corresponding
to the response of the 0.1–168 MHz bandpass filter applied
to the downconverted signal (see the experimental setup sec-
tion above). The effective photocount integration time is thus
τ = 1/B. In the case of an electromagnetic vacuum input,
|φi〉 = |vac〉, we find the expected statistics of a squeezed
vacuum on the “ridge” of C2. In particular, for η(ν) in the unit
range or above, as detailed in Appendix B,

〈n〉 =
∫

dν|h(ν)|2n(ν), (3)

with n(ν) = sinh2[η(ν)], and

〈δn2〉 = 2〈n〉(〈n〉 + 1). (4)

The Fano factor F = 〈δn2〉/〈n〉 is thus simply

F = 2(〈n〉 + 1). (5)

This result is at odds with the predictions of Ref. [7]. The
reason is that the theoretical framework of the reference uses
a different detection scheme, where the signal is resolved
in frequency. For a frequency resolution �, the measured
moments per unit time are

〈nk〉� =
∫

dν1 · · · dν2k δ�(ν1 − ν2) · · · δ�(ν2k−1 − ν2k )

×〈φi|b†
o(ν1)bo(ν2) · · · b†

o(ν2k−1)bo(ν2k )|φi〉, (6)

where δ� are peaked functions of width � and unit integrated
value. They tend to the true Dirac delta distribution as � → 0

013176-3



SIMONEAU, VIRALLY, LUPIEN, AND REULET PHYSICAL REVIEW RESEARCH 4, 013176 (2022)

(see Appendix B). In the same limit, the Fano factor F� ≡
〈δn2〉�/〈n〉� behaves as

lim
�→0

F� =
∫

dν2 n(ν)[n(ν) + 1]∫
dνn(ν)

. (7)

This result is very different from that of Eq. (4). It cor-
responds to summing many independent modes, resolved in
frequency. Each mode is a squeezed vacuum with a Fano
factor of the form of Eq. (5). As a consequence, the behavior
of the overall Fano factor is dependent on the detector band-
width.

VI. CONCLUSION

We have performed an experimental and theoretical inves-
tigation of the photon statistics of the microwave radiation
generated by a Josephson parametric amplifier. We have ob-
served that with a wideband, single-mode detection scheme,
the statistics is that of squeezed vacuum when the pump of the
paramp is kept to its lowest value for a given average photon
number. Our theoretical analysis shows how the photocount
statistics crucially depends on the detection bandwidth, from
a time-resolved, wideband amplifier (our setup) to that of
frequency-resolved photodetection [6,7]. Our results, which
are valid for any kind of paramp, are of great interest both to
the development of quantum-limited amplifiers with optimal
photon statistics as well as for the development of sources
of radiation with nonclassical statistics. As a matter of fact,
instead of playing with the source, we show that one can play
with the detector, in a similar way as quantum computation
may require non-Gaussian states of light if measurements are
performed with linear detectors whereas Gaussian states are
enough if one uses single-photon detectors [27]. More theoret-
ical and experimental works are needed to explore the path we
have paved, in particular to understand how high-order terms
in the Hamiltonian affect the photocount distribution for an
arbitrary detection bandwidth.
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APPENDIX A: INPUT-OUTPUT MODEL

We consider a single-sided, narrow-band cavity mode A(t )
coupled on one side to a continuum of modes Bν (t ). The cou-
pling coefficient γ is assumed to be constant over the narrow
range of frequencies under consideration. The resonance of
the cavity can be modified via a magnetic flux φ. The cavity is
pumped by two narrow-band signals with power P1 and P2 and
respective frequencies ν1 and ν2. We detect the output signal
in a narrow band around ν0 = (ν1 + ν2)/2.

We use the input-output formalism [13–15] to model
the interaction between the cavity mode and the output
modes [26].

Evolution of the external operators. The Hamiltonian for
the external modes is

Hb =
∫ +∞

−∞
dν2π h̄ν B†

νBν, (A1)

while the interaction Hamiltonian is

H i = ih̄
√

γ

∫ +∞

−∞
dν[B†

νA − BνA†]. (A2)

Strictly speaking, ν only goes from 0 to +∞. However, as
usual in quantum optics [13] in the narrow-band regime, i.e.,
when the modes are centered around a frequency ν0 and in a
bandwidth B  ν0, we extend the limits of all integrations in
ν from −∞ to +∞.

The Bν operators evolve as

dBν

dt
= i

h̄
[Hb + H i, Bν], (A3)

and we find

Bν (t ) = Bν (tin )e−i2πν(t−t in ) + √
γ

∫ t

t in
dτA(τ )e−i2πν(t−τ )

= Bν (tout )e
−i2πν(t−tout ) − √

γ

∫ tout

t
dτA(τ )e−i2πν(t−τ ),

(A4)

where tin and tout are times before and after interaction of the
external modes with the cavity.

We define the integrated external modes

B(t ) =
∫ +∞

−∞
dνBν (t ),

Bin(t ) ≡ −
∫ +∞

−∞
dνBν (tin )e−i2πν(t−tin )

≡
∫ +∞

−∞
dνBin(ν)e−i2πνt ,

Bout (t ) ≡ +
∫ +∞

−∞
dνBν (tout )e

−i2πν(t−tout )

≡
∫ +∞

−∞
dνBout (ν) e−i2πνt , (A5)

where the ± signs are only a convention. This leads to the
input-output relations between the external modes before and
after interaction,

B(t ) = −Bin(t ) +
√

γ

2
A(t ) = Bout (t ) −

√
γ

2
A(t ). (A6)

We assume that the input modes have not interacted with
anything. That is, we identify

Bin(ν) = bν, (A7)

where the bν are the free modes of the electromagnetic (EM)
field.

Evolution of the cavity operator. The Hamiltonian for the
internal mode is Ha. It evolves as

dA
dt

= i

h̄
[Ha + H i, A]. (A8)
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For a bare, narrow-band cavity

Ha = 2π h̄ν0 A†A, (A9)

leading to

dA
dt

= (−i2πν0 − γ /2)A + √
γ Bin

= (−i2πν0 + γ /2)A − √
γ Bout. (A10)

We first eliminate ν0 by placing ourselves in the rotating
frame. In addition, we define the Fourier transform of A(t ),

A(ν) =
∫ +∞

−∞
dtA(t )ei2πνt , (A11)

and obtain

(−i2πν + γ /2)A(ν) = √
γ bν, (A12)

(i2πν + γ /2)A(ν) = √
γ Bout (ν). (A13)

Note that we have replaced Bin(ν) by bν in the first equality.
For a cavity with an infinite Q factor, we would expect

A(ν) = eiφ(ν)
√

δ(ν) bν . (A14)

Indeed, we get

A(ν) = 2
√

γ

γ /2 − i2πν
bν, (A15)

so that for γ → ∞, the expression indeed tends towards the
square root of the delta distribution.

We then find

Bout (ν) = e−i2 arctan(4πν/γ ) bν, (A16)

which shows that the output modes remain the free modes of
the EM field, with a frequency-dependent phase, as expected.
The input-output relation is unitary.

For a narrow-band parametric amplifier, we have

Ha = 2π h̄(ν0 + δ)A†A + i2π h̄(ξA†A† − ξ ∗AA), (A17)

where ξ is the nonlinear coefficient of the amplification pro-
cess and δ = φ + |ξ |(P1 + P2)/

√
P1P2 (φ is the frequency

displacement provided by the magnetic flux).
We eliminate ν0 by placing ourselves in the rotating frame,

and get
i

h̄
[Ha, A(t )] = −i2π h̄δA(t ) + 2πξA†(t ), or

i

h̄
[Ha, A(ν)] = −i2πδA(ν) + 2πξA†(−ν), (A18)

as

A†(t ) =
∫ +∞

−∞
dνA†(ν)ei2πνt

=
∫ +∞

−∞
dνA†(−ν)e−i2πνt . (A19)

We then have to solve

(−i2πν + γ /2)A(ν) = −i2πδA(ν) + 2πξA†(−ν) + √
γ bν,

(A20)

(−i2πν − γ )A(ν) = −i2πδA(ν) + 2πξA†(−ν)

− √
γ Bout (ν). (A21)

To simplify the following expressions, we define  =
γ /4π . The solution to Eq. (A20) is

A(ν) = [ − i(ν + δ)]
√

/π

( − iν)2 + δ2 − |ξ |2 bν

+ ξ
√

/π

( − iν)2 + δ2 − |ξ |2 b†
−ν, (A22)

and the solution to Eq. (A21) is

Bout (ν) = ( − iδ)2 + ν2 + |ξ |2
( − iν)2 + δ2 − |ξ |2 bν

+ 2ξ

( − iν)2 + δ2 − |ξ |2 b†
−ν . (A23)

This is a Bogoliubov relation of the form Bout (ν) =
eiφc cosh(η) bν + eiφs sinh(η) b†

−ν , with

φc(ν, , |ξ |, δ) = arctan

[
2ν

2 − ν2 + δ2 − |ξ |2
]

− arctan

[
2δ

2 − δ2 + ν2 + |ξ |2
]
, (A24)

φs(ν, , |ξ |, δ) = arctan

[
2ν

2 − ν2 + δ2 − |ξ |2
]

+ arg [ξ ],

(A25)

η(ν, , |ξ |, δ)

= 1

2
ln

[√
(2 + ν2 + |ξ |2 − δ2)2 + 4δ22 + 2|ξ |√
(2 + ν2 + |ξ |2 − δ2)2 + 4δ22 − 2|ξ |

]
.

(A26)

On the “ridge,” for δ = 0, this reduces to

η(ν, , |ξ |) = 1

2
ln

[
( + |ξ |)2 + ν2

( − |ξ |)2 + ν2

]
. (A27)

APPENDIX B: DETECTION MODEL

At the output of the setup, we measure time-averaged
statistics of the band-filtered single mode

Bh(t ) =
∫ +∞

−∞
dνh(ν)Bout (ν)e−i2πνt , (B1)

where h(ν) is the integral-normalized (
∫

dν|h(ν)|2 = 1) filter
response function of the detection filter. As h(ν) is integral
normalized, the quantity Nh(t ) ≡ B†

h(t )Bh(t ) is the number of
photons counted per unit frequency and unit time. The statis-
tical moments of the distribution, which are time independent
in the stationary regime, are

〈
Nk

h(t )
〉 ≡ 〈nk〉 =

∫ +∞

−∞
dν1dν2 · · · dν2k−1dν2k 〈B†

out (ν1)Bout (ν2) · · · B†
out (ν2k−1)Bout (ν2k )〉

× h∗(ν1)h(ν2) · · · h∗(ν2k−1)h(ν2k ) exp[i(ν1 − ν2 + · · · + ν2k−1 − ν2k )t]. (B2)
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The quantum average is taken on the input mode (in our
case, the vacuum) after having substituted all Bout by the
appropriate expressions of the free modes bν using Eq. (A23).
Applying the usual commutation relations and the effect of the
ladder operators on the vacuum, we find that the moments are
indeed time independent and verify

〈n〉 = I1, 〈δn2〉 = I1I2 + I3,

〈δn3〉 = (I1 + I2)(I1I2 + 3I3), (B3)

where

I1 =
∫ +∞

−∞
dν|h(ν)|2n(ν), (B4)

with n(ν) = sinh2[η(ν)], and

I2 =
∫ +∞

−∞
dν|h(ν)|2[n(ν) + 1], (B5)

I3 =
∣∣∣∣
∫ +∞

−∞
dνh(ν)h∗(−ν)

√
n(−ν)[n(ν) + 1]

∣∣∣∣
2

, (B6)

where η is defined in Eq. (A26).
We can make a few comments about these forms: (1)

As h(ν) is integral normalized, I2 = I1 + 1; and (2) us-
ing Cauchy-Schwarz inequality, I3 � I1I2, so that 〈δn2〉 �
2〈n〉(〈n〉 + 1).

Because of the exponential form of cosh and sinh, it only
takes η to be of the order of a few units for the Cauchy-
Schwarz inequality to become a quasiequality, so that we find,
as expected for a squeezed vacuum,

〈δn2〉 = 2〈n〉(〈n〉 + 1), 〈δn3〉 = 2〈n〉(2〈n〉 + 1)(2〈n〉 + 2).
(B7)

In contrast, the statistics presented in Ref. [7] corresponds
to frequency-resolved photon detection. The measurement
adds up the photocounts of independently resolved orthogonal
modes of width � → 0,

B�,n(t ) =
∫ +∞

−∞
dνBout (ν)D�,n(ν)e−i2πνt , (B8)

where we have defined

D�,n(ν) ≡ D�(ν − n�). (B9)

Here, D� is a function of width �, centered around ν = 0,
verifying∫ +∞

−∞
dνD�(ν − n�)D�(ν − m�) = δn,m. (B10)

Examples of mode generator functions are (1) the sinc

functions D�(ν) =
√

1
�

sinc( π ν
�

) and (2) the window func-

tions D�(ν) = 1√
�

�[− �
2 ; �

2 ](ν).
In this theoretical framework, we find

〈n〉� =
∑

n

J1;n,n, 〈δn2〉� =
∑
n,m

J1;n,mJ2;n,m + J3;n,−m,

(B11)

where

J1;n,m =
∫ +∞

−∞
dνDn,�(ν)Dm,�(ν)n(ν), (B12)

J2;n,m =
∫ +∞

−∞
dνDn,�(ν)Dm,�(ν)[n(ν) + 1], (B13)

J3;n,−m =
∣∣∣∣
∫ +∞

−∞
dνDn,�(ν)D−m,�(ν)

√
n(−ν)[n(ν) + 1]

∣∣∣∣
2

.

(B14)

Using the orthonormality of the Dn,�(ν) functions, we
have∫ +∞

−∞
dνD�(ν − νn)D�(ν − νm) f (ν) � δn,m f (νn), (B15)

and in the same limit of large η(ν) as in Eq. (B7), we obtain

〈n〉� =
∑

n

Nn, 〈δn2〉� =
∑

n

2Nn(Nn + 1), (B16)

with Nn the number of photons in mode n.
We can compare these results with those of Eq. (B7), and it

becomes apparent that we have a sum of independent modes,
centered around their respective frequencies. As a result, we
do not find the expected 〈δn2〉 = 2〈n〉(〈n〉 + 1), as there is an
infinite number of modes.

Although always infinite because of the assumed infinite
bandwidth, the number of modes increases linearly with the
integration time 1/� required to resolve the modes. It is thus a
good idea to define rates of photocount moments per unit time,
�〈δnk〉�, as we can expect them to remain finite. At the same
time, we need to take into account the finite bandwidth of
the detector, which translates in time domain to an integration
time τ for the detection. The number of photons counted by
the detector in any interval of time τ is thus τ�〈δnk〉�. Taking
the limit of � → 0, we find

lim
�→0

τ�〈n〉� = τ

∫ +∞

−∞
dνn(ν) = γ τ Fn(γ τ, |ξ |τ, δτ )

(B17)

and

lim
�→0

τ�〈δn2〉� = τ

∫ +∞

−∞
dν2 n(ν)[n(ν) + 1]

= γ τ Fδn2 (γ τ, |ξ |τ, δτ ), (B18)

where Fn and Fδn2 are unitless functions of the unitless param-
eters γ τ, |ξ |τ, δτ . In that sense, they are universal and useful
for the characterization of the noise of paramps.

The Fano factor is thus simply

F = Fδn2 (γ τ, |ξ |τ, δτ )

Fn(γ τ, |ξ |τ, δτ )
, (B19)

and it depends on the values of the unitless parameters
τ, |ξ |τ, δτ .

The Fano factor found in Ref. [7] depends on the value of
γ τ . It also corresponds to a situation where δ = 0, and the
free parameter |ξ |τ (proportional to the pump power) is used
as a knob to change the average photon number in the cavity.
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FIG. 4. Comparison between variances for single mode and mul-
timode counting. In our experiment, we count a single mode of the
electromagnetic field and the result does not depend on the time of
integration. In contrast, in the case of multimode counting, as in
Ref. [7], the choice of integration time makes all the difference, as
it determines the exact number of modes being counted.

In this specific context we find

〈δn2〉 = 2〈n〉[(8/γ 2τ 2)〈n〉2 + (5/γ τ )〈n〉 + 1], (B20)

which is precisely the result obtained in Ref. [7]. Figure 4 il-
lustrates the difference between single-mode counting, always
independent of the value of γ τ , and multimode counting for
various values of γ τ .

APPENDIX C: DISCUSSION OF THE MODEL

Our theoretical analysis clearly explains the importance of
the detection scheme and thus why the predictions of Ref. [7]
differ from that of the expected squeezed vacuum statistics. It
also predicts that with our present setup we should observe the
photon statistics of squeezed vacuum. We indeed observe the
“right” statistics on the “ridge” of C2, that is on the optimal
functioning points of the paramp.

However, the theory fails to explain why we observe clouds
of points for 〈δn2〉 and 〈δn3〉 vs 〈n〉 in Figs. 3 and 6. It
does predict that we can observe a photocount variance lower
than that of the squeezed vacuum, but never higher (see
Appendix B). One can easily understand that if the measure-
ment bandwidth is finite and not centered on the resonance
(i.e., off the ridge) there might be photon pairs which are
detected as single photons (the other photon of the pair being
outside the detection bandwidth). This leads to a mixture be-
tween the squeezed vacuum and thermal state and thus leads to
a decrease of 〈δn2〉. In contrast, we observe that experimental
points off the ridge lie both below and above the variance of
squeezed vacuum.

In an attempt to correct the theory, we considered the
effect of wideband detection [28]. Indeed, the quantity that
is detected in our experiments is voltage, the equivalent of
the electric field in free space. As shown in Ref. [28], the
voltage is not the same thing as the “photonic field” carrying
information about photocounts on a detector. So what is really
measured is not directly the bosonic mode of Eq. (B1), but
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FIG. 5. Measured sixth cumulant of voltage fluctuations gener-
ated by the paramp as a function of its resonance frequency and
pump power. The dashed blue line corresponds to frequency and
pump power equivalent to the blue line of Fig. 2(a).

rather the linked quantity,

V h(t ) = √
ν0

∫ +∞

−∞
dν

√
1 + ν

ν0
h(ν)Bout (ν)e−i2πνt , (C1)

where ν0 is the central frequency (6 GHz) of the detection
band.

We do find a small cloud of points, but they all lie beneath
the theoretical maximum variance. In addition, we find a
nonzero sixth cumulant C6 outside of the ridge, as featured in
Fig. 5. This is an interesting feature, as the narrow-band theory
predicts C6 = 0 everywhere, just as it is zero on the “ridge”
of our experiments. However, the amplitude of the corrected
C6 is too small by one order of magnitude compared to the
experiments. Hence, the wideband correction is insufficient to
explain experimental data.

Another potential shortcoming of the theoretical model is
the fact that the nonlinear coupling of the Josephson junction
is cut at the second order in our Hamiltonian. This is also the

FIG. 6. Skewness of the photocounts 〈δn3〉 as a function of the
average photon number 〈n〉. Dots are experimental data and each
line represents a given pump power. Open circles correspond to the
maximum of the paramp gain, i.e., the blue line in Fig. 2. The dashed
line corresponds to the theoretical prediction for squeezed vacuum.
The results stem from the values of the sixth cumulant of Fig. 5.
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case for the reference motivating this text [7], so we did not
attempt to expand the Hamiltonian to higher orders. However,
the Josephson parametric amplifier can be highly nonlinear,
and this simplification is likely to fail at higher powers, start-
ing at the single digit photon number. This has been studied
in detail in Ref. [26] for the case φ = 0. In Figs. 3 and 6, we
linked all the points corresponding to the same pump power
by a single line. We clearly see that excursions away from
the theoretical values increase dramatically with pump power.
We also see that the ridge is defined as the maximum of 〈n〉
versus flux bias for any given pump power, i.e., ( ∂〈n〉

∂�
)P = 0.

It is straightforward to show that it also corresponds to the
minimum pump power for a given 〈n〉, i.e., ( ∂P

∂�
)〈n〉 = 0. As a

consequence, we show that we recover the squeezed vacuum
photocount distribution only for a pump power close to the
optimum gain (even though our bichromatic pumping scheme
is the one that leads to the least nonlinearities [26]). In addi-
tion, half the points lie above, and half the points lie below
the theoretical curve. Thus we expect that a successful theory
would take into account the sign of the flux bias (i.e., it should
feature odd terms in the flux bias, which our theory fails to
do).
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