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Measurement-induced phase transitions in sparse nonlocal scramblers
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Measurement-induced phase transitions arise due to a competition between the scrambling of quantum
information in a many-body system and local measurements. In this work we investigate these transitions in
different classes of fast scramblers, systems that scramble quantum information as quickly as is conjectured to
be possible—on a timescale proportional to the logarithm of the system size. In particular, we consider sets of
deterministic sparse couplings that naturally interpolate between local circuits that slowly scramble information
and highly nonlocal circuits that achieve the fast-scrambling limit. We find that circuits featuring sparse nonlocal
interactions are able to withstand substantially higher rates of local measurement than circuits with only local
interactions, even at comparable gate depths. We also study the quantum error-correcting codes that support the
volume-law entangled phase and find that our maximally nonlocal circuits yield codes with nearly extensive
contiguous code distance. Use of these sparse, deterministic circuits opens pathways towards the design of
noise-resilient quantum circuits and error correcting codes in current and future quantum devices with minimum
gate numbers.
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I. INTRODUCTION

Measurement-induced phase transitions (MIPT) [1–4] are
transitions driven by a competition between scrambling dy-
namics, which tends to generate many-body entanglement
across all degrees of freedom of a quantum many-body sys-
tem, and local measurements, which tend to destroy this
entanglement. Measurement-driven transitions of this type
have garnered an extraordinary amount of theoretical interest
recently [5–21], and have been studied in a wide range of
physical systems, including in random quantum circuits, free
fermions [22–24], and non-Hermitian Brownian models [25].
They have also been extended to systems with long-range
interactions [26–29], including models with all-to-all cou-
pling [30,31], and non-Hermitian Sachdev-Ye-Kitaev (SYK)
models [32–34]. MIPTs have also been related to purification
transitions [35], where entanglement of the system undergo-
ing MIPT with an ancilla can be used to detect the transition
[36], as recently demonstrated in experiments with trapped
ions [37]. Importantly, these transition have also been related
to the properties of quantum error-correcting codes (QECC)
[11,35]. These codes are dynamically generated during the
evolution and are responsible for protecting the extensive
many-body entanglement present in the system despite re-
peated local measurements.
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The durability of this many-body entangled phase, despite
the presence of repeated projective measurements, is partic-
ularly compelling from the perspective of experiments with
modern quantum technologies. In this context, the goal is of-
ten to generate interesting or useful entangled quantum states,
while always contending with noise and dissipation, which
inevitably degrade this entanglement [4]. In this context, it
is therefore of considerable value to identify mechanisms for
building up robust patterns of entanglement as quickly and as
efficiently as possible before noise has a chance to degrade
the computation or simulation being carried out. Particularly
efficient quantum systems that build up many-body entan-
glement as rapidly as possible are known as fast scramblers
[38,39]. Fast scrambling was first discussed in the context
of information spreading in black holes, and refers to sys-
tems that can scramble quantum information on timescales
t∗ ∼ log N that grow only logarithmically with the system
size N [38–42]. Random all-to-all circuits [43], and other
disordered all-to-all coupled models such as the SYK model
[44,45] are good examples of fast scramblers, but recently, a
number of deterministic and experimentally feasible systems
exhibiting fast scrambling have also been explored [46–49].
These show similar dynamics, but often on sparse nonlocal
coupling graphs. In this context, we are led to the natural
questions: How do these deterministic fast scrambling circuits
perform when subjected to random measurements? Does fast
scrambling dynamics uniformly enhance the stability of the
mixed phase as a general principle, and can this lead to im-
proved quantum error-correcting code properties?

In this paper we explore these connections by studying
how the strength of scrambling affects the properties of the
MIPT mixed phase by considering sparsely-coupled quantum
circuits with tunable nonlocal interactions. By adjusting the
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range of interactions in these sparse circuits, we can tune from
local spreading of information to genuine fast scrambling. Our
analysis demonstrates that sparse nonlocal interactions can
significantly improve a quantum system’s robustness to local
measurements. We show that only a few additional layers of
nonlocal gates substantially increase the critical measurement
rate pc. We further demonstrate that highly nonlocal interac-
tions improve the properties of the quantum error-correcting
codes that stabilize the mixed phase.

As specific examples, we choose sparse nonlocal cir-
cuits that can be realised in the laboratory by combining
nearest-neighbor Rydberg interactions with nonlocal shuffling
operations [49]. The strength of scrambling in these circuits
is governed by a nonlocality parameter k. We refer to this
family of circuits as “power-of-2” (PWR2k) models because
they feature sparse long-range couplings only between qubits
separated by an integer power of 2, up to a maximum distance
dmax = 2k−1. In experimental implementations with Rydberg
atoms the nonlocality parameter k is controlled by the number
of shuffle operations applied, thereby providing a natural tun-
able parameter controlling the strength of scrambling in these
circuits. In particular, the case k = 1 corresponds to a nearest-
neighbor (NN) circuit with slow scrambling, while k ∼ log2 N
yields highly nonlocal circuits, which rapidly scramble quan-
tum information. In the following we study how these circuits
perform when subjected to random projective measurements
with a view toward understanding how nonlocal interactions
can improve the stability of the MIPT mixed phase.

The rest of this paper is organised as follows: In Sec. II
we introduce the deterministic PWR2k circuit models that we
study in this paper. In Sec. III we study measurement-induced
transitions in PWR2k circuits featuring Haar-random gates,
which allows the problem to be mapped to a classical percola-
tion problem. In Sec. IV we study the entanglement transition
numerically in PWR2k circuits featuring Clifford gates and
characterize the transition in terms of the tripartite mutual
information I (A : B : C) between three consecutive regions of
the output qubits. In Sec. V we study the purification transition
numerically for the same Clifford circuits as characterized
by the purification time τ of a single qubit. In Sec. VI we
numerically study the properties of the dynamically-generated
error-correcting code in the mixed phase, and demonstrate
that nonlocal interactions allow for improved code distance
at fixed code rate. In Sec. VII we consider the “complete”
PWR2k circuit with k = log2 N and compare its behavior to
the random all-to-all model. Finally, we discuss outstanding
issues and prospects for future work in Sec. VIII.

II. MODELS

The models we study here feature sparse nonlocal interac-
tions in which pairs of spins residing at sites i, j = 1, . . . , N
of a 1d lattice are coupled if and only if the distance be-
tween them is an integer power of 2: |i − j| = 2m−1 for m =
1, . . . , k as shown in Fig. 1(a). We refer to these interactions
as “nonlocal” in the sense that qubits i, j in the chain may be
coupled even when they are far away from one another, but
we emphasize that all couplings are “2-local” in the quantum
information sense because each gate acts on only 2 qubits at
a time. Sparse nonlocal interactions of this type have been

FIG. 1. Sparse fast scrambling PWR2k circuits with tunable non-
locality k subjected to random projective measurements. [(a),(b)]
Two-qubit entangling gates Qi j (green, turquoise, blue, purple) are
applied between qubits i, j if and only if they are separated by an
integer power of 2, |i − j| = 2m−1 for m = 1, . . . , k. These gates are
applied in consecutive interaction layers at times t = 1, . . . , T in a
nonlocal bricklayer pattern arranged into alternating even and odd
blocks up to a total depth T = 8N . Projective single-qubit measure-
ments (red crosses) occur with probability p between each interaction
layer. The degree k of the resulting interaction graph (b) controls
the nonlocality of interactions where the longest-range interactions
occur between qubits initially separated by dmax = |i − j| = 2k−1.
(c) The critical measurement rates for the purification transition pcp

(red) and entanglement transition pce (blue) increase significantly
with k, interpolating between the critical points found for random
nearest-neighbor (NN) models for k = 1 and random all-to-all (AA)
models for larger k. Haar-random circuits with identical coupling
patterns show a similar improvement in robustness to measurement
as k increases (green). (d) In the mixed phase for N = 256 qubits,
the maximum code distance dcode improves with k at fixed code rate
rcode. Error bars are shown or are smaller than data points; lines are
guides to the eye.

shown to generate fast scrambling dynamics [46], and are
inspired by the nonlocal coupling patterns that can be engi-
neered in single-mode cavities [50] or in Rydberg arrays with
the aid of tweezer-assisted shuffling operations [49]. We ex-
pect the fast scrambling dynamics in these nonlocal circuits to
rapidly generate many-body entanglement that is increasingly
robust to the destructive effects of local measurements relative
to circuits featuring only local interactions.

In the following we demonstrate these expectations explic-
itly by studying sparse nonlocal Floquet circuits consisting of
consecutive layers of pairwise nonlocal two-qubit gates Qi j =
Qji. The gates are arranged in a nonlocal bricklayer pattern,
as illustrated in Fig. 1(b), where each timestep t = 1, . . . , T
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represents a single interaction layer consisting of exactly N/2
gates. These interaction layers are stacked into an alternating
sequence of even and odd interaction blocks. During the even
block t = m = 1, . . . , k we place gates Qi j between qubits
i < j if and only if |i − j| = 2m−1 and mod(�i/2m−1�, 2) = 0.
During the subsequent odd block t = k + m = k + 1, . . . , 2k
we place gates according to the same rules but with the odd-
bricklayer condition mod(�i/2m−1�, 2) = 1. Finally, we apply
a layer of single-qubit phase gates Pi to all qubits and repeat
the entire sequence until a final time t = T . Unless otherwise
specified, we consider circuits with total depth T = 8N for
Clifford gates and T = N/2 for Haar-random gates. This alter-
nating sequence of even and odd nonlocal interaction blocks
ensures that quantum information rapidly spreads through the
system via nonlocal interactions as rapidly as possible within
a single block, but is not siloed into one of the hierarchical
branches of the nonlocal circuit that occurs if, for example,
the circuit consists only of even blocks. Unless otherwise
stated, the models, which appear in this paper always assume
periodic boundary conditions.

Following each interaction layer t we randomly apply pro-
jective measurements in the Pauli-z basis to individual qubits
with probability p as illustrated by the red crosses in Fig. 1(b).
These projective measurements tend to destroy the long-range
entanglement built up by the previous interaction layers of the
PWR2k circuit. The competition between these two effects
leads to a measurement-induced phase transition in the entan-
glement structure of the output state [7,30,35]. In this paper,
we are particularly interested in how this transition changes as
we add more nonlocal interactions.

In the PWR2k family, this degree of nonlocality is con-
trolled by the parameter k � log2 N , which determines the
distance of the longest-range interactions dmax = |i − j|max =
2k−1. Thus, PWR2k circuits with k ∼ O(1) consist only of
short-range couplings, which restrict the spread of quantum
information [51,52] and therefore generate only slow informa-
tion scrambling. By contrast, circuits with k ∼ log2 N consist
of highly nonlocal interactions that span the entire system
and are known to rapidly scramble quantum information
[46,49,53]. The nonlocality parameter k therefore provides a
convenient means by which to interpolate between the local
and nonlocal limits of the PWR2k family.

These two extreme cases can be compared to two proto-
typical scrambling circuits known to exhibit measurement-
induced transitions and that have been studied extensively in
existing literature. For local interactions k ∼ O(1) we com-
pare to a random 1+1D nearest-neighbor (NN) circuit [35]
in which the scrambling of quantum information is highly
restricted by local Lieb-Robinson bounds [51–53]. As we
increase the parameter k, additional long-range interactions
are switched on, leading to a quasi-one-dimensional system of
k-dimensional hypercubes, which locally scramble quantum
information (see Appendix B). For maximally nonlocal inter-
actions k ∼ log2 N the entire system is a single k-dimensional
hypercube (along with some additional couplings), which we
expect to achieve fast scrambling dynamics. As such, we
compare the maximally nonlocal case to a random all-to-
all (AA) circuit in which qubits interact pairwise at random
without regard to their spatial location [30,35]. These maxi-
mally nonlocal AA models were first proposed by Sekino and

Susskind [38] as prototypical examples of fast scramblers,
systems, which scramble quantum information at the fastest
rate allowed by quantum mechanics.

In the remainder of this paper, we study the entanglement
properties of these monitored PWR2k circuits as a function
of measurement rate p and nonlocality k using a combina-
tion of analytical and numerical methods. We consider two
types of gates Qi j in this paper. In Sec. III we take Qi j to
be Haar-random unitary gates acting between pairs of qudits
with Hilbert space dimension q, which maps to a classical
bond percolation problem on a degree-4 network in the limit
q → ∞. In Secs. IV–VI we take Qi j = CZi jHiHj , where
CZi j = CZ ji is the controlled-Z gate on qubits i, j and Hi, Pi

are the Hadamard and Phase gates on qubit i, respectively. In
this case the entire circuit is composed of Clifford gates and
can therefore be efficiently simulated on a classical computer
[54,55].

For the Clifford-only circuits, we detect the measurement-
induced phase transition using a standard set of diagnostic
tools. In Sec. IV we characterize the transition using the
tripartite mutual information I (A : B : C) between three con-
secutive regions A, B,C at the final time t = T [35]. In Sec. V
we study a closely related diagnostic, the single-qubit purifi-
cation time τ , which characterizes how long a reference qubit
will stay entangled with the system [27,36]. One can view
the circuit V as a tensor network that is being torn apart by
repeated projective measurements, where the mutual informa-
tion I (A : B : C) captures the connectivity of the network at
the final time t = T while the single-qubit purification time
τ captures the connectivity of the network between the initial
and final times t = 0, T . In each of these cases we find that
the critical measurement rate pc significantly improves with
k, indicating that nonlocal interactions substantially improve a
deterministic quantum circuit’s ability to withstand local mea-
surements by leveraging nonlocal scrambling interactions.
Finally, in Sec. VI we study the quantum error-correcting code
properties that support the volume-law phase.

III. PERCOLATION TRANSITION IN HAAR-RANDOM
PWR2k CIRCUITS

To demonstrate that nonlocal sparse interactions can im-
prove a system’s robustness to local measurements, we first
study PWR2k circuits consisting of Haar-random nonlocal
gates Qi j acting between pairs of qudits with local Hilbert
space dimension q. In the limit q → ∞, the circuit and the
randomly applied projective measurements can be mapped
to a bond percolation problem [2,30,35]. We illustrate this
mapping in Fig. 2(a), where each two-qubit gate Qi j (green)
corresponds to a vertex in the percolation network while the
qubit worldlines (black) correspond to four bonds connected
to this vertex. Projective measurements (red) correspond to
cutting these bonds. We discuss this mapping more explicitly
in Appendix A. Applying this mapping to the entire Floquet
circuit illustrated in Fig. 1(b) yields a nonlocal bond percola-
tion network whose bonds are cut with probability p.

For sufficiently small p this nonlocal network percolates,
in the sense that the network contains at least one connected
component that extends from the input qubit bonds at t = 0
to the output bonds at t = T . In the thermodynamic limit
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FIG. 2. Measurement-induced transitions in the PWR2k circuit
family with Haar-random gates. (a) Nonlocal circuits featuring
Haar-random gates can be mapped to a classical percolation net-
work, where gates in the original circuit (green) correspond to sites
in the percolation network, and projective measurements in the
Haar-random circuit (red crosses) correspond to cut bonds in the
percolation network. (b) The Binder cumulant b(p) of the maximum
cluster size in the classical percolation network for k = 1, 3, 5 (top
to bottom) and system sizes N = 256, . . . , 2048 (light to dark blue).
The critical point pc,Haar is extracted from the crossing point of
b(p) across finite-size systems (insets). We observe good scaling
collapse with critical exponent ν = 4/3 expected for a 1+1D NN
circuit even for large nonlocality k. (c) The percolation critical point
pc,Haar (green) increases with k; the critical exponent ν (black) is
nearly constant as k varies, indicating that these nonlocal circuits
near criticality likely belong to the same universality class for all
k < log2 N . Error bars are shown or are smaller than markers; lines
are guides to the eye.

N → ∞ and for extensive time T = N/2, this corresponds to
a network with at least one connected component of infinite
extent. The percolation critical point, pc,Haar, is defined as the
maximum measurement rate p for which the lattice percolates
in the thermodynamic limit. For p < pc,Haar, successful per-
colation implies that the output qubits at t = T retain partial
information about the input state at t = 0. By contrast, for
p > pc,Haar, failure to percolate indicates that any information
embedded in the initial state at t = 0 is lost due to the prolif-
eration of projective measurements in the circuit.

Classical bond-percolation transitions of this type are well
studied in the literature [56], including on a wide variety
of local and nonlocal networks. In the extreme local case
of nearest-neighbor interactions (i.e., k = 1 in the PWR2k

family), the percolation mapping yields a bond percolation

problem on a two-dimensional square lattice, whose critical
properties are known analytically [56,57]. In this limit, one
can naturally define a correlation length ξ , which captures the
typical size of connected components in the network. Near
the critical point pNN

c,Haar = 1/2 the correlation length diverges
algebraically like ξ ∼ |p − pc,Haar|−ν , where ν = 4/3 is the
critical exponent [2,56,57].

The classical bond-percolation transition has also been
studied in the opposite nonlocal limit where interactions be-
come arbitrarily long range. The percolation critical point of
the random AA model was studied early on by Gullans and
Huse [35] and more extensively by Nahum et al. [30]. The crit-
ical point of the AA network is known to be at pAA

c,Haar = 2/3.
Such a high critical point comes from the system’s locally
tree-like structure in the limit of large system size, where the
probability of the network having a local loop vanishes as 1/N
[30].

Here we interpolate between these two extreme limits us-
ing the nonlocality parameter k in the Haar-random PWR2k

circuit family, where k = 1 corresponds to the NN case and
k ∼ log2 N approaches the AA case. In order to find the
critical point pc,Haar for each value of k, we numerically sim-
ulate bond percolation on the corresponding network using
the Newman-Ziff Algorithm [58]. The critical point pc,Haar

and the critical exponent ν of the correlation length can be
identified by calculating the binder cumulant [59,60],

b(p) = 1

2

(
3 − 〈C4

max(p)〉
〈C2

max(p)〉2

)
(1)

where Cmax is the maximum cluster size in the nonlocal perco-
lation network and 〈. . . 〉 denotes the averaging over different
configurations of randomly-cut bonds. As mentioned above,
for finite k < log2 N the system is a quasi-one-dimensional
system of k-dimensional hypercubes arranged on a line (see
Appendix B), so we expect the critical properties to be gov-
erned by the usual 1+1D critical exponent ν. Near the critical
point, we expect the Binder cumulant to obey the scaling law
[59–61]

b(p) = f ((p − pc,Haar )N
1/ν ), (2)

which is governed by the same critical exponent ν that con-
trols the divergence of the correlation length ξ near the critical
point.

We plot the results of these numerical simulations
in Fig. 2(b) for k = 1, 3, 5 across system sizes N =
64, . . . , 1024 (light to dark blue). To extract the critical point
pc,Haar we plot the Binder cumulant b(p) [insets of Fig. 2(b)]
and locate the crossing point as a function of system size N .
At each fixed k in this analysis, we only consider the crossing
point for sufficiently large system sizes N > 2k , such that the
longest-range interactions dmax = 2k−1 are never extensive.
We then fit the scaling form (2) to the data near the critical
point and use this to extract an estimate of the critical expo-
nent ν for each value of k. Our resulting estimates for the
critical point and critical exponent can be used to collapse
the Binder cumulant b(p) near the critical point to a single
universal curve (2) as shown in the main panels of Fig. 2(b).

We plot the resulting critical points pc,Haar and critical
exponents ν as a function of k in Fig. 2(c). The critical points
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clearly increase with nonlocality k; for k � 5, the critical
point is closer to the AA limit than the NN limit. The critical
exponent ν, on the other hand, appears to be largely indepen-
dent of k and is consistent with the critical exponent ν = 4/3
expected for a 1+1D NN model [Fig. 2(c), dotted-black line].
These results suggest that all Haar-random PWR2k models
with k < log2 N fall into the same universality class as the
local 1+1D model in the thermodynamic limit. Nevertheless,
these results also demonstrate that the critical point pc,Haar, a
nonuniversal parameter, significantly increase with nonlocal-
ity k.

IV. ENTANGLEMENT TRANSITION IN CLIFFORD PWR2k

CIRCUITS

The nonlocal classical percolation network we studied
in the previous section demonstrated that just a few addi-
tional layers of nonlocal interactions can significantly increase
the critical point of the Haar-random PWR2k circuit. In the
following sections we turn our attention to deterministic non-
local circuits composed entirely of Clifford gates. We choose
interaction gates Qi j = Qi j = CZi jHiHj and show that the
circuit’s ability to withstand the destructive effects of local
measurement is improved as a function of the nonlocality
parameter k.

We begin our study of these nonlocal Clifford circuits by
characterizing the entanglement at the output of the circuit
as a function of the measurement rate p. We initialize the
monitored PWR2k circuit with a pure, separable z-polarized
state, and find a phase transition in the tripartite mutual in-
formation I (A : B : C) between three equal-size consecutive
regions A, B,C of the output state as shown in Fig 3(a) [35].
As mentioned earlier, this quantity captures the connectivity
of the circuit V near the final time t = T . The tripartite mutual
information

I (A : B : C) = I (A, B) + I (A,C) − I (A, BC) (3)

is defined in terms of the mutual information I (A, B) = S(2)
A +

S(2)
B − S(2)

AB , where S(2)
A = − ln Tr[ρ2

A] is the Renyi entropy
of the subsystem A. Because the circuit consists entirely of
Clifford gates, the Renyi entropy S(2)

A is always equal to the
conventional von Neumann entropy SA = −Tr[ρA ln ρA] and
we may therefore characterize the entanglement of the system
entirely in terms of the Renyi entropies S(2)

A .
To extract the entanglement critical point pce, we perform

a finite-size scaling analysis similar to the previous section.
In Fig. 3(b), we plot the tripartite mutual information as
a function of measurement rate p for various system sizes
N = 64, . . . , 1024 (light to dark blue). The critical point pce

is determined by the crossing point of the tripartite mutual
information across system sizes as shown in the insets of
Fig. 3(b). Only sufficiently large system sizes N > 2k are used
to extract the critical point. Because the system is quasi-one-
dimensional for finite k < log2 N (see Appendix B), near the
critical point pce we expect the tripartite mutual information
to obey the universal scaling law

I (A : B : C) = f ((p − pce)N1/ν ) (4)

FIG. 3. Measurement-induced entanglement transition in the
PWR2k circuit family with Clifford gates. (a) The circuit is initial-
ized with a separable pure input state, while the output at T = 8N
is divided into four equal regions A, B,C, D. (b) Tripartite mu-
tual information I (A : B : C) for consecutive regions A, B,C in the
PWR2k circuit for k = 1, 3, 5 (top to bottom) and system sizes
N = 64, . . . , 2048 (light to dark blue). The critical point pce is ex-
tracted from finite-size scaling for N = 64, . . . , 2048 (insets); only
sufficiently large system sizes N > 2k are used to estimate the critical
point. Near pce we observe a scaling collapse with the critical expo-
nent ν ≈ 1.28. (c) The critical measurement rate pce (blue) increases
significantly with k while the critical exponent ν (black) is consistent
with the 1+1D critical exponent (dotted black) to within statistical
fluctuations for all values of k. Error bars are shown or are smaller
than data points; lines are guides to the eye.

where f is a universal function and ν is the critical exponent
of the correlation length ξ . After determining the critical point
pce we fit this scaling form to each curve in Fig. 3(b) and
use this to extract an estimate for the critical exponent ν. The
resulting estimates for pce, ν allow us to collapse the original
data down to a universal curve as shown in the main panels of
Fig. 3(b) [35].

We plot the resulting estimates for the critical point pce and
critical exponent ν in Fig. 3(c) for k = 1, . . . , 6. Similar to
our findings in the previous section, the nonuniversal critical
point pce increases significantly with k. The critical exponent,
however, is nearly constant across k, and is consistent with the
critical exponent ν ≈ 1.28(2) found numerically for 1+1D
NN models [35] to within statistical fluctuations [Fig. 3(c)].
This indicates that the measurement-induced transitions in
these models likely fall into the same universality class as
the completely local NN models. Nevertheless, the fact that
the critical point pce increases with the nonlocality parameter
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k demonstrates that just a few additional layers of nonlocal
interactions can substantially improve a circuit’s ability to
retain complex many-body entanglement even in the presence
of local measurements, similar to our observations in previous
sections.

V. SINGLE-QUBIT PURIFICATION IN CLIFFORD PWR2k

CIRCUITS

Another measure of a circuit’s robustness to measurements
is the timescale τ required to purify a single qubit that has
been entangled with the system [27,36]. As mentioned earlier,
this purification time captures the connectivity of the circuit V
between the initial and final times t = 0, T . Absent any mea-
surements the circuit remains completely connected between
t = 0 and t = T , and therefore the reference qubit remains en-
tangled with the system forever. Conversely, carefully-placed
projective measurements effectively tear the circuit apart and
thereby destroy the entanglement between the system and
qubit, causing the qubit to collapse into a pure state. The
typical timescale τ required for this purification process to
occur can be used to characterize our circuit’s ability to retain
quantum information encoded in the initial state when sub-
jected to noise. In particular, below a critical measurement rate
p < pcp we expect the purification time to become extensive
τ ∼ Nz, indicating that quantum information can be robustly
stored in the circuit despite the presence of repeated projective
measurements at a rate p.

Although for nearest-neighbor circuits the purification crit-
ical point pcp coincides with the entanglement critical point
pce, we emphasize that these transitions can generically be
different, as has been pointed out in the literature [35]. We
are especially interested whether highly nonlocal circuits sup-
port an intermediate phase in between the two critical points
pcp, pce where the reference qubit has been purified, but where
there is nevertheless still volume-law entanglement in the final
state.

Here we study the possibility of such an intermediate phase
in our nonlocal PWR2k circuits by determining the single-
qubit purification time τ . To determine the purification critical
point pcp, we maximally entangle a single reference qubit
R with the system Q and apply t = 4N layers of a unitary
NN circuit to the system such that the qubit of informa-
tion is scrambled deeply within the system [27] [Fig. 4(a),
Uthermalizer]. Then the monitored PWR2k circuit is applied as
illustrated in Fig. 4(a). At the end of each timestep t we
compute the Renyi entropy S(2)

Q of the system. The single qubit
purification time τ is the number of timesteps required for the
Renyi entropy to vanish from its initial value of S(2)

Q (0) = ln 2.
To extract the critical point pcp for each k < log2 N we

perform a finite-size scaling analysis as shown in Fig. 4(b)
for k = 1, 3, 5. Similar to the analysis of previous sections,
the critical point is determined by the location of the crossing
point of τ (p) as the system size N is varied, as shown in the
insets of Fig. 4(b). The critical points pcp obtained from this
analysis are plotted in Fig. 4(c) and grow significantly with
k = 1, . . . , 6 in agreement with earlier analysis. In each of
these cases the critical point pcp of the purification transition
agrees with the entanglement critical point pce within error
bars. This strongly suggests that for k < log2 N the critical

FIG. 4. Single-qubit purification transition in the PWR2k circuit
family with Clifford gates. (a) Schematic diagram for single-qubit
purification. (b) Finite-size scaling for single-qubit purification time
τ in the PWR2k circuit for k = 1, 3, 5 (top to bottom) and system
sizes N = 64, . . . , 2048 (light to dark blue). Main figures show scal-
ing collapse with critical exponent ν ∼ 1.30 and dynamical critical
exponent z = 1 for k = 1, 3, 5. The critical point pcp is determined
by the crossing point of τ/Lz=1 across system sizes N > 2k (insets).
(c) The purification critical point pcp increases as a function of k,
closely mirroring the increase in the entanglement critical point pce

found in the previous section. The critical exponent, on the other
hand, agrees with the ν for k = 1 found in the entanglement criti-
cality in the previous section within the error (green-solid line, with
1-sigma fluctuations indicated by the green-dashed line). Error bars
are shown or are smaller than the data points; lines are guides to the
eye.

points pcp, pce are in fact identical and that there is no in-
termediate phase between the purification and entanglement
phases [35].

As emphasized previously, the system is quasi-one-
dimensional for finite k < log2 N , so we expect the purifi-
cation time near the critical point to obey a universal 1+1D
scaling law

τ (p) = Nz f ((p − pcp)N1/ν ) (5)

where z is the dynamical exponent and ν is the critical ex-
ponent of the correlation length ξ . Based on our findings in
previous sections, we expect the purification transition studied
here for k < log2 N to be in the same universality class as
the purification transition in 1+1D NN models, which are
believed to be governed by a conformal field theory with dy-
namical exponent z = 1 [2,27,35]. We therefore assume z = 1
and use the scaling form (5) to fit the data plotted in Fig. 4(b).
These fits yield estimates for the critical exponent ν, which
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we plot in Fig. 4(c). The resulting critical exponents ν =
1.30 ± 0.02 are largely independent of k and agree with the
critical exponent of the entanglement transition of the 1+1D
NN model. This consistent with previous results showing that
the critical behavior of the PWR2k with fixed k < log2 N is in
the same universality class as the conventional 1+1D MIPT
transition.

VI. QUANTUM ERROR-CORRECTING CODE
PROPERTIES

Below the critical measurement rate p < pc, the mixed
phase is underpinned by a dynamically-generated quantum
error-correcting code [8,9,11,17]. The improvement in the
critical measurement rates pc,Haar, pcp, pce as a function of
k observed in the previous sections suggests that circuits
with highly nonlocal interactions generate improved quan-
tum error-correcting codes in the mixed phase. An important
characteristic of any QECC is its code distance, which is the
smallest number of single-qubit errors required to transform
any code state into any other—equivalently, the code distance
is the minimal weight of all nontrivial logical operators. Here
we estimate the contiguous code distance dcode for our non-
local Clifford circuits, and show that the improved robustness
to local measurements observed in the previous sections also
generates QECCs with improved code distance.

To characterize the QECC in the mixed phase, we max-
imally entangle the system Q with a reference system R
and study the Renyi entropy S(2)

R of the reference as well as
the mutual information I (A, R) between the reference and a
subset A ⊂ Q of the output qubits as shown in Fig. 5(a). In
the language of quantum error-correction, the Renyi entropy
determines the code rate rcode = S(2)

R /N ln 2 of the PWR2k

Clifford circuit, or the number of logical qubits that are en-
coded within the N-qubit system Q. We plot rcode as a function
of p in Fig. 5(b) for N = 256 and find that the code rate
substantially improves with nonlocality k = 1, . . . , 8 at any
fixed measurement rate p, consistent with previous results.
From Fig. 5(b) it is clear that for any fixed k, our choice of
measurement rate p < pc below the critical point determines
the code rate rcode of the underlying QECC.

We can also study the contiguous code distance dcode of the
QECC in the mixed phase by analyzing the mutual informa-
tion I (A, R) between the reference R and subregions A ⊂ Q of
the system as shown in Fig. 5(a) [17]. For sufficiently small
subregions A in the mixed phase p < pc, one generically finds
vanishing mutual information I (A, R) = 0, indicating that the
region A contains no information about the reference R. In
this circumstance we may safely discard any of the qubits in
A and still reliably recover the quantum information shared
between the reference and the system. In the language of error
correction, we can view the subregion A as a set of qubits that
has possibly been corrupted by errors. So long as I (A, R) = 0
we may simply discard these corrupted qubits and still recover
the information contained in R. On the other hand, sufficiently
large subregions A will ultimately yield I (A, R) > 0, implying
that sufficiently large errors can degrade the correlations be-
tween the system and reference. The crossover point |A|∗ at
which the mutual information becomes nonzero provides an

FIG. 5. Code rate and code distance for the PWR2k Clifford cir-
cuit family at time t = 8N . (a) To determine rcode, dcode, we examine
the entropy S(2)

R of a maximally-entangled reference R and the mutual
information I (A, R) between the reference and a subregion A ⊂ Q
of the output qubits. (b) The code rate in the PWR2k circuit for
N = 256 as a function of measurement rate p improves significantly
with k (green through red). (c) Normalized mutual information as
a function of subregion size for p = 0.12, deep in the mixed phase.
The effective contiguous code distance dcode is determined by finding
the minimum size of the linear bipartition |A| to have the mutual
information I (A, Ref.) of ln 2. (d) Code distance vs k at fixed code
rates rcode = 0.1, 0.2, 0.3 (black, red, orange) for the system size
N = 256. Error bars are shown or are smaller than data points; lines
are guides to the eye.

estimate of the system’s code distance dcode [17]. We review
these arguments in more technical detail in Appendix F.

To extract an estimate of the contiguous code distance
dcode, we plot the mutual information I (A, R) as a func-
tion of the subregion size |A|/N and look for the crossover
point |A|∗ where the mutual information increase by one bit
�I (A∗, R) = ln 2 [Fig. 5(c)]. The effective code distance is
given by dcode = 〈|A|∗〉 where 〈. . . 〉 is an average over dif-
ferent realizations of projective measurements in the circuit.
We plot the resulting effective contiguous code distance as a
function of k in Fig. 5(d), which shows a striking improvement
of dcode with increasingly nonlocal interactions k. Moreover,
by tuning the measurement rate p < pc and the nonlocality pa-
rameter k we can obtain quantum error-correcting codes with
a variety of code rates and code distances. For fixed k we find
the expected tradeoff between code rate and code distance that
is typical in quantum error-correcting codes. By increasing the
nonlocality parameter k we generate codes with significantly
improved code distance dcode for any fixed code rate rcode. In
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this sense, the nonlocal interactions for k ∼ log2 N substan-
tially improve the quantum error-correcting code properties in
the mixed phase.

VII. FULLY NONLOCAL AND ALL-TO-ALL MODELS

So far, we have considered PWR2k circuits at fixed k <

log2 N where the longest-range interactions dmax = 2k−1 have
been strictly smaller than the system size N . In these cases we
found that nonlocal interactions could substantially improve
both the critical measurement rate pc and the code distance
dcode in the mixed phase. We now consider what happens
in the “complete” PWR2k circuit with k = log2 N , where
the longest-range interactions dmax = N/2 are extensive, and
show that the behavior radically changes relative to the cases
previously studied. In particular, the complete PWR2k cir-
cuit without measurements is known to be a fast scrambler
capable of generating system-wide volume-law entanglement
after only t∗ ∝ log N interaction layers [49]. In this section
we demonstrate that the fast scrambling dynamics in this
circuit leads to markedly improved code properties, including
a nearly extensive contiguous code distance dcode. We also
observe many similarities in this section between the complete
PWR2k circuit and a maximally nonlocal random AA model,
another known fast scrambler, which has no spatial geome-
try whatsoever. These similarities highlight the central role
played by fast scrambling in determining the physics of the
mixed phase in these circuits, and suggest that fast scrambling
circuits may be governed by the same universal physics near
the measurement-induced critical point.

We first study the complete PWR2k circuit with Haar-
random gates, and numerically simulate the corresponding
classical percolation network similar to Sec. III. In that prior
analysis we computed the Binder cumulant b(p) of the net-
work and estimated the critical point by fixing the parameter
k and performing a finite-size scaling analysis in the system
size N . In the present case, finite-size scaling is difficult to
define consistently because the connectivity k = log2 N of the
graph is coupled to the system size N . Instead, we estimate a
finite-size crossover point by computing the susceptibility

χ (p) = 〈C2
max(p)〉 − 〈Cmax(p)〉2 (6)

of the resulting classical percolation network. In the ther-
modynamic limit N → ∞ the susceptibility diverges at the
critical point; here we estimate the finite-size transition point
by locating the peak ppeak,Haar of the susceptibility χ (p) for
each N .

The resulting finite-size crossover points are plotted in
Fig. 6(a), where we compare to the crossover points for a
random AA model analyzed using the same methods. The
crossover points noticeably increase with N in both cases, and
should therefore be considered as finite-size crossover points
and not bona fide critical points. We also plot the value of the
maximum cluster size at the peak Cmax(ppeak,Haar ) in Fig. 6(b),
and find that it increases as a power law with system size
Cmax(ppeak,Haar ) ∝ Nμ with fractal dimension d f = 1.809 ±
0.005 for the complete PWR2k circuit and 1.786 ± 0.005 for
the random AA circuit. The similarity in the fractal dimen-
sion d f between these two circuits suggests that they may be
governed by the same universal physics near the critical point.

FIG. 6. Maximally nonlocal “complete” PWR2k circuits with
k = log2 N and random AA circuits. (a) Crossover points ppeak,Haar as
a function of system size N for the complete Haar-random PWR2k

circuit (purple) and for the random AA model (light blue). (b) The
maximum cluster size Cmax at the peak ppeak,Haar grows as a power
law Nμ with system size for the complete PWR2k circuit (purple) and
the AA circuit (light blue), with exponents df = 1.809 ± 0.005 and
df = 1.786 ± 0.005 respectively. Black dashed line shows the fractal
dimension, df = 91/48, of the cluster at the critical point of two-
dimensional system. (c) The code distance for the complete PWR2k

Clifford circuit (top) and the random AA Clifford circuit (bottom) for
code rates rcode = 0.1, 0.2, 0.3 (black, red, orange). In both cases,
the code distance is nearly extensive, scaling like dcode ∝ Nβ with
β = 0.96 ± 0.04 (PWR2) and β = 0.97 ± 0.02 (AA). (d) Scaling
collapse of the normalized single-qubit purification time τ̃ (p) in the
complete PWR2k Clifford circuit (top) and the random AA Clifford
circuit (bottom). In both cases the data exhibits strong collapse ac-
cording to the nonstandard scaling form in Eq. (7).

Moreover, the fractal dimension in both cases differs from the
analytical prediction d f = 91/48 ≈ 1.896 obtained from the
two-dimensional percolation universality class. This suggests
that there is an abrupt change in the universality class from the
k < log2 N circuits to the complete PWR2k circuit.

Next, we turn our attention to circuits composed of Clif-
ford circuits with two-qubit gates Qi j = CZi jHiHj and study
the quantum error-correcting codes that support the mixed
phase. Again, we find striking similarities with the random
AA circuit, suggesting that these models may be governed by
the same universal physics. Using the methods discussed in
Sec. VI, we extract the code distance dcode of the QECC in
the mixed phase at fixed code rate rcode. We plot the results
in Fig. 6(c) for code rates rcode = 0.1, 0.2, 0.3. Linear fits
indicate a nearly extensive code distance, where dcode ∝ Nβ
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with β = 0.98 ± 0.05 for the PWR2 circuit and 0.96 ± 0.01
for the random AA circuit.

This demonstrates that the fast scrambling dynamics gen-
erated by the maximally nonlocal PWR2k model generates
quantum error-correcting codes with excellent properties deep
in the mixed phase. The nearly extensive code distance dcode ∼
N found here is in agreement with the extensive code dis-
tance expected at very long times T  exp (Nrcode) in random
1+1D circuits [17], as well as with results from short random
circuits, which achieve codes at the Gilbert-Varshamov bound
[62,63]. In this sense, our PWR2k circuits achieve the same
QECC properties that are known to be accessible in random
circuits. A key distinction is the fact that the sparse nonlocal
circuits studied here are deterministic and can be implemented
in near-term experiments with Rydberg arrays [49] or in cavity
QED experiments [46,50]. One may be concerned that the in-
herent randomness in the projective measurements inside the
nonunitary circuit V would preclude the practical use of these
codes in realistic experiments because the encoding circuit
changes on every experimental run depending on the mea-
surement outcomes. However, we demonstrate in Appendix
F 3 how this problem can be overcome for Clifford PWR2k

circuits by leveraging a parallel classical Clifford simulation
alongside the quantum experiment. This procedure allows
these codes to be used in practical applications.

Finally, we study the single-qubit purification time τ in
the complete PWR2k circuit with k = log2 N . Instead of the
conventional scaling law (5) near the critical point, here we
empirically find strong scaling collapse of τ only after normal-
izing by the number of interaction layers k = log2 N within
each even (or odd) block. This leads to a nonstandard scaling
law

τ/ log2 N = τ̃ (p) = Nz̃ f̃ ((p − p̃c)N1/ν̃ ), (7)

which yields strong data collapse for both the complete PWR2
model and the random AA model as shown in Fig. 6(d). This
suggests that the critical point in the fast-scrambling limit may
be governed by a logarithmic scaling law (7) as opposed to
the conventional scaling (5) that governs the phase transition
in general short- and long-range models [27,64]. The origin
of this scaling behavior is an interesting topic for further
investigation.

VIII. DISCUSSION AND OUTLOOK

In this paper we studied the role of sparse nonlocal
interactions in protecting quantum information against the
destructive effects of local measurements. We characterized
the protection afforded by these nonlocal interactions by
numerically studying measurement-induced phase transitions
in a class of sparse, nonlocal PWR2k circuits with tunable
nonlocality k. These studies demonstrated that nonuniver-
sal properties of the transition, such as the critical points
pc,Haar, pce, pcp, can be significantly improved by the nonlo-
cality of the interaction graph. At the same time, we found
that the universal properties of the transition such as the
critical exponent ν are largely unaffected by the presence
of these nonlocal interactions so long as k < log2 N . In
the language of the renormalization group, it appears that
sparse nonlocal interactions are an irrelevant perturbation to

the 1+1D fixed point. It would be interesting to make this
notion of irrelevancy more precise within a renormalization
group framework.

While the phase transition for fixed k < log2 N appears
to be governed by the same universality class as the 1+1D
model, we find that the properties of the system deep in
the mixed phase can change considerably in the presence
of nonlocal interactions. In particular, we have demonstrated
that the code distance dcode (at fixed code rate rcode) can be
significantly improved by the presence of sparse, nonlocal
interactions. By varying the parameter k, we can thus tune
between the code properties of a NN circuit and the improved
code properties of an AA circuit.

We also studied “complete” PWR2k circuits with k =
log2 N and observed that these circuits are closely comparable
to known fast scramblers such as the random AA circuit.
Although a proper finite-size scaling analysis is not available
for these circuits, we numerically studied finite-size crossover
points and showed that the critical properties of the complete
PWR2k circuit are markedly similar to those of a random
AA circuit. We also studied the code properties of the com-
plete PWR2k and AA Clifford circuits, and found codes with
nearly extensive code distance dcode ∝ Nβ with β ≈ 1 in both
cases. Finally, we observed a nonstandard scaling collapse in
the single-qubit purification time τ for both models, another
signal that the critical properties of these models may be
described by the same universality class. In future work we
hope to make these connections more explicit.

One of the most exciting prospects for engineering fast
scrambling circuits in the laboratory is the ability to generate
good quantum error-correcting codes using the fewest gates
possible. Here we have demonstrated that deterministic fast
scrambling circuits with local projective measurements are
capable of generating good quantum error-correcting codes,
and that the properties of these codes can be easily tuned.
It is natural to ask whether one could reasonably use these
monitored circuits to generate useful codes in near-term ex-
periments. One outstanding problem from an experimental
perspective, however, is the postselection problem. Because
quantum projective measurements are inherently probabilis-
tic, one can only force a particular outcome by repeating the
protocol ad infinitum until the correct measurement record is
obtained. This necessarily requires the experiment typically
be repeated an exponentially large number of times, which
is impractical. In the case of Clifford circuits it is known
in principle how to apply feedback to effectively correct for
undesired measurement outcomes [37]. It would be interesting
to apply these ideas to our fast scrambling Clifford circuits
to understand whether single-shot experiments with suitable
feedback can be used to generated useful quantum error-
correcting codes in near-term experiments with cold neutral
atoms or trapped ions. The data for this manuscript is available
in open access at [65].

ACKNOWLEDGMENTS

We thank H. P. Büchler and N. Lang for helpful discus-
sions. G.S.B. is supported by the DOE GeoFlow Program
(DE-SC0019380). Work at the University of Strathclyde
was supported by the EPSRC Programme Grant DesOEQ

013174-9



HASHIZUME, BENTSEN, AND DALEY PHYSICAL REVIEW RESEARCH 4, 013174 (2022)
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APPENDIX A: HAAR-RANDOM CIRCUITS AND BOND
PERCOLATION

1. Percolation Mapping

The zeroth-order Renyi entropy is S0 = log M, where M is
the rank of the reduced density matrix ρA of the subsystem
A. When an independent qubit is entangled with A, the rank
of ρA increases by a factor of 2. A projective measurement,
on the other hand, isolates the measured qubit from the rest
of the system, typically undoing the effect of the entangling
gates applied previously to the measurement. In the tensor
network picture, the calculation of S0/ ln 2 maps to a classical
minimal cut problem. In this picture the zeroth Renyi entropy
is given by the minimum number of legs one must cut in order
to isolate the qubits in A (see Fig. 7).

By considering the two extreme limits of the probability
of the projective measurement p, one finds that in the limit
of p = 0 the initial state and final state is guaranteed to be
connected, and in the limit of p = 1, there is no connection
between them. Between these two limits there must be a crit-
ical probability p = pc,Haar, which separates the two phases.
For p < pc,Haar, there always exist a path between qubits in
the initial state and the final state, and for pc,Haar < p, they are
independent.

If two qubit gates are taken from the Haar-random distri-
bution and applied to a pair of independent qubits, then two
qubit gates are almost always guaranteed to be entangled. In
this case, the circuit can be drawn as a tensor network diagram
consists of entangling tensors (Haar-random gates), which act
on the pairs of qubits accordingly to the interaction graph,
with the legs being cut with probably p due to the projective
measurements. This is equivalent to the bond-percolation with
the bond occupation probability q = 1 − p. The critical point,
pc,Haar, therefore, can be determined by solving the classical
bond percolation problem of the mapped network.

2. Numerical Method for Simulating Bond Percolation

The Newman-Ziff algorithm [58] is used for simulating the
critical behavior of bond percolation. This algorithm calcu-
lates the various observables at different values of the bond
occupation probability q = 1 − p in a computational time,
which scales only linearly with the number of bonds M in the
network.

The algorithm proceeds by generating random configura-
tions of a given network with m = 1, 2, . . . , M bonds being
occupied; where this is done by adding one random bond at
each step starting from an empty network. At each step of
this process, one can keep track of the sizes of the connected
components (clusters) in the network with the Union-Find
algorithm [66,67]. Observables such as cluster sizes and their
moments can then be stored at the end of each step of the
algorithm. The observable Q as a function of the bond oc-
cupation probability q can then be calculated by taking the
microcanonical ensemble of the different configurations:

Q(p) =
∑

m

B(m, M, q)Qm =
∑

m

(
M
m

)
qmqM−mQm (A1)

where Qm is the value of observable Q with m occupied bonds
and (M

m ) = M!
m!(M−m)! is the usual binomial coefficient.

The calculation of the binomial distribution B(m, N, p) is
numerically unstable because one requires evaluations of the
factorials of large numbers and addition of numbers, which
differ largely in the order of the magnitudes. Here we adopt
a more stable method for evaluating the microcanonical en-
semble introduced by Newman and Ziff [58]. If we normalize
the binomial distribution by its peak value mmax = pM, this
normalized binomial distribution B̃(m, M, p) is defined recur-
sively as

B̃(m, M, q) =
{

B̃(m − 1, M, q) M−m+1
m

q
1−q (m > mmax)

B̃(m + 1, M, q) m+1
M−m

1−q
q (m < mmax).

(A2)

Therefore the observable of interest can be calculating the
following:

Q(q) =
∑

m′ B̃(m′, M, q)Qm∑
m′ B̃(m′, M, q)

. (A3)

3. Renormalization Group Solution for full PWR2

The PWR2 circuit with size N0 can be constructed from
two sub-systems of size N0/2. This can be done by inter-
leaving the degrees of freedom of the two subsystems and
coupling them together with the nearest-neighbor interactions.

This self-similar structure allows us to define a renormal-
ization transformation. This transformation consists of two
steps: First, a large block as depicted in Fig. 8 (left), is renor-
malized to a ribbon-like structure in Fig. 8 (left). Here the
renormalized is done by collapsing the bonds with different
colors in Fig. 8 (left) to the bonds of the corresponding colors
in Fig. 8 (right). This step reduces the size of the vertical
dimension by half. In order to reduce the size of the horizontal
direction, two of the ribbon-like structure is merged into one.
After these steps, the size of the network of N/2 by T is
reduced to N/4 by T/2, where N is the number of qubits and
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FIG. 8. Block-decimation procedure for the k = 2 PWR2k cir-
cuit. The entire structure on the left is reduced down to a
single ribbon-like structure on the right via the renormalization
transformation.

T is the number of layers in the original circuit. It is important
to note that from Fig. 8 (left), nonvanishing amount of loops
are always present for 4 < N between each layers.

This implies that the model is fundamentally different to
hypercubic/tree-like models discussed in [30].

Let q = 1 − p be the probability of a bond being present
in the network. The renormalized probability R(q) in terms
of the probability, which a ribbon structure (Fig. 8, right) is
spanned (Qribbon) is

R(q) = Q2
ribbon + 2Qribbon(1 − Qribbon ). (A4)

Now we define the condition of the ribbon to be spanned when
there exists at least one bond coming out of each the nodes. In
terms of the probability of at least a bond being spanned qbond,
Qribbon is

Qribbon = q4
bond + 4q3

bond(1 − qbond ) + 2q2
bond(1 − qbond )2.

(A5)

Finally, the probability of the bond being spanned, qbond, as a
function of q is

q′ = q4 + 4q3(1 − q) + 4q2(1 − q)2. (A6)

The equation R(q∗) = q∗ has a nontrivial fixed-point solution
in the real domain of 0 < q∗ < 1, which is q∗ ≈ 0.335 . . . or
equivalently p∗ ≈ 0.665 . . . .

APPENDIX B: DIMENSIONALITY OF PWR2k MODEL
WITH FIXED k

The interactions within a contiguous region of size Nsub =
2k in PWR2k circuit with fixed k can be embedded into a
k-dimensional cubic lattice. The rest of the bonds connect
two neighboring k − 1 dimensional faces of the hypercube.
The resulting geometry is a quasi-one-dimensional chain of
N/2k−1 sites where each site hosts a k-dimensional hypercubic
degree of freedom as shown in Fig. 9. In Secs. III and IV,
we observed both critical exponent ν and dynamic exponent z
that are consistent with the nearest-neighbor models for fixed
k PWR2k model. This chain-like critical behavior comes from
the global chain-like structure, which the models have for
sufficiently large enough N (Fig. 9 left).

APPENDIX C: CLIFFORD CIRCUITS

1. Stabilizer States

The stabilizer formalism is a powerful tool for understand-
ing a special class of many-body quantum states and quantum
error-correcting codes whose dynamics can be efficiently sim-
ulated on a classical computer [54,55]. Consider the Pauli

FIG. 9. The decomposition of the interaction graph of PWR2k

with k = 3 into the chain of hypercube-like interactions. Two sets
of 2k contiguous sites are interacting through PWR2k interaction
forming a hypercube-like geometry (black lines, left). The sites on
the two neighboring k − 1 dimensional faces of the hypercubes are
coupled through interactions depicted in blue. This can be interpreted
as chain of sites with each having D = k dimensional hypercube-like
degrees of freedom (right).

group P (Q) of all Pauli strings acting on a set of qubits Q.
We define an Abelian stabilizer subgroup S � P (Q) gener-
ated by a set G = {g1, g2, . . . , gm} of linearly-independent,
mutually-commuting Pauli strings [g	, g	′ ] = 0 ∀	, 	′. A sta-
bilizer group with m � N = |Q| independent generators has
order |S| = 2m. Given a stabilizer group S we define a stabi-
lizer state (also called a code state)

ρQ(S ) = 2−|Q| ∑
g∈S

g, (C1)

which is the unique density matrix stabilized by all elements
g ∈ S . If we specify a “complete” set of m = N stabilizers,
then (C1) is a rank-1 projector onto the unique pure state |
〉
stabilized by the group S (i.e., g|
〉 = +|
〉 for all g ∈ S).

Quantum error correction is particularly easy to understand
in the stabilizer formalism. Suppose we prepare a code state
(C1) defined by a stabilizer group S , and consider disturbing it
with an error operator e ∈ P (Q). There are three possibilities:
First, if e ∈ S then the error is trivial because it leaves the state
(C1) unchanged. Second, if e /∈ S fails to commute with one
or more stabilizers g then this is a detectable error because we
can detect (and subsequently correct) the error by measuring
the stabilizer g. The final possibility is if e /∈ S but e ∈ C(S )
is in the centralizer of S . These errors are undetectable be-
cause they modify the quantum state but cannot be detected
by measuring any of the stabilizers g. The collection of all
undetectable errors gives the logical operator group e ∈ L ≡
C(S )/S .

2. Classical Simulation of Clifford Circuits

Clifford group on N qubits, CN , is a group formed by
unitary operators, which transforms the elements of N qubit
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Pauli group to other elements in the same group. The action
of those unitaries on a stabilizer of O|
〉 therefore transforms
the stabilizer to other stabilizer O|
′〉. This transformation is
equivalent to the transformation of state |
〉 to |
′〉. There-
fore, the evolution of a stabilizer state under the unitaries from
the Clifford group can be tracked by keeping track of how the
initial stabilizer transforms.

The evolution with unitaries from the Clifford group is
proven to be able to be computed classically in polynomial
time by Gottesman and Knill [54,55]. This is done with a
binary matrix M of size N by 2N . In this representation, Pauli
strings in the stabilizer are mapped to each rows of M and
the actions of Clifford gates are mapped as series of logical
operations [55].

In this simulation a Pauli strings are mapped to a row in the
following fashion. A Pauli operator, which corresponds to the
lth qubit is encoded by mapping the number of Pauli-X to lth
column and the number of Pauli-Z to N + lth column. If lth
operator is Pauli Y , then because of the identity, Y = iXZ , the
values of the lth and N + lth columns is registered as 1,1. If
lth operator is an identity, both of the values are registered as
0.

To keep track of the evolution by the unitaries in the Clif-
ford group, it is useful to identify the transformation rule of
the binary matrix for the generators of the Clifford group.
The generator of N-qubit Clifford group are Hadamard (H),
Phase (P) and Controlled-NOT (C-NOT) gates [54,55,68].
Hadamard gate acting on a site l maps operators Zl to Xl

and Xl to Zl while keeping Yl to be Yl . This is equivalent to
swapping the columns l and N + l . Phase gate acting on a site
l , on the other hand, maps Xl to Yl and Yl to Xl while keeping
Zl unchanged. This is equivalent to setting the column N + l
as the modulo 2 sum of columns l and N + l . Let qubit l be a
control and qubit m be the target, then the Controlled-NOT
gate acting on those qubits flips the target basis whenever
the state of the l is |1〉. By transforming all the elements in
the two-qubit Pauli group, one finds that there are only four
non-trivial rules, which are : XlIm to Xl Xm, IlXm to IlXm, Zl Im

to ZlIm, and IlZm to ZlZm. Since H , P, and C-NOT gates are
the generators of the Clifford group, one may systematically
generate all the operators in n-qubit group by following the
algorithms such as the one proposed by Selinger [68].

3. Entanglement Entropy

The stabilizer is equivalently the density matrix of the
stabilizer state because the stabilizer is a projector, which
projects the state onto the stabilizer state. With the density
matrix ρQ(S ), entanglement entropy of a subregion A can be
calculated [35,69].

The reduced density matrix on the subregion A, ρA (A ∈
Q) is obtained by tracing out Ā. This is equivalent to tracing
out the Pauli operators, which belong to Ā. However, Pauli
operators are traceless, therefore

ρA = TrĀ{ρQ} = 2|Ā|

2Q

∑
gA∈GA

gA = 1

2|A|
∑

gA∈GA

gA, (C2)

where GA ∈ G is a set of all g where trace over Ā is nonzero.
[69]. Let NA be the number of linearly independent Pauli

strings that generate gA, then
∑

gA∈GA
gA is also a projector

of rank 2|A|−NA because this projects out the −1 eigenstates of
its generators. The von Neumann or Renyi entropy SA is

SA = (|A| − NA) ln 2. (C3)

From the identities 2NA+NĀ = 2N and NĀ = rankbinaryMĀ,
where M is the binary matrix of the stabilizer state, rankbinary

is the binary rank, and MĀ is the matrix, which its columns
corresponds to the Pauli operators of region Ā in M,

SA = (rankbinary(MĀ) − |Ā|) ln 2. (C4)

Using SA = SĀ, we obtain

SA = (rankbinary(MA) − |A|) ln 2. (C5)

APPENDIX D: FINITE-SIZE SCALING

1. Finite Size Scaling of the Percolation Critical Point for
k = 1, . . . , 6

Finite-size scaling analysis for the percolation transition of
the PWR2k circuit for k = 1, 3, 5 was presented in Fig. 2(b)
of the main text. Here we show the finite-size scaling and
the crossings of the binder cumulants for all values of k =
1, 2, . . . , 6 for the system sizes N = 28, 29, 210, 211.

The error bars are estimated by taking the standard error of
the 4000 realizations of the Newman-Ziff algorithm (see Ap-
pendix A). The critical points and their errors are estimated by
computing the average intersection points of the curves with
5000 different realizations of the fluctuations added to each of
the points. Fluctuations are drawn from the appropriate distri-
bution with the standard error as the standard deviation at each
point [Fig. 10(a)]. The critical exponents and their errors are
also estimated by collapsing the 5000 different realizations of
the fluctuations added from the same distribution [Fig. 10(b)].

2. Finite Size Scaling of the Entanglement Critical Point for
k = 1, . . . , 6

The finite-size scaling analysis of the entanglement crit-
icality of PWR2k circuit for k = 1, 3, 5 was presented in
Fig. 3(b) of the main text. Here we show the finite-size
scaling and the crossings of the tripartite mutual information
I (A; B;C) for all the values of k = 1, 2, . . . , 6 for system sizes
N = 26, . . . , 211 (the system sizes that are smaller than 2k+2

are not used in the analysis).
The error bars are estimated by taking the standard error of

up to 1000 realizations of the random projective measurement
of the evolution to t = 8N . The critical points and their errors
are calculated by computing the average intersection points of
the curves with 5000 different realizations of the fluctuations
added to each of the points that are drawn from the appropriate
distribution with the standard error as the standard deviation at
the point [Fig. 11(a)]. The critical exponents and their errors
are also estimated by collapsing the 5000 different realizations
of the fluctuations added to the data points from the same
distribution [Fig. 11(b)].
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FIG. 10. (a) The binder cumulant b(p) of the percolation network of PWR2k for k = 1, 2, . . . , 6 for the system sizes N = 28, 29, 210, 211

(light to dark blue). The solid-vertical lines are the estimated values of the pc,Haar and the shaded regions are the corresponding 1-sigma errors.
(b) Collapsed Binder cumulant for k = 1, 2, . . . 6 for the system sizes N = 28, 29, 210, 211 (light to dark blue).

3. Finite Size Scaling of the Purification Critical Point for
k = 1, . . . , 6

The finite-size scaling analysis of the purification criticality
of PWR2k circuit for k = 1, 3, 5 was presented in Fig. 4(b)
of the main text. Here we show the finite-size scaling and
the crossings of the single-qubit purification time for all the
values of k = 1, 2, . . . , 6 for system sizes N = 26, . . . , 211

(the system sizes that are smaller than 2k+2 are not used in
the analysis).

The error bars are estimated by taking the standard error of
up to 1000 realizations of the random projective measurement
of the evolution until the state is purified. The critical points
and their errors are estimated by computing the average in-
tersection points of the curves with 5000 different realization
of the fluctuations added to each of the points that are drawn
from the appropriate distribution with standard error as its
standard deviation at each points [Fig. 12(a)]. The critical

exponents and their errors are also estimated by collapsing
the 5000 different realizations of the fluctuations added to the
data points from the same distribution [Fig. 12(b)].

4. Finite Size Scaling of the Full PWR2 and AA circuits

The finite-size scaling of the MIPTs of the complete
PWR2k circuit is difficult due to the long-range interactions,
which give rise to strong boundary effects and the loss of
locality. In the percolation transition, this appears as the strong
system size dependence of the ppeak,Haar as shown in Fig. 6(a)
of the main text. The positions of the peaks are determined
from the χ (p) plotted in Fig. 13(a).

The loss of locality makes the determination of the entan-
glement transition impossible. Due to the coupling of distance
N/2, even in the regime near p = 1, the entanglement entropy
of the region of size A < N/2 is almost guaranteed to be
∼A(1 − p) at the end of the application of 2 log2 N − 1 layers

FIG. 11. (a) The tripartite mutual information I (A; B;C) of initial z-polarized state evolved under a deterministic Clifford PWR2k circuit
until t = 8N for k = 1, 2, . . . 6 for the system sizes N = 26, . . . , 211 (light to dark blue). The solid-vertical lines are the estimated value of the
pce and the shaded region is the corresponding 1-sigma errors. (b) Collapsed tripartite mutual information for k = 1, 2, . . . 6 for the system
sizes N = 26, . . . , 211 (light to dark blue).
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FIG. 12. (a) The single-qubit purification time for k = 1, 2, . . . 6 for the system sizes N = 26, . . . , 211 (light to dark blue). The initial stat
is prepared such that there is a qubit entangled to one of the N qubits (system), then the system qubits are scrambled with nearest-neighbor
random Clifford circuit up to t = 4N . The solid-vertical lines are the estimated value of the pcp and the shaded region is the corresponding
1-sigma errors. (b) Collapsed tripartite mutual information for k = 1, 2, . . . 6 for the system sizes N = 26, 211 (light to dark blue).

of the gates. Therefore we do not argue on the existence of
the entanglement transition in the complete PWR2k and AA
circuits.

The percolation transition suffers from the similar bound-
ary problem. However, the transition does not ask the
geometry of the circuit as it only asks the entropy of the
reference qubits that are entangled to the system at t = 0.
The problem in the determination of the critical properties
of the purification transition is the number of layers of the
even (or odd) blocks, which depends on the system size. In
this paper, we proposed the potential workaround, which is
normalizing the time t by the number of layers in the even
(or odd) blocks by defining t̃ = t/ log2 N . This lead to the
empirical scaling law of the form in Eq. (7) of the main text.

As shown in Fig. 6(d), the single-qubit purification time
τ (p) collapsed surprisingly well with Eq. (7) of the main text,
with p̃c = 0.27 ± 0.01, ν̃c = 2.08 ± 0.08, and z̃c = 0.21 ±
0.01 (PWR2) and p̃c = 0.31 ± 0.01, ν̃c = 2.29 ± 0.05, and
z̃c = 0.170 ± 0.006 (AA). For this simulation, τ̃ (p) is esti-
mated by taking the average over up to 500 realizations of

the random projective measurements. The errors in the critical
exponents and critical points are estimated by performing the
scaling collapse on the 5000 different realizations of the data
set with random fluctuations. The random fluctuations are
taken from the appropriate distribution with standard devia-
tion of the standard error at each point.

5. The Code Distances at Logarithmic Time Scale

In the previous subsections, the critical exponents and code
distances were determined on the output state after the evolu-
tion for the total circuit depth T , which is linearly increasing
with the system size N . In this subsection, we look at how
the contiguous code distance scales with T , which increases
logarithmically with the system size (T = 8 log2 N).

Shown in Fig. 14 is the contiguous code distance at T =
8 log2 N . In the case of PWR2 and All-to-All circuits, even at
this early timescales, the contiguous code distance dcode, in-
creases almost linearly with the system size; while in the case
of NN circuit, such polynomial dependency is not observed in
this very early times.

FIG. 13. (a) Susceptibility χ (p) of the complete PWR2k (left) and AA (right) percolation networks for the system sizes N =
26, 27, . . . , 210. Although there exists sharp peaks, the positions of the peaks depends significantly on the system size. The size of the circuits
in this calculations is taken to be N × T . The observables of the bond percolation of the networks are calculated with Newman-Ziff algorithm
by taking the microcanonical ensemble of over 4000 trajectories. (b) τ̃ /Nz̃ as a function of p without the scaling collapse for complete PWR2k

(left) and AA (right) circuits for the system sizes N = 26, 27, . . . , 210 with z̃ = 0.21 ± 0.01 (PWR2) and z̃ = 0.170 ± 0.006 (AA). The critical
point determined from the scaling collapse is marked by the black line and the 1-sigma error is marked by the grey shade. The critical points
and their error are p̃c = 0.267 ± 0.001 and p̃c = 0.312 ± 0.001, respectively.
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FIG. 14. System size scaling of the contiguous code distances dcode at the circuit depth T = 8 log2 N for code rates rcode = 0.1, 0.2, 0.3.
dcode ∝ Nβ with β ∼ 0.9 for AA and PWR2 for all the code rates. NN on the other hand, the polynomial dependency is not observed, in this
very early times. The black-dotted lines are there for the guide for linearly scaling code distance (dcode ∝ N).

APPENDIX E: THE GAP BETWEEN ENTANGLEMENT (pce)
AND PURIFICATION (pcp) CRITICAL POINTS OF PWR2k

Whether there exists a gap between the entanglement and
purification critical points is a topic of an ongoing debate.
Gullans and Huse [35] show that in 1+1D, they occur at the
same point in general. Here we show that such a gap is not
observed in the PWR2k circuits for the values of k = 1, . . . , 6.
No statistically significant deviations between the entangle-
ment and the purification critical points are observed (Fig. 15).

APPENDIX F: QUANTUM ERROR-CORRECTING CODE
PROPERTIES

1. Code Distance for Stabilizer Circuits

Here we review an argument of Li and Fisher that connects
the code distance dcode of a stabilizer circuit to the mutual
information I (A, R) between a subregion A ⊂ Q of the output
qubits and a maximally-entangled reference R [17]. In this
paper we are primarily interested in contiguous regions A, but
the arguments in this Appendix hold equally well for arbitrary,
possibly disconnected regions. For any bipartition A ∪ A = Q
of the system we define the quotient group

LA ≡ {g ∈ C(S )|projA(g) ∈ projA(S )}
S . (F1)

FIG. 15. The difference between entanglement and purification
critical points of PWR2k circuit are plotted (red) for k = 1, . . . , 6.
The blue line shows the error of entanglement critical points centered
at the expected value. There is no statistically significant deviation
observed between the entanglement and purification critical points.

Here projA is the group homomorphism from P (Q) to P (A)
defined by

projA : gA ⊗ gA → gA, (F2)

which projects any Pauli string g = gA ⊗ gA down to its
support on the region A. The group LA is the group of un-
detectable errors that are localizable on A. In other words, any
g in this group can be localized to A simply by multiplying by
a suitable choice of g′ ∈ S . The order |LA| = 2	A of this group
gives the number of independent undetectable errors that can
be localized to the region A. We must have 	A = 0 in order for
a stabilizer code to successfully protect quantum information
from errors acting on A.

In the following we compute the order |LA| of the group
LA and show that 	A ≡ log2 |LA| is proportional to the mutual
information I (A, R). Starting from the definition (F1), we find
that the order of the group can be written

|LA| = |C(S )| · |projA(S )|
|S| · |projA(C(S ))| (F3)

(see Appendix A of [17] for a rigorous group-theoretic deriva-
tion). Our goal is to convert the quantities on the right-hand
side into Renyi entropies, allowing us to relate 	A to I (A, R).

As a preliminary step, we first show how to compute the
Renyi entropy S(2)(ρA(S )) of a reduced density matrix ρA(S )
for a subregion A ⊂ Q of the full system. The Renyi entropy
of such a region A is given by

ρA(S ) = TrA[ρQ(S )]

= 2−|Q| ∑
g∈S

TrA[g]

= 2−|A| ∑
g∈S∩Ker projA

g (F4)

where in the third line we used the fact that TrA[g] = 0
except when projA(g) = IA (i.e., g ∈ Ker projA). Introducing
the group SA ≡ S ∩ Ker projA ∼= S/projA(S ) consisting of all
stabilizer operators that act trivially outside the subregion A,
we can simply write the reduced density matrix as

ρA(S ) = 2−|A| ∑
g∈SA

g (F5)

which is a natural generalization of (C1). Finally, it is easy
to show that the Renyi entropy of the reduced state ρA(S )
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is given by

(ln 2)−1S(2)(ρA(S )) = |A| − log2 |SA| = |A| − log2 |S| + log2 |projA(S )| (F6)

where we have used |SA| = |S|/|projA(S )|.
Finally, combining (F3) and (F6) we find:

(ln 2)−1I (A, R) = (ln 2)−1(SR + SA − SAR)

= |R| + (ln 2)−1SA − (ln 2)−1SAR + (log2 |C(S )| − log2 |C(S )|) + (log2 |S| − log2 |S|)
= log2 |C(S )| − log2 |S| + (

(ln 2)−1SA − |A| + log2 |S|) − (
(ln 2)−1SAR − |AR| + log2 |C(S )|)

= log2 |C(S )| − log2 |S| + log2 |projA(S )| − log2 |projA(C(S ))|
= log2 |LA| = 	A

where we have used the shorthand SA ≡ S(2)(ρA(S )) to
shorten notation, and in going from the third to fourth line
we have used the identity (F6) and its corresponding gener-
alization for the Renyi entropy SAR of the combined regions
A, R [17].

2. Quantum Hamming Bound

Here we review the quantum Hamming bound, which
places a fundamental bound on achievable code rates and code
distances for correctable nondegenerate QECCs. Suppose we
have a QECC with rate rcode = K/N that can correct all errors
of weight less than or equal to w. (Note that K �= k, where k
is the nonlocality parameter from the main text.) There are a
total of

∑w
i=0 3i

(N
i

)
such errors (Pauli strings). For nondegen-

erate codes, we must have 〈ψ |EE ′|ψ ′〉 = 0 for all errors E , E ′
and all code states |ψ〉, |ψ ′〉. That is, every code state |ψ〉 and
all of its erroneous versions must be orthogonal to every other
code state and all of its erroneous versions [70]. The only way
all of these orthogonal states fit into the same 2N -dimensional
Hilbert space is when

2K
w∑

i=0

3i

(
N

i

)
� 2N . (F7)

For large N and fixed K/N,w/N this is equivalent to

K

N
� 1 − w

N
log2 3 − H (w/N ) (F8)

where H (x) = −x log x − (1 − x) log(1 − x) is the classical
Shannon entropy.

One can derive a similar bound for the case where errors
only occur contiguously. In this case, there are a total of∑w

i=0 3i(N + 1 − i) contiguous errors of weight less than or
equal to w. For large N and fixed K/N,w/N this yields a
bound

K

N
� 1 − w

N
log2 3 − 1

N
log2(N − w) (F9)

where the final term vanishes in the strict limit N → ∞, but
is still relevant for large but finite size systems.

3. Practical Error Correction: Encoding and Decoding

The nonunitary circuits we study in this paper have de-
sirable quantum error-correcting code properties—to what
extent can we actually harness these circuits to perform
useful error-correction in real-world applications? Two pri-
mary complications arise. First, the measurement outcomes
obtained in the laboratory are random, meaning that the
nonunitary circuit V is different on every experimental run;
so how can we reliably use the encoding circuit V for error
correction if it changes every time we run the experiment?
Second, once the information is encoded, how does one
perform error correction in practice (decoding)? Here we
explicitly demonstrate how to use hybrid Clifford circuits
to perform encoding and decoding of quantum information
in real-world applications, despite the fact that the encoding
circuit V changes on each experimental run. This strategy
crucially relies on the fact that the circuit V consists entirely
of Clifford operators so that it can be classically simulated,
and does not generalize to circuits containing non-Clifford
elements. Nevertheless, these Clifford-only encoding circuits
are able to store arbitrary coherent quantum information,
which need not be limited to stabilizer states. This is similar
to the situation in conventional stabilizer QECCs, which are
capable of storing arbitrary coherent quantum information,
despite the fact that the stabilizer matrix (parity-check matrix)
H consists only of Clifford operators. In fact, one can view our
nonunitary circuits V as preparing a random stabilizer code,
whose stabilizer matrix H can be obtained via classical post-
processing of the measurement results as we explain below.

The encoding and decoding process is shown in Fig. 16.
In the first step, the system Q and reference R are maximally
entangled via a collection of EPR pairs, and the nonunitary
circuit V is applied to the system Q. The results of all pro-
jective measurements in V are stored in a classical computer
as a measurement record �m. Using this measurement record,
along with our knowledge of the gate sequence in the cir-
cuit V , we may classically simulate the resulting dynamics
of the 2N-qubit system QR [55]. Thus at the end of each
experimental run we obtain a stabilizer group S of dimension
|S| = 22N corresponding to a pure state |χ〉 = IR ⊗ V Q|EPR〉
of |Q| + |R| = 2N qubits, where IR is the identity acting on R
and V Q is the nonunitary circuit V acting on Q. The stabilizer
group S is represented by a 2N × 4N binary stabilizer matrix
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FIG. 16. Encoding and decoding procedure for harnessing
nonunitary Clifford circuits V for practical quantum error correction.
Operations performed inside the green box (top) consist entirely of
Clifford operations and can therefore be simulated on a classical
computer (bottom). Arbitrary quantum states can be prepared by pro-
jectively measuring the reference qubits R. The principle of deferred
measurement allows us to consider this state preparation to occur
outside of the green Clifford-only box.

M where each row 	 = 1, . . . , 2N corresponds to a stabilizer
generator g	 as shown on the left side of Fig. 17. By perform-
ing row reduction on M—equivalent to a basis transformation
g	 → g′

	 among the stabilizer generators—we can bring the

matrix to reduced row-echelon form M′. By construction, the
bottom N − K rows of the row-reduced matrix M′ generate
the subgroup SQ = S/projR(S ), the subgroup of stabilizers
that can be completely localized to the system Q. This group
defines the stabilizer group H ≡ SQ of our quantum error-
correcting code: in particular, the (N − K ) × 2N sub-matrix
in the lower-right corner of M′ serves as the stabilizer matrix
(parity-check matrix) H of the QECC. This code can correct
any error E that fails to commute with one or more of the
stabilizers in H by using standard error-correction procedures
for stabilizer codes [70,71].

So far, this procedure tells us how to detect and correct
errors, but it does not tell us how to store a particular quantum
state |ψ〉 in the system. To do this we make use of the initial
entanglement between Q and R. Some of this entanglement
is destroyed by the projective measurements in V , but in the
volume-law phase K bits of entanglement remain between
Q, R that can be harnessed to encode any K-qubit state into
the QECC. Further row-reduction operations on M can bring
the QR stabilizer matrix into the form shown on the right
side of Fig. 17, which gives a decomposition of the complete
stabilizer group into components S = SR × SRQ × SQ, where
SRQ = S/(SR × SQ). As discussed above, the subgroup H =
SQ serves as a stabilizer code for the system Q (similarly, the
subgroup SR could serve as a stabilizer code for the reference
R if the roles of Q, R were reversed). The remaining subgroup
SRQ is generated by 2K stabilizer operators with support on
both Q and R. This subgroup describes the remaining K bits
of entanglement that survive between Q and R despite the
measurements performed in the nonunitary dynamics V Q.

We now describe how to leverage this remaining entan-
glement to store a desired K-qubit quantum state |ψ〉 in the

FIG. 17. Stabilizer matrices for quantum error-correcting code states generated by MIPT dynamics in the “complete” PWR2 circuit on
N = 32 qubits with measurement rate p = 0.05 (a) and p = 0.15 (b). Each row 	 = 1, . . . , 2N (left) represents a stabilizer g	, whose operator
content is split between the reference R and the system Q. Binary row-reduction yields an equivalent representation (right) in which the
stabilizer group has been explicitly decomposed into components S = SR × SRQ × SQ, where SR,SQ comprise all stabilizers that can be
localized to R, Q, respectively, and SRQ comprise the remaining stabilizers, which necessarily feature nontrivial operator content on both
R and Q. The (N − K ) × 2N submatrix in the lower right-hand corner of the row-reduced stabilizer matrix serves as the stabilizer matrix
(parity-check matrix) H of the resulting stabilizer QECC, while the middle 2K rows capture entanglement between Q, R and can be used to
store quantum information in the system, where the rate of the code is given by rcode = K/N .
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system Q by preparing a time-reversed version of the state
|ψ ′〉 on the reference R. Further row-reduction operations
within the subspace SRQ can be used to transform the 2K
stabilizers into a standard generating set SRQ = {gr} [55] of
the form

gr =
{

X
R
i ⊗ X

Q
i r = 2i − 1

Z
R
i ⊗ Z

Q
i r = 2i

(F10)

for i = 1, . . . , K , where X
R
i , Z

R
i are many-body Pauli strings

with support only on R and X
Q
i , Z

Q
i are many-body Pauli

strings with support only on Q. In this standard form,
these operators all mutually commute [X i, X j] = [X i, Z j] =
[Zi, Z j] = 0 when i �= j, but when i = j we have {X R

i , Z
R
i } =

{X Q
i , Z

Q
i } = 0. As suggested by the notation, the operators

X
Q
i , Z

Q
i thus define a set of logical bit-flip and phase-flip (or

“shift” and “clock”) operators for K logical qubits on the
system Q. Similarly, the operators X

R
i , Z

R
i represent logical

bit-flip and phase-flip operators for K logical qubits on the
reference R. The form of the generators gr in Eq. (F10) guar-
antees that each logical qubit i in Q is maximally entangled
with a corresponding logical qubit i in R.

This entanglement between logical qubits in Q and R im-
mediately allows us to store a K-qubit quantum state |ψ〉〈ψ |Q
in the system Q by preparing the reference logical qubits in
a related state |ψ ′〉〈ψ ′|R. As a warmup, consider preparing a
single-qubit state |ψ〉〈ψ |	 = (I − �n · �σ	)/2 on the left half of
an EPR pair |EPR〉	r = (|01〉 − |10〉)	r/

√
2 by projecting the

right half onto the state |ψ ′〉〈ψ ′|r = (I − �nT · �σr )/2. Here �n =
(nx, ny, nz ) and �nT = (nx,−ny, nz ) are the unit-length Bloch
sphere vectors for the left and right qubits, respectively, where
the additional minus sign accounts for the necessary time
reversal of the qubit state required in passing the state from
the left to the right side of the EPR pair. We can perform
a similar procedure in the many-body case, making similar
use of the K qubits of entanglement shared between Q, R.
For simplicity, we consider encoding a separable K-qubit
state |ψ〉〈ψ | = 1

2K

∏K
i=1(I − �ni · �σi ), where the unit vectors

�ni = (nx
i , ny

i , nz
i ) are the Bloch sphere vectors of the K qubits

and �σi = (σ x
i , σ

y
i , σ z

i ) are the standard Pauli matrices for each
qubit i. To store this state in the system Q, we prepare the
reference R in a time-reversed state defined by the rank-1
projector

|ψ ′〉〈ψ ′|R = PR
�nT

i
= 1

2K

K∏
i=1

(
I − �nT

i · �σ R
i

)
(F11)

where �σ R
i = (X

R
i , iX

R
i Z

R
i , Z

R
i ) and �nT

i = (nx
i ,−ny

i , nz
i ). The

additional minus sign in ny
i accounts for time reversal asso-

ciated with the EPR pairs shared between Q, R as mentioned
earlier. This prepares the quantum state

|ψ〉 = PR
�nT

i
|χ〉, (F12)

which we claim is a logical encoding of the separable K-qubit
state |ψ〉 defined by the vectors �ni in the system Q. This
information is protected from errors by the stabilizer QECC
discussed above.

To prove that the state |ψ〉 does indeed store this quantum
information in the system Q, we can measure the projector

|ψ〉〈ψ |Q = PQ
�ni

= 1

2K

K∏
i=1

(
I − �ni · �σ Q

i

)
, (F13)

which acts only on the system Q, where �σ Q
i =

(X
Q
i , iX

Q
i Z

Q
i , Z

Q
i ) and �ni = (nx

i , ny
i , nz

i ). This yields

PQ
�ni
|ψ〉 = PQ

�ni
PR

�nT
i
|χ〉 = (

PR
�nT

i

)2|χ〉 = PR
�nT

i
|χ〉 = |ψ〉 (F14)

and thus |ψ〉 is an eigenstate of the projector PQ
�ni

. In the second

line above we have converted the system projector PQ
�ni

into a
reference projector PR

�nT
i

by “pulling the operator through” the
EPR pairs in |χ〉 via the identities

X
Q
i |χ〉 = X

R
i |χ〉

Z
Q
i |χ〉 = Z

R
i |χ〉. (F15)

These identities are immediate consequences of the stabilizer
condition gr |χ〉 = +|χ〉 in the subspace SRQ = {gr} along
with the fact that the logical bit-flip and phase-flip operators
X

R
i , Z

R
i square to the identity. The fact that |ψ〉 is an eigenstate

of both projectors PQ
�ni
,PR

�nT
i

immediately implies that

|ψ〉〈ψ∣∣ = PQ
�ni

⊗ PR
�nT

i
= |ψ〉〈ψ |Q ⊗ |ψ ′〉〈ψ ′|R (F16)

identically. We have thus prepared a quantum state |ψ〉〈ψ |Q
on the system Q by projecting the entangled reference R onto
a time-reversed state |ψ ′〉〈ψ ′|R. These arguments readily gen-
eralize to arbitrary nonseparable K-qubit states, meaning that
we can store arbitrary quantum information in this QECC by
preparing an appropriate time-reversed state on the entangled
reference qubits.

[1] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B 98,
205136 (2018).

[2] B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced
Phase Transitions in the Dynamics of Entanglement, Phys. Rev.
X 9, 031009 (2019).

[3] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Unitary-
projective entanglement dynamics, Phys. Rev. B 99, 224307
(2019).

[4] D. Aharonov, Quantum to classical phase transition in
noisy quantum computers, Phys. Rev. A 62, 062311
(2000).

[5] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven en-
tanglement transition in hybrid quantum circuits, Phys. Rev. B
100, 134306 (2019).

[6] M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement
transition from variable-strength weak measurements, Phys.
Rev. B 100, 064204 (2019).

013174-18

https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevA.62.062311
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.100.064204


MEASUREMENT-INDUCED PHASE TRANSITIONS IN … PHYSICAL REVIEW RESEARCH 4, 013174 (2022)

[7] Y. Bao, S. Choi, and E. Altman, Theory of the phase transition
in random unitary circuits with measurements, Phys. Rev. B
101, 104301 (2020).

[8] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. W. Ludwig,
Measurement-induced criticality in random quantum circuits,
Phys. Rev. B 101, 104302 (2020).

[9] R. Fan, S. Vijay, A. Vishwanath, and Y.-Z. You, Self-organized
error correction in random unitary circuits with measurement,
Phys. Rev. B 103, 174309 (2021).

[10] Y. Li, X. Chen, A. W. W. Ludwig, and M. P. A. Fisher, Con-
formal invariance and quantum nonlocality in critical hybrid
circuits, Phys. Rev. B 104, 104305 (2021).

[11] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum Error
Correction in Scrambling Dynamics and Measurement-Induced
Phase Transition, Phys. Rev. Lett. 125, 030505 (2020).

[12] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A.
Huse, and J. H. Pixley, Critical properties of the measurement-
induced transition in random quantum circuits, Phys. Rev. B
101, 060301(R) (2020).

[13] Q. Tang and W. Zhu, Measurement-induced phase transition: A
case study in the nonintegrable model by density-matrix renor-
malization group calculations, Phys. Rev. Research 2, 013022
(2020).

[14] X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-induced
criticality in (2 + 1)-dimensional hybrid quantum circuits,
Phys. Rev. B 102, 014315 (2020).

[15] L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R. Mucciolo,
and A. E. Ruckenstein, Nonuniversal entanglement level statis-
tics in projection-driven quantum circuits, Phys. Rev. B 101,
235104 (2020).

[16] S. Goto and I. Danshita, Measurement-induced transitions of
the entanglement scaling law in ultracold gases with control-
lable dissipation, Phys. Rev. A 102, 033316 (2020).

[17] Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error
correcting codes, Phys. Rev. B 103, 104306 (2021).

[18] T. Botzung, S. Diehl, and M. Müller, Engineered dissipation
induced entanglement transition in quantum spin chains: From
logarithmic growth to area law, Phys. Rev. B 104, 184422
(2021).

[19] J. J. Mendoza-Arenas and B. Buča, Self-induced entan-
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