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Manifestation of relative phase in dynamics of two interacting Bose-Bose droplets
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1Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02-668 Warsaw, Poland
2National Centre for Nuclear Research, ul. Pasteura 7, PL-02-093 Warsaw, Poland

3ICFO, Barcelona Institute of Science and Technology, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain

(Received 21 April 2021; accepted 28 January 2022; published 2 March 2022)

We study coherent dynamics of two interacting Bose-Bose droplets by means of the extended Gross-Pitaevskii
equation. The relative motion of the droplets couples to the phases of their components. The dynamics can
be understood in terms of the evolution of zero-energy modes recovering symmetries spontaneously broken
by the mean-field solution. These are translational symmetry and two U(1) symmetries, associated with the
phases of the droplets’ two components. A phase-dependent interaction potential and double Josephson-junction
equations are introduced to explain the observed variety of different scenarios of collision. We show that the
evolution of the droplets is a macroscopic manifestation of the hidden dynamics of their phases. The occurrence
of nondissipative drag between the two supercurrents (Andreev-Bashkin effect) is mentioned.
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I. INTRODUCTION

Quantum droplets are self-bound objects formed by ultra-
cold atoms. Despite having densities about eight orders of
magnitude smaller than air they behave like liquids. Droplets
were first observed in dipolar gases in systems of dyspro-
sium [1–3] or erbium atoms [4]. Their binding mechanism
occurred to be the same as predicted by Petrov [5] for
two-component Bose-Bose mixtures. Self-bound systems of
ultracold atoms are formed when the mean-field energy of
the gas almost vanishes and quantum fluctuations become
important. The Lee-Huang-Yang [6–9] contribution to the en-
ergy of the system constitutes an essential ingredient of this
stabilizing mechanism. Quantum droplets as considered by
Petrov [5] were obtained in a mixture of two hyperfine states
of 39K [10–13]. Experiments confirmed the main predictions
of the theory: nonspreading density profiles and values of
equilibrium densities.

The lifetime of droplets is limited by three-body losses,
but in heteronuclear mixtures of 87Rb and 41K [14] it might
exceed 100 ms [15], which is much longer than the lifetime
of two-component homonuclear mixtures. Therefore exper-
iments with heteronuclear droplets [14] pave a way toward
long-lived binary droplets which in turn opens the possibility
to study dynamical situations, such as collisions.

In the case of colliding classical droplets, two scenar-
ios are possible, depending on the relative values of kinetic
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and surface energies: coalescence or splitting [16–18]. This
was also observed in binary collisions of quantum droplets
composed of two hyperfine states of 39K [19]. However, the
dynamics of these processes may be richer. The superfluid
character of the colliding objects introduces additional de-
grees of freedom: the relative phases of their components.
The coupling of two superfluid systems invokes an analogy to
the Josephson effect. Coherent Josephson oscillations are at
the heart of recently observed supersolid behavior in weakly
coupled droplet systems in 1D [20–22], as well as in two-
dimensional geometries [23,24]. A Josephson-junction based
approach was used to describe out-of-equilibrium dynamics
of a supersolid [25]. For a review of recent advances in the
field of quantum droplets see [26–30].

Finally, we want to mention a totally different system,
where effects very similar to those studied here were ob-
served. These are coherent oscillations of neutrons during
a collision of two different nuclei. This peculiar result was
reported recently [31,32]. A minute Josephson oscillating cur-
rent of Cooper paired neutrons was found in analysis of data
from collisions of tin and nickel nuclei 116Sn + 60Ni at ener-
gies around 150 MeV, barely sufficient to overcome Coulomb
repulsion. As was suggested theoretically [33–36], the phase
difference of a pairing field of two initially independent nuclei
is responsible for this effect.

In the present paper we study low-energy collisions of two
interacting Bose-Bose droplets taking into account the coher-
ent exchange of atoms between them. Our approach is based
on numerical integration of the extended Gross-Pitaevskii
(eGP) equations supported by analysis of equations of motion
for zero-energy (Goldstone) modes of the system. These two-
component Josephson-junction equations allow for deeper
understanding of the observed dynamics. We predict a host
of different possible scenarios during the droplets’ approach.
This includes in particular a coherent transfer of atoms in
the form of direct or alternating Josephson currents, which
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may result in total evaporation of one of the droplets, or their
attraction, merging, or repulsion. We observe dynamics akin
to a droplet subject to a ponderomotive force, but also the
Andreev-Bashkin effect, i.e., entrainment between the two
superfluids.

The paper is organized as follows. In Sec. II we outline
the theory of two-component Bose-Bose droplets using eGP
equations. Next in Sec. III we discuss the preparation of the
initial state. We compare the fully coherent state, where the
relative phase between the two droplets is well defined, with
two Fock states, where the relative phase is not controlled.
In Sec. IV we find an expression for the interaction potential
between two separate quantum droplets overlapping with their
tails. In Sec. V we use a formalism based on the so-called
zero-energy modes Hamiltonian to derive Josephson-junction
(JJ) equations for the moving two-component junction. The
equations allow us to find effective simplified dynamics of
a collision of interacting droplets in terms of their rela-
tive positions and velocities, coupled to their relative phases
and Josephson currents. In Sec. VI we present results of
time-dependent numerical simulations of collisions for small
and large droplets assuming different initial phases of the
droplets. These simulations are compared to predictions of the
Josephson-junction model which allows for a clear physical
picture of the observed dynamics. We conclude with Sec. VII.

II. EXTENDED GROSS-PITAEVSKII EQUATIONS

A two-component ultracold Bose-Bose droplet may be de-
scribed quite accurately by a mean-field energy functional.
The energy density of a droplet is

ε(n1, n2) = 1

2

∑
i, j

nigi jn j + 8m3/2

15π2h̄3 (g11n1 + g22n2)5/2, (1)

where we assume that atomic masses of both components
are equal to m. n1 and n2 are the atomic densities related
to the corresponding wave functions ni = |ψi|2. We assume
intraspecies repulsion of strength gii > 0 and interspecies
attraction proportional to g12 < 0, where gi j = 4π h̄2ai j/m
and ai j are the s-wave scattering lengths. Moreover attrac-
tion slightly dominates over repulsion, δg = g12 + √

g11g22 <

0. The energy functional accounts for quantum fluctuations
given by the Lee-Huang-Yang (LHY) term [6]. For nega-
tive values of δg < 0 this contains a small imaginary part.
Second-order Beliaev theory for mixtures allows us to ac-
count for higher order terms [37,38] which may cure this
problem. However, the Beliaev approach for nonuniform two-
component mixtures is extremely challenging. Alternatively,
a phenomenological approach based on thermodynamic re-
lations was suggested [39], but sound velocities are still
imaginary for very small densities na3

11 � (δg/g)2 in this
framework. Another direction is to include some presum-
ably missing small contributions to the system energy. It was
shown in [40] that adding a pairing energy removes the imag-
inary LHY component. Despite all these different efforts no
consistent ultimate solution to the problem of imaginary LHY
energy is present yet. For the purpose of the present analysis
we simply neglect the imaginary term, as is commonly done

in theoretical studies of quantum droplets. This omission is
justified close to the instability threshold.

Self-bound droplets are formed for particular values of
Ni = N0

i [41]. The parameter a = a22/a11 determines the
ratio of atom number in the limit of very large droplets,
N0

1 /N0
2 = √

a. We use n0
1 = 25π

1024
|δa|2

a5
11a(1+√

a)5 to calibrate atomic

densities, ni = n0
1|�i|2. This way, for large droplets we have

|�1|2 = 1 and |�2|2 = 1/
√

a within the bulk. Following [5]

we set ξ =
√

3
2

1+√
a

4π |δa|n0
1
, μ0 = h̄2/(mξ 2), t0 = h̄/μ0 as units of

length, energy, and time, respectively. The number of particles
in the respective components of the mixture equals N0

i =
N0

∫
d3x|ψi|2, where N0 = n0

1ξ
3. The total energy will be

expressed in “extensive units” e = μ0N0 = n0
1ξ h̄2/m. In cal-

culations we set m = 38.96u, where u is the atomic mass unit,
and assume symmetric interactions, a11 = a22 = 33.83aB,
where aB is the Bohr radius, and δa = −0.0664a11. This re-
sults in ξ = 1.04 μm, t0 = 67 μs, and N0 = 2097.

The ground state is obtained by minimization of the fol-
lowing energy functional:

E [�1, �2] =
∫

dr

[
E +

∑
i

(|∇�i|2/2 − μi|�i|2)

]
, (2)

where the interaction energy density equals E =
ε(|�1|2, |�2|2)/μ0. The two chemical potentials μi =
μi(N1, N2) are the only free parameters. Dynamical extended
Gross-Pitaevskii (eGP) equations consistent with the above
energy functional have the form

i
∂

∂t
�i =

[
−1

2
∇2 + δE

δ�∗
i

]
�i. (3)

Stationary solutions of Eq. (3) are �i(t ) = �i(0)e−iμit .
The eGP equations quite accurately describe large Bose-
Bose droplets [10–13]. In order to get quantitative agree-
ment for small droplets, more sophisticated approaches are
needed [42]. A beyond local density approximation to the
LHY energy is desirable then.

In our description we do not account for three-body losses,
dN/dt � −K|�i|6. They may be accounted for by includ-
ing an appropriate imaginary term on the right-hand side of
Eq. (3). As shown in the experiment [19] the effect of this
term was important for qualitative agreement between the
experimental results and a theory based on the eGP equation.
In our case this term would play a similar role. At present,
the lifetime of homonuclear droplets (∼10 ms) is shorter than
the complete process, i.e., preparation of a suitable initial
state and collision. We do not include this effect since our
aim is to study which collision scenarios are possible once
three-body losses are overcome. We believe that theoretical
and experimental progress in the field will allow for such
long-lived droplets in the future. Heteronuclear droplets in
lower dimensions are a possible remedy, but other unexpected
solutions cannot be ruled out.

III. INITIAL STATE

Collisions of two droplets were studied experimentally
in [19]. The initial state was prepared by forming two droplets
in a double-well potential followed by removal of the barrier
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separating the two wells. No relative phase was imprinted
onto the droplets and the results obtained were consistent
with the assumption that their phases are identical. Therefore
many aspects of the collisions were similar to classical liquid
droplets. For low velocities the two droplets merged while for
larger velocities they separated after the collision. The critical
velocity was found to depend on the droplet size. The effect
of size in collisions of 1D droplets was discussed in [43].

Here we consider dynamics of interacting droplets having
initially nonzero relative phases and moving in opposite direc-
tions. Such an arrangement can be experimentally achieved in
a way similar to those of experiment [19]. After separation
however, a desired phase should be optically imprinted onto
the droplets [44].

The preparation of an initial state with well controlled ini-
tial phases is a challenging task. In the ideal situation, splitting
of a single droplet into two symmetric smaller ones ought
to be performed adiabatically in order to avoid excitations,
which in the case of a droplet would lead to evaporation of
particles. Special attention should be given to the symmetric
placing of the splitting barrier. This was successfully achieved
in experiments with a quantum gas placed in a double-well
potential and in Josephson-junction studies [45–48]. Here, in
principle, the same procedure might be implemented.

In the following we assume that the initial state is a super-
position of two-component waves moving toward each other
[compare Eq. (8)]:

� ini
i (r) ∼ φini

i,L(r) + φini
i,R(r), (4)

where i = 1, 2 enumerates components, and φini
i,L(R) =


i,L(R)(r)e±i(pr−�φ/2). Such an initial state dovetails the N-
body “superfluid” state:


i(r1, . . . , rN ) =
N∏

i=1

[
φini

i,L(ri ) + φini
i,R(ri )

]
, (5)

with every atom being in the superposition of the left and
right droplet. The phase between the right and left droplet is
well controlled, i.e., does not vary from one realization of the
system to the other. However, the number of atoms fluctuates.
It follows from Eq. (5) that for large N each droplet is in a
coherent state and has on average N/2 atoms with a dispersion
equal to

√
N/2. The one-particle density matrix has only one

nonzero eigenvalue and a corresponding eigenvector, Eq. (4).
This is a situation ideally suited for eGP equations.

On the other hand one may consider a situation where the
two droplets are prepared independently. The N-body state is
then a product of two Fock states:


i(r1, . . . , rN ) =
∑

P

N/2∏
i=1

�L(Pri)
N∏

i=N/2+1

�R(Pri), (6)

where P stands for permutations of the N atom positions.
From the point of view of one-particle measurements, the
system is fragmented, with two eigenvalues equal to 1/2
each. The two eigenvectors of the one-body density ma-
trix correspond to two wave functions: the right and the
left one, |φini

i,L(R)(r)|. The multiconfiguration time-dependent
Hartree approach could be a right tool to tackle such a
problem [49–53].

The fragmentation of one-particle density is the result of a
lack of a well defined relative phase, which strongly fluctuates
from one realization of the system to the other. However, in
every single realization (for repeated measurements) it has
some (uncontrolled) value which is fixed in course of a mea-
surement. This issue was discussed in detail in the context of
interference of two Fock states [54,55]. In a real cold-atom
experiment the system is monitored by a CCD camera where
a shadow of the atomic cloud is captured at some given instant
of time. In such a single shot many atoms, ∼d � 1, interact
with light and are monitored simultaneously. Therefore all
observables ought to be averaged with respect to a d-body
density matrix which in the case of the product of two equally
populated Fock states Eq. (6) was found in [55]:

ρ(r1, . . . , rd ) =
∫ 2π

0

dφ

2π

d∏
i=1

|
L(ri ) + eiφ
R(ri )|2, (7)

where the limit N � d � 1 was assumed. Thus even if the
system seems to be fragmented, its dynamics in a single re-
alization may be safely described assuming a superposition
of the left and right droplet states, Eq. (7), with some arbitrary
phase φ. The phase will differ from one realization to the other
but is fixed for all detected atoms in a single measurement.
Therefore it is justified to use eGP equations also in the case of
independently prepared droplets. Some information about the
actual relative phase can be eventually deduced a posteriori
from the observed scattering dynamics.

IV. INTERACTION POTENTIAL

At large distances the eGP equations simplify to
− 1

2∇2�i = μi�i, assuming spherical symmetry. The solu-

tions are �i(r) = Ai
e−λi r

r , where λi = √−2μi. Coefficients Ai

and λi depend on the number of particles of the two species
in the droplet. To find the interaction potential we follow
the approach presented in [56,57]. We assume that the two
droplets are separated by a distance significantly larger then
their radii. The exponentially vanishing tails of their wave
functions overlap and contribute to the interaction energy. The
total wave functions �Sc

i of the system are assumed to be sums
of two stationary droplet solutions, a left and right one, having
different phases: �φ1 = φR

1 − φL
1 and �φ2 = φR

2 − φL
2 , and

separated by a distance R = |rR − rL|:

�Sc
i (r) =

√
Bi

∑
α=L,R

�i(r − rα )e−ipαr−iφα
i , (8)

where Bi are chosen to ensure normalization of the wave
function �Sc

i to the value of (N0
i )L + (N0

i )R.
The interaction energy of the left and right droplet may be

defined as the difference between the energy of two overlap-
ping and two infinitely separated droplets V (R,�φ1,�φ2) =
E [�Sc

1 , �Sc
2 ] − ∑

α=R,L E [�α
1 , �α

2 ]:

V (R,�φ1,�φ1) = −
∑

i

A2
i

(
4π

R

)
e−λiR cos(�φi ). (9)

The potential depends not only on distance Ui(R) =
A2

i ( 4π
R )e−λiR, but also on the phase difference between the
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PYLAK, GAMPEL, PŁODZIEŃ, AND GAJDA PHYSICAL REVIEW RESEARCH 4, 013168 (2022)

droplets, and may be attractive or repulsive. The characteristic
range of the interaction is 1/λi.

The coefficients Ai are found from the continuity condi-
tion, |�i(R0)| = Ai

e−λiR0

R0
, where R0 is the radius of a droplet

having N0
i atoms, ( 4πR3

0
3 )|�i|2 = N0

i . This is an approximate
expression valid only for very large droplets, where the bulk
density may be approximated by n1(2) = |�1(2)|2 = 1, ( 1√

a
).

In the general case, the coefficients Ai are to be determined
by fitting to a numerical solution. This is the approach of the
present study.

Equation (9) is valid for two droplets with equal number of
atoms. For a more general treatment, we compare this analytic
result with numerical calculations of scenarios in which there
is a small population imbalance between the droplets, to ob-
tain the following formula for the spatial part of the interaction
potential:

Ui(R) = 4π

R
A(L)

i A(R)
i e−(λ(L)

i +λ
(R)
i )R/2. (10)

The exponents λL,R
i characterize the exponential tails of the

wave functions �L,R
i .

V. TWO-COMPONENT JOSEPHSON-JUNCTION
EQUATIONS

Binary droplet collisions may be described by a set of time-
dependent 3D partial differential eGP equations, Eqs. (3).
Initially the wave function is a sum of two stationary solutions
�Sc

i (r). If the initial kinetic energy of translational motion of
the droplets is low we may assume that they move as a whole
without internal excitations, preserving their shape. As long
as their relative separation is larger then the diameter 2R0 of a
droplet, i.e., if |rL(t ) − rR(t )| > 2R0, we may assume that no
Bogoliubov quasiparticles are excited. The exponential den-
sity tails overlap forming a weak link. The phase difference
between the left and right parts of the two wave functions will
trigger a coherent flow of atoms between the droplets. These
are the Josephson-junction-like oscillations of particle number
and relative phase.

Instead of solving the full set of eGP equations, Eq. (3), the
oscillations may be described adequately by only considering
the modes involved in the dynamics; these are the zero-energy
or Goldstone modes [58,59]. The energy of a free droplet
does not depend on a particular choice of phases of its wave
functions or on its position in space. The mean-field solutions
break these continuous symmetries. In consequence, zero-
energy modes which recover the broken symmetries appear
in the excitation spectrum. The dynamics of zero modes in a
two-droplet system is given by the Hamiltonian [59]

H =
∑

α

p2
α

2Mα
+ V (|rL − rR|,�φ1,�φ2)

+
∑

α

((
pα

H

)2

2Mα
H

+
(
pα

S

)2

2Mα
S

+
∑
i=1,2

μα
i δNα

i

)
. (11)

In the above pα = −ih̄ ∂
∂rα

are kinetic momenta of the left and
right droplets, α = L, R, while rα are positions of the droplets’
centers. Kinetic momenta of hard and soft modes, pα

H and pα
S ,

are

pα
S,H = 1√

2

[(
μα

1,1

)1/2
δNα

1 ± (
μα

2,2

)1/2
δNα

2

]
, (12)

where

μα
i, j = ∂μα

i

∂Nα
j

, (13)

and the plus (minus) sign refers to the soft (hard) mode while
δNα

i ,

δNL(R)
i = NL(R)

i − (
N0

i

)L(R)
, (14)

are deviations of particle numbers Nα
i from their equilibrium

values. The pairs (rα, pα ) and (φα
i , δNα

i ) are three sets of
canonically conjugate variables. Coefficients Mα are masses
of the two droplets, Mα = (N0

1 )α + (N0
2 )α , while Mα

H,S are
“masses” of the two phase modes:

1

Mα
S(H )

=
(

1 ± μ1,2√
μ1,1μ2,2

)
. (15)

The upper sign “+” corresponds to the mass of the soft
mode while the lower sign “−” represents the hard mode. As
shown in [59] the values of MS and MH differ significantly,
1/Mα

H ∼ 1 � 1/|Mα
S | ∝ |δa|/√a11a22. This inequality justi-

fies addressing the corresponding excitations as hard and soft
modes. In addition, the mass of the soft mode is negative
and changes its sign only for very large droplets. H may
be treated as a quantum Hamiltonian [58,60–62]; however,
for the present purpose we restrict ourselves to a classical
treatment. This means neglecting quantum fluctuations of
φα

i and δNα
i . The equations of motion generated by H en-

sure conservation of particle number of each species and the
center-of-mass momentum. It is convenient to use relative
coordinates, R = rR − rL and P = pR − pL. Furthermore we
assume that initial orbital angular momentum is equal to zero
and the droplets move toward each other along the x axis, so
we may omit vector notation. The equations of motion for the
relevant quantities are as follows:

Ṗ = U ′
1(R) cos(�φ1) + U ′

2(R) cos(�φ2), (16)

Ṙ = P

M , (17)

δṄR
i = −δṄL

i = −Ui(R) sin(�φi ), (18)

�φ̇i = �μi + (
μR

i,1δNR
1 − μL

i,1δNL
1

)
+ (

μR
i,2δNR

2 − μL
i,2δNL

2

)
, (19)

where M = MLMR
ML+MR

is the reduced mass and �μi = μR
i − μL

i .
Dots denote time derivatives while primes denote spatial
derivatives. These are the Josephson-junction (JJ) equa-
tions for a two-component junction. Relative phases are
coupled to currents Eq. (18) and to the relative motion
Eq. (16). The two Josephson currents δṄR

1 , δṄR
2 are mutually

coupled via the relative phases �φi. This coupling signifies
the Andreev-Bashkin (AB) effect [63–66].

VI. COHERENT DYNAMICS

In our simulations, the centers of droplets are separated by
the distance |rR − rL| = r(0) � 15. Due to their finite size,
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the distance between their surfaces is smaller, r(0) − 2R0 ≈
5–10. This is comparable to the range of the potential d =
1/

√
2μ1 � 1/

√
2μ2 ≈ 1.2–2.2. Initial droplets’ velocities are

zero ensuring low-energy collision. Droplets’ densities do not
depart significantly from the equilibrium values. Any devia-
tions result in a weak atomic evaporation. Fragmentation of
droplets as observed in [19] occurs only at higher collision
energy. In this regime more sophisticated approaches, such as
the multiconfigurational time-dependent Hartree method [53],
might be beneficial.

We begin our discussion by considering the case where
both droplets have the same number of atoms and the phases
of both components of a droplet are identical, �φ ≡ �φ1 =
�φ2. In such an arrangement the system can be described by
a single wave function.

Our interpretation is based on the JJ equations. If the
droplets are identical and initially |�φ1 ± �φ2| < π , they
attract mutually and begin to move toward each other. The DC
Josephson current of atoms δṄi ∼ sin(�φ) flows from one
droplet to the other in the direction of the phase gradient. The
droplets may merge forming an excited droplet. If the initial
phases are such that interaction is repulsive, the droplets repel
and move away from each other. The JJ current decreases in
time as the coupling between droplets gets weaker. This sim-
plistic description already shows that the motion of droplets
may strongly depend on the relative phases of their wave
functions.

However, the scenario given above is still oversimplified.
Attraction between droplets can change to a repulsion. If the
direct (DC) Josephson current triggered by a phase difference
is large, one droplet may grow at the expense of the other and
a difference between their chemical potentials will develop.
This condition supports an alternating Josephson current (AC)
rather then a DC one. The character of JJ dynamics switches
to AC mode when the phase difference grows linearly in
time, �φ ∼ ωt . The slow motion of droplets and fast phase
dynamics happen on two different timescales. Averaging over
fast oscillations according to Kapitza’s method [67] allows us
to separate a fast micromotion from a slow relative movement
governed by a repulsive ponderomotive potential

Vpon ≈
∑

i

U ′
i (R)2

4Mω2
. (20)

This is a mechanism which leads an initially attractive po-
tential eventually to act repulsively and allows the droplets to
escape.

Due to lack of confinement the distance between the
droplets may change, and thus the coupling strength varies in
time. The Josephson current is a transient effect, and occurs
only when the droplets are close to each other. This is a
substantial difference from the case of two trapped BECs [47].

The Kapitza mechanism is illustrated in the top panel
of Fig. 1, showing the interaction of two droplets with no
initial phase difference, but with different atom numbers
(and therefore different chemical potentials), NR

1 = NR
2 =

20.3 (×N0) = 20.3 (×2097) and NL
1 = NL

2 = 25.4 (×2097).
The AC Josephson effect leads eventually to repulsion, despite
initial attraction. The left part of the panel shows a 1D cut in
density along the axis of the droplets’ motion (vertical axis

FIG. 1. Two droplet collisions. Left column: Cut of droplet den-
sity along propagation axis resulting from eGP dynamics and droplet
trajectories obtained from JJ equations (black lines). Right column:
Relative phase �φ ≡ �φ1 = �φ2 (red solid and dashed line) and
number of atoms NR

1 − NL
1 (= NR

2 − NL
2 ) (black solid and dashed

line). Initial conditions: Top: NL
1 = 25.4, NR

1 = 20.3, �φ = 0; mid-
dle: NL

1 = NR
1 = 203, �φ = π/4; bottom: NL

1 = NR
1 = 203, �φ1 =

−�φ2 = π/4. Two relative phases �φ1 and �φ2 are plotted (red
and blue solid and dashed lines, respectively). Time is expressed
in units of t0 = 0.669 ms. Difference between results based on JJ
equations (dashed lines) and solutions of eGP equations (solid lines)
is not visible. Video links: [68] (top), [69] (middle), [70] (bottom).

in the figure) as a function of time. The density was obtained
by numerical solution of the eGP equations. Black lines in the
figure show the droplets’ trajectories as obtained from the JJ
equations. In the right part of the panel we show (a) the phase
difference between droplets �φ as obtained from solving the
eGP equations (taken at maximum density) (red line), and (b)
the difference in atom number NR

1 − NL
1 (black line). Dashed

lines of the same colors are corresponding results obtained
from the JJ equations. A small-amplitude micromotion is vis-
ible in the droplets’ trajectories. The dashed lines generally
coincide with the solid lines and are barely visible.

Another situation in which an initial DC current turns into
an AC one is illustrated in Fig. 1, middle panel, where we
show a collision of two large, initially attractive droplets,
NR

1 = NL
1 = 203 (×2097) and �φ = π/4. As the droplets ap-

proach each other, the “down” one grows as it is continuously
supplied by the DC current, while the “up” one becomes
significantly smaller, until the AC mode takes over and the
Kapitza mechanism comes into play. The smaller droplet is
repelled, but before escaping it is recaptured due to the large
amplitude of quadruple oscillations of the excited left droplet.
This is an example of a very spectacular scenario where one
of the droplets steals atoms from the other “at a distance” and
finally devours its smaller companion.
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FIG. 2. Two droplet collisions. Initial conditions: Top: NL
1 =

NR
1 = 20.3, �φ1 = �φ2 = 0; middle: NL

1 = NR
1 = 20.3, �φ1 = 0,

�φ2 = π/6; bottom: �φ1 = �φ2 = π/6 (final number of particles
NR

1 = 19.48, NL
1 = 21.12). Other parameters, dimension of axes, and

color coding are the same as in Fig. 1. Video links: [71] (top), [72]
(middle), [73] (bottom).

When one of the phase gradients has opposite sign, as
in Fig. 1, bottom panel (�φ1 = −�φ2 = π/4), the droplets
attract each other, and two equal but opposite Josephson cur-
rents are initiated. Such a scenario cannot be described by
the single-component eGP equation. The two counterflows
oscillate around zero while keeping opposite directions. These
oscillations have a tendency to separate both species and
accumulate them in opposite droplets. Excess atoms gather
mostly in low-density regions where some deviation from the
equilibrium proportion does not destabilize the droplet [41].
None of the droplets is depleted and eventually they merge,
similarly as if they had zero initial phase. For comparison
see Fig. 2, top panel, where merging of two small droplets,
NR

1 = NL
1 = 20.3 (×2097), is illustrated. Here however, no

Josephson current or phase dynamics take place. The resulting
droplet is not as excited as the one discussed previously.

In the middle panel we show the Andreev-Bashkin effect,
i.e., entrainment between the two superfluids. We simulate
two small droplets NR

1 = NL
1 = 20.3 (×2097) with vanishing

initial phase gradient �φ1 = 0 in one component and �φ2 =
π/6 in the second one. If the currents were independent, only
one species of atoms would flow from one droplet to the
other. Yet both species begin to travel together and the related
supercurrents are of the DC type. Eventually the “up” droplet
loses so many atoms that it becomes unstable and evaporates
during the approach. The minimal number of atoms support-
ing a stable droplet is about 18.65 × N0. The right droplet
disappeared altogether while approaching its partner because
both currents were acting in the same direction. The JJ equa-
tions do not account for evaporation and thus are not accurate
at the final stage of such dynamics. The inset (middle panel,

FIG. 3. Initial stages of evolution of the right droplet [located
at t = 0 at rR(0) = 7.5] after introducing phase perturbations. Left
panel: Relative difference of densities of perturbed and unperturbed
droplets. Right panel: Difference of phases between the right and
the left droplet calculated at positions of their centers for the first
(black solid line) and the second (red dashed line) component. Note
that large density fluctuations appear at short time and then about
t = 1.0 (0.7) ms the phases continue to fluctuate with relatively small
amplitudes.

right) shows the entrainment between the two supercurrents
δṄR

1 − δṄL
1 (black line) and δṄR

2 − δṄL
2 (red line). Note that

the “black” current starts from zero but soon follows the “red”
current. We stress that such a spectacular disappearance of
one droplet in the presence of another is not unique and does
not necessarily signify the AB effect. Very similar behavior
(not illustrated here) may be observed if both initial phase
gradients are equal (e.g., �φ1 = �φ2 = π/10), i.e., if the two
supercurrents act together from the very beginning. Therefore
experimental proof of the AB effect requires precise control
over the droplets’ phases. In turn, if both initial phase gradi-
ents are equal to �φ = π/6, the JJ currents are larger than
in the aforementioned case (Fig. 2, bottom panel); droplets
initially approach but the AC sets in while the droplets are still
far away from each other. Thus repulsion takes over before the
smaller droplet disappears.

Experimental realizations of phase-dependent collisions
crucially depend on the sensitivity of the entire process with
respect to the stability of the relative phase difference. To in-
vestigate this problem we randomly perturb the initial phases
of the droplets. After preparing the initial state with a well
defined phase difference, we add to both components some
local phase perturbations:

�sc
i,L(R)(r) → �sc

i,L(R)(r)(1 + eiδφi,L(R) (r) ), (21)

where δφi,L(R)(r) is a random variable uniformly distributed in
the interval [−δ, δ]. In the example we show below, we chose
the initial phase difference �φ0 = 3π/4 and δ = 0.1 × �φ0.
The perturbation is thus quite strong, at the level of ±10%.

The kinetic energy of the system after this perturbation is
so large that the total energy of the droplets becomes positive,
signifying thermal instability. Not only soft, but also hard
modes are excited this way, and the phase difference between
the two components varies from point to point. These phase
fluctuations convert into density fluctuations at early stages
of the dynamics, on a timescale of about 0.05–0.1 ms. In
Fig. 3 relative density fluctuations of the right droplet (nor-
malized to the nonperturbed density) are plotted. Fluctuations
of the order of ±2% are clearly visible. As densities depart
locally from their equilibrium values, particles are emitted,
which ultimately ceases both density and phase fluctuation.
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FIG. 4. Comparison of collision of droplets with initially per-
turbed (right panel) and unperturbed (left panel) droplets. Initial
conditions: NL

1 = 203, NR
1 = 162.4, �φ1 = �φ2 = 3π/4. Other pa-

rameters, dimension of axes, and color coding are the same as in
Fig. 1.

The phases stabilize at some values not significantly differ-
ent from the initial setting (see right panel of Fig. 3). The
internal dynamics of the droplets settle down, and the droplets
continue their mutual approach until they eventually escape
in opposite directions; see Fig. 4. The right panel shows
dynamics of unperturbed droplets, and in the left panel a
collision of perturbed droplets is illustrated. Both processes
look very similar; however, careful inspection suggests that
the repulsion of perturbed droplets starts marginally later than
in the analogous undisturbed setting.

This example illustrates that phase fluctuations tend to self-
stabilize. They are suppressed by emission of particles. The
observed self-stabilization of large fluctuations of phases of
droplets is a very interesting feature which deserves detailed
study in the future.

VII. CONCLUSIONS

In conclusion, we showed that the dynamics of interacting
droplets and their ultimate fate depend crucially on the relative
phases of their wave functions. Two liquid quantum droplets,
which constitute identical macroscopic objects, can be made
to merge, repel, or evaporate only by manipulating their
quantum phases. Thus the processes studied in this work are
macroscopic manifestations of the quantum nature of ultra-
cold droplets. The interaction potential derived here as well as
the two-component Josephson-junction equations may prove

useful in studying the Andreev-Bashkin effect or modeling
arrays of coupled droplets in a supersolid-like arrangement.
Our Josephson-junction equations do not have any free pa-
rameters; the chemical potentials and their derivatives as well
as the long-range behavior of the droplets’ wave functions
were found from stationary solutions of the extended Gross-
Pitaevskii equations. The collisions discussed in this work
enfold over a time span of more than 100 ms. The exper-
imental verification of our predictions depends crucially on
the realization of long-lived quantum droplets. One of the
possible ways toward experiments is heteronuclear droplets
in lower dimensions. On the other hand, one-component
Josephson-junction dynamics is also possible in the case of
dipolar droplets with sufficient lifetime. In fact Josephson-like
oscillation of phases and atom number in droplets forming a
supersolid were reported [21]. Collisions of dipolar droplets
remain to be studied.

We believe that experimental advances in creating long-
living droplets will sooner or later allow for verification of
our predictions in their full extent.
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