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Heat engines constitute the major building blocks of modern technologies. However, conventional heat engines
with higher power yield lesser efficiency and vice versa and respect various power-efficiency trade-off relations.
This is also assumed to be true for the engines operating in the quantum regime. Here we show that these relations
are not fundamental. We introduce quantum heat engines that deliver maximum power with Carnot efficiency in
the one-shot finite-size regime. These engines are composed of working systems with a finite number of quantum
particles and are restricted to one-shot measurements. The engines operate in a one-step cycle by letting the
working system simultaneously interact with hot and cold baths via semilocal thermal operations. By allowing
quantum entanglement between its constituents and, thereby, a coherent transfer of heat from hot to cold baths,
the engine implements the fastest possible reversible state transformation in each cycle, resulting in maximum
power and Carnot efficiency. Finally, we propose a physically realizable engine using quantum optical systems.
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I. INTRODUCTION

Since the beginning of the industrial revolution, heat en-
gines have been playing pivotal roles in shaping modern
technologies. One of the central laws of thermodynamics for
heat engines in the classical regime, that is, the second law,
imposes a fundamental limit on the maximum heat-to-work
conversion efficiency in an engine, given by Carnot efficiency.
This efficiency is only achieved when the engine operates
in a cycle using reversible transformations, which requires
it to run infinitely slowly. As a consequence, the engine’s
power—work extracted per unit time—becomes close to null.
In general, the realistic engines operate in finite time to deliver
a nonvanishing power, and then, the efficiency is compro-
mised. The trade-off between efficiency and power is studied
extensively in the past decades; see, for example [1–3], in
the context of finite-time classical engines. In general, the
laws of thermodynamics cannot be directly applied to the
engines that use working fluids made up of few particles. In
that case, the conventional (or statistical) notion of average
quantities such as energy or entropy becomes incomplete.
The situation becomes further constrained for engines op-
erating in the quantum regime, where the working fluid is
composed of few quantum systems and the effects due to
quantum fluctuations cannot be ignored. There have been ex-
tensive studies to understand thermodynamics in this regime,
see for example [4–21], and it is revealed that, in general,
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a quantum system in contact with a thermal bath delivers
fluctuating work. Consequently, a quantum engine, where a
working fluid sequentially or incoherently interacts with two
baths in a cycle in the presence of highly fluctuating input
and output energy fluxes, is expected to have fluctuations
in both efficiency and power, see for example [22–51]. In
fact, finite size heat engines, in general, deliver fluctuating
efficiency [26,27,30]. It is also true for power for engines
operating with finite-time cycle [36,42]. Apart from that, there
are power losses due to energy coherence [35]. Also, there are
proposals that smartly exploit energy coherence to increase
power, see for example [25,32,43]. The overall performance
of an engine considering interrelations between power and
efficiency in the presence of quantum fluctuation are studied
in [38,39,41–48]. In Ref. [34], the authors derive the lower
and upper bound on maximum efficiency at a given power for
the low dissipation heat engines. This bound generalizes the
bound on efficiency at maximum power given by [38]. These
engines also exhibit universal constraints for efficiency and
power [40]. For general cases, a universal trade-off between
efficiency and power is introduced in Ref. [41]. A trade-off
relation based on geometric arguments is derived in Ref. [45]
for any thermodynamically consistent microdynamics. Fur-
ther studies based on the geometry of work fluctuation and
efficiency are made in [46] for microscopic heat engines.

As in classical engines, it is now commonly believed that
yielding maximum power at Carnot efficiency is impossible
in a quantum engine. Earlier studies have assumed engines
with a working system that interacts with the hot and cold
baths at different stages of an engine cycle or with both baths
simultaneously but only enabling incoherent heat transfer.
Furthermore, the working system is either composed of a
statistically large number of particles, or a few particles, al-
lowing a large number of measurements. The role of quantum
fluctuations in delimiting efficiency or power or both becomes
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more prominent for the quantum engines operating in the
one-shot finite-size regime, i.e., engines with a finite number
of quantum particles constituting the working system and
restricted to one-shot measurements or observations. So far,
there are no comprehensive studies on that.

Here we introduce quantum heat engines operating in the
one-shot finite-size regime and study the power and efficiency
of heat-to-work conversion. We show that these engines can
simultaneously attain maximum efficiency, i.e., the Carnot
efficiency, and maximum power in the one-shot finite-size
regime. Therefore, there is no fundamental trade-off between
power and efficiency that an engine has to respect in the quan-
tum regime. Our approach is fundamentally different from the
earlier ones in the sense that (i) the engines are fully quantum
as they operate in the one-shot finite-size regime and allow
genuine entanglement between the baths and working system,
(ii) the working system simultaneously interacts with the hot
and cold baths via semilocal thermal operations, and (iii) the
engines run in a one-step cycle. The framework relies on
the resource theory recently developed to establish the ther-
modynamic laws in quantum heat engines [52]. The engines
deliver maximum power, along with Carnot efficiency, purely
because the engines allow a coherent transfer of heat from hot
to cold baths by establishing quantum entanglement between
the working system and the baths, thereby attaining maximum
quantum speed for the reversible state transformation in each
engine cycle. Finally, we also introduce a physically realizable
quantum heat engine based on a quantum-optical system.

The article is organized as follows. In Sec. II, we briefly
describe the thermodynamical transformation with which a
quantum heat engine operates in a one-step cycle. For this,
we adhere to the resource theory quantum heat engines, re-
cently developed in [52]. Then we present our main results
in Secs. III and IV. In Sec. III, we discuss how quantum
heat engines, equipped with the allowed (or resource-free)
thermodynamical operations, can deliver maximum power
with Carnot efficiency. A physically realizable model of such
an engine is outlined in Sec. IV based on quantum optical
systems. Finally, we conclude with a discussion in Sec. V.

II. ENGINE OPERATING IN ONE-STEP CYCLE

We consider an engine composed of two baths B1 and B2

with corresponding Hamiltonians HB1 and HB2 and inverse
temperatures β1 and β2 respectively; a bipartite (working)
system S12 with noninteracting subsystems S1 and S2 and
described by the Hamiltonian HS12 = HS1 + HS2 ; a bipartite
battery SWS12

with noninteracting subsystems SW1 and SW2 with
the Hamiltonian HSW12

= HSW1
+ HSW2

. Here the battery plays
the role of a piston in a traditional engine that takes away
work converted from heat. Throughout this paper, we assume
β1 < β2. All systems under consideration have Hamiltonians
bounded from below, with the lowest energy equal to zero.
The baths are considerably large compared to the systems,
and the degeneracy in their microcanonical ensembles scales
exponentially with the change in energy. That means the ener-
gies of the working systems and the battery are tiny compared
to the baths, while the latter have the highest energies close
to infinity. The properties of large baths are outlined in Ap-
pendix.

The engine lets the baths interact with the working system
and the batteries via a global unitary evolution (U ) where
the composite S1SW1 semilocally interacts with B1 and S2SW2

with B2. As a result, a semilocal thermal operation (SLTO) is
implemented on the system-battery composite S12SW12 given
by [52]

�S12SW12

(
ρS12 ⊗ ρSW12

)
= Tr B1B2

[
U

(
γB1 ⊗ γB2 ⊗ ρS12 ⊗ ρSW12

)
U †

]
, (1)

where the global unitary U satisfies[
U, HB1 + HS1 + HSW1

+ HB2 + HS2 + HSW2

] = 0, (2)

[
U, β1

(
HB1 + HS1 + HSW1

) + β2
(
HB2 + HS2 + HSW2

)] = 0.

(3)

Here the baths are in the equilibrium states denoted by γBx =
e−βx HBx

Tr [e−βx HBx ]
for x = 1, 2, and ρS12 is any state of S12. The ρSW12

is
the state of the battery SW12 , where the subsystems SW1 and
SW2 always remain in their energy eigenstates and store or
supply energy in the form of work. The commutation relation
(2) guarantees strict conservation of total energy of baths-
system-battery composite. Note that this ensures conservation
of all moments of energy and not just the average energy. The
relation (2), in turn, represents the quantum version of first
law for engines.

The relation (3) ensures strict weighted energy conserva-
tion. We may place two arguments to justify why quantum
heat engines must satisfy this weighted energy conservation.
First, this relation is essential for the construction of resource
theory [52], ensuring that �S12 (γS1 ⊗ γS2 ) = γS1 ⊗ γS2 where
γSx = e−βx HBx

Tr [e−βx HSx ]
for x = 1, 2. Here we ignore the batteries as

they only store or supply without directly interacting with the
baths. This implies that if the subsystems S1 and S2 are in
(local) thermal equilibrium with the baths B1 and B2 respec-
tively (also called semi-Gibbs state), then the SLTOs cannot
transform them out of the equilibrium. Note that this is a
direct consequence of the relation (3). Thus, these semi-Gibbs
states are resource-free states from the thermodynamic point
of view. This also physically makes sense. Because if the
subsystems are thermalized to the baths (as mentioned above),
nothing interesting can happen in terms of energy (heat or
work) exchange as constrained by zeroth law. Thus, the local
system will remain unaltered. This is also true the traditional
heat engines operating in a four-step Carnot cycle. The second
argument can be placed as follows. Here we implicitly assume
baths are considerably larger than the working system, and the
working system returns to its initial state at the end of each
cycle. Let us say, if the hot bath B1 releases �S amount of
entropy then an associated energy needs to flow out from the
hot bath is given by �E1, where �S = β1�E1. Since baths
and systems together form an isolated composite, the same
amount of entropy �S has to be absorbed by the cold bath
because the entire process is strictly entropy conserving. This
will increase the energy by an amount �E2, where �S =
β2�E2. The entropy conservation implies β1�E1 + β2�E2 =
0, which is exactly the condition demanded by the commuta-
tion relation (3). Note this argument above is based on the
notion of average entropy (Gibbs or von Neumann entropy),
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FIG. 1. One-step engine cycle. An engine consists of two baths
B1 and B2 at inverse temperatures β1 and β2 (β1 < β2), a working
system S12 ≡ S1S2 and a battery SW12 ≡ SW1 SW2 . In each one-step
engine cycle, the composite S1SW1 − SW2 S2 semilocally interact with
the baths B1 − B2 and undergoes a transformation so that the working
subsystems S1 and S2 swaps their states along with Hamiltonians
(as indicated by the arrows) and the battery subsystems update their
states. As a result, there is an overall flow of heat from B1 to B2 and,
in this process, part of that heat is converted into work and stored in
SW1 SW2 . At the end of each cycle, the state of S1S2 becomes identical
to its initial state upto a swap operation and is, again, reused in the
next cycles. See text for more details.

and it does not precisely capture the notion of entropy in the
one-shot finite-size regime. To understand how the relation
(3) ensures strict conservation of total entropy in the one-shot
regime, we need to turn to the microscopic picture based on
how degeneracy in the microcanonical ensembles changes due
to an energy transfer from the hot to the cold composites.
We discuss that in the Appendix. The SLTOs satisfy several
interesting properties and can be found in [52].

In an engine operating in cycles, the system S12 mediates
the heat transfer from B1 to B2, while a part of that is converted
into work and stored in the battery SW12 . At the end of each
cycle, the S12 should recover its initial state so it can be reused
for the next cycle. But the battery gets excited to a higher
energy eigenstate to store work. Interestingly, the engine ex-
ecutes this transformation in a one-step cycle (see Fig. 1) by
implementing semilocal thermal operations on S12SW12 , as(
ρS12 ⊗ ρ i

SW12
, HS12 + HSW12

) → (
σ ′

S12
⊗ ρ

f
SW12

, H ′
S12

+ HSW12

)
.

Consequently, the state of the working system transforms as
ρS12 → σ ′

S12
and at the same time the Hamiltonian is mod-

ified as HS12 = HS1 + HS2 → H ′
S12

= H ′
S1

+ H ′
S2

. Further, it
satisfies the cyclicity conditions σ ′

S12
= US1↔S2 (ρS12 ), H ′

S1
=

HS2 , and H ′
S2

= HS1 , where the unitary US1↔S2 swaps the
states of the subsystems S1 and S2. The battery undergoes
the transformation ρ i

SW12
→ ρ

f
SW12

without updating its Hamil-
tonian.

To understand how the above transformation executes the
(four-step) Carnot cycle in one-step, let us focus on the trans-
formation happening in the system, that is (ρS12 , HS12 ) →
(σ ′

S12
, H ′

S12
). For this purpose, we ignore the battery as it

only changes states without updating its Hamiltonians and
thereby stores or releases work. Consider, ρS12 = ρ ⊗ σ and
HS12 = H + H ′, where H and H ′ are the Hamiltonians of the
subsystems S1 and S2 respectively. Then the (one-step) engine

operation leads to

(ρ ⊗ σ, H + H ′) → (σ ⊗ ρ, H ′ + H ). (4)

This involves two simultaneous subtransformations. One is
(ρ, H ) → (σ, H ′) via a semilocal interaction with B1,
which can be understood as the combination of an isothermal
(ρ, H ) → (σ, H ) and then an adiabatic (σ, H ) → (σ, H ′)
transformations. The other subtransformation (σ, H ′) →
(ρ, H ) takes place in semilocal interaction with the bath
B2, which again can be understood as the combination of
an isothermal (σ, H ′) → (ρ, H ′) and then an adiabatic
(ρ, H ′) → (ρ, H ) transformations. Clearly, this mimics the
situation of a Carnot engine where one working system ini-
tially in (ρ, H ) undergoes two isothermal (in interaction with
two different baths) and two adiabatic transformations, but in
one-step (see [52] for more details).

III. MAXIMUM POWER WITH CARNOT EFFICIENCY

The engines equipped with SLTOs can yield better per-
formance than the traditional heat engines. Not only can the
engines execute the Carnot cycle in one step, but they are
also superior to conventional heat engines in efficiency and
power. Most importantly, these engines can deliver maximum
power with Carnot efficiency. Note, to attain maximum power
and efficiency simultaneously, the engine has to undergo the
fastest possible thermodynamically reversible transformation
in each cycle, which we are going to demonstrate below.

Without loss of generality, we consider the working sub-
systems S1 and S2 are to be qubits with the Hamiltonians
HS1 = a|1〉〈1|S1 and HS2 = a|1〉〈1|S2 respectively having iden-
tical energy spacing. We also assume, without loss of general-
ity, that the battery subsystems SW1 and SW2 are qubits with the
Hamiltonians HSW1

= EW1 |1〉〈1|SW1
and HSW2

= EW2 |1〉〈1|SW2
re-

spectively. The maximum heat-to-work conversion efficiency
per (one-step) cycle is attained by implementing a thermo-
dynamically reversible state transformation in S1S2SW1 SW2

composite

|0, 1, 0, 0〉S1S2SW1 SW2
→ |1, 0, 1, 1〉S1S2SW1 SW2

, (5)

using a semilocal thermal operation [52], where the sub-
systems S1 and S2 swap their states without changing the
Hamiltonians, and the batteries SW1 and SW2 get excited.
Here we denote |i, j, k, l〉S1S2SW1 SW2

= |i〉S1 ⊗ | j〉S2 ⊗ |k〉SW1⊗ |l〉SW2
.

For simplicity, we may consider the working system
and the battery to be the parts of single system S ≡
S1S2SW1 SW2 with the Hamiltonian HS = a0|0〉〈0|S + a1|1〉〈1|S ,
where a0 = a and a1 = a + EW1 + EW2 with the correspond-
ing energy eigenstates |0〉S = |0, 1, 0, 0〉S1S2SW1 SW2

and |1〉S =
|1, 0, 1, 1〉S1S2SW1 SW2

. Then, the engine becomes compact and
has three constituents; hot and cold baths (B1 and B2) and a
two-level system (S). The engine cycle starts with the initial
state |0〉S and ends with the final state |1〉S of S (as shown in
Fig. 2). The corresponding global transformation, leading to
this one-step cycle, is

γB1 ⊗ γB2 ⊗ |0〉〈0|S U−→ τB1B2 ⊗ |1〉〈1|S, (6)
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FIG. 2. A compact engine. An engine consists of two baths B1

and B2 at inverse temperatures β1 and β2 respectively, and a working
system S. The system S simultaneously interacts with both the baths
via a semilocal thermal operation. The engine operates in a one-step
cycle by exciting the system S from lower energy to a higher energy
eigenstate. See text for more details.

where τB1B2 is final state of the baths. The unitary U strictly
conserves energy of B1B2S composite and weighted-energy of
B1B2 composite, i.e.,[

U, HB1 + HB2 + HS
] = 0, (7)

[
U, β1HB1 + β2HB2

] = 0. (8)

The commutation relation (7) ensures the strict conservation
of total energy. The relation (8) ensuring strict conservation
of entropy is a special case of the general condition (3) where
the transformation is cyclic. Here the system S remains in the
energy eigenstates before and after the cycle without changing
its energy and entropy. Because of that, the entropy conserva-
tion is guaranteed by the strict weighted-energy conservation
of the baths only. See Appendix for more details. Note, the
semilocal nature of the evolution is clearly understood here as
the system S is simultaneously interacting with both the baths
via the unitary U .

Now we show that the unitary U , that satisfies relations
(7) and (8), leading to the transformation (6) indeed attains
Carnot efficiency. Then we consider constructing a driving
Hamiltonian, corresponding to the unitary U , that delivers
maximum power with Carnot efficiency.

Since the initial (and final) state of S is an energy eigen-
state, the global initial state of B1B2S can be expressed in the
block-diagonal form with respect to total energies, as

γB1 ⊗ γB2 ⊗ |0〉〈0|S =
⊕

EB12 +a0

[
γB1 ⊗ γB2

]
EB12

⊗ |0〉〈0|S, (9)

with EB12 = EB1 + EB2 , where EB1 and EB2 are the energies
corresponding to the baths B1 and B2 respectively, and

[
γB1 ⊗ γB2

]
EB12

= p
(
EB12

) d1(EB1 )d2(EB2 )∑
i=1

∣∣EB12 (i)
〉〈
EB12 (i)

∣∣,
where d1(EB1 ) and d2(EB2 ) represent the degeneracies cor-
responding to the bath energies EB1 and EB2 respectively
and p(EB12 ) = e−β1EB1 −β2EB2 /ZB1 ZB2 . A strictly total energy
conserving unitary also takes a block-diagonal form, U =⊕

EB12+a0
UEB12+a0

, where the unitary UEB12+a0
operates only on

the block with the total energy EB12 + a0 and implements a
transformation[

γB1 ⊗ γB2

]
EB12

⊗ |0〉〈0|S → [
τB1B2

]
E ′

B12

⊗ |1〉〈1|S, (10)

where E ′
B12

= E ′
B1

+ E ′
B2

. Note, EB12 + a0 = E ′
B12

+ a1 as re-
quired by the total energy conservation. The strict conserva-
tion of total weighted-energy of the baths ensures

β1
(
E ′

B1
− EB1

) + β2
(
E ′

B2
− EB2

) = β1Q1 + β2Q2 = 0, (11)

where Q1 and Q2 are the heat flow out of the baths B1 and
B2 respectively. The Eq. (11) is nothing but the Clausius
equality. This in turn ensures the thermodynamic reversibility
of the state transformation. Note, this condition also implies
d1(EB1 )d2(EB2 ) = d1(E ′

B1
)d2(E ′

B2
), where d1(E ′

B1
) and d2(E ′

B2
)

are degeneracies in the energies corresponding to E ′
B1

and E ′
B2

of the baths B1 and B2 respectively (see Appendix for more
details). It is an essential requirement for a unitary transfor-
mation where the rank and the spectra of the (unnormalized)
state of each total energy block remain unchanged.

Similar transformations, as in Eq. (10), also take place
in all other total energy blocks due to the evolution by the
unitary U . As a result, the desired state transformation, given
in Eq. (6), is achieved and thereby completes the one-step
engine cycle. The extracted work per cycle is given by Wext =
a1 − a0 = Q1 + Q2 as a consequence of strict conservation of
total energy. Hence, the heat-to-work conversion efficiency
becomes maximum in the one-shot finite-size regime, given
by

η = Wext

Q1
= 1 − β1

β2
, (12)

which is the Carnot efficiency, as expected for any reversible
engine cycle.

Let us demonstrate how the global unitary U can be imple-
mented using an interaction Hamiltonian

Hin = h̄g
⊕

EB12 +a0

d1(EB1 )d2(EB2 )∑
i=1

|E ′
B12

(i), 1〉〈EB12 (i), 0|B1B2S + H.c.,

where, again, |EB12 (i)〉 ≡ |EB1 (i), EB2 (i)〉 and |E ′
B12

(i)〉 ≡
|E ′

B1
(i), E ′

B2
(i)〉, and g is a constant. The global unitary is then

U (t ) = e−itHin/h̄ for any time t . Under this unitary, an initial
state |EB1 (i), EB2 (i), 0〉B1B2S in the total energy block evolves
to |ψ (t )〉 = U (t )|EB1 (i), EB2 (i), 0〉B1B2S at time t , where

|ψ (t )〉 = cos(gt )
∣∣EB1 (i), EB2 (i), 0〉B1B2S

− i sin(gt )
∣∣E ′

B1
(i), E ′

B2
(i), 1〉B1B2S, (13)

which is a genuinely entangled state of B1, B2, and S for
gt 	= zπ/2 with z ∈ Z. The desired final state is attained at
time τ = π/(2g), where all the constitutes become uncorre-
lated from each other. It is important to highlight that the
above engine evolution enables a coherent heat transfer from
B1 to B2, which happens due to entanglement in the interme-
diate time and is fundamentally different from conventional
engines. Similar evolution takes place in every total energy
block, and the overall transformation (6) is attained at time τ .
With this, the engine extracts Wext work in τ time. Thus, the
power delivered by the engine, i.e., work extraction per unit
time, is

P = Wext

τ
= 2gWext

π
. (14)
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FIG. 3. Geodesic trajectory of evolution. Evolution of states on
a quantum state space (the gray area). An initial state |ψ (0)〉 at time
t = 0 is evolved to |ψ (t )〉 at time t = t . There are infinitely many
paths connecting the states. One with the shortest path is called the
geodesic path (solid blue line). Any other path (e.g., dashed red line)
is longer than the geodesic one.

Contrary to the traditional understanding, the reversible
(one-step) engine cycle via semilocal thermal operation re-
quires finite time. Not only that, as we argue below, the
interaction Hamiltonian Hin drives the evolution with the
maximum attainable speed to result in the shortest possible
transformation time. The speed of evolution is defined by the
distance traversed by a system per unit time in its quantum
state space [53]. For pure states, the distance is measured
using Fubini-Study metric, given by s = 1

2 (1 − |〈ψ |φ〉|2) for
any two states |ψ〉 and |φ〉. The speed of evolution of the state
|ψ (t )〉 is

v = ds

dt
= �Hin

h̄
= g, (15)

where ds = 1
2 (1 − |〈ψ (t )|ψ (t + dt )〉|2) and energy uncer-

tainty �Hin =
√

〈ψ (t )|H2
in|ψ (t )〉 − 〈ψ (t )|Hin|ψ (t )〉2. Note,

the speed of evolution v is same for every total energy block
and, hence, for the overall transformation. The uncertainty
�Hin is independent of time and has the maximum possible
value, equals to h̄g for any driving Hamiltonian bounded by
the operator norm h̄g. Furthermore, the interaction Hamilto-
nian Hin drives the evolution following a geodesic trajectory
[53] connecting the initial and the final state, which repre-
sents the shortest path (see Fig. 3). The evolution following
shortest path with maximum speed results in the minimum
required time to complete the transformation in the one-step
engine cycle. As a consequence, the power P in Eq. (14) is
the maximum possible one. Note that quantum effects such
as entanglement are believed to degrade the performance of
engines. But, on the contrary, here we find that the engines
operating with semilocal thermal operations can exploit en-
tanglement to deliver maximum power with Carnot efficiency.

IV. A QUANTUM OPTICS BASED HEAT ENGINE

Here we discuss a physically realizable quantum heat
engine transferring maximum power with Carnot efficiency
following the theoretical framework presented above. We
propose an engine composed of two thermal cavities and
a three-level working system (see Fig. 4). The bath B1

FIG. 4. An optical-cavity based quantum heat engine. (a) A
three-level quantum system S (i.e., working system) is placed in
three overlapping optical cavities. Thermal cavities with frequencies
ω1 and ω2 at inverse temperatures β1 and β2 (β1 < β2) represent
the baths B1 and B2 respectively. The cavity with frequency ω0

is in resonance with the transition between the ground state and
the first excited state of the system. (b) The three-level system
S simultaneously interacts with baths B1 and B2 via two-mode
amplitude-dependent coupling. In each engine cycle, it absorbs a
photon with energy h̄ω1 from B1 and emits a photon with h̄ω2 energy
to the bath B2 and excites itself from energy E1 to E2. The system then
emits a photon with energy h̄ω0 via stimulated emission in a cavity
(green) in resonance with the transition. See text for more details.

is a single-mode optical cavity with a Hamiltonian HB1 =
h̄ω1a†

1a1 = ∑
n nω1|n〉〈n|B1 , at inverse temperature β1. Here

a†
1 and a1 are the creation and annihilation operators of the

mode in B1 respectively, ω1 represents the mode frequency,
and n and |n〉 are the number of excitation and the cor-
responding number state. Similarly, the bath B2 at inverse
temperature β2 is another optical cavity with a Hamiltonian
HB2 = h̄ω2a†

2a2 = ∑
m mω2|m〉〈m|B2 . The system S is a three-

level atom (in � configuration) with the Hamiltonian HS =∑3
i=1 Ei|i〉〈i|S with E1 = 0. The overall Hamiltonian of the

baths and the system composite is then H0 = HB1 + HB2 + HS .
A semilocal thermal operation, leading to a one-step cycle,

is implemented by introducing an intensity-dependent cou-
pling between the bath modes and the atom by the interaction
Hamiltonian

HI = f1(N1) + f2(N2) + h̄g1θ1(N1)(a1σ31 + H.c.)

+ h̄g2θ2(N2)(a2σ32 + H.c.), (16)

with the number operator Nk = a†
kak corresponds to the bath

Bk for k = 1, 2, and σi j = |i〉〈 j|S (i 	= j) is the transition
operator from | j〉S to |i〉S for i, j = 1, 2, 3. The f1(N1) and
f2(N2) are some intensity-dependent potentials in the cav-
ity fields. The state |3〉S is coupled with |1〉S and |2〉S via
intensity-dependent dipole-couplings g1θ (N1) and g2θ (N2) re-
spectively, where θ (N1) and θ (N2) are some functions of the
number operators, and g1 and g2 are some constants. There is
no direct coupling between |1〉S and |2〉S . The technical details
of how the interaction Hamiltonian (16) may be realized are
described in Appendix.

With the choice of (identical) detuning � = (E3 −
Ek )/h̄ − ωk and the couplings

g2
k

�
θ2

k (Nk )Nk = fk (Nk ) = g2
k

�
N−1

k , (17)
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for k = 1, 2. The above formula should be fulfilled possibly
exactly for large values of Nk , especially if we work at rela-
tively high temperatures. It has to be regularized, obviously,
for Nk = 0 to avoid the singularity. Nevertheless, with these
choices, the three-level problem can be exactly reduced to a
two-level problem irrespective of whether the detuning � is
small or large, similar to what is shown in [54–56]. Then,
the corresponding two-level Hamiltonian becomes H ′

S =
1
2 h̄ω0(|2〉〈2| − |1〉〈1|), and the interaction Hamiltonian, after
rotating-wave approximation, transforms to

H ′
I = h̄g(A1A†

2σ12 + A†
1A2σ21), (18)

where Ak = akN−1/2
k and g = g1g2/� is a constant. Here

ω0 ≈ ω1 − ω2, i.e., the pump mode with ω1 and Stokes
mode with ω2 are in two-mode resonance with the states
|1〉S and |2〉S . The ω1 and ω2 are chosen so that β1ω1 =
β2ω2. Then, the unitary U (t ) = exp[−itH ′

I /h̄] generated by
H ′

I strictly conserves total energy of baths and system, and
total weighted-energy of the baths alone, as [U (t ), H ′

S +
HB1 + HB2 ] = 0 and [U (t ), β1HB1 + β2HB2 ] = 0 respectively
for all time t .

The initial state of the composite B1B2S can now be ex-
pressed in blocks classified by (n, m), as

γB1 ⊗ γB2 ⊗ |1〉〈1|S =
⊕
n,m

pnm |n, m, 1〉〈n, m, 1|B1B2S,

with pnm = exp[−β1nEB1 − β2mEB2 ]/ZB1 ZB2 , where ZB1 and
ZB2 are the partition functions of the baths B1 and B2

respectively. Due to the constraints on strict total energy
conservation, the U (t ) operates on each block (n, m) inde-
pendently. For a block (n, m), the initial state |n, m, 1〉B1B2S

evolves to |φ(t )〉 = U (t )|n, m, 1〉B1B2S at some time t , and it is
given by

|φ(t )〉 = cos(gt )|n, m, 1〉B1B2S

− i sin(gt ) |n − 1, m + 1, 2〉B1B2S, (19)

which is an entangle state. This is true for all blocks (n, m),
except the blocks (0, m). Note, the time taken to evolve the
initial state to the desired final states are same for all blocks
except (0, m), and that is τ = π/(2g). As a consequence,
the joint initial state of B1B2S evolves to ρ

f
B1B2S = U (t )(γB1 ⊗

γB2 ⊗ |0〉〈0|S )U (t )†, and at time τ = π/(2g), the final state of
the system S becomes,

ρ
f
S = Tr B1B2 ρ

f
B1B2S

= 1

ZB1

|1〉〈1|S +
(

1 − 1

ZB1

)
|2〉〈2|S → |2〉〈2|S

for ZB1 → ∞, which is true for low inverse temperature β1 of
bath B1, or |B1| → ∞. In each cycle, the the system S under-
goes the transformation |1〉S → |2〉S and thereby extracts h̄ω0

amount of work with the Carnot efficiency η = 1 − β1/β2.
The transformation takes place with the maximum quantum
speed following a geodesic trajectory and time requires for
that is τ = π/(2g). Hence, the cycle delivers maximum power
P = 2gh̄ω0/π . The work is extracted in the form of photons
at ω0 by placing the atom in a resonant cavity and letting the
stimulated emission |2〉S → |1〉S (see Fig. 4).

It is worth mentioning that there have been several propo-
sitions of quantum heat engines based on optical cavity or
bosonic baths earlier, for example in [57,58], where a quantum
system interacts with two bosonic thermal baths at different
temperatures. However, in contrast to the engines considered
above, these engines only allow incoherent heat transfer from
hot to cold baths. They do not guarantee strict conservation of
total energy in order to characterize the energetics correctly.
Because of that, they cannot deliver maximum power with
Carnot efficiency.

V. DISCUSSION

For finite-time classical engines, it is known that the max-
imum power at maximum heat-to-work conversion efficiency
is impossible [1]. For quantum engines, where the working
systems interacting with the baths are quantum mechanical,
the situation is quite different because the quantum uncertain-
ties present in the system further delimit the extractable work
in each cycle. For finite-time quantum heat engines considered
earlier, there are various trade-off relations between power
and efficiency [41,45], and both of these quantities cannot
be maximized simultaneously. So far, there are two kinds of
quantum engines that have been considered in the literature.
In the first kind, the working systems are often composed
of a large number of quantum particles. In the second kind,
the working system comprises few quantum particles but is
allowed to be observed or measured repeatedly for an arbi-
trarily large number of times. However, the working system
interacts with the hot and cold baths in different steps in both
kinds. Hence the heat flow from the hot to the cold baths is
not continuous; rather, it occurs in different steps or in an
incoherent manner. And, possibly because of this feature of
the engines, power and efficiency satisfy trade-off relations
and cannot be maximized simultaneously.

The quantum engines considered here can deliver maxi-
mum power with maximum efficiency and are fundamentally
different from conventional ones studied earlier. Firstly, the
engine operates in the one-shot finite-size regime, where the
working system is genuinely quantum in the sense that it is
made up of a small number of quantum particles (i.e., of finite-
size) and allows one or few observations or measurements
(i.e., one-shot measurement). Secondly, the working system
interacts with both hot and cold baths simultaneously via a
semilocal thermal operation. These operations are powerful
compared to the operations in traditional engines as they can
implement a one-step engine cycle and create entanglement
between the baths and the working system. Because of that,
it enables a coherent flow of heat from hot to cold bath via
the working system and results in maximum power with max-
imum efficiency. With this, our results have demonstrated that
there, in principle, does not exist a fundamental trade-off rela-
tion between power and efficiency. We have also put forward
an experimentally feasible quantum heat engine operating in
the one-shot finite-size regime with a three-level atom as a
working system and two thermal optical cavities as the baths.
We have explicitly introduced an intensity-dependent interac-
tion between the atom and cavities that executes the one-step
engine cycle yielding maximum power at Carnot efficiency.
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In summary:
(i) We have introduced quantum heat engines that operate

via one-step cycles in the one-shot finite-size regime and
enable a coherent heat transfer from hot to cold baths by estab-
lishing genuine quantum entanglement between the working
system and the baths.

(ii) We have demonstrated that there is no fundamental
trade-off relation between power and efficiency.

(iii) We have shown a general protocol with which a quan-
tum heat engine can deliver maximum power with Carnot
efficiency in the one-shot finite-size regime.

(iv) We have proposed a physically realizable model of
such a quantum heat engine based on an atom-cavity system.

(v) Our paper opens up avenues for an improved theoreti-
cal understanding of thermodynamics in the quantum regime
and new possibilities for quantum-enabled technologies using
heat engines.
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APPENDIX A: PROPERTIES OF LARGE BATHS

Our formalism exploits some useful properties of the baths
that are considerably large compared to the working systems
under consideration. That is why a bath always remains in
thermal equilibrium at a fixed temperature even after it inter-
acts with a system. A heat engine has two baths and a working
body as components. Hence, a bath Bx with Hamiltonian
HBx is expected to remain in the Gibbs state γBx = e−βx HBx

Tr [e−βx HBx ]
always, with inverse temperature βx. Now for two baths B1

and B2, with corresponding Hamiltonians HB1 and HB2 respec-
tively, the combined state can be expressed as

γB12 = γB1 ⊗ γB2 . (A1)

In general, the baths and the working body have Hamiltonians
bounded from below, having the lowest energy to be zero. But,
the baths may have considerably large energy, i.e., Emax

Bx
→

∞. Although the combined baths are probabilistic mixtures of
all energy states, there exists a set of total energies EB12 where
the baths can be found with high probability. Mathematically,

it means

Tr
[
PEB12

γB12

]
� 1 − δ, (A2)

where PEB12
is a projector that spans over the space corre-

sponding to the set EB12 and δ > 0. With this, the properties
of the combined baths are listed below (cf. [52]).

(i) For any energy EB12 = EB1 + EB2 ∈ EB12 with EB1 and
EB2 are the energies of the baths B1 and B2 respectively, there
is a peak around the mean value 〈EB12〉, as EB12 ∈ {〈EB12〉 −
O(

√
EB12 ), . . . , 〈EB12〉 + O(

√
EB12 )}.

(ii) For any energy EB12 = EB1 + EB2 ∈ EB12 , ES1 
 EB1 ,
and E ′

S1

 EB1 , there exists a E ′

B12
= E ′

B1
+ E ′

B2
∈ EB12 so that

EB1 + ES1 = E ′
B1

+ E ′
S1

and EB2 + ES2 = E ′
B2

+ E ′
S2

, where
ES2 
 EB2 and E ′

S2

 EB2 .

(iii) For any energy EB1 + EB2 ∈ EB12 , the degeneracy
gB(EB1 + EB2 ) scales exponentially with energy, and it satis-
fies the relation gB(E ′

B1
+ E ′

B2
) ≈ gB(EB1 + EB2 ) eβ1ES1 +β2ES2 ,

where E ′
B1

= EB1 + ES1 and E ′
B2

= EB2 + ES2 with ES1 
 EB1

and ES2 
 EB2 .

APPENDIX B: REVERSIBLE ENGINE OPERATION IN A
ONE-STEP CYCLE

Here we reconsider the reversible engine operation, given
in the main text [see Eq. (5)], that yields maximum power
with Carnot efficiency. We have assumed a bipartite work-
ing system S12 with the Hamiltonian HS12 = HS1 + HS2 where
HS1 = a|1〉〈1|S1 and HS2 = a|1〉〈1|S2 . We have also assumed
a bipartite battery SW12 with the Hamiltonian HSW12

= HSW1
+

HSW2
, where HSW1

= EW1 |1〉〈1|SW1
and HSW2

= EW2 |1〉〈1|SW2
. The

one-step cycle is executed by implementing a global unitary
(U ) operation on the baths-system-battery composite leading
to the transformation

γB1 ⊗ γB2 ⊗ ρS12 ⊗ ρ i
SW12

→ σB1B2 ⊗ σS12 ⊗ ρ
f
SW12

, (B1)

where ρS12 = |0〉〈0|S1 ⊗ |1〉〈1|S2 and σS12 = |1〉〈1|S1 ⊗ |0〉〈0|S2

are the initial and final states of the working system S12, and
ρ i

SW12
= |0〉〈0|SW1

⊗ |0〉〈0|SW2
and ρ

f
SW12

= |1〉〈1|SW1
⊗ |1〉〈1|SW2

are the initial and final states of the battery SW12 . Recall, the
global unitary U respects strict conservation of total energy
and total weighted energy. Therefore, we can study the trans-
formation in each total energy block separately. Consider a
block of total energy E1 + E2, where E1 = ES1 + EB1 is the
sum of energies belonging to S1 and B1, and similarly for
E2 = ES2 + EB2 . In this total energy block, the transformation
becomes

[γB1 ⊗ γB2 ⊗ ρS12 ]E1+E2 ⊗ ρ i
SW12

→ [σB1B2 ⊗ σS12 ]E ′
1+E ′

2
⊗ ρ

f
SW12

, (B2)

where E ′
1 = E ′

S1
+ E ′

B1
and E ′

2 = E ′
S2

+ E ′
B2

. The strict conser-
vation of the total weighted energy and the total energy ensure
that

β1E1 + β2E2 = β1(E ′
1 + EW1 ) + β2(E ′

2 + EW2 ), (B3)

E1 + E2 = E ′
1 + E ′

2 + EW1 + EW2 , (B4)

where E1 = EB1 , E2 = EB2 + a, E ′
1 = E ′

B1
+ a, and E ′

2 = E ′
B2

.
Here we have assumed β1 < β2.
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Note, similar transformations will follow in the other total
weighted-energy blocks with identical initial and final battery
states. The reduced transformation on the system S12, ρS12 →
σS12 is reversible because all α-free entropies for pure system
and battery states considered here are α independent [52]. As a
consequence, free entropy distances satisfy Sd (ρS12 → σS12 ) =
Sd (ρS12 ← σS12 ), where

Sd (ρS12 → σS12 ) = β2a − β1a = β1EW1 + β2EW2 > 0. (B5)

This relation guarantees that there is strict conservation of
weighted energy of the working system and the battery to-
gether. Therefore, conservation of total weighted energy (B3)
is reduced down to the strict conservation of the weighted
energy of the baths only, i.e.,

β1
(
EB1 − E ′

B1

) + β2
(
EB2 − E ′

B2

) = β1Q1 + β2Q2 = 0, (B6)

where we have identified the heat as the change in energy
of the bath B1 given by Q1 = EB1 − E ′

B1
and similarly Q2 =

EB2 − E ′
B2

for bath B2. This is true for all energy blocks.
The Eq. (B6) represents the Clausius equality for the cyclic
process. The other total energy blocks will result in identical
Clausius equality. The net extracted work in each (one-step)
engine cycle is given by

Wext = EW1 + EW2 = Q1 + Q2 > 0, (B7)

Here we have used the strict total energy conservation (B4).
It is clear from Eqs. (B6) and (B7) that the heat-to-work
conversion is ηC = Wext

Q1
= 1 − β1

β2
, which is exactly the Carnot

efficiency. Nevertheless for reversible engine transformation,
the global unitary evolution strictly ensures total energy
conservation of B1B2S12SW12 and weighted-energy conser-
vation of B1B2, and that are mathematically expressed by
the commutation relations [U, HB1 + HB2 + HS] = 0 and
[U, β1HB1 + β2HB2 ] = 0 respectively, where HS = HS1 +
HS2 + HSW1

+ HSW2
is the Hamiltonian of the system S =

S12SW12 .

APPENDIX C: CONSERVATION OF WEIGHTED-ENERGY
IMPLIES CONSERVATION OF ENTROPY

To understand the relationship between the conservation of
entropy and the conservation of weighted-energy, we analyze
the engine process in terms of the transformations happening
in microcanonical ensembles. The baths are assumed to be
considerably large compared to the systems and the batteries.
Since the global unitary implementation of the SLTOs strictly
satisfy total energy conservation, we may concentrate on the
transformation happening in each total energy block sepa-
rately. For instance, consider the transformation (B2). This
respects the total energy conservation, as given in Eq. (B4).
Again, the overall process occurs unitarily in isolation, so
total entropy must be strictly conserved. The batteries only
absorb or release work, and, by definition, they cannot ex-
change entropy with the rest of the system. Thus the entropy of
system-bath composite (B1S1S2B2) must have to be conserved.
Given the initial total energy E1 + E2, the strict entropy con-
servation implies the conservation of degeneracy, i.e.,

gB(E1 + E2) = gB(E ′
1 + E ′

2)

= gB(E1 + E2)eβ1(E ′
1−E1 )+β1(E ′

2−E2 ). (C1)

Thus, the following must have to be satisfied β1(E ′
1 − E1) +

β1(E ′
2 − E2) = 0. Here, E1 = EB1 + ES1 and E2 = EB2 + ES2 ,

and similarly for E ′
1 and E ′

2. Thus, the above condition is
reduced to

β1
(
�EB1 + �ES1

) + β2
(
�EB2 + �ES2

) = 0, (C2)

where �Ex = E ′
x − Ex is the change in energy for the given

total energy block. This is nothing but the condition for strict
weighted-energy conservation, as ensured by the commuta-
tion relation (3).

APPENDIX D: ENGINEERING INTENSITY-DEPENDENCE
IN HAMILTONIAN (16)

This section aims to show how the interaction Hamiltonian
(16) can be realized with designed cavities or ion traps. We
will focus here on the case of one cavity interacting with a
two-level atom. Generalization to three-level systems and two
different cavities coupled to the two different transitions is
straightforward.

So, the starting point is a cavity (or trap) with a slight
anharmonicity. That is described by the Hamiltonian of a
harmonic oscillator, with frequency ω and a small controllable
anharmonicity V (x/x0),

Hcav = p2

2m
+ mω2x2

2
+ V (x/x0) = h̄ω a†a + V

(
a† + a√

2

)
,

(D1)

where x0 =
√

h̄
mω

. Assuming that ω is much larger than any
other relevant frequency, it makes sense to go to interaction
picture with respect to the harmonic part of the Hamilto-
nian, and apply rotating wave approximation, i.e., neglect all
rapidly oscillating terms and leave only diagonal terms in the
Fock basis. The end result is

Hcav,I = f (N ), (D2)

where N = a†a and f (n) = 〈n|V (x)|n〉 with N |n〉 = n|n〉.
Similarly, we assume that atom-cavity coupling originally

has a general form

Hc = h̄gb(x/x0)(σ † + σ ), (D3)

where b(x/x0) is the cavity mode function, which we take to
be odd, i.e., b(−y) = −b(y). Assuming that the atom is close
to the bare cavity resonance and, performing the same steps
as before, we end up with the interaction Hamiltonian

Hc,I = h̄g(θ (N )σ †a + H.c.), (D4)

where 〈n − 1|b(x/x0)|n〉 = θ (n − 1)
√

n.
The intensity-dependent functions f (N ) and θ (N ) are re-

lated to the original functions V (x/x0) and b(x/x0). For
general f (N ) and θ (N ), one needs to design the original func-
tions. This can be done using Monte Carlo (MC) optimization
procedures. To this aim one defines a cost function

C[V, b] = || fact (·) − ftar (·)|| + ||θact (·) − θtar (·)||, (D5)

where f , θact,tar are the actual and target forms of the functions
f (·) and θ (·), and || · || denotes any norm in the space of the
functions f , θ . Judging from Eq. (17) it can be L2 norm for
f (·) and Lq norm with q > 2 for θ (·). Now the MC procedure
runs as follows: (i) we choose actual form of Vact (·) and
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bact (·); (ii) we calculate fact (·), θact (·) and C[Vact, bact]; (iii) we
modify slightly Vact (·) and bact and calculate the new value
of C[Vact, bact]; (iv) we accept the modification, if the new
value of the error function is smaller than the previous one;
and (v) we go to (iii) and repeat this steps until convergence
is achieved. MC optimization maybe modifies to allow small
errors, if we treat the cost functions like energy and minimize
the corresponding free energy at some arbitrary auxiliary tem-
perature T .

The question of the convergence of the MC procedure, as
well as the sensitivity and the role of errors in the realization
of our quantum engine is very interesting but clearly goes
beyond the scope of present work. We will study it in a future
publication.

APPENDIX E: EFFECTIVE HAMILTONIAN OF THE
QUANTUM OPTICS BASED QUANTUM HEAT ENGINE

We start by considering that our system S is described by
the Hamiltonian of a � system and that each of the two transi-
tions is coupled to a different bosonic mode. The Hamiltonian
is divided into two parts H = H0 + H1, with

H0 = ω1N1 + ω2N2 + E1|1〉〈1|S + E2|2〉〈2|S + E3|3〉〈3|S,
H1 = f1(N1) + f2(N2) + g1θ1(N1)(â1σ31 + H.c.)

+ g2θ2(N2)(â2σ32 + H.c.).

Here σi j = |i〉〈 j|S is the transition operator, and Nk = a†
kak

the number operator corresponding to the bath Bk . The sys-
tem and bath energies are given by Ei and ωk (h̄ = 1). The
terms fk (Nk ) represent intensity-dependent energy shifts of
the baths, whereas gk (Nk ) also takes into account the intensity-
dependence of the dipole interaction between the system
and the baths. We now set E1 = 0 and move to the interac-
tion picture with respect to H ′

0 = ω1N1 + ω2N2 + E2|2〉〈2|S +
ω1|3〉〈3|S , imposing the resonant condition ω1 = ω2 + E2.
This gives the interaction picture Hamiltonian

HI = �|3〉〈3| + f1(N1) + f2(N2) + g1θ1(N1)(â1σ31 + H.c.)

+ g2θ2(N2)(â2σ32 + H.c.), (E1)

with � = E3 − ω1. We express our quantum state in the inter-
action picture as:

|�〉 = |α̃〉B|1〉S + |β̃〉B|2〉S + |γ̃ 〉B|3〉S, (E2)

where |α̃〉B, |β̃〉B, and |γ̃ 〉B are unnormalized states of the
B1B2 composite. This leads to the following form of the
Schrödinger equation in components

i
d

dt
|α̃〉B = [ f1(N1) + f2(N2)]|α̃〉B + g1θ1(N1)â†

1|γ̃ 〉B, (E3)

i
d

dt
|β̃〉B = [ f1(N1) + f2(N2)]|β̃〉B + g2θ2(N2)â†

2|γ̃ 〉B, (E4)

i
d

dt
|γ̃ 〉B = [ f1(N1) + f2(N2) + �]|γ̃ 〉B

+ g2θ2(N2)â2|β̃〉B + g1θ1(N1)â1|α̃〉B. (E5)

Now we consider a large detuning, i.e., ‖ d
dt |γ̃ 〉B‖ � 0, and

� � 〈 f1(N1) + f2(N2)〉, which allows us to express

|γ̃ 〉B � − 1

�
(g1θ1(N1)â1|α̃〉B + g2θ2(N2)â2|β̃〉B). (E6)

Introducing this result in the previous equations leads to

i
d

dt
|α̃〉B =

[
f1(N1) + f2(N2) − g2

1

�
θ2

1 (N1)N1

]
|α̃〉B

− g1g2

�
θ1(N1)â†

1â2θ2(N2)|β̃〉B, (E7)

i
d

dt
|β̃〉B =

[
f1(N1) + f2(N2) − g2

2

�
θ2

2 (N2)N2

]
|β̃〉B

− g1g2

�
θ2(N2)â†

2â1θ1(N1)|α̃〉B. (E8)

The latter are the same equations of motion generated by an
effective interacting Hamiltonian given by

H ′
eff = f1(N1) + f2(N2) − g2

1

�
θ2

1 (N1)N1 − g2
2

�
θ2

2 (N2)N2

− g1g2

�
(θ1(N1)â†

1â2θ2(N2)σ21 + H.c.). (E9)

For suitable functions that satisfy

fk (Nk ) = g2
k

�
θ2

k (Nk )Nk, (E10)

we obtain the final effective Hamiltonian

Heff = −g1g2

�
θ1(N1)â†

1â2θ2(N2)σ21 + H.c.. (E11)
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