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Nonlinear Meissner effect in Nb3Sn coplanar resonators
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We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring
the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low
rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field
onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional
quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of
the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain boundaries in
our polycrystalline Nb3Sn films, which can mimic the NLME expected in a clean d-wave superconductor.
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I. INTRODUCTION

The Meissner effect is one of the fundamental manifes-
tations of the macroscopic phase coherence of a supercon-
ducting state. Meissner screening current density J = −ensvs

induced by a weak magnetic field is proportional to the ve-
locity vs of the condensate. At higher fields, the superfluid
density ns becomes dependent on vs due to pair-breaking
effects, resulting in the nonlinear Meissner effect (NLME)
[1–8]. For a single-band isotropic s-wave superconductor, the
NLME is described by

J = − φ0Q
2πμ0λ2

(1 − ϒξ 2Q2), (1)

where λ is the London penetration depth, ξ is the coherence
length, Q = mvs/h̄ = ∇χ + 2πA/φ0, m is the quasiparticle
mass, χ is the phase of the order parameter � = 	eiχ , A is
the vector potential, φ0 is the magnetic flux quantum, and the
factor ϒ(T, li ) depends on the temperature T , and the mean
free path li and details of pairing mechanisms. Ginzburg and
Landau (GL) were the first who obtained the field dependent-
correction to the penetration depth λ(B) of the magnetic field
B parallel to a semi-infinite superconductor [1]:

λ(B) =
[

1 + κ (κ + 23/2)B2

8(κ + 21/2)2B2
c

]
λ, (2)

where Bc = φ0/23/2πλξ is the thermodynamic critical field
and κ = λ/ξ is the GL parameter.
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In recent years, the NLME has attracted much atten-
tion as a probe of unconventional pairing symmetries of
moving condensates. Particularly, Yip and Sauls [2,3] showed
that in a clean d-wave superconductor at kBT < pF vs the
supercurrent acquires a nonlinear singular term ∝ |Q|Q strik-
ingly different from that in Eq. (1), where pF is the Fermi
momentum. Yet Eq. (1) can describe a variety of nonlinear
electromagnetic responses, both in conventional and uncon-
ventional superconductors. For instance, Eq. (1) describes
a clean d-wave superconductor at high temperatures T >

pF vs/kB or a d-wave superconductor with impurities [2–7]. In
a clean s-wave superconductor, the NLME is absent at T �
Tc as ϒ ∝ exp(−	/kBT ) [9], but occurs in the dirty limit
(ξ � l ) in which ϒ ∼ 1 even at T → 0 [10]. In multiband
superconductors, the NLME could probe the proliferation of
interband phase textures [11] or the line nodes and interband
sign change in the order parameter or mixed s-d pairing sym-
metries in iron pnictides [12].

So far the observations of the NLME in high-Tc cuprates
have been inconclusive [13–19], mostly because of a small
field region of the Meissner state in high-κ type-II super-
conductors and contributions of extrinsic materials factors,
such as grain boundaries or local nonstoichiometry. Since
the NLME becomes essential in fields B of the order of
Bc, penetration of vortices above the lower critical field
Bc1 = (φ0/4πλ2)(ln κ + 0.5) � Bc [20] limits the nonlinear
correction in Eq. (2) to (Bc1/Bc)2/8 � ln κ/16κ2 � 1. Yet
even small NLME terms in Eq. (1) causes intermodulation
effects [4,5] under strong ac fields, as it was observed in
YBa2Cu3O7−x [17,18].

In this paper, we investigate the NLME in a thin-film
Nb3Sn coplanar resonator in a parallel dc magnetic field,
which mitigates the problems of vortex penetration and
nonequilibrium effects. We used the method of Ref. [21] in
which the resonant frequency ω = (LC)−1/2 of a coplanar res-
onator is measured as a function of a parallel dc field B. Here
C is the strip-to-ground capacitance and L = Lg + Lk is the
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FIG. 1. Temperature dependence of the resistance of the film
Rs(T ) with a midpoint critical temperature Tc = 17.2 K.

total inductance containing both the geometrical inductance
Lg, and the field-dependent kinetic inductance of the su-
perconducting condensate, Lk (B) ∝ λ2(B) [22]. To extend
the field region of the NLME, we performed our measure-
ments on thin films of thickness d < λ for which Bc1 =
(2φ0/πd2) ln(d/ξ ) can be much higher than the bulk Bc1 [23].
Rotating the field in the plane of the film gives rise to an
orientational dependence of λ(B) [21]. Unlike the standard
quadratic field correction to λ(B) observed on Nb [21] and
Al [24] thin-film resonators, we observed a nearly linear field
dependence of λ(B) in polycrystalline Nb3Sn films. The fact
that the NLME in the s-wave superconductor Nb3Sn exhibits
the behavior expected from a clean d-wave superconductor
[2,3] shows the importance of materials factors, particularly
local nontoichiometry and weakly coupled grain boundaries
characteristic of Nb3Sn, cuprates and pnictides [25,26].

The paper is organized as follows. In Sec. II, we describe
the experimental setup and Nb3Sn coplanar resonator used in
the measurements of NLME. Section III contains the main
experimental results. Section IV summarizes the essential
mechanisms of NLME and theoretical results necessary for
the comparison of theory with experiment. Section V contains
discussion of our results.

II. EXPERIMENTAL

A. Film deposition and patterning

The coplanar resonator was fabricated from a 50-nm-thick
Nb3Sn film on a 10 mm × 10 mm × 1 mm Al2O3 substrate.
The film was prepared with magnetron co-sputtering using
both Nb and Sn targets in a growth chamber at University of
Wisconsin-Madision, as described in Refs. [27,28]. Figure 1
shows the resistive transition in a film grown under a simi-
lar condition. The film had a midpoint Tc ≈ 17.2 K, normal
state sheet resistance of 5.1 �, and a residual resistance ratio
(RRR), Rs(300 K)/Rs(18 K) ≈ 3.2.

The film has a polycrystalline structure with rigid grains
along the [−1011] direction of the Al2O3 substrate as revealed
by the atomic force microscopy shown in Fig. 2. Those grains

FIG. 2. AFM image showing a polycrystalline structure of our
films.

contributed to an RMS roughness of approximately 10 nm
[27,28].

The sample was patterned into a half-wave coplanar
waveguide resonator using contact lithography followed by
Ar ion milling. The optical image of the resonator is shown
in Fig. 3. The meandered resonator has a total length l ≈
24.6 mm corresponding to the fundamental resonant fre-
quency f0 = 2.236 GHz. The center conductor has a width
w = 15 μm, and a gap width s = 8.8 μm between the center
strip and the ground plane. The s/w ratio was set to achieve
a characteristic line impedance 50 �. The resonator is cou-
pled to input and output RF probes by interdigital capacitors
patterned on the strip. At the ends of the transmission line,
landings pads for ground-signal-ground (GSG) probes were
fabricated, shown as the lightly shaded region in Fig. 3(a).
These were made by first removing few nanometers of oxide
layers on the surface of Nb3Sn using Ar ion milling and then
depositing a 20-nm-thick layer of Pd in-situ using a lift-off

FIG. 3. (a) The image of the Nb3Sn coplanar half-wave resonator
with f0 = 2.236 GHz. The meandered resonator in the center is
terminated capacitively on both ends which tapers out to the input
and output landing pads. (b) Zoomed in the section of the coplanar
resonator where the width of the strip is w = 15 μm and the gap
between the signal strip and the ground is s = 8.8 μm.
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FIG. 4. A setup of the sample stage with two GSG probes. The
sample is mounted using silver paint, and the thermometer and the
OFHC bobbin for thermal anchoring of the lead wires are screwed
onto the sample stage.

technique. The landing pads made of Pd serve to prevent
oxidation and damage of the film from repeated touchdown of
the probes and ensure ohmic contact between the probe and
the sample.

B. Measurement setup

The patterned sample was mounted inside a cryogenic
probe station equipped with a closed cycle cryocooler [29],
as shown in Fig. 4. The complex transmission coefficient
S21,12 was measured as functions of temperature and the ex-
ternal in-plane magnetic field B. The resonant frequencies
and the London penetration depth were extracted by fitting
the dependence of the phase on frequency of the transmission
spectra [30–36]. The temperature of the sample was varied
using a resistive heater underneath the sample stage, and a
parallel dc field up to 200 mT was produced with a NbTi
superconducting magnet. This magnet was mounted on a six-
motor hexapod system that allowed for fine tuning of magnet
orientation by ±7◦ in three axes while taking the sample
measurements. The temperature of the sample was measured
using a calibrated Cernox (CX-1050-CU-HT, Lakeshore Cry-
otronics) resistance-temperature device fixed on the stage next
to the sample. The output port of a Vector Network An-
alyzer (VNA) provided rf power that was delivered to the
resonator by landing two GSG probes to the contacts. These
probes and the cables connecting to the network analyzer were
calibrated using a Short-Open-Load-Through calibration sub-
strate mounted on the sample stage at 7 K. The drive power of
VNA was selected to be −30 dBm to maximize the signal-to-
noise ratio while avoiding distortion of the Lorentzian shape
in transmission signal observed at higher power due to nonlin-
ear heating effects [33,37] as shown in Fig. 5. To minimize the
number of vortices trapped in the sample during its cooldown
through Tc, we used three pairs of Helmholtz coils to reduce
the ambient field Ba. The magnitude of Ba was measured by
a magnetometer while adjusting the coil currents to achieve
Ba < 4 mG in an optimum configuration.

The resonance frequency f0 = (CL)−1/2/2π is determined
by the ground capacitance C and the resonator inductance
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FIG. 5. A typical transmission spectrum near resonance displays
a symmetric Lorentzian line shape with VNA power output of -30
dBm. Higher input power distorts the Lorentzian shape at −5 dBm.

L. Here L = Lg + Lk contains a geometrical inductance Lg

and a kinetic inductance Lk (T, B) associated with the inertia
of supercurrents. The geometric inductance for the param-
eters of our sample Lg = 420.5 nH/m was calculated in
Appendix A following Ref. [34]. The kinetic inductance for
a thin-film strip of thickness d < λ(T ) and width w is given
by [22,31,32]

Lk ≈ μ0λ(T )

w
coth

[
d

λ(T )

]
≈ μ0λ

2(T )

wd
. (3)

Temperature dependencies of Lk (T ) and λ(T ) were in-
ferred from the measured frequency shift δ f / f0 = [ f0(T ) −
f0(7 K)]/ f0(7 K):

δ f (T )

f0(7 K)
=

√
Lg + Lk (7 K)√
Lg + Lk (T )

− 1, (4)

where C and Lg are assumed independent of T . By fitting the
observed δ f (T )/ f0(7 K) to Eqs. (3) and (4), we obtained λ(T )
as described in the next subsection.

For the NLME measurements, the alignment of the dc field
B to the plane of the strip is crucial to keep the supercon-
ductor in the Meissner state and avoid perpendicular vortices
penetrating from the film edges. These vortices caused by
the misaligned field reduce the quality factor and give rise
to an additional field dependence of δ f (B, T ) unrelated to
the NLME. To find the orientation of the magnet which pro-
duces B parallel to the film plane and the minimum amount
of trapped flux, the loaded quality factor QL(B) and δ f (B)
were measured as functions of the out-of-plane field angle
ζ . We first measured the initial values of f0i and QLi at zero
field, ramped the field up to 60 mT and down to zero, and
measured the resulting values of f0a and QLa affected by the
number of vortices trapped in the process. The sample was
then thermal cycled above Tc = 17.2 K at zero field to flush
out trapped vortices. Measurements were repeated after the
magnet was adjusted to a new angle. Shown in Fig. 6 are
the normalized shifts δ f0/ f0 = ( f0a − f0i )/ f0 and δQL/QL =
(QLa − QLi )/QL as functions of the magnet angle ζ . Both
δ f0(ζ )/ f0 and δQL(ζ )/QL(0) peaked at ζ = 3.8◦ which we
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FIG. 6. Normalized shifts in (a) resonant frequencies and
(b) loaded quality factors after cycling B from 0 to 60 mT and back
to 0 as a function of the offset angle ζ . Both δ f (ζ ) and δQL (ζ ) are
peaked at ζ = 3.8◦.

adopted as a magnet orientation producing the dc field parallel
to the plane of the film. This procedure is similar to that
which was used in Ref. [21]. Having aligned the magnet,
we measured f0(T, B) as a function of in-plane dc field up
to 200 mT at parallel ϕ = 0◦ and perpendicular ϕ = 90◦ field
orientations with respect to the strip indicated by Fig. 7 at
temperatures between 7 and 12 K. After measurements at a
given temperature were completed, the sample was warmed
up above Tc to expel any trapped vortices. For each field
and temperature point, we repeated the measurement over 50
times, and the average f0(B, T ) was calculated.

C. Temperature dependence

The temperature dependence of λ(T ) can be obtained from
the measurements of the resonance frequency f0(T ). Us-
ing Eqs. (3) and (4), we extracted λ(T ) from the measured
f0(T ) by fitting the temperature dependence of a relative
frequency shift δ f / f0 = [ f0(T ) − f0(7 K)]/ f0(7 K) with the

y

z
B

ϕ
RF in

RF out

RF Current

FIG. 7. The coordinate system for the magnet orientation with
respect to the direction of the rf current on the coplanar resonator.

conventional two-fluid approximation of λ(T ) = λ(0)[1 −
(T/Tc)4]−1/2. Shown in Fig. 8 is the temperature dependent
part of f0(T ) along with the fit with Eq. (4). The fit gives
λ(0) = 353 nm, well above the London penetration depth
λ(0) ≈ 90 nm for a clean stoichiometric Nb3Sn [35]. The lat-
ter may result from nonstoichimetric inclusions which cause a
slight reduction of Tc in our films [27,28]. For λ(0) = 352 nm,
w = 15 μm, and d = 50 nm, the kinetic inductance Lk =
μ0λ

2(T )/wd � 200 nH/m at 9 K accounts for about 1/3 of
the total inductance L = Lg + Lk with Lg = 420.5 nH/m.

Another factor contributing to the large value of λ(0) is
the grain boundary structure of our Nb3Sn films shown in
Fig. 2. It has been well-established that Sn depletion at GBs
[38–41] results in weak Josephson coupling of crystalline
grains, which has been used to optimize pinning of vortices by
GBs in Nb3Sn conductors [42,43]. In turn, the weakly coupled
GBs facilitate preferential penetration of the magnetic field
along the GB network causing an increase of the global λ, as is
characteristic of many superconductors with short coherence
length, including Nb3Sn, cuprates and pnictides [25,26].

8 10 12 14
T (K)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

f(
T

)/
f 0

fit
data

FIG. 8. The normalized temperature-dependent part of the reso-
nant frequency. The fit of the data to Eq. (4) gives λ(0) = 353 nm.
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FIG. 9. Normalized frequency shift δ f0(T, B)/ f0(T, 0) as a
function of the in-plane dc magnetic field (a) parallel and (b) per-
pendicular to the strip.

D. Field dependence

Shown in Fig. 9 are the observed field dependencies of the
frequency shifts for in-plane B parallel and perpendicular to
the strip. In both cases, δ f (B) decreases nearly linearly with
B above 30–40 mT but flattens at lower fields. Here the slope
of δ f (B) for in-plane B parallel to the strip is about twice of
the slope of δ f (B) for in-plane B perpendicular to the strip.
In the field range 0 < B < 200 mT of our measurements the
Nb3Sn film of thickness 50 nm is in the Meissner state as
the parallel field B remains below the nominal lower criti-
cal field of a vortex in a thin film. Indeed, an estimate of
Bc1 = (2φ0/πd2) ln(d/ξ ) in the London approximation [23]
with d = 50 nm and ξ = 5 nm [42,44] yields Bc1 � 1.17 tesla
exceeding Bc = 0.54 T of Nb3Sn [42,44]. The slope of δ f (B)
in Fig. 9 increases with increasing temperature, consistent
with the temperature dependence of λ(T ).

Our δ f (B) data exhibit significant scatter, as has also been
observed in NLME experiments on cuprate [15]. The error
bars in Fig. 9 represent a standard deviation from repeated
measurements at each data points, δ f (B) data for B‖y having
larger error bars as compared to B‖z. The main contribution
to the error bars comes from vibrations of the sample stage
and GSG probes originating from the cryocooler. For B per-
pendicular to the strip, longer probe arms had to be used in

the NLME measurements, which increases the amplitude of
vibrations.

III. CONTRIBUTIONS TO NLME

In this section, we consider different contributions to the
resonant frequency shift δ f (T, B) caused by the in-plane dc
magnetic field B.

A. Meissner current pair breaking

We start with the calculation of the contribution of
pair-breaking Meissner currents to δ f (H ) using the TDGL
equations for a dirty s-wave superconductor [45,46]:

τGL
(
1 + 4τ 2

E	2
)−1/2

(
∂

∂t
+ 2ie� + 2τ 2

E

∂	2

∂t

)
�

=
(

1 − 	2

	2
0

)
� + ξ 2(∇ − 2ieA)2�, (5)

J = − πσ0

4eTc
	2Q − σ0

(
∇� + ∂A

∂t

)
. (6)

Here τGL = π h̄/8kB(Tc − T ), ξ = [π h̄D/8kB(Tc − T )]1/2 is
the coherence length, D the electron diffusivity, � is a scalar
potential, τE is an energy relaxation time due to electron-
phonon scattering [46], 	2

0 = 8π2k2
BTc(Tc − T )/7ζ (3), σ0 =

2e2DN (0) is the normal state conductivity, N (0) is the density
of states at the Fermi surface, and −e is the electron charge.
Equations (5) and (6) were derived from the kinetic BCS
theory assuming that Q(r, t ) and 	(r, t ) vary slowly over
ξ0 � (h̄D/kBTc)1/2, the diffusion length LE = (DτE )1/2 and τE

[45,46], where

τE = 8h̄

7πζ (3)γ kBTF

( cs

vF

)2(TF

T

)3

. (7)

Here cs is the speed of longitudinal sound, vF and TF =
εF /kB are the Fermi velocity and temperature, respectively,
and γ is a dimensionless electron-phonon coupling constant.
For cs/vF � 10−3, TF ∼ 105 K, Tc = 17 K and γ � 1.5 [44],
Eq. (7) yields τE (Tc) ∼ 10 ps.

For a wide film in a parallel magnetic field, Q(x) and
	(x) depend only on the coordinate x across the film, and
the TDGL equations in the gauge � = 0 can be written in the
dimensionless form:

(1 + g2ψ2)1/2ψ̇ = (1 − q2)ψ + ψ ′′ − ψ3, (8)

j = −uψ2q − q̇, (9)

where ψ = 	/	0, q = Qξ , g = 2	0τE/h̄, j = J/J0, t is in
units of τGL, J0 = σ0/2eξτGL, x is in units of ξ , the prime
and overdot denotes differentiation with respect to x and t ,
respectively, and u = π4/14ζ (3) ≈ 5.79.

For a coplanar resonator of thickness d < λ and width
w � λ in a parallel dc field B inclined by the angle ϕ to the
z-axis along the strip, we have

qz = −hx sin ϕ + aωeiωt , qy = hx cos ϕ, (10)

where h = B/Bc2, Bc2 = φ0/2πξ 2, aω = Aωeiωt/A0, Aω is a
small rf vector potential excited along the strip, A0 = φ0/2πξ ,
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x = 0 is taken in the middle of the film and the London
screening at d � λ is disregarded.

At aω = 0 the dc field causes a reduction of ψ (x) = 1 −
ψ1(x). The equation for a field-induced correction ψ1 is ob-
tained from Eq. (8) in the first order in h2 � 1:

ψ ′′
1 − 2ψ1 = −h2x2, ψ ′

1(±d/2) = 0. (11)

where d is in units of ξ . The squared order parameter aver-
aged over the film thickness, ψ̄2 � 1 − 2d−1

∫ d/2
−d/2 ψ1dx, is

obtained by integrating Eq. (11) over x:

ψ̄2 = 1 − d2h2

12
. (12)

To calculate a linear response current δIωeiωt induced by a
weak aωeiωt in the presence of a parallel dc field, we linearize
Eq. (9) in aω:

δIω
wJ0

= −udψ̄2aω + 2hu sin ϕ

∫ d/2

−d/2
xδψ (x)dx − idωaω.

(13)

This shows that δψ is coupled with the dc Meissner cur-
rent flowing along the strip due to the field component By =
B sin ϕ. Here δψ (x) ∝ aω satisfies the following equation ob-
tained from Eq. (8) linearized with respect to small δψ

and aω:

δψ ′′ − k2
ωδψ = −2aωhx sin ϕ, δψ ′(±d/2) = 0, (14)

k2
ω = 2 + iωτ, τ = τGL

√
1 + (2τE	/h̄)2. (15)

The solution of Eq. (14) is given by

δψ (x) =
∞∑

n=0

An sin qnx, qn = π

d
(2n + 1), (16)

An = 8(−1)naωh sin ϕ

dq2
n(k2

ω + q2
n )

. (17)

Inserting δψ (x) in Eq. (13) and integrating over x yields

δIω
dwJ0

= −
[

uψ̄2 −
∞∑

n=0

32ud2h2 sin2 ϕ

π4(2n + 1)4
(
2 + iωr + q2

n

) + iω

]
aω

(18)

The sum in Eq. (18) converges rapidly, so q2
n ∝ (ξ/d )2 � 1

in the denominator can be neglected in films with ξ � d �
λ. Using

∑∞
n=0(2n + 1)−4 = π4/96 and restoring the original

units, we obtain the linear response current δIω induced by the
ac vector potential Aω:

δIω = −
(

1

μ0λ̃2
ω

+ iωσ0

)
dwAω, (19)

where the complex London penetration depth is given by

1

λ̃2
ω

= 1

λ2

[
1 − 1

3

(
2πξdB

φ0

)2(1

4
+ sin2 ϕ

2 + iωτ

)]
. (20)

Here the NLME term ∝ B2 depends on ω and the field orienta-
tion angle ϕ. The maximum NLME contribution to λω occurs
at ϕ = π/2 when B ⊥ z and the rf current is parallel to the
dc Meissner current. At ωτ � 1 the angular dependence of

λω(ϕ) in Eq. (20) reduces to that was obtained previously in a
quasi-static limit [21].

The imaginary part of λ̃2
ω contributes to the dynamic con-

ductivity σω. Denoting λ2
ω = Reλ̃2

ω, and separating real and
imaginary parts in Eqs. (19) and (20), yields

λ2
ω =

[
1 + 1

3

(
2πξdB

φ0

)2(1

4
+ 2 sin2 ϕ

4 + ω2τ 2

)]
λ2, (21)

σω = σ0 + 1

3μ0λ2

(
2πξdB

φ0

)2
τ sin2 ϕ

4 + ω2τ 2
. (22)

The NLME field correction to the kinetic inductance LM
k =

μ0λ
2(B)/dw is given by

δLM
k = μ0λ

2

3dw

(
πξdB

φ0

)2[
1 + 2 sin2 ϕ

1 + (ωτ/2)2

]
. (23)

As follows from Eqs. (22) and (23), the NLME correction
to σω remains finite at Tc, while δLM

k ∝ (Tc − T )−2 increases
stronger than the zero-field kinetic inductance LM

k = λ2/d ∝
(Tc − T )−1 as T → Tc. The dependencies of λω and σω on the
orientation of B persist as long as ωτ � 1 and disappear at
ωτ � 1. The latter occurs both at T → Tc where τGL(T ) di-
verges and at low temperatures where τE (T ) ∝ T −3 increases
strongly.

We estimate δλ(B) = λ(B) − λ = (πξdB/φ0)2/2 at ϕ =
π/2 and ωτ � 1 for d = 50 nm and ξ = 5 nm. Here δλ/λ =
7.7 × 10−4 at B = 100 mT, which translates to δλ = 0.27 nm
at λ = 350 nm. If the total L is dominated by the kinetic
inductance, Eq. (23) yields the maximum NLME frequency
shift:

δ f

f
= −1

6

(
πξdB

φ0

)2[
1 + 2 sin2 ϕ

1 + (ωτ/2)2

]
. (24)

In superconductors with κ � 1, the maximum δ f (Bc1)/ f0

in a thin film is much greater than the maximum NLME
bulk shift δλ/λ = (Bc1/Bc)2/8 = (ln κ/4κ )2 which follows
from Eq. (2). For d = 50 nm, ξ = 5 nm, ϕ = π/2, and B =
100 mT, we obtain δ f (B)/ f0 = (πξdB/φ0)2/2 � 8 × 10−4,
well below the observed δ f / f0. Taking the geometrical in-
ductance into account further reduces δ f / f0 by a factor � 3.
Moreover, according to Eq. (21) the field-induced shift δλ

at ϕ = π/2 for which the rf currents are parallel to the dc
Meissner currents is 3 times larger than δλ at ϕ = 0. This is
inconsistent with the experimental data shown in Fig. 9 where
the slope of δ f (B)/ f0 at ϕ = 0 is about 2 times larger than
for δ f (B)/ f0 at ϕ = π/2. Thus not only is the Meissner pair
breaking too weak to account for the observed δ f / f0 but it
yields the field and orientational dependencies of δ f (B)/ f0

inconsistent with our experimental data on Nb3Sn.

B. Grain boundary contribution

A significant contribution to Lk can come from local
non-stoichiometry, strains, and grain boundaries (GBs) in
polycrystalline Nb3Sn. Particularly, the well-known Sn deple-
tion at GBs [38–41] results in weak Josephson coupling of
grains in Nb3Sn. Our polycrystalline films have lateral grain
sizes l2 ∼ 0.1–1 μm (see Fig. 2) and local nonstoichiometry
causing inhomogeneities of superconducting properties on
the same length scales [27,28]. If weakly coupled GBs are
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regarded as planar Josephson junctions (JJs), each GB has a
kinetic inductance [47]

LJ = φ0

2π Ic cos θ
, (25)

where Ic(T ) is a critical current of the JJ. The field dependence
of LJ (B) is determined by the phase difference θ (r) induced
by the dc field on a GB. Because GBs in Nb3Sn can have
broad distributions of sizes and Ic values [25], low-Ic GBs can
significantly increase LJ if they form interfaces blocking the
cross-section of the film.

An array of weakly coupled GBs can be modeled by a
Hamiltonian of a granular superconductor [48–50]

H = −
∑

i j

Ji j cos(χi − χ j − Ai j ), (26)

where the coupling energies Ji j = h̄I i j
c /2e of the ith and jth

grains are proportional to the respective intergrain Josephson
critical currents I i j

c , χi, and χ j are phases of the superconduct-
ing order parameters in the grains, and the magnetic phase
factors Ai j are given by

Ai j = 2π

φ0

∫ j

i
A · dl. (27)

Monte Carlo simulations of the Hamiltonian (26) of a disor-
dered XY model have shown that the helicity moduli and the
global kinetic inductance change nearly linearly with the dc
magnetic field at B � φ0/l2

2 and exhibit strong fluctuations as
functions of B due to transitions between many metastable
states in finite JJ arrays [49,50]. These results appear qual-
itatively consistent with the observed field dependence of
δ f (B)/ f0 shown in Fig. 9.

To get an insight into the nearly linear decrease of δ f (B)
with B shown in Fig. 9, we use a mean-field model in which
cos(χi − χ j − Ai j ) is replaced with an averaged value 〈cos θ〉.
Then a disturbance δθ induced by a weak rf current Jωeiωt on
an overdamped GB is described by the dynamic equation of
the RSJ model

τJδθ̇ + 〈cos θ〉δθ = (Jω/Jc)eiωt , (28)

where τJ is a relaxation time caused by ohmic quasiparticle
current through JJ, and 〈...〉 denotes averaging over orienta-
tions of the GB planes:

〈cos θ〉 = 1

NS

∑
s

n2
zs

∫
S

cos θs(r)dS (29)

Here the summation goes over all GBs, and θs(r) on a planar
GB smaller than the Josephson length λJ = (φ0/2πμ0dJc)1/2

is determined by [47]

∇θ = 2π�

φ0
[B × n], (30)

where n is a unit vector normal to the GB surface, and � ∼ d
for a JJ in a thin-film (d � λ) in a parallel magnetic field
[47,51,52]. The factor n2

z in Eq. (29) takes into accounts that
only the perpendicular component of the rf current nzJω =
Jcδθ causes the Josephson voltage Vω h̄δθ̇nz/2e along Jω. From
Eq. (28), we obtain δθ = Jωeiωt/(〈cos θ〉 + iωτJ )Jc and the

FIG. 10. Geometry of a rectangular tilted GB (yellow). The red
arrow shows the normal to the GB plane.

impedance ZJ = NVω/Iω of N grain boundaries:

Z = iωNR〈LJ〉
R + iω〈LJ〉 , 〈LJ〉 = φ0

2π Ic〈cos θ〉 . (31)

We calculate 〈cos θ〉 for randomly oriented planar GBs
parameterized by the Euler angles α and β shown in Fig. 10.
As shown in Appendix B, averaging cos θ over the area S of a
tilted GB in a magnetic field gives

c̄ = 1

S

∫
cos θdS = sin(q1l1) sin(q2l2)

q1l1q2l2
, (32)

where

q1 = πB

φ0
� sin α, q2 = πB

φ0
� sin β cos α, B‖z, (33)

q1 = πB

φ0
� cos α, q2 = πB

φ0
� sin β sin α, B‖y. (34)

There is a significant difference of GB lengths l1 and l2
in our Nb3Sn coplanar resonator with d � w. Here l1 is
smaller or of the order of the film thickness, l1 � d � 50
nm, whereas lateral GB lengths l2 are in a submicron range
l2 ∼ 0.1–1 μm (see Fig. 2) so that l1 ∼ (10−2–10−1)l2. As
a result, sin(q1l1)/l1q1 in Eq. (32) remains close to 1 in the
field region B � φ0/π�l1 ∼ φ0/πd2 ∼ Bc1 of our measure-
ments, while sin(q2l2)/l2q2 has a strong field dependence at
B > B0 � φ0/πdl2. Here B0 � 25 mT at l2 = 0.5 μm and
d = 50 nm. As a result, Eq. (32) at B < Bc1 simplify to

c̄ = sin(b cos α sin β )

b cos α sin β
, B‖z, (35)

c̄ = sin(b sin α sin β )

b sin α sin β
, B‖y, (36)

b = B/B0, B0 = φ0/π�l2. (37)

Here only tilted GBs which are not perpendicular to the film
plane (β �= 0) contribute to the strong field dependence of
c̄(B). The average 〈cos θ〉 over all GB orientations in Eq. (29)
can be written in the form

〈cos θ〉 =
∑
i, j

Pi j c̄i j cos2 αi cos2 β j, (38)

where c̄i j is given by either Eq. (35) or (36), depending on the
direction of B, i and j label different GBs, ni j

z = cos αi cos β j ,
and Pi j is a probability distribution of αi and β j normalized by∑

i j Pi j = 1.

013156-7



J. MAKITA et al. PHYSICAL REVIEW RESEARCH 4, 013156 (2022)

0 5 10 15 20 25 30

B/B0

0

2

4

6

8

10
L

J(B
)

/
L

J(0
)

B||y

B||z

FIG. 11. The field dependencies of the kinetic inductance
〈LJ (B)〉 calculated from Eqs. (31), (B12), and (B13) for random
orientation of GB planes, and the dc magnetic field applied parallel
(B‖z) and perpendicular (B‖y) to the strip line.

The angular distributions of GBs is affected by the crys-
talline texturing during the film growth and other materials
factors. We consider here a simple case of randomly oriented
GBs with equal probabilities of all αi and β j . Then Eq. (38)
reduces to the integrals (B12) and (B13) given in Appendix B.
Numerical calculation of these integrals for 〈cos θ〉 yields the
field dependencies of 〈LJ〉 shown in Fig. 11.

As follows from Fig. 11, grain boundaries can radically
change the field dependence of the kinetic inductance as com-
pared to the NLME caused by the Meissner pair breaking.
First, the GB contribution 〈LJ (B)〉 is quadratic in B only at
very low fields B � B0 � Bc and exhibits a nearly linear
field dependence at B � B0 � Bc, whereas the Meissner pair
breaking gives δLk ∝ B2 all the way to B = Bc1. Second, the
field B‖z applied along the strip causes stronger increase of
〈LJ (B)〉 than the transverse field B‖y. This is the opposite
of the orientational field dependence of δLM

k (B) described by
Eq. (23) and observed on Nb coplanar resonator [21]. Yet both
features of 〈LJ (B)〉 are in agreement with our experimental
data on polycrystalline Nb3Sn shown in Fig. 9.

IV. DISCUSSION

To compare the contributions of Meissner pair breaking
and weakly coupled GBs to δ f (B)/ f0, we evaluate the GB
kinetic inductance LJ

k per unit length of the strip in the above
mean-field model. If GBs have the same critical current den-
sity Jc, dimensions d × l2 but different orientations, LJ

k ∼
〈LJ〉/l2, where 〈LJ〉 is given by Eq. (25) with Ic ∼ dwJc. As a
result,

LJ
k ∼ φ0

2πJcwdl2〈cos θ〉 ∼ LM
k × ξJd

l2Jc
. (39)

Here Jd = φ0/2πμ0λ
2ξ is of the order of the GL depair-

ing current density. The kinetic inductance is dominated by
weakly coupled GBs if Jc � ξJd/l2. For our Nb3Sn films with
ξ � 5 nm and l2 � 200 nm, the GB contribution dominates if
Jc � 10−2Jd .

The effective penetration depth λ extracted from the mea-
sured kinetic inductance is affected by GBs. The Meissner
contribution LM

k is determined by the London penetration
depth λ in the dirty limit [46]:

LM
k = μ0λ

2

dw
= h̄ρs

πdw	(T )
coth

	(T )

2kBT
, (40)

where ρs is the normal state resistivity. If GBs can be modeled
as S-I-S Josephson junctions [47], their contribution to Lk can
be evaluated from Eq. (39):

LJ
k ∼ h̄

eJcwdl2
� h̄R⊥

dwl2	(T )
coth

	(T )

2kBT
, (41)

where R⊥ is the tunneling resistance of the JJ per unit area.
Defining the effective penetration depth λ̃ in the total kinetic
inductance Lk = LM

k + LJ
k = λ̃2/dw and combining Eqs. (40)

and (41), we obtain

λ̃2(T ) = h̄

π	(T )

[
ρs + C1

R⊥
l2

]
coth

	(T )

2kBT
, (42)

where the factor C1 ∼ 1 accounts for details of the shape
and angular distributions of GBs. In the S-I-S model, the
temperature dependencies of the GB and Meissner contri-
butions to λ̃ are the same. This is no longer the case if
GBs are proximity-coupled S-N-S junctions [47] for which
Jc ∝ (1 − T/Tc)2. The S-N-S scenario may be more relevant
for Nb3Sn in which strongly coupled GBs can transmit high
current densities which are still well below the depairing limit
[38–43].

The above estimate pertains to B = 0 but the field-induced
frequency shift δ f / f0 is determined by small field dependent
corrections δLM

k and δLJ
k . Here δLM

k is given by Eq. (23) and
δLJ

k ∼ (μ0λ
2/dw)(ξJd/l2Jc)(B/B0) at B � B0 � φ0/3πdl2,

as shown in Fig. 11. Hence,

δLM
k

δLJ
l

∼ BξdJc

φ0Jd
, B � B0. (43)

This ratio is independent of the lateral GB sizes and is much
smaller than 1 since Jc � Jd , and Bdξ/φ0 < 2 × 10−2 at
B < 200 mT, ξ = 5 nm, and d = 50 nm. Thus the NLME
field-dependent frequency shift in our polycrystalline Nb3Sn
coplanar resonators is dominated by grain boundaries, even
if their contribution to the total kinetic inductance at B = 0
is much smaller than that of the Meissner currents. This con-
clusion is consistent not only with the observed nearly linear
field dependence of δ f / f0 but also with the fact that the slope
of δ f / f0 at B along the strip is larger than the slope of δ f / f0

at B perpendicular to the strip.
The fit of the observed δ f (T, B)/ f0(T, 0) to the GB model

depends on many uncertain parameters such as distribution of
orientations and local Jc values of GBs, their geometrical sizes
and mechanisms of current transport through GBs. Shown
in Fig. 12 is an example of δ f (T, B)/ f0(T, 0) calculated for
uniform distributions of the Euler angles of GBs:

δ f (T, B)

f0(T, 0)
=

[
1 + aε(T )/〈cos θ (0)〉
1 + aε(T )/〈cos θ (B)〉

]1/2

− 1, (44)

where a = LJ
k (0, 0)/L, the factor ε(T ) = [1 − (T/Tc)4]−2

approximates the S-N-S temperature dependence of Jc(T )
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FIG. 12. Normalized shift in δ f0(T, B)/ f0(T, 0) as a function of
field calculated from Eqs. (44), (B12) and (B13) at B0 = 10 mT,
LJ

k (0, 0)/L = 3.5 × 10−4 and different temperatures corresponding
to those in Fig. 9 for (a) B‖z and (b) B‖y.

in Eq. (39) at 7K < T < Tc, and 〈cos θ (B)〉 is given by
Eqs. (B12) and (B13). We took a = 3.5 × 10−4, B0 = 10 mT
and different temperatures corresponding to those in Fig. 9.
As follows from Fig. 12, the model captures the observed fea-
tures of δ f (T, B)/ f0(T, 0) for both orientations of B shown in
Fig. 9, although one can hardly expect a perfect fit from such
a crude model. For instance, the difference between the slopes
of δ f (T, B)/ f0(T, 0) for two field orientations in Fig. 12 is
about 30% higher than in Fig. 9, which can occur because the
GB orientations shown in Fig. 2 are not completely random.
Yet the GBs can dominate the field-induced frequency shift
even if they only contribute less than 10−3 to the total induc-
tance of the strip.

Grain boundaries can also contribute to the field-dependent
resistance RJ (B). Indeed, the coplanar resonator impedance
per unit length, Zg(B) = RJ + iLJ

k estimated from Eq. (31) is

given by

Zg ∼ iωL̄�R̄�
wdl2(iωL̄� + R̄�)

, (45)

where L̄� = φ0/2πJc〈cos θ〉, and R̄� is the GB quasiparticle
resistance per unit area averaged over the GB orientations.
The field dependencies of RJ (B) and LJ

k (B) can be strongly
affected by ω and T . At high frequencies, ω � ωc = R̄�/L̄�
the impedance Zg ∼ R̄�/wd becomes independent of B, that
is, GBs do not contribute to the NLME. For S-I-S GBs, the
crossover frequency ωc is

ωc ∼ 〈cos θ〉	
h̄

tanh

(
	

2kBT

)
, (46)

Here ωc ∼ 	/h̄ if T is not very close to Tc and B � B0,
but ωc(T, B) decreases as B increases beyond B0 and T ap-
proaches Tc. For proximity-coupled GBs, ωc can be smaller
than 	/h̄ even at T � Tc and B < B0 since JcR� for S-N-S
JJs can be much smaller than 	/e [47]. For Nb3Sn in which
	/h̄ ∼ 1 THz is some two orders of magnitude higher than
the frequency 2π f0 of our resonator, it appears that the ob-
served behavior of δ f (T, B) at 7 < T < 12 K is consistent
with the low-frequency limit ω � ωc(T, B) in which Eq. (45)
gives

RJ (B) ∼ φ2
0ω

2

4π2R�J2
c wdl2〈cos θ〉2

. (47)

For 〈LJ (B)〉 calculated above (see Fig. 11), RJ (B) ∝ B2 in
Eq. (47) increases quadratically with B at B � B0. This field
dependence is the same as for the Meissner contribution to
σω(B) in Eq. (22), but the orientational dependence of RJ (B)
is opposite to that of σω(B). Thus GBs can give rise to a
strong nonlinearity of the electromagnetic response of poly-
crystalline films, which can be essential for Nb3Sn thin-film
coatings of high-Q resonator cavities in particle accelerators
[28,40,41,53].

In conclusion, grain boundaries and local nonstoichiom-
etry on nanometer scales can significantly contribute to the
NLME in polycrystalline Nb3Sn. Particularly, GBs can cause
the linear field dependence of the magnetic penetration depth
expected from a clean d-wave superconductor at low temper-
atures. By contrast, for elemental superconductors such as Nb
[21] and Al [24] with large coherence lengths, δλ(T, B) ∝ B2

is described well by the Meissner pair breaking. However,
extended crystalline defects in superconductors with short
coherence lengths can radically change the field dependence
of δλ(T, B), even if their contribution to the kinetic induc-
tance at zero field is small. This feature can impose stringent
requirements for the quality of single crystals used for the
observation of manifestations of d-wave pairing in λ(T, B),
particularly in cuprates and pnictides which are prone to the
weak-link behavior of grain boundaries.
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APPENDIX A: GEOMETRIC INDUCTANCE
OF THE COPLANAR WAVEGUIDE

The geometric inductance per unit length Lg of the coplanar
resonator is calculated by conformal mapping of the cross
section of the coplanar resonator into parallel plates [34]. For
a thin film with d � w, this yields

Lg = μ0K (k′)
4K (k)

, (A1)

where k = s/(2w + s), k′ = √
1 − k2, and K (k) is a com-

plete elliptic integral of the first kind. For w = 15 μm and
s = 8.8 μm, Eq. (A1) gives Lg = 420.5 H/m.

APPENDIX B: TILTED GB

For a rectangular JJ of width l1 and length l2 shown in
Fig. 10, the solution of Eq. (30) is

θ = 2πB�

φ0
(nxy − nyx), B‖z, (B1)

θ = 2πB�

φ0
(nzx − nxz), B‖y. (B2)

We rotate the coordinate system by the Euler angles α and β

about the x and the y axes to a new cartesian system (X,Y, Z )
in which Z is perpendicular to the GB plane and X and Y are
directed along the GB sides of lengths l1 and l2, respectively.
Here Xi = Ri jx j , where the rotation matrix Ri j = Ry

ikRx
k j is

given by

Ri j =
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠·

⎛
⎝1 0 0

0 cos α − sin α

0 sin α cos α

⎞
⎠.

(B3)

The transpose matrix RT
i j is then

RT
i j =

⎛
⎝ cos β 0 − sin β

sin α sin β cos α sin α cos β

cos α sin β − sin α cos α cos β

⎞
⎠. (B4)

Using xi = RT
i jXj , we obtain

x = X cos β − Z sin β, (B5)

y = X sin β sin α + Y cos α + Z cos β sin α, (B6)

z = X sin β cos α − Y sin α + Z cos β cos α, (B7)

nx = − sin β, ny = cos β sin α, nz = cos β cos α. (B8)

Equations (B1), (B2), and (B5)–(B7) with Z = 0 give

θ = −2πB�

φ0
[X sin α + Y sin β cos α], B‖z, (B9)

θ = 2πB�

φ0
[X cos α − Y sin β sin α], B‖y. (B10)

Next, we calculate c̄ = S−1
∫

cos θ (X,Y )dS:

c̄ = 1

l1l2
Re

∫ l1/2

−l1/2
dX

∫ l2/2

−l2/2
dYeiθ (Y,Z ), (B11)

which leads to Eqs. (32)–(34).
For uniform distributions of the GB orientation angles,

Eqs. (35) and (38) yield at B‖z:

〈cos θ〉 = 1

π2b

∫ π

0
dα

∫ π

0
dβ sin(b cos α sin β )

cos α cos β

tan β
.

(B12)

Likewise, we get from Eqs. (36) and (38) at B‖y:

〈cos θ〉 = 1
π2b

∫ π

0 dα
∫ π

0 dβ sin(b sin α sin β ) cos α cos β

tan α tan β
.

(B13)

At b = B/B0 � 1, we obtain from Eqs. (B12) and (B13):

〈cos θ〉 = 1

4

(
1 − b2

32

)
, B‖z, (B14)

〈cos θ〉 = 1

4

(
1 − b2

96

)
, B‖y. (B15)

The field B‖z applied along the strip causes stronger reduction
of 〈cos θ〉 than the transverse field B‖y.
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