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Tuning nonequilibrium heat current and two-photon statistics
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Quantum thermal transport and two-photon statistics serve as two representative nonequilibrium features
in circuit quantum electrodynamics (cQED) systems. Here we investigate quantum heat flow and two-photon
correlation function at steady state in a composite qubit-resonator model, where one qubit shows both transverse
and longitudinal couplings to a single-mode optical resonator. With weak qubit-resonator interaction, we unravel
two microscopic transport pictures, i.e., cotunneling and cyclic heat exchange processes corresponding to
transverse and longitudinal couplings, respectively. The nonmonotonic behavior of the heat current is exhibited
by tuning the temperature bias with the weak longitudinal coupling. At strong qubit-resonator coupling, the heat
current also exhibits a nonmonotonic feature by increasing qubit-resonator coupling strength, which tightly relies
on the scattering processes between the qubit and the corresponding thermal bath. Furthermore, the longitudinal
coupling is preferred to enhance heat current in the strong qubit-resonator coupling regime. For two-photon
correlation function, it exhibits an antibunching-to-bunching transition by tuning the composite angle, which is
mainly dominated by the modulation of the energy gap between the first and the second excited eigenstates. Our
results are expected to deepen the understanding of nonequilibrium thermal transport and nonclassical photon
radiation based on the cQED platform.
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I. INTRODUCTION

Deep understanding and efficient characterization of
nonequilibrium excitation processes via quantum light-matter
interactions constitute an active frontier for quantum optics
and quantum transport [1–5]. Heat flow is considered as
one generic feature of quantum thermal transport, which is
bounded by the second law of thermodynamics. Under ther-
modynamic bias (e.g., voltage and temperature bias), the heat
current is driven directionally from the hot source to the cold
drain. However, the direction of the current can be reversed
against the thermodynamic bias, e.g., by quantum correlations
[6] and geometric-phase-induced pump [7–9].

Due to the dramatic advancement of quantum circuit
technology, the circuit quantum electrodynamics (cQED) sys-
tems emerge as one promising platform to realize quantum
light-matter interactions [10–13]. The cQED systems are tra-
ditionally described by the seminal quantum Rabi model
(QRM) [14–17], i.e., one two-level qubit transversely in-
teracting with a single-mode photon resonator, which is
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able to describe ultrastrong qubit-resonator coupling [18–20].
QRM has been extensively investigated in finite-component
quantum phase transition [21–24], quantum nonlinear optics
[25–28], and quantum thermodynamics [29–31].

As one main characteristic of nonequilibrium excitation
processes in cQED systems, quantum thermal transport has
attracted increasing attention recently, which leads to a flurry
of valuable works [4,32–36]. Particularly, Ronzani et al.
[4] experimentally detected heat flow in a hybrid quantum
system comprising one transmon-qubit and two microwave
resonators, of which the resonators are individually cou-
pled to two metallic resistors, respectively. Consequently,
the typical thermal functionalities were realized, e.g., heat
valve [4], thermal diode [32], and thermal transistor [33,36].
Moreover, Iles-Smith et al. [37,38] and Maguire et al. [39]
theoretically investigated Franco-Condon physics in noncom-
mutative QRM via the reaction coordinate mapping approach.
Yamamoto and Kato [40] unraveled a nontrivial two-peak
feature of thermal conductance in QRM at the linear re-
sponse limit. Wang et al. [41–43] analyzed nonmonotonic
behavior of the heat current in a longitudinally coupled qubit-
resonator model. However, for the influence of the composite
qubit-photon interaction on nonequilibrium heat flow and the
microscopic picture in dissipative qubit-resonator hybrid sys-
tems, e.g., QRM, there currently is a lack of exploration,
which is crucial to deepen the understanding of nonequilib-
rium heat transport based on the cQED platform.

Meanwhile, nonclassical photon radiation is consid-
ered as another representative probe of nonequilibrium
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excitation processes in hybrid quantum systems [44–46],
which is mainly characterized by two-photon correlation func-
tion. It is known that two-photon correlation function was
initially proposed by R. J. Glauber to unveil the optical coher-
ence of quantum theory [47], which has later been extensively
applied to investigate nonequilibrium correlations of photons,
e.g., superradiant spontaneous emission [48–53], the strong
interaction of photons [44,54], and the dissipative phase tran-
sition [55]. Rabl [56], Ridolfo et al. [57,58], Stassi et al. [59],
and Garziano et al. [60] proposed a modified definition of
two-photon correlation function under the dressed basis to
properly characterize photon nonclassicality in the optome-
chanics and open QRM, respectively, which is valid even
at strong qubit-photon coupling. Consequently, Schaeverbeke
et al. [61] applied such dressed expression of two-photon cor-
relation function to connect single photon emission with the
Franck-Condon blockade effect. Bin et al. [62,63] introduced
the concept of N-phonon bundle emission. For the cQED
systems, an alternative scheme, i.e., longitudinal coupling be-
tween the qubit and the resonator, can also be realized based
on the superconducting circuit engineering [64,65], which
has pronounced consequences for nonclassical-photon-state
generation [66–68], scalable circuit design [69,70], and fast
nondemolition qubit readout [71,72]. However, though both
the transverse and the longitudinal coupling limits can be
flexibly modulated [26,64–67,73], the influence of composite
qubit-resonator interaction on two-photon statistics has not yet
been reported.

In this paper, we applied dressed master equation (DME)
to investigate the effect of composite qubit-resonator interac-
tion on quantum thermal transport. At weak qubit-resonator
coupling, it is found that the heat current exhibits monotonic
enhancement by increasing thermal bath temperature bias in
the dissipative QRM, which stems from cotunneling trans-
port processes. In contrast, the current is changed to show a
nonmonotonic feature with longitudinal qubit-resonator cou-
pling, which is dominated by cyclic heat exchange transitions.
These two distinct microscopic processes are crucial to un-
raveling the physics pictures of quantum thermal transport in
dissipative cQED systems. At strong qubit-resonator coupling
with different composite angles, the current generally shows
nomonotonic behavior, which tightly relies on the scattering
processes between the qubit and the bosons in the corre-
sponding thermal bath. Furthermore, the optimal composite
angle to generate the maximal heat current gradually changes
from the transverse coupling type to the longitudinal coun-
terpart with an increase of qubit-resonator coupling strength.
We also study steady-state two-photon correlation function at
strong qubit-resonator coupling. It is found that by tuning up
the composite angle, an antibunching-to-bunching transition
is significantly exhibited, which mainly originates from in-
crement and reduction of the energy gap between the first
and the second excited states. In particular, a giant bunch-
ing signature of photons is unraveled at moderate composite
angle.

The rest of this paper is organized as follows: In Sec. II, we
present the composite qubit-resonator model, derive the DME,
and obtain the expression of the steady-state heat current.
In Sec. III, we investigate the effect of the composite angle
on the steady-state heat current and two-photon correlation

FIG. 1. (a) The schematic description of a composite qubit-
resonator model. The red half circle (top left) is the optical resonator,
where â annihilates one photon with the frequency ω0. The blue
circle (top right) represents the qubit, which is characterized by the
Pauli operator σ̂z and the splitting energy ε. The double-arrowed
rectangle shows the composite qubit-resonator interaction with the
interaction strength λ and composite angle θ . The red (bottom-
left) and blue (bottom-right) rectangles denote two thermal baths,
characterized by temperatures TR and TQ and bosonic annihilators
b̂k,R and b̂k,Q. (b) Steady-state heat current Jss/(αω0) modulated
by temperature bias �T/ω0 and the composite angle θ , with weak
qubit-resonator interaction strength λ = 0.01ω0. Other parameters
are given by ε = 1.5ω0, α = 0.001, ωc = 10ω0, TR = ω0 + �T/2,
and TQ = ω0 − �T/2. (c) and (d) show cotunneling processes for
first terms of the components Ix,1 and Ix,2 in Eqs. (17a) and (17b),
respectively. Panels (e) and (f) describe cyclic energy exchange pro-
cesses for first terms of current components Iz,1 and Iz,2 in Eqs. (19a)
and (19b), respectively. The red solid (blue dashed) arrowed lines
denote transitions between two eigenstates assisted by the R-th (Q-
th) thermal bath.

function. The microscopic pictures of these behaviors are also
discussed. Finally, we give a summary in Sec. IV.

II. MODEL AND METHOD

A. Composite qubit-resonator model

We study the dissipative qubit-resonator hybrid model in
Fig. 1(a), where one two-level qubit shows both longitudinal
and transverse couplings to a single-mode resonator, each
individually interacting with the corresponding thermal baths.
The Hamiltonian is described as (h̄ = 1 and kB = 1)

Ĥ = Ĥ θ
S +

∑
μ=Q,R

(
Ĥμ

B + V̂μ

)
. (1)

Specifically, the composite qubit-resonator system is ex-
pressed as

Ĥ θ
S = ε

2
σ̂z + ω0â†â + λ(cos θσ̂x + sin θσ̂z )(â† + â), (2)

where â†(â) is the creation (annihilation) operator of one
photon in the resonator with the frequency ω0, ε is the split-
ting energy of the two-level qubit; σ̂α (α = x, y, z) is the
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Pauli operators of the qubit under the qubit basis {↑,↓},
with σ̂z|↑〉 = |↑〉 and σ̂z|↓〉 = −|↓〉; λ is the qubit-resonator
coupling strength; and θ is the angle to tune the composite
qubit-resonator interaction. Ĥμ

B = ∑
k ωk,μb̂†

k,μ
b̂k,μ describes

the μ-th bosonic thermal bath, where b̂†
k,μ

(b̂k,μ) creates (an-
nihilates) one boson with the frequency ωk,μ and momentum
k. The system-bath interactions are described as

V̂R = (â† + â)
∑

k

gk,R(b̂†
k,R + b̂k,R), (3a)

V̂Q = σ̂x

∑
k

gk,Q(b̂†
k,Q + b̂k,Q), (3b)

with gk,μ the coupling strength. The μ-th thermal
bath is characterized by the spectral function γμ(ω) =
2π

∑
k |gk,μ|2δ(ω − ωk,μ). In this work, we specify

the spectral function as the Ohmic case, i.e., γμ(ω) =
παω exp(−|ω|/ωc), with α the dissipation strength and ωc

the cutoff frequency.
Generally, it is difficult to analytically find the eigensolu-

tion of the qubit-resonator hybrid system at Eq. (2). However,
in the limiting case we may obtain the analytical expression.
Specifically, at θ = 0 the composite system with only trans-
verse coupling is simplified as

Ĥ0
S = ε

2
σ̂z + ω0â†â + λσ̂x(â† + â), (4)

which is the seminal QRM [14,15]. Hence the eigen-
values can be mapped to the roots of transcendental G
function by applying the Bargmann algebra and extended
coherent states approaches [16,17], respectively. In weak
qubit-resonator coupling regime, the QRM is reduced to the
Jaynes-Cummings model ĤJC = εσ̂z/2 + ω0â†â + λ(â†σ̂− +
âσ̂+), which is dominated by the rotating-wave terms. Conse-
quently, the eigenvalues are given by

En,± = (n + 1/2)ω0±
√

(ε − ω0)2/4 + λ2(n + 1), (5)

and the corresponding eigenvectors are

|φ+
n 〉 = cos

θn

2
|n,↑ 〉 + sin

θn

2
|n + 1,↓ 〉, (6a)

|φ−
n 〉 = − sin

θn

2
|n,↑ 〉 + cos

θn

2
|n + 1,↓ 〉, (6b)

with tan θn = 2λ
√

n + 1/(ε − ω0).
While at θ = π/2 the qubit is longitudinally coupled to the

resonator [41,66,67,69,70,73], with the Hamiltonian

Ĥπ/2
S = ε

2
σ̂z + ω0â†â + λσ̂z(â† + â). (7)

Accordingly, the eigenvalues are expressed as

En,↑ = ω0n + ε/2 − λ2/ω0, (8a)

En,↓ = ω0n − ε/2 − λ2/ω0, (8b)

and the eigenvectors are described by the extended coherent
boson states

|φ↑
n 〉 = exp

[
λ

ω0
(â − â†)

]
(â†)n

√
n!

|0〉a⊗| ↑ 〉, (9a)

|φ↓
n 〉 = exp

[
− λ

ω0
(â − â†)

]
(â†)n

√
n!

|0〉a⊗|↓〉, (9b)

with the vacuum state of the resonator â|0〉a = 0.

Recently, tunable photonic heat transport and thermal
functionalities (e.g., thermal diode and quantum thermal tran-
sistor) have been experimentally realized in superconducting
cQED devices [4,32–34]. The superconducting qubit (e.g.,
transmon qubit) is able to show either the longitudinal or the
transverse interaction with the photon resonator [18,19,64–
67]. Moreover, the R-th bath, i.e., ĤR

B = ∑
k ωk,Rb̂†

k,Rb̂k,R,
may correspond to one metallic resistor, e.g., a thin-film
copper microstrip resistor with several superconducting alu-
minium probes [4,32] or a general noiseless resistor with a
fluctuating voltage source [33,74]. The noisy resistor may
produce the continuous-modes bosonic noise (e.g., electro-
magnetic noise), quantified by the temperature TR. While
the Q-th thermal bath interacting with the qubit, i.e., ĤQ

B =∑
k ωk,Qb̂†

k,Qb̂k,Q, could be alternatively simulated by an LC
circuit coupled to one Ohmic resistor, quantified by the tem-
perature TQ [33,75]. The electromagnetic noise should pass
the LC circuit to affect the qubit. Such effective construction
of the Q-th thermal bath makes the energy exchange between
the qubit and the corresponding bath available. Hence the
dissipative composite qubit-resonator model Eq. (1) in this
work could be realized based on the circuit QED platforms.

We also compare the present model (1) with the qubit-
biased open QRM [76–78]

Ĥdissip-Rabi = ε′σ̂z/2 + �σ̂x/2 + ω0â†â + λσ̂z(â† + â)

+
∑

k,μ=R,Q

ωk,μb̂†
k,μ

b̂k,μ

+(â† + â)
∑

k

gk,R(b̂†
k,R + b̂k,R)

+σ̂z

∑
k

gk,Q(b̂†
k,Q + b̂k,Q), (10)

with � being the qubit bias strength. For the closed composite
qubit-resonator model (2), we can reexpress it as

Ĥ θ
S = ε

2
sin θ τ̂z − ε

2
cos θ τ̂x + ω0â†â + λτ̂z(â† + â), (11)

where τ̂z = | + 〉〈 + | − | − 〉〈 − | and τ̂x = | + 〉〈 − | + | −
〉〈 + |, under the basis | + 〉 = [(cos θ

2 + sin θ
2 )|↑〉 + (cos θ

2 −
sin θ

2 )|↓〉]/√2 and | − 〉 = [−(cos θ
2 − sin θ

2 )|↑〉 + (cos θ
2 +

sin θ
2 )|↓〉]/√2. Hence Ĥ θ

S is equivalent with the longitudi-
nally coupled QRM [79–81] by mapping ε sin θ→ε′ and
−ε cos θ→�. However, by including system-bath quantum
dissipation, it is found that under such transformation of
Eq. (11), the qubit-bath interaction (3b) will be modified to

V̂Q = (cos θ τ̂z + sin θ τ̂x )
∑

k

gk,Q(b̂†
k,Q + b̂k,Q), (12)

which is generally distinct from the qubit-bath coupling in
the open QRM in Eq. (10), stemming from the appear-
ance of the additional term V̂add = sin θ τ̂x

∑
k gk,Q(b̂†

k,Q +
b̂k,Q). This additional term may have non-negligible influence
on the dissipative dynamics and transport behaviors of the
qubit-resonator hybrid system. Particularly in the strong cou-
pling limit, the qubit-photon interaction dominates Ĥ θ

S , which
leads to the approximate eigenstates, i.e., |φ±

n 〉 ≈ exp[±λ(â −
â†)/ω0] (â† )n√

n!
|0〉a⊗| ± 〉. Thus V̂add may dominate the energy
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exchange processes between the qubit and the Q-th thermal
bath, which is characterized as the spin flip accompanied with
the coherent eigenstates transitions.

B. Quantum master equation

We consider weak interactions between the composite hy-
brid system and the bosonic thermal baths. We focus on the
steady-state properties of the composite qubit-resonator sys-
tem, where the off-diagonal elements of the reduced system
density operator in the eigenbasis of ĤS become negligi-
ble. Thus V̂R and V̂Q at Eqs. (3a) and (3b) can be properly
perturbed. Under the Born approximation, the total density
operator can be separated as ρ̂tot(t )≈ρ̂S(t )⊗ρ̂B,R⊗ρ̂B,Q, where
ρ̂S(t ) is the reduced hybrid system density operator, and
ρ̂B,μ = exp(−Ĥμ

B /kBTu)/TrB{exp(−Ĥμ
B /kBTu)}(μ = R, Q) is

the density operator of the μ-th thermal bath, with kB the
Boltzmann constant and Tμ is the temperature of the μ-th bath.
Then, by further including the Markovian approximation, we
obtain the quantum DME as [20,82,83]

d

dt
ρ̂S(t ) = i

[
ρ̂S(t ), Ĥ θ

S

] +
∑

n,m,μ

{�+
μ (Enm)L̂nm[ρ̂S(t )]

+�−
μ (Enm)L̂mn[ρ̂S(t )]}, (13)

where the dissipator is given by L̂nm[ρ̂S(t )] =
|ψn〉〈ψm|ρ̂S(t )|ψm〉〈ψn| − (|ψm〉〈ψm|ρ̂S(t ) +
ρ̂S(t )|ψm〉〈ψm|)/2, with Ĥ θ

S |ψn〉 = En|ψn〉, and the
corresponding transitions rates are given by

�+
μ (En,m) = γμ(En,m)nμ(En,m)|〈ψn|Âμ|ψm〉|2, (14a)

�−
μ (En,m) = γμ(Enm)[1 + nμ(En,m)]|〈ψn|Âμ|ψm〉|2, (14b)

with nμ(En,m) = 1/[exp(En,m/Tu) − 1] the Bose-Einstein dis-
tribution function, ÂR = â† + â, ÂQ = σ̂x, En,m = En − Em

the energy gap between two eigenstates |ψn〉 and |ψm〉 of ĤS.
The rate �+(−)

μ (En,m) describes the energy exchange process
that the composite qubit-resonator system is excited (relaxed)
from the eigenstate |ψm〉 to |ψn〉 by absorbing (releasing) one
photon with the energy En − Em from (into) the μ-th thermal
bath.

Therefore, after long-time evolution, i.e., d ρ̂S(t )/dt = 0,
we can obtain the steady-state population distribution Pn with
Pn = 〈ψn|ρ̂S(t → ∞)|ψn〉. Moreover, from the DME Eq. (13)
we obtain the steady-state heat current into the Q-th bath (see
Sec. A of the Appendix)

Jss =
∑

En>En′

En,n′ [�−
Q (En,n′ )Pn − �+

Q (En,n′ )Pn′ ], (15)

where the energy gap is En,n′ = En − En′ .

III. RESULTS AND DISCUSSIONS

A. Steady-state heat current

1. Weak qubit-resonator interaction

Heat flow is considered the representative transport fea-
ture of nonequilibrium excitation processes in dissipative
qubit-resonator hybrid systems. Here we first investigate the
steady-state behavior of heat current at weak qubit-resonator

coupling in Fig. 1(b), which is modulated by both the tem-
perature bias �T = TR − TQ and the composite angle θ . It is
found that for small θ , the heat current exhibits a monotonic
increase by increasing the temperature bias �T , particularly
in the limit of θ = 0, i.e., the dissipative QRM. However,
in the large θ regime, the heat current is changed to shown
nonmonotonic behavior, i.e., the current is first enhanced and
later suppressed with the increase of �T , which identifies
the signature of the negative differential thermal conductance
(NDTC) [84–88]. The appearance of NDTC is consistent with
previous works [41,42]. It needs to be noted that although
it is not shown here, a similar result can also be found at
resonance (ε = ω0). Hence we conclude that the composite
qubit-resonator interaction strongly affects the steady-state
heat current.

Then we try to explore microscopic processes of heat trans-
port with weak qubit-resonator coupling. We admit that to
analytically find the microscopic mechanism with arbitrary
composite angle θ is quite difficult. Here we focus on two
limits, i.e., θ = 0 and θ = π/2, to unravel the representative
physical pictures of the heat current. For θ = 0, under the
eigenbasis {|φ±

n 〉} of QRM in Eqs. (6a) and (6b), the leading
order of steady-state heat current at finite energy bias regime
[e.g., (ε − ω0)�λ] can be analytically expressed as (see the
detail in Sec. B of the Appendix)

Jx
ss ≈ λ2

(ε − ω0)2
(ω0Ix,1 + εIx,2), (16)

where two components are specified as

Ix,1 = γQ(ω0){nR(ω0)[1 + nQ(ω0)] − [1 + nR(ω0)]nQ(ω0)},
(17a)

Ix,2 = γR(ε)

2nQ(ε) + 1
{nR(ε)[1 + nQ(ε)] − [1 + nR(ε)]nQ(ε)}.

(17b)

Both Ix,1 and Ix,2 are dominated by cotunneling processes.
Specifically, Ix,1 describes the process such that as the state
|φη

n 〉 (|φη

n+1〉) is excited (relaxed) to |φη

n+1〉 (|φη
n 〉) by absorb-

ing (emitting) energy ω0 from (into) the R-th reservoir, the
transition |φη

n+1〉→|φη
n 〉(|φη

n 〉→|φη

n+1〉) simultaneously occurs
by emitting (absorbing) ω0 into (from) the Q-th reservoir with
η = ±, which is also shown in Fig. 1(c). While Ix,2 shows
other typical cotunneling processes, exemplified in Fig. 1(d),
the excitation (relaxation) transition |φ−(+)

n 〉→|φ+(−)
n 〉 by ab-

sorbing (emitting) energy ε from (into) the R-th reservoir is
accompanied by the dual transition |φ+(−)

n 〉→|φ−(+)
n 〉. It is in-

teresting to find that the directional cotunneling transport from
the R-th reservoir to that of the Q-th one, i.e., described by first
terms of Ix,1 and Ix,2, is monotonically enhanced with increase
of the temperature bias, which mainly contribute to Jx

ss at finite
temperature bias. In contrast, the opposite transitions (from
the Q-th reservoir to that of the R-th one) are dramatically sup-
pressed. Finally, the current in Eq. (16) becomes significant at
large temperature bias (TR≈2ω0, TQ≈0), which is specified
as Jx

ss≈[λ/(ε − ω0)]2[ω0γQ(ω0)nR(ω0) + εγR(ε)nR(ε)].
For θ = π/2, it is found that the transition coefficient

〈φσ
n |σ̂x|φσ

n′ 〉 in Eqs. (14a) and (14b) under the coherent-
state basis {|φ↑(↓)

n 〉} is approximated as 〈φ↑
n |σ̂x|φ↓

n′ 〉 ≈
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(−1)n[δn,n′ + (2λ/ω0)(
√

n + 1δn,n′−1 − √
nδn,n′+1)] (also see

Refs. [89,90]). Based on the systematic perturbation (see the
full solution in Sec. C of the Appendix), the steady-state heat
current in the bias regime [(ε − ω0)�λ] is described as

Jz
ss ≈

(
2λ

ω0

)2

ω0(Iz,1 + Iz,2), (18)

where these two components are given by

Iz,1 = γQ(ε + ω0)

2nQ(ε) + 1
{[1 + nQ(ε + ω0)]nQ(ε)nR(ω0)

− nQ(ε + ω0)[1 + nQ(ε)][1 + nR(ω0)]}, (19a)

Iz,2 = γQ(ε − ω0)

2nQ(ε) + 1
{[1 + nQ(ε)]nQ(ε − ω0)nR(ω0)

− nQ(ε)[1 + nQ(ε − ω0)][1 + nR(ω0)]}. (19b)

In sharp contrast to θ = 0 limit, Iz,1 is contributed by
two competing cyclic fluxes. Specifically, the first term
[1 + nQ(ε + ω0)]nQ(ε)nR(ω0) describes the loop transition
|φ↑

n+1〉→|φ↓
n 〉→|φ↑

n 〉→|φ↑
n+1〉 by directionally transferring

the energy ω0 into the Q-th thermal reservoir, which
is also depicted in Fig. 1(c). The second term nQ(ε +
ω0)[1 + nQ(ε)][1 + nR(ω0)] shows the counter loop tran-
sition. Similarly, Iz,2 is composed of other, two oppo-
site cyclic fluxes, where the first loop path is shown
in Fig. 1(d) and characterizes the joint transport process
|φ↑

n+1〉→|φ↓
n+1〉→|φ↑

n 〉→|φ↑
n+1〉. Intriguingly, at large temper-

ature bias �T ≈2ω0, i.e., TR≈2ω0 and TQ≈0, all cyclic current
components in Iz,1 and Iz,2 break down due to negligible
excitation in the Q-th reservoir [nQ(ω > 0)≈0]. This directly
results in the suppression of the steady-state heat current,
which identifies the emergence of the NDTC.

Therefore, we exploit two distinct microscopic pictures
in limiting composite angles with weak qubit-resonator in-
teraction, i.e., cotunneling transitions at θ = 0 and cyclic
transitions at θ = π/2, which are generic to unraveling micro-
scopic mechanisms of quantum thermal transport, e.g., in the
nonequilibrium spin-boson model [91–96], metal-insulator
interfaces [97,98], and inelastic thermoelectrics [99–103].
The analytical expressions of the heat current in Eqs. (16)
and (18) are obtained for the first time in a dissipative
qubit-resonator hybrid model. Recently, the NDTC was also
reported in a longitudinal and quadratic qubit-resonator model
[43] based on the analysis of transition rates. The transition
between squeezed eigenstates, assisted by the spin-flip pro-
cesses, allows only two or zero squeezed photons excitation
(relaxation). In contrast, the corresponding transition in the
longitudinal and linear qubit-resonator model (i.e., θ = π/2)
allows at most one coherent photon change. Though the tran-
sition trajectories are distinct for such two hybrid models,
these two microscopic transitions establish analogous ther-
modynamic cycles of heat transfer, which both lead to the
emergence of the NDTC.

2. Strong qubit-resonator interaction

Next we investigate steady-state heat current Jss/(αω0)
beyond weak qubit-resonator coupling with typical com-
posite angles in Fig. 2. As the qubit shows a transverse

FIG. 2. Steady-state heat current Jss/(αω0) modulated by tem-
perature bias �T/ω0 and qubit-resonator interaction strength λ/ω0,
with composite angle (a) θ = 0, (b) θ = π/4, and (c) θ = π/2.
Other parameters are given by ε = 1.5ω0, α = 0.001, ωc = 10ω0,
TR = ω0 + �T /2, and TQ = ω0 − �T /2.

interaction with the optical resonator, i.e., θ = 0 in Fig. 2(a),
the heat current exhibits nonmonotonic behavior by increasing
qubit-resonator interaction strength under finite temperature
bias (e.g., �T/ω0 = 1). Due to the effect of counter-rotating-
terms, the eigenstates of the QRM beyond Eqs. (6a) and
(6b) will introduce additional energy exchange transitions,
which may effectively enhance the heat current in the regime
λ/ω0�0.5. While in strong qubit-resonator coupling limit
(e.g., λ/ω0 > 1.5), the eigenstates become nearly degen-
erate, i.e., |φ±

n 〉≈ exp[±λ(â − â†)/ω0][(â†)n/
√

n!]|0〉⊗| ± 〉
with σ̂x| ± 〉 = ±| ± 〉, which significantly prohibits energy
exchange between the hybrid system and the Q-th reservoir
(〈φ+

n |σ̂x|φ−
n 〉≈0). Then, by tuning on the composite angle,

e.g., θ = π/4 and π/2, it is found that the profiles of heat
currents modulated by �T/ω0 and λ/ω0 in Figs. 2(b) and 2(c)
are generally similar with limiting angle case θ = 0. In partic-
ular for the limiting case θ = π/2, the transition coefficient in
Eqs. (14a) and (14b) is expressed as [89,90]

〈φ↑
n |σ̂x|φ↓

n′ 〉 = (−1)n exp (−2λ2/ω2
0 )

√
n!n′!

×
min[n,n′]∑

l=0

(−1)l
√

(2λ/ω0)n+n′−2l

(n − l )!(n′ − l )!l!
, (20)

which induces higher-order transitions between |φ↑(↓)
n 〉 and

|φ↓(↑)
n′ 〉 with |n − n′|�2 besides the lowest-order transport

processes, i.e., cyclic exchange in Figs. 1(e) and 1(f). These
additional transitions are robust even at large temperature bias,
which mainly results in comparatively large heat current and
the disappearance of the NDTC. While at finite temperature
bias (e.g., �T/ω0 = 1), the initial enhancement of Jss/(αω0)
by increasing λ/ω0 stems from additional transport
processes. It may be quantified by 〈φ↑

n |σ̂x|φ↓
n′ 〉≈(−1)n{[1 −

(n + 1/2)( 2λ
ω0

)2]δn,n′ + ( 2λ
ω0

)(
√

n + 1δn,n′−1 − √
nδn,n′+1) +

1
2 ( 2λ

ω0
)2[

√
n(n − 1)δn,n′+2 + √

(n + 1)(n + 2)δn,n′−2]}, where
the last two terms will enhance the current by forming
efficient transition paths. However, the final decrease of
heat current in the strong qubit-resonator coupling limit is
mainly attributed to the fact that the transition coefficient
〈φ↑

n |σ̂x|φ↓
n′ 〉 in Eq. (20) and the corresponding transition

rates are dramatically weakened. Consequently, the energy
exchange processes are strongly blocked.
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FIG. 3. Steady-state heat current Jss/(αω0) modulated by qubit-
resonator interaction strength λ/ω0 and composite angle θ . The
dashed line with red circles shows the maximal Jss/(αω0) by search-
ing θ∈[0, π/2] with given λ/ω0. Other parameters are given by
ε = 1.5ω0, α = 0.001, ωc = 10ω0, TR = 2ω0, and TQ = 0.

Moreover, we analyze the interplay between the com-
posite angle and the qubit-resonator coupling strength on
max{θ}{Jss/(αω0)} in Fig. 3. It is intriguing to find that with an
increase of the qubit-resonator interaction, the composite an-
gle dominating the maximal heat current is gradually modified
from 0 to π/2, corresponding to the transverse and longitudi-
nal qubit-resonator couplings, respectively. In particular for
the strong qubit-photon coupling limit, the eigenspace of the
Hamiltonian of the quantum hybrid system (2) is dominated
by coherent eigenstates with large displacement, which is
approximated as Ĥ θ

S ≈ω0â†â + λ(cos θσ̂x + sin θσ̂z )(â† + â).
If we set θ = 0, it is known that [Ĥ θ

S , V̂Q]≈0. This demon-
strates that the energy exchange between the qubit and the
Q-th bath becomes negligible, which leads to the vanish of
the heat flow. While as θ = π/2, the transitions between
coherent eigenstates [(9a) and (9b)] assisted by the spin-flip-
involved energy exchange are finite, which results in the heat
current larger than the counterpart with the transverse cou-
pling. Hence we conclude that at strong λ/ω0, the longitudinal
coupling type is preferred to enhance the steady-state heat
current.

B. Two-photon correlation function

Nonclassical photon radiation, as the main correlation
probe of nonequilibrium excitation processes of photons
in the dissipative qubit-photon hybrid systems, is typically
quantified by two-photon correlation function. Two-photon
correlation function describes the correlation between two
temporally separated photon signals from one light source,
which is pioneered by R. J. Glauber to exhibit the optical
coherence of quantum theory [47]. Alternatively, Rabi [56],
Ridolfo et al. [57,58], Stassi et al. [59], and Garziano et al.
[60] proposed a modified definition of two-photon correlation
function within the dressed picture. Hence it can also be safely
included to study photon statistics in the present model in
Eq. (1) with strong qubit-resonator interaction. Specifically,
two-photon correlation function at steady state is defined

FIG. 4. Two-photon correlation function as a function of qubit-
resonator interaction strength λ/ω0 and temperature TR = TQ = T ,
with typical composite angle (a) θ = 0, (b) θ = π/4, and (c) θ =
π/2. Other parameters are given by ε = 1.5ω0, α = 0.001, and ωc =
10ω0.

as

G(2)
θ (τ ) = lim

t→∞
〈X̂ +

θ (t )X̂ +
θ (t + τ )X̂ −

θ (t + τ )X̂ −
θ (t )〉

〈X̂ +
θ (t )X̂ −

θ (t )〉2 , (21)

where the measurement operator is X̂ −
θ = −i

∑
k> j �k jXjk

|ψ j〉〈ψk| and X̂ +
θ = (X̂ −

θ )†, with Xjk = 〈ψ j |(â† + â)|ψk〉 the
energy-gap � jk = Ej − Ek and the eigensolution Ĥ θ

S |ψk〉 =
Ek|ψk〉. Here we focus on the effect of the composite
qubit-resonant interaction on zero-time two-photon correla-
tion function G(2)

θ (0).
We first investigate two-photon correlation function by tun-

ing both the qubit-resonator coupling strength and the bath
temperature with different composite angle in Fig. 4. For
θ = 0, it is found that an intriguing antibunching behavior
can be found with strong λ, which demonstrates the seminal
two-photon blockade [57]. Then, by tuning on the compos-
ite angle, e.g., θ = π/4, a giant photon bunching behavior
is exhibited at low temperature. If we further increase the
composite angle to θ = π/2, it is shown that G(2)

θ=0(0)≈2
regardless of λ and T (TR = TQ = T ) due to the fully thermal-
ization of the longitudinally coupled qubit-resonator system

ρS(∞) = sinh[ω0/(2T )]

cosh[ε/(2T )]

∑
n

e− (n+1/2)ω0
T

×[e− ε
2T |φ↑

n 〉〈φ↑
n | + e

ε
2T ]|φ↓

n 〉〈φ↓
n |]. (22)

Moreover, we plot Fig. 5(a) to see the influence of the com-
posite angle on two-photon correlation function. It is found
that at strong λ (e.g., λ/ω0≈1), an antibunching-to-bunching
transition is clearly exhibited by increasing θ . Therefore we
conclude that the modulation of the composite angle is quite
important to exhibit the nonclassical photon statistics, which
may provide physical guidance to measure photon correlation
in circuit QED.

Next we analyze the mechanism of antibunching-to-
bunching transition modulated by the composite angle.
At low temperature (e.g., T = 0.1ω0), the finite spacing
distribution of energy levels [see Fig. 5(b)] results in
P0�P1�P2�P3, exhibited in Fig. 5(c). Hence one-photon
and two-photon terms are approximated as 〈X̂ +

θ X̂ −
θ 〉≈P1A1

and 〈(X̂ +
θ )2(X̂ −

θ )2〉≈P2B2, where the coefficients are An =∑
l<k (�klXkl )2 and Bn = ∑

p<l<k (�kl�l pXkl Xl p)2. Conse-
quently, the two-photon correlation function is expressed in
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FIG. 5. (a) Two-photon correlation function G(2)
θ (0) modulated

by qubit-resonator interaction strength λ/ω0 and composite angle θ

in low-temperature regime, (b) comparison of G(2)
θ (0) via numerical

calculation with that based on Eq. (23), (c) four lowest eigenenergies,
(d) four lowest steady-state populations, and (e) coefficients An, Bn

as a function of composite angle θ at λ = ω0. Other parameters are
given by ε = 1.5ω0, α = 0.001, ωc = 10ω0, and TR = TQ = 0.1ω0.

a concise way,

G(2)
θ (0)≈ P2B2

(P1A1)2
, (23)

which shows agreement with the numerical result in Fig. 5(d)
in a wide regime of θ at strong qubit-resonator coupling
(λ/ω0 = 1). Particularly in the antibunching regime (e.g.,
0 < θ�π/10), the large energy-gap (E2 − E1) suppresses the
ratio P2/P2

1 . Moreover, the coefficients A1 and B2 are nearly
flat, as shown in Fig. 5(e). Hence the transition |ψ1〉→|ψ2〉
is strongly blocked, leading to the antibunching behavior of
photons. While in the bunching regime (e.g., π/10�θ�π/4),
though A1 is strengthened by increasing θ , the reduction of
energy gap between E2 and E1 dramatically enhances steady-
state population P2 and successive two-photon excitation
process |ψ0〉→|ψ1〉→|ψ2〉, resulting in the bunching behavior
of photons, as shown in Fig. 5(b). Moreover, we analyze the
behavior of steady-state two-photon correlation function by
individually modulating TR and TQ in Fig. 6. When θ = 0,
i.e., the transverse qubit-photon coupling, it is shown that
increasing either TR or TQ suppresses photon antibunching. By

FIG. 6. Two-photon correlation function G(2)
θ (0) as a function of

two bath temperatures TR and TQ, with (a) θ = 0, (b) θ = π/4, and
(c) θ = π/2. The inset in (c) shows the comparison of Eq. (24) with
the numerical result. Other parameters are given by ε = 1.5ω0, λ =
ω0, α = 0.001, and ωc = 10ω0.

tuning on the composite angle, e.g., θ = π/4, the increase of
TR dramatically reduces the photon bunching signature. While
in the longitudinal qubit-photon coupling limit, i.e., θ = π/2,
it is intriguing to observe a giant photon bunching behavior
as TR≈0.1ω0 and TQ exceeds TR. Under the truncated ba-
sis {|ψ0〉 = |φ↓

0 〉, |ψ1〉 = |φ↓
1 〉, |ψ2〉 = |φ↑

0 〉, |ψ3〉 = |φ↓
2 〉}, the

photon correlation measurement-induced transition is blocked
|ψ1〉�|ψ2〉 (X12 = 0). Consequently, the correlation term
〈(X̂ +

π/2)2(X̂ −
π/2)2〉 is contributed by two-photon excitation pro-

cess |ψ0〉→|ψ1〉→|ψ3〉. Then, the two-photon correlation
function can be estimated as

G(2)
π/2(0)≈2P3

P2
1

, (24)

which shows agreement with the numerical result in the in-
set of Fig. 6(c). By tuning TQ above TR, it is found that
two successive spin-flip-involved scattering processes, i.e.,
|ψ0〉→|ψ1〉 and |ψ1〉→|ψ3〉, significantly excite the steady-
state population P3 compared with P1, which leads to the
emergence of the giant photon bunching feature.

IV. CONCLUSION

In summary, we investigate the effect of composite qubit-
resonator interaction on quantum thermal transport and
two-photon correlation function at steady state. We apply the
quantum DME to properly treat strong qubit-resonator inter-
action with arbitrary composite angle. For heat transport at
weak qubit-resonator coupling, it is found that the heat current
with transverse qubit-resonator coupling shows monotonic
behavior by increasing bath temperature bias. It is dominated
by the cotunneling process, which is quantified by Eqs. (17a)
and (17b), while the current is gradually changed to exhibit
nonmonotonic feature by tuning on the composite angle, sig-
nifying the emergence of the NDTC effect. Such a NDTC
effect is characterized as cyclic energy exchange processes
and described in Eqs. (19a) and (19b). Hence we unravel two
crucial microscopic processes for quantum thermal transport.
While in the strong qubit-resonator interaction regime, the
heat current with θ = 0 exhibits nonmonotonic behavior by
increasing qubit-resonator interaction strength. The initial en-
hancement of Jss stems from additional energy transitions due
to counter-rotating terms, whereas the final suppression of Jss

is attributed to the nearly degeneracy of eigenstates, which
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prohibits energy exchange between the qubit and the Q-th
thermal reservoir. Moreover, it is intriguing to find that the
optimal composite angle, which corresponds to the maximal
heat current, switches directionally from θ = 0 (transverse)
to θ = π/2 (longitudinal) by modulating the qubit-resonator
interaction from weak to strong couplings. Hence longitudinal
coupling is preferred to enhance the steady-state heat current
in the strong qubit-resonator interaction regime.

We also investigate the steady-state two-photon correlation
function by modulating the composite angle. At θ = 0, the
pronounced anti-bunching feature is exhibited in the regime
of low temperature and strong qubit-resonator interaction.
Then by tuning on θ , we find the giant bunching signal in-
stead. By further increasing θ (e.g., θ = π/2), two-photon
correlation function is globally around 2 due to thermal dis-
tribution of the density operator of the qubit-resonator hybrid
system in Eq. (22). Furthermore, we present the mecha-
nism with approximate expression in Eq. (23) to explain
this antibunching-to-bunching transition. The antibunching
and bunching behaviors of photons are modulated by the
enlarged and reduced energy gap between the first and the sec-
ond excited eigenstates, respectively. Moreover, we analyze
steady-state two-photon correlation function by individually
tuning two bath temperatures. With θ = π/2, the giant photon
bunching behavior is observed as TQ > TR. The spin-flip-
involved scattering processes dramatically enhance photon
bunching correlation. We hope that our results affected by
composite qubit-resonator interaction may deepen the un-
derstanding of quantum thermal transport and two-photon
statistics in dissipative QED systems.
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APPENDIX

1. General expression of heat current

From the quantum DME Eq. (13), the population dynamics
is described as

d

dt
ρn(t ) =

∑
n,m,μ

[�−
μ (En,m)ρm(t ) − �+

μ (En,m)ρn(t )], (A1)

with the transition rates �±
μ (En,m) specified by Eqs. (14a) and

(14b), and the population ρn(t ) = 〈φn|ρ̂S(t )|φn〉. Hence the
expression of steady-state heat current into the μ-th thermal
bath is expressed as

Jμ =
∑

En>En′

En,n′ [�−
μ (En,n′ )Pn − �+

μ (En,n′ )Pn′ ]. (A2)

Then, we try to approximately investigate the steady state pop-
ulations Pn = 〈φn|ρ̂S(t → ∞)|φn〉 at weak qubit-resonator

coupling limit via the perturbation method. As we reexpress
the populations in the vector form |ρs〉, the steady-state solu-
tion based on Eq. (A1) becomes L|ρs〉 = 0. At weak qubit-
resonator coupling, we expand |ρS〉≈|ρ (0)

S 〉 + (λ/ω0)2|ρ (1)
S 〉

and L≈L(0) + (λ/ω0)2L(1) up to (λ/ω0)2. Hence the general
solution is given by

L(0)
∣∣ρ (0)

S

〉 = 0, (A3a)

L(0)
∣∣ρ (1)

S

〉 + L(1)
∣∣ρ (0)

S

〉 = 0. (A3b)

2. θ = 0 case

At θ = 0, the model in the weak qubit-resonator coupling
regime becomes the dissipative Jaynes-Cummings model. We
consider the off-resonant regime [(ε − ω0)�λ]. Under the
eigenbasis |φ±

n 〉 [Eqs. (6a) and (6b)] the transition coefficients
involved with the Q-th bath are specified as

〈φ+
n+1|σ̂x|φ+

n 〉 = sin
ϕn

2
cos

ϕn+1

2
, (A4a)

〈φ+
n+1|σ̂x|φ−

n 〉 = cos
ϕn

2
cos

ϕn+1

2
, (A4b)

〈φ−
n+1|σ̂x|φ+

n 〉 = − sin
ϕn

2
sin

ϕn+1

2
, (A4c)

〈φ−
n+1|σ̂x|φ−

n 〉 = − cos
ϕn

2
sin

ϕn+1

2
, (A4d)

with tan ϕn = 2λ
√

n + 1/� and � = ε − ω0. Here we further
approximately treat the eigenvalues as En,+≈ω0(n + 1/2) +
ε/2 and En,−≈ω0(n + 3/2) − ε/2. And the corresponding
eigenvectors are simplified to |φ+

n 〉≈|n〉⊗|↑〉 and |φ−
n 〉≈|n +

1〉⊗|↓〉. Hence the transition rates upper to the order (λ/�)2

are given by

�±
Q

(
En+1,+

n,+
) ≈ γQ(±ω0)nQ(±ω0)

(
λ

�

)2

(n + 1), (A5a)

�±
Q

(
En+1,+

n,−
) ≈ γQ(±ε)nQ(±ε)

[
1 −

(
λ

�

)2

(2n + 3)

]
,

(A5b)

�±
Q

(
En+1,−

n,+
) ≈ 0, (A5c)

�±
Q

(
En+1,−

n,−
) ≈ γQ(±ω0)nQ(±ω0)

(
λ

�

)2

(n + 2), (A5d)

with En,σ
n′,σ ′ = En,σ − En′,σ ′ . Similarly, the rates related with the

R-th bath are approximated by

�±
R

(
En+1,+

n,+
) ≈ γR(±ω0)nR(±ω0)(n + 1)

[
1 +

(
λ

�

)2]
,

(A6a)

�±
R

(
En+1,+

n,−
) ≈ γR(±ε)nR(±ε)

(
λ

�

)2

, (A6b)

�±
R

(
En,−

n−1,+
) ≈ 0, (A6c)

�±
R

(
En,−

n−1,−
) ≈ γR(±ω0)nR(±ω0)(n + 2)

[
1 −

(
λ

�

)2]
.

(A6d)
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From Eq. (A1) we have the relation at steady state∑
n

[
�−

Q

(
En,+

n−1,−
)
Pn,+ − �+

Q

(
En,+

n−1,−
)
Pn−1,−

]

=
∑

n

[
�+

R

(
En,+

n−1,−
)
Pn−1,− − �−

R

(
En,+

n−1,−
)
Pn,+

]

+
∑

n

[
�+

Q

(
En,+

n−1,+
)
Pn−1,+ − �−

Q

(
En,+

n−1,+
)
Pn,+

]

+
∑

n

[
�−

Q

(
En+1,+

n,+
)
Pn+1,+ − �+

Q

(
En+1,+

n,+
)
Pn,+

]
.

Hence the zeroth-order populations are given by

P(0)
n,+ ≈ (1 − e−βRω0 )

eβQε + 1
e−nβRω0 , (A7a)

P(0)
n,− ≈ eβQε(1 − e−βRω0 )

eβQε + 1
e−(n+1)βRω0 , (A7b)

with βu = 1/(Tu) (u = R, Q). Consequently, considering
Eqs. (A2) and (A3b) we obtain the leading-order expression
of heat current as

Jx
Q =

(
λ

ε − ω0

)2

(ω0Ix,1 + εIx,2), (A8)

where two components are specified as

Ix,1 = γQ(ω0){nR(ω0)[1 + nQ(ω0)] − [1 + nR(ω0)]nQ(ω0)},
(A9a)

Ix,2 = γR(ε)

2nQ(ε) + 1
{nR(ε)[1 + nQ(ε)] − [1 + nR(ε)]nQ(ε)}.

(A9b)

3. θ = π/2 case

At θ = π/2, Based on the eigenbasis |φ↑(↓)
n 〉 at Eqs. (9a)

and (9b) the transition coefficient involved with the Q-th bath
at weak qubit-photon coupling is simplified to

〈
φσ

n

∣∣σ̂x

∣∣φσ
n′
〉 ≈ (−1)n

[
δn,n′ + 2λ

ω0

√
n + 1δn,n′−1

−2λ

ω0

√
nδn,n′+1

]
. (A10)

Accordingly, the transition rates defined by Eqs. (14a) and
(14b) are approximated by

�±
Q

(
En,↑

n′,↓
) ≈ δn,n′κ±

Q (ε) + δn,n′−1n′
(

2λ

ω0

)2

κ±
Q (ε − ω0)

+ δn,n′+1n

(
2λ

ω0

)2

κ±
Q (ε + ω0), (A11a)

�±
Q

(
En,↓

n′,↑
) ≈ δn,n′+1n′

(
2λ

ω0

)2

κ±
Q (ω0 − ε), (A11b)

with κ+
Q (ω) = γQ(ω)nQ(ω) and κ−

Q (ω) = γQ(ω)[1 + nQ(ω)].
Similarly, the transition rates assisted by the R-th thermal bath
are given by �+

R (En,σ
n−1,σ ) = γR(ω0)nR(ω0)n and �−

R (En,σ
n−1,σ ) =

γR(ω0)[1 + nR(ω0)]n. Hence the zeroth order of populations
based on Eq. (A3a) can be directly obtained as

P(0)
n,↑ ≈ (1 − e−βRω0 )

eβQε + 1
e−nβRω0 , (A12a)

P(0)
n,↓ ≈ eβQε(1 − e−βRω0 )

eβQε + 1
e−nβRω0 . (A12b)

Moreover, from Eq. (A3b) it is known that

(
2λ

ω0

)2 ∑
n

[
�−

Q

(
En,↑

n,↓
)
P(1)

n,↑ − �+
Q

(
En,↑

n,↓
)
P(1)

n,↓
]

≈
∑

n

[ − �−
Q

(
En,↑

n−1,↓
)
P(0)

n,↑ + �+
Q

(
En,↑

n−1,↓
)
P(0)

n−1,↓

−�−
Q

(
En,↑

n+1,↓
)
P(0)

n,↑ + �+
Q

(
En,↑

n+1,↓
)
P(0)

n+1,↓

−�+
Q

(
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.

Finally, Then, the current is contributed by three components

Jz
Q ≈

(
2λ

ω0

)2

ω0(Iz,1 + Iz,2 + Iz,3), (A13)

where

Iz,1 = θ (ε + ω0)γQ(ε + ω0)
1

2nQ(ε) + 1

× [(1 + nQ(ε + ω0))nQ(ε)nR(ω0)

− nQ(ε + ω0)(1 + nQ(ε))(1 + nR(ω0))], (A14a)

Iz,2 = θ (ε − ω0)γQ(ε − ω0)
1

2nQ(ε) + 1

× [nQ(ε − ω0)(1 + nQ(ε))nR(ω0)

− (1 + nQ(ε − ω0))nQ(ε)(1 + nR(ω0))], (A14b)

Iz,3 = θ (ω0 − ε)γQ(ω0 − ε)
1

2nQ(ε) + 1

× [(1 + nQ(ω0 − ε))(1 + nQ(ε))nR(ω0)

− nQ(ω0 − ε)nQ(ε)(1 + nR(ω0))]. (A14c)

with the Heviside function θ (x) = 1 for x�0, and θ (x) = 0
for x<0.
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