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Quantum chaos in triangular billiards
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We present an extensive numerical study of spectral statistics and eigenfunctions of quantized triangular
billiards. We compute two million consecutive eigenvalues for six representative cases of triangular billiards,
three with generic angles with irrational ratios with π , whose classical dynamics is presumably mixing, and
three with exactly one angle rational with π , which are presumably only weakly mixing or even nonergodic in
case of right triangles. We find excellent agreement of short- and long-range spectral statistics with the Gaussian
orthogonal ensemble of random matrix theory for the most irrational generic triangle, while the other cases
show small but significant deviations which are attributed either to a scarring or superscarring mechanism. This
result, which extends the quantum chaos conjecture to systems with dynamical mixing in the absence of hard
(Lyapunov) chaos, has been corroborated by analyzing distributions of phase-space localization measures of
eigenstates and inspecting the structure of characteristic typical and atypical eigenfunctions.
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I. INTRODUCTION

Classical ergodic theory provides a fairly satisfactory
classification of statistical properties of classical dynamical
systems. Even though it is very difficult to determine to which
category (K-property, mixing, weak mixing, ergodic, etc.) a
given dynamical system belongs, the existence of a rigorous
classification of different properties proved to be very useful,
for instance, for connecting to macroscopic physical behavior
such as transport.

The situation is much less clear for quantum dynamical
systems with a few (finite number of) degrees of freedom. Due
to the quasiperiodic nature of time evolution in finite quantum
systems, such systems can not have positive Kolmogorov-
Sinai entropy neither can they be dynamically mixing in the
strict sense. One instead looks for definite signatures of clas-
sical ergodic behavior on the statistical properties of quantum
spectra, eigenfunctions, etc. The Quantum Chaos conjecture
[1,2] states that quantum systems with chaotic classical dy-
namics should have spectral statistics (or quantum statistical
properties in general) described by an appropriate ensemble of
random matrix theory (RMT), which is determined solely by
unitary and antiunitary (say time-reversal) symmetries of the
system. For example, time-reversal invariant systems without
(half-integer) spin correspond to Gaussian orthogonal ensem-
ble (GOE) of random real symmetric matrices. Although the
conjecture is not proven in a mathematical sense, a heuristic
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proof that was initiated by Sieber and Richter [3] and later
developed by the group of Haake [4–6] clearly relates random
matrix spectral correlations to correlations among classical
unstable (hyperbolic) orbits. Yet, this mechanism requires
(uniform) hyperbolicity of classical dynamics, i.e., essentially
all periodic orbits need to be exponentially unstable. It has re-
mained unclear what happens in systems with weaker ergodic
properties. In the other extreme case of completely integrable
classical dynamics, Berry and Tabor conjectured Poisson
statistics of energy levels [7], which, however, despite corrob-
orated by a vast amount of data has not been proven as well.

A possibility to approach this problem is to consider clas-
sical systems with very definite statistical properties. Billiards
are very convenient models in this respect. Completely inte-
grable and completely chaotic quantum billiards have been
studied in detail. On the other hand, triangular billiards (or
polygonal billiards in general) are very interesting for this
purpose, since they may possess a minimal ergodic property
for (quantum) statistical behavior: they are not chaotic (linear
separation of nearby trajectories, zero KS entropy), and yet
they may be ergodic and mixing, hence they occupy a special
place in the ergodic hierarchy [8].

Yet, investigating the classical properties of billiards in
polygons is notoriously difficult (see Refs. [9,10] and ref-
erences therein). Even basic properties like the existence of
periodic orbits are hard to prove (see, e.g., Ref. [11] for trian-
gles). The ergodic properties of the triangular billiards depend
sensitively on the number theoretic aspects of the angles.
In this paper, we consider representatives of two classes of
triangular billiards with, according to current understanding,
the strongest ergodic properties:

(A) Generic triangles with all angles irrational with re-
spect to π . It has been demonstrated numerically [12] that
such triangular billiards are ergodic and mixing (with clear
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FIG. 1. The geometry of the triangle billiards considered in the numerical study. The generic triangles of class A are shown on the top
row, and those of class B with one angle rational with π on the bottom row. The exact values of the angles are listed next to each triangle. All
triangles have the same height h = 0.75, and the position of the angles is defined on the triangle A0.

power-law decay of correlations 1/tσ , and typically σ ≈ 1)
and have much stronger properties than class B below.

(B) Only one angle is rational with respect to π . Such
are, for example, generic right triangles, which have been
extensively numerically studied in [13] where evidence of
weak-mixing (but not mixing) has been found. Later [14],
right triangular billiards have been revisited suggesting that
generic right triangles are not even ergodic as the invariant
measure may be localized in the direction space and even
more recently [15] extremely “slow” (logarithmic) diffusion
has been demonstrated. Yet, as the right triangular billiard is
always arbitrary close to an ergodic billiard, we will refer to
them as pseudoergodic in this paper [16].

In our numerical study, we consider six triangles (three in
each class) which we label Ci, where C = A, B denotes the
class and i = 0, 1, 2 is the index of the triangle. The triangles
are shown in Fig. 1. The representatives were chosen with the
following considerations. In class A the triangle A0 is chosen
to have highly irrational angles, implying the strongest mix-
ing properties. The obtuse angle has a one half golden ratio
with γ = π (

√
5 + 1)/4 and the ratio between the remaining

angles is (1 + √
2)/2, that is, one half of the silver ratio.

The triangles A1 and A2 are chosen to have increasingly less
noble ratios between the angles and π and presumably weaker
mixing properties. In class B the triangle B0 has an obtuse
angle of γ = 3π/5 with a golden ratio between the other
angles. Triangles B1 and B2 are representatives of generic
right triangles γ = π/2 and share the angle α with the generic
triangle with the same index. Incidentally, the top angle β of
the right triangle is twice that of the generic one with the same
index.

The third class of triangles with all angles rational with
π are not considered in this study. Triangle billiards of this
class belong to the class of so-called pseudointegrable sys-
tems and have been extensively studied in other works (see
Refs. [17,18] and references therein). Their classical trajec-
tories belong to two-dimensional surfaces of finite genus
defined by the angles [19] and hence cannot be ergodic on
three-dimensional energy surfaces. Their quantum spectral
properties belong to neither the chaotic nor integrable univer-
sality classes, but have potentially less universal intermediate

spectral statistics. The eigenstates of pseudointegrable tri-
angles are also known to form superscars produced by the
series of diffractions off singular points in the triangle cor-
ners. The singular scatterers effectively produce channels of
propagating plane waves inside parts of the billiard contain-
ing short classical periodic orbits. The effect becomes more
pronounced in the semiclassical limit as opposed to the usual
scarred states in chaotic systems where scarring is diminished.
The superscarring effect is well known also in barrier billiards
[18] and is conjectured to exist in a more general class of
polygonal billiards.

In the quantum billiard problem, we consider a quantum
particle trapped inside a (in our case triangular) region B ⊂
R2 referred to as the billiard table. The eigenfunctions ψn are
given by the solutions of the Helmholtz equation(∇2 + k2

n

)
ψn = 0 (1)

and Dirichlet boundary condition ψn|∂B = 0, with eigenen-
ergies En = k2

n , where kn is the wave number of the nth
eigenstate. Here and in the following, we use a system of units
where h̄ = 1, and the mass of the particle is m = 1/2. Using
the very efficient scaling method of Vergini and Saraceno
[20,21] with a corner adapted Fourier-Bessel basis [22] (the
implementation is available as part of [23]) we computed
more than 2 × 106 levels for each triangle. The most recent
study of spectral statistics in generic triangular quantum bil-
liards [24] considered spectra of up to 1.5 × 105 levels in a
family of class A billiards, where in most cases intermediate-
level statistics were observed.

Using several short- and long-range measures of spectral
statistics, such as level spacings, spacing ratios, number vari-
ance, spectral form factor, and mode fluctuations, we confirm
that the class A triangle billiards conform to GOE universality.
The deviations are statistically insignificant for billiard A0,
while for billiards A1,2 we find excellent agreement with GOE
for short-range statistics and a very small spectral compress-
ibility on long energy ranges. In class B the non-right-angled
triangle B0 shows similar statistics to class A, but for the
right-triangle billiards we find some significant deviations
from GOE at finite energies which seem to persist when
increasing the energy (level number), in particular we find a
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finite spectral compressibility. Our results on spectral statis-
tics are corroborated with a study of statistics of localization
measures of eignenstates, and illustrated with the galleries of
eigenfunctions in configuration space, Poincaré-Husimi and
nodal-domain representations.

The paper is organized as follows. The analysis of the
spectral statistics is presented in Sec. II. The subsections
are devoted to the spectral staircase function and the mode
fluctuations (Sec. II A), the level spacing distributions and
ratios (Sec. II B), the number variance (Sec. II C), and the
spectral form factor (Sec. II D). The eigenstates are analyzed
in Sec. III. In Sec. III A we introduce the Poincaré-Husimi
representation that maps the eigenstates onto the classical
phase space. In Sec. III B we analyze the distributions of local-
ization measures of ensembles of eigenstates, and in Sec. III C
we show and analyze particular characteristic examples of
eigenfunctions. The results are concluded and discussed in
Sec. IV.

II. SPECTRAL STATISTICS

The main question we wish to address in this section is,
whether the classical property of mixing rather than Lyapunov
chaos is enough for RMT statistics of the spectra. We will
examine the spectral statistics of the triangle billiards in view
of the most commonly used spectral statistics. These include
the spectral staircase function and the mode fluctuations, the
level spacing distributions and ratios, the number variance and
finally, the spectral form factor. The spectral samples contain
in excess of 2 × 106 levels for each triangle, which is, to the
best of our knowledge, by a good margin the largest number
of modes considered in the literature so far.

A. Spectral staircase function and mode fluctuations

The spectral staircase function counts the number of eigen-
states (or modes) up to some energy

N (E ) := #{n|En < E}. (2)

The asymptotic mean of the spectral staircase is given by the
well-known generalized Weyl formula [25]

NWeyl(E ) = (AE − L
√

E )/4π +
∑

i

π2 − ϕi
2

24πϕi
, (3)

where A is the area, L the perimeter of the billiard, and the
last term a constant corner correction term summing over
the triangle corners ϕi ∈ {α, β, γ }. This formula is already
specialized to polygonal billiards, dropping the vanishing cur-
vature term. Despite being an asymptotic formula, the result
evidently holds from the ground state, as has been observed in
many numerical studies. The spectral staircase typically fluc-
tuates around the mean value N (E ) = NWeyl(E ) + Nfluct (E ).
In order to compare the universal aspects of spectra of differ-
ent triangles, we unfold the spectra. This is most commonly
done by evaluating the Weyl formula at each point of the com-
puted discrete spectrum, giving the unfolded energy levels

en := NWeyl(En), (4)

with unit mean level spacings. The Weyl formula also pro-
vides a means of checking whether the computed spectrum is

complete. The scaling method computes the states in some
small, finite spectral interval. The final spectral sample is
a composite of many small overlapping spectral samples,
where we try to identify which of the levels in the overlap
interval belong to the same eigenstates. Because of the finite
precision and numerical errors in the computation of the indi-
vidual levels this is not always possible, and some levels are
missed, while some may be counted twice. By considering
the fluctuating part of the spectral staircase at the points of the
eigenenergies,

δn = Nfluct (En) = n − 1

2
− en, (5)

known as the mode fluctuation, we obtain a sensitive probe
for determining the completeness of the spectrum. This dis-
crete function should fluctuate around zero if the spectrum
is complete. Any steps in the constant value indicate missing
or spurious levels. However, the amplitude of the fluctuations
increases as we progress higher in the spectrum, and the exact
point of the missing level is nearly impossible to determine.
In Fig. 2 we show δn as a function of the unfolded energy e
for each triangle. The amplitude of the fluctuations is quickly
larger than one, obscuring errors in the spectral computation.
The errors are more easily locatable if we compute a moving
average over 104 consecutive eigenstates. We thus observe
that spurious levels are compensated by missing levels on
four occasions (eight errors) in the spectrum of A0, while the
spectra of A1 and A2 appear complete and without errors. The
spectrum of B0 contains about 11 spurious levels, B1 nine
missing levels, and B2 two to three missing levels. Because
the number of errors is tiny compared to the overall number of
levels, they should have no effect on the statistical properties
of the spectra.

The distributions of the mode fluctuations were conjec-
tured [26,27] to be distinct in chaotic and integrable systems.
The limiting distribution in the semiclassical limit e → ∞ is
expected to be universally Gaussian in chaotic systems. In
integrable systems, the distribution is expected to be system
specific. The variance of the mode fluctuations in some finite
spectral interval is related to the saturation level (see Ref. [27]
for a detailed analysis) of some long-range spectral statistics,
specifically the spectral rigidity �3(L) and number variance
�2(L), with σ 2

δ = �3(∞) 	 �2(∞)/2. The number variance
will be thoroughly investigated in Sec. II C. Based on Berry’s
semiclassical analysis [28] (see also Ref. [29]), one would
expect

σ 2
δ (e) = 1

2π2
lne + a (6)

in chaotic systems with time-reversal symmetry and

σ 2
δ (e) = b

√
e (7)

for integrable systems, where a and b are system-dependent
constants. Before further analyzing the mode fluctuations,
the steps in the data because of the errors in the spectral
computation have been carefully removed by subtracting the
appropriate integer part of the local mean value. In Fig. 3 the
high-lying mode-fluctuation distributions are shown for each
of the triangles. The distributions agree with the Gaussian in
all cases except in the two right triangles B1 and B2, where
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FIG. 2. The fluctuating part of the spectral staircase as a function of the unfolded energy in each triangle. The colored lines represent the
fluctuations at each eigenstate wave number. The black lines are moving averages over 104 consecutive eigenstates, revealing the approximate
location of the spurious or missing levels.

the distributions are skewed slightly. The moments of the
distributions are listed in Table I. This is caused either by
the (possibly superscarred) bouncing ball modes that are most
prominent in the right triangles or by the nonergodicity of the
latter. This type of effect has been observed experimentally in
semiconductor microwave billiards in Ref. [30]. The scarring
mechanisms and the bouncing ball modes will be further dis-
cussed in Sec. III C. It is worth noting that the distribution is
Gaussian even in the B0 triangle. In Fig. 4 we plot the variance

of the mode fluctuations as a function of the unfolded energy.
The energy spectra of 2 × 106 unfolded levels were divided
into 100 equally spaced and logarithmically spaced intervals,
and the mode-fluctuation variances computed. Even though
there is significant scattering of the data, some conclusions
may be made. Relying on the semiclassical analysis, one
would expect the triangles with stronger mixing to be closer
to the prediction for chaotic systems Eq. (6). The energy de-
pendence σ 2

δ (e) in the most irrational triangle A0 does indeed
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FIG. 3. The histograms of the mode-fluctuation distributions for 105 consecutive eigenstates starting from e = 106. The best fitting
Gaussian distributions are shown with colored lines, and the values of the central moments are shown in Table I.
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FIG. 4. The variance of the mode-fluctuation distributions as a function of the unfolded energy. The insets show the data in the log-log
scale. The dashed lines show the best fitting theoretical curves (6) in red, (7) in blue, and a linear superposition of both (8) in black; the fitting
parameters are given in Table II.

coincide quite closely with the predicted scaling. However,
the scaling in the right triangles coincides with the integrable
case Eq. (7). In general, the data are best described by a linear
superposition of both scaling laws

σ 2
δ (e) = c

2π2
lne + a + b

√
e. (8)

This is most likely caused by bouncing ball modes along
marginally stable classical periodic trajectories [31], which
generally behave like regular modes. These modes (eigen-
states) can be as well referred to as scars, even though the
latter term is typically reserved to effects of (weakly) unstable
classical periodic orbits, thus we prefer to use the term bounc-
ing ball modes. Since the scaling of variance for the bouncing
ball modes is much stronger compared to the generic modes,
this contribution is significant even if the relative fraction
of the bouncing ball modes is small, such as in the generic
triangles A1 and A2. In particular, the data are far from both
the chaotic and integrable prediction in the triangle B0, but

TABLE I. Central moments of the distributions shown in Fig. 3,
computed directly from the mode fluctuations of the 105 sampled
consecutive states.

Label μ σ Skew Kurt

A0 0.00 0.67 −0.014 −0.041
A1 0.00 1.13 −0.129 −0.048
A2 0.00 1.29 −0.093 0.061
B0 0.00 1.22 −0.005 −0.009
B1 0.00 3.05 −0.285 −0.137
B2 −0.01 3.17 −0.295 −0.191

still well described by the superposition. The causes may be
twofold. First, the system has weaker mixing properties and,
second, there exist heavily scarred bouncing ball modes. It is
difficult to say which of the causes is more significant. The
mode-fluctuation distributions provide the first piece of evi-
dence that mixing is enough for a correspondence with RMT.
However, weaker mixing and bouncing ball modes result in
deviations from the RMT predictions.

B. Level spacings

Nearest-neighbor-level spacing distributions are the most
widely used indicator of quantum chaos. The level spacing is
defined as the difference in energy between two consecutive
levels in the unfolded spectrum si = ei+1 − ei. The unfolding
procedure guarantees that the mean level spacing is unity.
The main object of interest is the level spacing distribution,
i.e., the probability density P(s) or its cumulative density
W (s) = ∫ s

0 P(s) ds. Furthermore, it is useful to perform the
following nonlinear transformation of the cumulative level

TABLE II. Fitting parameters of Eq. (8) fitted to the variances of
the mode fluctuations shown in Fig. 4.

Label a b c

A0 −0.071 ± 0.088 (8.4 ± 2.9) × 10−5 0.64 ± 0.17
A1 −0.057 ± 0.072 (9.8 ± 0.3) × 10−4 0.49 ± 0.14
A2 −0.18 ± 0.14 (1.2 ± 0.057) × 10−3 0.95 ± 0.27
B0 −0.78 ± 0.21 (3.7 ± 0.75) × 10−4 2.9 ± 0.4
B1 1.1 ± 0.22 (9.3 ± 0.11) × 10−3 −1.8 ± 0.46
B2 −0.26 ± 0.32 (9.2 ± 0.16) × 10−3 1.1 ± 0.66
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FIG. 5. Deviations of the level spacings for the triangle billiards
compared to GOE δU = Udata − UGOE. The extent of expected sta-
tistical fluctuations is shown by the gray band. The top panel shows
only the data for all triangles. The WD distribution is plotted with
a dashed line. In the lower panel, we show a magnification of the
results, omitting the right triangles for clarity.

spacing distribution,

U (s) := 2

π
arccos

√
1 − W (s), (9)

since the expected statistical fluctuations σU = 1/π
√

N are
independent of s and depend only on the sample size N (see
Ref. [32] for a short derivation). In chaotic systems with time
reversal symmetries, the level spacing statistics are expected
to coincide with the GOE random matrix ensemble, well ap-
proximated by the Wigner-Dyson (WD) distribution

PW D(s) = π

2
s exp

(
−π

4
s2

)
, (10)

based on the two-dimensional random matrix approximation.
However, far more accurate formulas for the level spacing
distributions based on asymptotic expansions around s → 0
and s → ∞ exist and may be compounded and numerically
evaluated to obtain a very accurate approximation of the infi-
nite dimensional GOE result (see Ref. [33] for details). We
will refer to these numerically evaluated distributions with
the subscript GOE, for instance, UGOE(s). Since the level
spacing distributions in the selected triangle billiards are all
very close to the GOE result, we will mainly consider the
deviation δU (s) = U (s) − UGOE(s), which we show in Fig. 5.
The deviations are largest in the two right triangles B1 and B2,
and decrease systematically when we consider more irrational
triangles. We may note that the deviations go in the opposite
direction to those of the WD distribution. Curiously, the devi-
ations in A2 and B0 largely overlap even though the triangles
belong to different classes. The deviations in A0 fall almost
entirely within the expected statistical fluctuations for the
sample size, thereby presenting strong evidence that strongly
mixing systems conform to RMT statistics. The deviations in
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FIG. 6. The averaged level spacing ratio for consecutive samples
of 2.5 × 105 levels in the unfolded energy spectra.

the other triangles are not statistical. They are caused by the
bouncing ball scarred states. The level spacing distributions
are mostly stable with respect to increasing the energy range,
even if we compare only the 105 highest or lowest lying
states. This fact indicates that our results have essentially
converged to the semiclassical limit. In spite of the expectation
of quantum ergodicity, it is known that bouncing ball scarred
states may contribute to the level statistics significantly at any
energy [34].

To further corroborate the results, we computed a second
commonly used short-range statistic, namely, the level spacing
ratio (LSR) [35]. This is defined as

ri = min(si, si−1)

max(si, si−1)
, (11)

where si = ei+1 − ei is the level spacing. The level spacing
ratio provides the benefit that it is not necessary to unfold
the spectra, as it is independent of the local density of states.
For GOE random matrices, the mean LSR is 〈r〉GOE = 0.5307
and 〈r〉Poiss = 0.3863 for Poissonian-level statistics. In Fig. 6
we show the mean LSR computed for consecutive intervals of
2.5 × 105 levels. Even though unfolding is not required, it is
easiest to compare the statistics in the unfolded energies. The
mean LSR values fluctuate around 〈r〉GOE = 0.5307. Again,
the two right triangles are the exception, where the mean
LSR fluctuates around slightly lower values after saturation,
〈r〉B1 ≈ 0.5255 and 〈r〉B2 ≈ 0.5223. The results on the mean
LRS thus corroborate the previously presented results on the
level spacing distributions. However, the mean LRS does not
distinguish between the different non-right-angled triangles.
One might wish to consider the distributions of the LRS in-
stead, but we have already gained all the relevant information
from the level spacing distributions.

C. Number variance

When studying medium- and long-range statistics of the
spectra, two statistics are most commonly considered, namely
the spectral rigidity �3 and the number variance (NV) �2

013138-6



QUANTUM CHAOS IN TRIANGULAR BILLIARDS PHYSICAL REVIEW RESEARCH 4, 013138 (2022)

0 100 200
L

0

1

2

3

Σ
2
(L

)

A1

0 20
0

1

0 100 200
L

0

10

20

Σ
2
( L

)

B1

0 20
0.0

2.5

0 100 200
L

0

2

4

Σ
2
(L

)

A2

0 20
0

2

0 100 200
L

0

10

20

Σ
2
(L

)

B2

0 20
0

5

0 100 200
L

0.0

0.5

1.0

1.5
Σ

2
(L

)
A0

0 20
0

1

0 100 200
L

0

1

2

3

Σ
2
( L

)

B0

0 20
0

2

FIG. 7. Number variance of cumulative spectral samples, adding 2 × 105 levels at each step (gray lines) up to e = 2 × 106 (colored lines).
The insets show the short-range behavior of the number variance. The dashed line is the GOE prediction.

(both were mentioned already in Sec. II A). The two are re-
lated via a simple integral transformation (see for instance
[27]), and we will therefore focus only on the number vari-
ance. The NV is defined as

�2(L, e) := 〈
(n(L, x) − L)2

〉
e,w, L > 0, (12)

which is the local variance of the number n(L, x) = N (x +
L/2) − N (x − L/2) of unfolded energy levels in the interval
en ∈ [x − L/2, x + L/2]. The brackets 〈·〉e,w denote a local
average around the central energy e and window width w, so
that x ∈ [e − w/2, e + w/2]. The RMT result for the GOE
case is the following:

�2
GOE(L) = 2

π2

{
ln(2πL) + γ + 1

+ 1

2
Si2(πL) − π

2
Si(πL) − cos (2πL)

− Ci(2πL) + π2L

[
1 − 2

π
Si(2πL)

]}
,

where γ = 0.5772 . . . is Euler’s constant and Si(x) and Ci(x)
are the sine and cosine integral respectively. In the Poissonian
case, we have �2(L) = L. Moreover, the short-range behavior
of the NV �2(L) = L + O(L2) is fixed by the fact that the
spectra are unfolded. It is well known that the medium- and
long-range statistics measured by the number variance are
strongly influenced by (nonuniversal) short periodic orbits
(see Ref. [36] and references therein). The universality regime
in which RMT spectral statistics are expected in real chaotic
systems is restricted to short correlation lengths L � Lmax,
where following semiclassical arguments Lmax ∝ √

e. For L >

Lmax, the NV oscillates around its saturation plateau �2(∞).
In Fig. 7 we show �2(L, e). The curves show the NV for

cumulative spectral samples, adding 2 × 105 levels at each
step (gray lines) up to e = 2 × 106. We observe the curves
saturate at ever higher values as we progress deeper into
the semiclassical limit. The progressive curves form an en-
velope approximating the asymptotic result. The insets show
the small L behavior of the envelope function. This is well
described by GOE up to the saturation in the A0 triangle. In the
other cases, the short-range behavior is followed by a linear
regime. The proportionality coefficient in the linear regime is
known as the spectral compressibility. In the right triangles,
we observe multiple linear regimes with varying spectral com-
pressibility, until saturation. The qualitative shapes of the NV
are similar for the triangles A1, A2, and B0 and also within
the subclass of right triangles B1 and B2. The linear regimes
are caused by the bouncing ball scarred modes. It is evident
that the bouncing ball contributions may become dominant
even at fairly short correlation lengths. In the most irrational
triangle, the NV follows the GOE prediction up to saturation,
confirming the medium-range statistics conform to random
matrix theory.

D. Spectral form factor

As a final test of the long-range spectral statistics, we
computed the spectral form factor (SFF). The SFF is loosely
defined as the Fourier transform of the spectral two point
correlation function and can be written as

K (t ) =
〈∣∣∣∣∣

∑
n

exp(2π ient )

∣∣∣∣∣
2〉

, (13)

where the sum goes over the unfolded energy levels, and 〈·〉
represents an average over an ensemble of similar systems
or a moving time average as discussed below. The time t
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is measured in units of the Heisenberg time tH = 1, defined
as tH = 2π h̄/〈s〉 in full units. The Heisenberg time is the
typical timescale after which discreetness of the spectrum
is resolved. In a monumental feat of semiclassical analysis,
spanning many years of research [3–6,37,38], the periodic
orbit contributions to SFF in chaotic systems have been fully
identified and shown to conform to the RMT statistics. This is
also supported by an extensive amount of numerical evidence.
Recently the RMT statistics of the SFF have been analytically
shown to hold in a kicked Ising spin system as a minimal
model of many-body quantum chaos (without a meaningful
classical limit) [39] and other systems represented with dual-
unitary quantum circuits [40]. In the infinite dimensional GOE
case, the SFF has the following analytical form:

KGOE(t ) =
{

2t − t ln(2t + 1) t < 1

2 − t ln
(

2t+1
2t−1

)
t > 1

. (14)

It is worth mentioning that the SFF is related to the NV studied
in the previous section by the integral transformation �2(L) =∫ ∞

0 dtK (t )[sin( πLt
πt )]2. The behavior of the NV in long-range

limit is given by the SFF at short times. If the SFF remains
finite in the limit t → 0, then �2(L) = L limL→∞ K ( 1

L ). A
finite limit of the SFF at t → 0, the so-called spectral com-
pressibility K (0), thus results in the linear behavior of the
NV, which we observed in most triangles (except in the “most
mixing” case A0). The main practical drawback of the SFF
is the fact that it is not a self-averaging quantity [41], mean-
ing that the typical value at some time may be far from the
average value over some short-time interval. This problem
is traditionally circumvented by performing an average over
an ensemble of systems, for example different realizations of
disordered systems, random matrices, etc. This approach is
not suitable in our case, where we want to understand the
properties of very specific dynamical systems. We will thus
opt for a different approach, namely, employing a moving av-
erage in time to smooth the results. This is done by convolving
the time-dependent SFF data with a Gaussian kernel in time.
We thus introduce an additional numerical parameter to the
calculation, the width of the Gaussian kernel δt . The SFF
exhibits a delta-like peak at short times t < 10−5 (inversely
proportional to the number of states), with an amplitude pro-
portional to the square of the number of spectral levels, which
would obscure the results of the time smoothing. We therefore
consider only the so-called connected part of the SFF by
removing this initial peak from the data. In Fig. 8 we show
the connected spectral form factor, giving us a time-resolved
view of the spectrum. The entire computed spectral samples
were used for the calculation, and the width of the time
smoothing kernel is δt = 0.01. In keeping with the previously
presented spectral statistics, the SFF in the most irrational
triangle A0 conforms perfectly to the GOE prediction. The
other triangles show deviations at short times (particularly
visible in the inset) as one would expect based on the results
on the NV. The qualitative behavior is similar in all cases. The
characteristic time at which the SFF starts to overlap the GOE
result is related to the transport time of the classical system.
The relevance of this timescale will be further discussed in
Sec. III B. Again, this short-time behavior is most likely due
to the bouncing ball orbits, which feature most prominently
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0.6

0.8
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K
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)

0.0 0.1 0.2 0.3
0.0

0.2

0.4

A0
A1
A2

B0
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B2

FIG. 8. The connected spectral form factor of the triangle bil-
liards computed for the entire data sets of 2 × 106 levels. Since the
SFF is not self-averaging, a moving-time average is performed to
smooth the data. The nonuniversal disconnected part (the delta-like
peak at times t < 10−5) is removed from the data before the aver-
aging. The inset shows a magnification of the short-time behavior.
The vertical line shows the Heisenberg timescale tH = 1. The black
dashed line is the GOE prediction.

in the right triangles. The SFF does not change, if we omit
the first 105 levels to diminish any possible nongeneric effect
associated with the low-lying part spectra. Moreover, we have
also compared the SFF computed for intervals of consecutive
2 × 105 levels, starting at different energy, as shown in Fig. 9.
Since the density of states depends on the energy and the time
units are fixed by the local Heisenberg time we observe a weak
dependence of the short-time behavior on the energy, i.e.,
the transport time is rescaled slightly. However, because the
density of states becomes nearly constant at high energies, the
different curves quickly start to overlap even in the short-time
regime.

Finally, we need to admit that it is not evident if the
systematic discrepancy from GOE statistics, which seem not
to decrease with increasing the excitation energies for the
right-triangle billiards, can be solely attributed to abundance
of bouncing ball modes due to marginally stable periodic
orbits. We stress that even the precise counting of the num-
ber of periodic orbit manifolds in triangular billiards is an
open mathematical problem. The discrepancy from GOE
could also be related to observed and suggested [14] lack
of ergodicity in generic right triangular billiards, or, alterna-
tively [15,42,43], extremely “slow” (logarithmic) ergodicity
(or pseudoergodicity). We note that even with state-of-the-art
numerical experiments, it seems impossible to draw a definite
conclusion.

III. EIGENSTATES

The triangle billiards considered in this work belong to a
general class of quantized ergodic systems, although ergod-
icity has been rigorously proven only for a dense subset of
triangular billiards [44], and as previously stated the generic
right triangles may not be ergodic but are only pseudoergodic
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FIG. 9. The connected spectral form factor of the triangle billiards for 2 × 105 consecutive levels starting at different energies e0, with
e0 = 0 (blue), e0 = 4 × 105 (orange), e0 = 8 × 105 (green) e0 = 12 × 105 (red), e0 = 16 × 105 (violet). The black dashed line is the GOE
prediction.

in this sense. Due to the quantum ergodicity theorem [45,46]
(see also Ref. [47] and references therein) one expects that
the wave functions will be spatially close to uniform in the
semiclassical limit. The wave functions in the bulk of the
system (far away from the boundary) are statistically similar
to random superpositions of plane waves [48]. However, there
are well-known exceptions, for example, the states scarred
by periodic orbits [49], or dynamically localized states (see
Ref. [50] for many examples in billiards). We will examine
the eigenstates of the triangles in terms of their statistical
properties, as well as some recently developed methodology
based on the localization measures in the Poincaré-Husimi
representation.

A. Poincaré-Husimi representation

When considering eigenstates of any quantum system in
the semiclassical limit, it is often useful to interpret them
as (quasi)probability distributions in terms of the classical
canonical coordinates (q, p). Since there is no strict equivalent
to the classical phase space in the quantum realm (due to the
uncertainty principle) various representations are employed.
Most commonly, the eigenstate is represented with the Wigner
[51,52] or Husimi [53] function, the latter being a Gaussian-
smoothed equivalent of the former. In contrast to the Wigner
function, the Husimi functions are strictly non-negative and
may therefore be interpreted, in a vague sense, as probability
density functions of quantum states in classical phase space.
Here we will give a short description of how to define the
Husimi functions for billiard systems, following the construc-
tion outlined in Refs. [54,55].

The classical billiard dynamics may be reduced to a two-
dimensional discrete mapping. We first fix the speed of the

particle and employ the Poincaré surface of section (SOS)
method, using the boundary of the billiard table as the SOS
to discretize the dynamics. The mapping is commonly de-
scribed in the Poincaré-Birkhoff (PB) coordinates, where we
take the arc-length of the billiard boundary q as the spatial
coordinate and p = sin α, as the canonical momentum, where
α is the angle of reflection. The phase space is a cylinder
M = [0, L] · (−1, 1), where we take s to be periodic with
a period equal to the total length of the billiard boundary L.
For a more detailed description, see Ref. [50].

As we see, all the relevant information about the classical
dynamics is contained on the boundary of the billiard table.
Similarly, the wave function inside the quantum billiard is
fully determined by its normal derivative at the boundary,
called the boundary function

u(q) := n · ∇rψ[r(q)], (15)

where n is the outward normal unit vector at the boundary
position r(q). The wave function is obtained by the boundary
integral

ψk (r) = −
∮

∂B
dluk (l )G[r, r(l )], (16)

where r(l ) is a position on the billiard boundary and r is a
position inside the billiard table, and

G(r, r′) = − i

4
H (1)

0 (k|r − r′|) (17)

is the free particle Green’s functions satisfying (∇2 +
k2)G(r, r′) = δ(r − r′), and H (1)

0 (x) is the zero-order Hankel
function of the first kind.

The Pouncaré-Husimi (PH) functions are a representation
of the quantum states of billiards as probability distributions
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in the phase space using the classical (PB) coordinates. The
basic idea is to use coherent states on the boundary ∂B, that
are localized at (q, p) ∈ [0, L] · [−1, 1] and are periodic with
a period of L, onto which we project the boundary functions
u(s). We define the coherent state as

c(q,p),k (l ) :=
∑
m∈Z

exp [ikp(l − q + mL)]

× exp

[
−k

2
(l − q + mL)2

]
.

The sum over m ensures the coherent states are periodic,
with a period of L. We omit all normalization factors because
we will normalize the PH functions at the end. Let un(q)
be the boundary function of the nth billiard eigenstate with
the wave number kn. The Poincaré-Husimi function of this
state is defined as

Hn(q, p) := 1

An

∣∣∣∣
∮

∂B
c(q,p),kn (l )un(l ) dl

∣∣∣∣
2

, (18)

where An is a normalization factor. We see that the PH func-
tions are positive definite by construction and would like them
to represent probability distributions in the phase space. We
therefore fix the normalization factor so that

L∫
0

dq

1∫
−1

d pHn(q, p) = 1. (19)

The PH functions are an invaluable tool for interpreting the
quantum-classical correspondence in billiards and will help
us to distinguish generic eigenstates from bouncing ball states.
Many examples are shown in Sec. III C.

B. Localization measures

In ergodic systems, we expect the generic states to be close
to uniformly extended over the entire phase space (in the
PH representation). On the other hand, the states scarred by
marginally stable periodic orbits are localized on the part of
the phase space corresponding to the classical periodic orbits.
The extent of the localization is one criterion by which the
bouncing ball states may be distinguished from the generic
ones. Following recently developed methodology, that has
been used to describe the dynamical localization in fully
chaotic [56] and mixed-type billiards [32,57,58], we will de-
fine a localization measure based on the entropy of the PH
functions of the eigenstates. We interpret the PH function as a
probability distribution and define its information entropy:

Sn := −
L∫

0

dq

1∫
−1

d pHn(q, p) ln [Hn(q, p)]. (20)

The entropy localization measure (ELM) is then defined as

ln := exp (Sn)

Vol(M)
, (21)

where Vol(M) = 2L is the volume (surface area in our case)
of the classical phase space. The ELM is minimized by a state
localized within one Planck’s cell of the phase space, giv-
ing l → 0. Conversely, the ELM is maximized by a uniform

distribution in the phase space, giving l = 1. However, pure
states cannot produce a completely uniform distribution, so in
practice there is some upper bound for the ELM. Empirically
and based on some numerical results using Berry’s random
wave ansatz, we find lmax ≈ 0.7 [50]. Let us mention that tra-
ditionally (see, for instance, Ref. [59] for a review of results in
the quantum kicked rotor), similar localization measures were
defined by considering the occupation of the basis vectors
in some natural basis (which is not the eigenbasis) for the
particular problem. In this sense, the ELM can be thought of
as the localization length.

The distributions of the ELMs have recently been stud-
ied in several families of billiards. Results from the ergodic
stadium [56], cardioid [56], and special cases of the lemon
billiards [50] show that the ELMs of a sequence of consecu-
tive eigenstates are distributed according to a common form,
which is empirically well described by the beta probability
distribution. This was corroborated by special cases of the
lemon billiards with a mixed-type phase space but no stick-
iness [50,60], as well as the Dicke model [61] in the chaotic
regime, which describes a series of atoms coupled to a single
elctromagnetic cavity mode. We thus expect the same shape
of the distribution of the ELM in the “most mixing” triangle
billiards, namely,

P(l ) = 1

C
la−1(lmax − l )b−1, (22)

where the normalization constant is given by C =
la+b−1
max B(a, b), where B(x, y) is the beta function, the

namesake of the distribution. While the shape of the
distribution seems to be universal for ergodic systems
and even nonsticky components of mixed-type systems,
the shape parameters a and b vary from case to case and
spectral interval, depending on the level of localization of the
eigenstates. This is only one possible choice of localization
measure in a wider class of Rényi occupation measures
[62,63], defined as the exponentials of the Rényi entropies of
the Husimi functions

lα
n := 〈

Hn
α
〉 1

1−α , (23)

where α is the order of the measure and the angled brack-
ets denote the phase space average (we note that the PH
functions are already correctly normalized, so no additional
normalization factor is needed). In the limit α → 1 we obtain
the ELM. We will also consider the α = 2 measure, i.e.,
the normalized inverse participation ratio (IPR). Higher order
Rényi occupation measures are more sensitive to larger values
of the Husimi function and therefore suitable for detecting
highly localized or scarred states, as recently demonstrated
in Refs. [64,65] for the Dicke model. Analytical calculation
based on the random wave approximation (see Ref. [65] and
references therein) give the estimate lα

max ≈ 
(1 + α)1/(1−α)

for maximally extended pure states. This gives us lmax =
l1
max ≈ 0.66 and l2

max ≈ 0.5. In practice, the PH functions were
evaluated on a grid of Mq × Mp points in the phase space, with
Mp ≈ 5kL/(2π ) and Mq = LMp. The PH functions were then
considered as discrete probability distributions and the phase
space averages evaluated as sums.

Dynamically localized states are expected to appear if the
classical transport time tT (the typical timescale of classical
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FIG. 10. Distributions of the ELMs of 104 consecutive eigenstates, starting form e0 = 1.5 × 106. The main figures show the kernel density
estimation of the probability density function, and the insets, the cumulative distribution function. The colored dashed lines show the best
fitting beta distribution Eq. (22). The vertical gray line indicates l1

max = 0.66 from the RWM.

diffusion) is longer than the Heisenberg time. We may define
the localization control parameter α = tH/tT . The Heisenberg
time is proportional to the mean density of states, which is
given by the Weyl formula ρ(E ) = dN/dE = A

4π
− L

8π
√

E
. We

may manipulate the local Heisenberg time by considering
only the states with wave numbers close to some k0 = √

E0.
Interestingly, we may estimate the classical transport time
from the SFF. As we saw in Sec. II D the SFF initially deviates
from the GOE result, but after some time the two curves start
to overlap. The point of overlap is the classical transport time.
From Fig. 8 we see tT � tH in all cases except for the right
triangles, where tT ≈ 0.4tH . We thus expect no significant
dynamical localization, with the possible exception of some
small effects in the right triangles.

In Fig. 10 we show the distributions of the ELMs of 104

consecutive states, starting from the unfolded energy e0 =
1.5 × 106 in each triangle. In all cases, the distribution is
skewed heavily towards the extended regime. Especially in the
class A triangles, the ELMs are narrowly distributed towards
the upper bound lmax = l1

max ≈ 0.7. The theoretical expecta-
tion lmax ≈ 0.66 is slightly exceeded in some cases, which we
attribute to finite-size effects not considered in the derivation.
The distributions are wider in the class B triangles (especially
in the right triangles) but still centered on the extended regime.
As expected, there is no significant dynamical localization.
The empirical beta distribution (22) fits the data reasonably
well. The fit is almost perfect in the A0 triangle. However,
we see slight deviations in the lower tail of the distribution,
which are even more pronounced in the class B triangles.
These deviations are caused by the bouncing ball scarred
states. The bouncing ball states are severely localized and thus
produce small localization measures. The distributions of the
measures show that severely localized states are more proba-
ble than expected in a uniformly ergodic system, even in the
strongly mixing triangles, but especially in the weakly mixing

and pseudoergodic ones. As already indicated by the spectral
statistics, this is especially noticeable in the right triangles. In
Fig. 11 we show the dependence of the ELM distributions as
function of e0, thus varying the local Heisenberg time. One
immediately notices the distributions narrow as we increase
e0. As expected from the quantum ergodicty theorem, all
states become increasingly delocalized and ever closer to uni-
formly extended states. However, this is almost not noticeable
for the right triangle due to the much longer transport time.
Furthermore, we may see some scarred states persist well
into the high-energy parts of the spectrum and may remain
even in the semiclassical limit. This has been extensively stud-
ied in chaotic billiards [34]. Using the WKB approximation,
one can estimate how the proportion of bouncing ball states
scales with k. In principle, this may be arbitrarily close to
Nbb ∝ k2 that is the first term of the Weyl formula, giving
a nonvanishing contribution in the semiclassical limit. The
scarred states are identifiable by having a very small ELM.
It is quite possible that the bouncing ball states are actually
superscarred states, similar to those found in pseudointegrable
triangle billiards (see Ref. [18] and references therein).

To corroborate these results, we consider also the IPR as
an alternative localization measure. In Fig. 12 we show the
distributions of the IPRs of 104 consecutive states, starting
form e0 = 1.5 × 106 in each triangle. Results from chaotic
and mixed-type billiards [50,56,57] show the mean ELM and
IPR in small spectral samples are linearly dependent. This
leads us to expect that the distributions of the IPRs should
also be generally similar to the distributions of the ELMs.
Indeed, we find the empirical beta distribution (22) fits the
distributions of the IPR reasonably well when the parameters
are suitably adjusted, that is, l2

max ≈ 0.5. The maximum value
from the data is close to this value but is slightly exceeded in
most cases, except for the right triangles where it is slightly
lower. The distributions are generally wider than those of the
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FIG. 11. Distributions of the ELMs of 104 consecutive eigenstates, as a function of the unfolded energy e0 (indicated at the top of each
column). The colored lines show the best fitting beta distribution (22).
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max = 0.5 from the RWM.
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FIG. 13. Distributions of the IPRs of 104 consecutive eigenstates, as a function of the unfolded energy e0 (indicated at the top of each
column). The colored lines show the best fitting beta distribution (22).

ELMs (compare with Fig. 10), and the bouncing ball scarred
states are more prominent and thus more easily detectable as a
slight bulge in the lower tail of the distribution. This may also
be observed in Fig. 13 where we show the energy dependence
of the distributions of the IPRs. The bouncing ball scarred
states are again noticeable in the class B triangles and persist
into the high-energy regime. Since the beta distribution is
only an empirical estimate, it is difficult to make any rigorous
statements about the proportion of scarred states that persist in
the semiclassical limit. We may state only that the deviations
from the best fitting beta distribution (taking, for instance,
the Kolmogorov-Smirnov test) do not systematically diminish
with progressing energy, but remain roughly the same and
relatively small.

C. Gallery of states

Thus far, we have studied the collective properties of en-
sembles of eigenstates. We will now examine the properties of
some representative eigenstates themselves. The main goal is
to assess if the eigenstates of the triangle billiards comply with
the well-known results on quantum ergodic states. As conjec-
tured by Berry, with the random wave model (RWM), typical
eigenstates in ergodic systems (far away from the boundaries)
are expected to be statistically similar to superpositions of
plane waves with random phases. The universal properties of

such states have been extensively studied (see Ref. [66] for
an overview) and famously form the basis of the eigenstate
thermalization hypothesis [67]. An abundance of numerical
evidence in chaotic billiards is available to support the RWM.
The similarity with RWM states is apparent already upon visu-
ally inspecting the probability distributions of chaotic billiard
eigenstates |ψ |2 in the configuration space. The wave func-
tions form typical nodal patterns that are very similar to RWM
states. Apart from the visual similarity, other statistical prop-
erties of the ergodic eigenstates closely coincide with those
of RWM states. It is well known that the values of the wave
function of the RWM states follow a Gaussian distribution
[66]. The spatial correlations of the wave functions in chaotic
billiards also decay as a Bessel function of the distance, as
predicted by the RWM. Even though the triangle billiards
under our investigation are not chaotic, we expect very similar
properties to those of RWM states, since the RWM requires
only ergodicity. However, scarred states first found by Heller
[49], which by definition violate the RWM assumptions, are
ubiquitous in billiard systems. The best-known examples are
the bouncing ball states of the stadium billiard. Because of
the straight boundaries, one may expect to find very similar
scarring in the triangle billiards. Furthermore, superscarred
states are known to exist in pseudointegrable triangles [17,18].
In Fig. 14 we show a comparison between a RPW state and
examples of a generic and heavily scarred triangle eigenstate.
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FIG. 14. The top row shows probability distributions of (from left to right) a Gaussian random superposition of plane waves (that satisfy the
Dirichlet boundary condition only on the bottom and left boundary) with k = 191.870, an eigenstate of the A1 billiard with k = 191.870 and
a heavily scarred eigenstate of the B1 billiard with k = 191.854. The bottom row shows the corresponding nodal patterns. The wave function
is real and positive in the black regions and negative in the white regions. Observe the similarity and differences between the nodal patterns of
the random waves and the eigenfunctions.

Let us consider the wave function in the triangle billiards
ψ (r), r ∈ B and the probability |ψ |2 in the configuration
space. The typical probability distributions should show the
distinctive uniform nodal patterns similar to random plane
waves. The distribution of the wave function values should
be close to Gaussian. When scarring occurs, the probability
is enhanced along the path of a classical unstable periodic
orbit (or family of orbits). The semiclassical interpretation of
the states is even easier, when we consider the states in the
Husimi representation. Any scarring is easily observable as
an enhancement (or localization) of the PH function near the
classical periodic orbits. Some further information about the
states may be gained also by observing the isocontour patterns
of the PH functions. Due to a deep link of Husimi functions
to square moduli of complex analytic functions of z = q + ip
(the so-called Bargmann representation of quantum states),
the set of zeros—points in phase space—is completely charac-
terizing the quantum state and resembles a star field, thus it is
referred to as the stellar representation of quantum states [54].
The number of zeros is proportional to the sequential mode
number of the state, and their distributions show contrasting
behaviors for regular and chaotic systems [68]. Similarly to
SOS plots in classical dynamical systems, the nodes of the
Husimi functions form regular ordered patterns along lines of
invariant curves in regular systems and distribute themselves
in more disordered patterns in chaotic systems. We will now
show a small selection of triangle eigenstates and discuss
their properties. By considering the ELMs, discussed in the
previous section, interesting states are easily identified. We
will first show some states from the bulk of the ELM distri-
butions, which we consider typical. These are presented in
Figs. 15–17. The states are mostly extended, but some scarring
is visible in all three examples. The distribution P(ψ ) is very
close to Gaussian in all three cases, with some small peaks
near ψ = 0. These small enhancements may be attributed

partly to boundary effects and partly to scarring. The PH
functions are mostly extended over the whole phase space,
with some enchantment along the periodic orbits causing the
scarring. The zeros in the stellar representation show similarly
disordered patterns for each triangle, but depend on the un-
derlying features of the classical dynamics. In Figs. 18–20 we
show some of the most heavily scarred states we observed. We
see that even in the most strongly mixing triangle A0, scarring
is still observable. The other two examples show states that
are so severely scarred that they are localized on the clas-
sical bouncing ball invariant manifolds. In fact, these types
of superscars are found in pseudointegrable systems, such as
the right triangles with rational corners and barrier billiards
[17,18,69] and have been conjectured to exist in more general
polygonal billiards. Here we present some clear numerical
evidence that they exist also in triangles with only one rational
angle. Last, we show some uniformly ergodic extended states
in Figs. 21–23. These have been selected on the grounds of
having ELMs above the typical values, i.e., from the right
tails of the distributions. The PH functions are as close to
uniformly distributed as possible for eigenstates. However,
we may observe that the zeros in the stellar representation
in the triangles B0 and B1 tend to order themselves in the q
direction (with fixed p). Let us remark that we have chosen to
show states with relatively low energies purely for graphical
convenience, and equivalent examples may be found higher in
the spectrum.

IV. DISCUSSION AND CONCLUSIONS

We have presented an extensive numerical study of quan-
tum chaos in two classes of triangle billiards. The first class
(A) consist of generic triangles where all angles have ir-
rational ratios with π (with any pair of angles mutually
incommensurate) and in the second class (B) exactly one of
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FIG. 15. Typical state of the A0 triangle billiard, with k = 500.1714 and l1 = 0.602, l2 = 0.445. (Upper part) The probability distribution
in real space and the histogram of the (real) wave function values fitted by a Gaussian distribution (colored line). (Lower part) PH function
probability (positive p) and stellar representation (negative p) in the classical phase space coordinates. The vertical lines show the positions of
the corners. The stellar representation is achieved by plotting the PH function in the logarithmic scale. The white dots show the areas where
Hn(p, q) < 10−16.

the angles has a rational ratio with π . While the classical
dynamics of billiards in the class A is observed to be er-
godic and mixing [12], the billiards in the class B with the
right angle (π/2), specifically B1 and B2, are probably not
even ergodic [14]. We examined the spectral statistics, the
localization properties, and the structure of the eigenstates.
Our numerical study clearly confirms the long held belief
that a dynamical system that has ergodic and mixing proper-
ties but is nevertheless not chaotic may still exhibit random
matrix theory spectral statistics when quantized. The main
example presented in this work is the generic (ergodic and
mixing) triangle labeled A0. Both the short-range statistics
like the mode fluctuations, the level spacing, and the spac-
ing ratio distributions and the medium-to-long-range statistics
such as the number variance and spectral form factor are
consistent with the GOE statistics, extending the quantum
chaos conjecture. The eigenstates are consistent with quantum
ergodicity, as shown by considering the localization measures
in the Poincaré-Husimi representation. However, some small
scaring effects are still observable and scarred bouncing ball
states may be found even in the deep semiclassical limit.
There is little doubt remaining that the triangle A0 is quantum
ergodic. There is the question remaining about the rate at
which ergodicity manifests itself as a function of the energy.
An illumination of this question might be gained by studying
the matrix elements of a characteristic function on a part of the

triangle, akin to the study performed by Barnett for the Sinai
billiard in Ref. [47] and is left for future work.

The other generic triangles considered in this work, A1, A2,
have been chosen to have less irrational angles (in the sense
of a continued fraction expansion). The spectral statistics in
these two cases are still very close to RMT. The distribu-
tions of the mode fluctuations are Gaussian, but scaling of
their variance indicates the presence of scarred bouncing ball
states. The level spacing distributions are close to the asymp-
totic GOE prediction, in fact closer than the Wigner-Dyson
approximation, but are lager than purely statistical devia-
tions at the considered sample sizes. The number variance
follows GOE for short ranges, but reveals a linear long-
range regime, which is also consistent with the short-time
behavior of the connected spectral form factor, as it shows
a small spectral compressibility. Qualitatively, we may be-
lieve that small deviations from GOE in the spectral statistics
of generic triangles are mainly linked to the existence of
scarred bouncing ball states, while more significant deviations
in right triangle billiards are potentially linked to observed
lack of ergodicity (pseudoergodicity) or ultraslow ergodicity.
The localization measures reveal that the deviations from the
empirical beta distribution in the lower tail are consistently
greater in the “less irrational” triangles, owing to the exis-
tence of shorter time periodic orbits that produce a greater
scarring effect. Again, it is hard to predict how deep into the
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FIG. 16. Moderately scarred bouncing ball state of the A1 triangle billiard, with k = 510.3577 and l1 = 0.406, l2 = 0.246. See Fig. 15 for
a description.

FIG. 17. Typical state of the B1 triangle billiard, with k = 500.0795 and l1 = 0.401, l2 = 0.251. See Fig. 15 for a description.
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FIG. 18. Severely scarred bouncing ball state of the A0 triangle billiard, with k = 572.3722 and l1 = 0.309, l2 = 0.179. See Fig. 15 for a
description.

FIG. 19. Severely scarred bouncing ball state of the B0 triangle billiard, with k = 523.6165 and l1 = 0.108, l2 = 0.0648. See Fig. 15 for a
description.
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FIG. 20. Severely scarred bouncing ball state of the B1 triangle billiard, with k = 515.3609 and l1 = 0.110, l2 = 0.073. See Fig. 15 for a
description.

FIG. 21. Uniformly ergodic state of the A0 triangle billiard, with k = 593.6805 and l1 = 0.693, l2 = 0.558. See Fig. 15 for a description.
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FIG. 22. Uniformly ergodic state of the B0 triangle billiard, with k = 564.1286 and l1 = 0.696, l2 = 0.560. See Fig. 15 for a description.

FIG. 23. Uniformly ergodic state of the B1 triangle billiard, with k = 504.6291 and l1 = 0.699, l2 = 0.559. See Fig. 15 for a description.
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semiclassical limit these scarring effects persist, but they are
certainly present at e = 2 × 106, which was the highest un-
folded energy considered.

The situation is very similar in the class B triangles, with
one rational angle. Indeed, the spectral statistics of the B0

triangle (where the rational angle is not π/2) are very similar
to those of A1 and particularly A2. However, in B0 the scar-
ring because of the short-time periodic orbits is even more
prominent as seen in the distributions of the ELMs and in
particular the IPRs, which are more sensitive to scarred states.
We have found examples of very severely scarred states,
localized almost exclusively on the classical bouncing ball
regions, that we consider strong candidates for superscarred
states. The heavily scarred states are even more noteworthy
in the two right triangles B1 and B2. In these two examples,
one may easily find states that appear regular in almost the
entire configuration space, with the exception of the small
areas around the two irrational corners. The deviations from
GOE spectral statistics are also considerably larger than in all
the other examples. The right triangles are also the only cases
where we observed deviations from the Gausssian distribution
of the mode fluctuations. The energy scaling of the variance of
the mode fluctuations is dominated by the bouncing ball states
and is close to the square-root scaling expected in regular
systems. The deviations of the level spacing distributions are
about an order of magnitude larger than in the B0 case. The
deviation is visible also in the averaged level spacing ratio,
which gives results consistent with GOE in all other cases.
The number variance only follows the GOE curve for short
correlation lengths and exhibits linear regimes with varying
spectral compressibility. Consistently, the SFF shows a much
larger deviation as t → 0 and connects with the GOE result
at t ≈ 0.4. This indicates a much longer classical transport
time and is consistent with the observed wider distributions
of localization measures. The contributions of the bouncing
ball states to the mode fluctuations have been studied in the
stadium billiard [27,34]. These states introduce additional os-
cillatory terms in the mean of the mode fluctuations. Special
unfolding procedures may then be used to compensate for
these terms, however this requires an intimate knowledge
of the contributing periodic orbits. The approach might be
feasibly applied to the right triangles, and is left for further
consideration in the future.

Let us make some comments on the technical aspects of the
analysis. First, we are convinced the tiny number of missing
and spurious levels is completely negligible and has no effect
on the statistical results. To make sure, we have tested the
robustness of the spectral statistics with regard to missing
levels by uniformly randomly removing some (up to 0.1%,
vastly more than the number of missing levels) of the levels
from the spectra and computing the results. We have found no
significant changes in the spectral statistics. We also removed
the first 105 levels from the spectral samples to check for
any nonuniversal contributions of the low-lying states, and
found no significant change in the spectral statistics. With
regard to the long-range statistics, we make the following
observations. The expectation that the number variance con-
verges to the semiclassical limit up to Lmax ∝ √

e is in practice
hampered by the fact that the proportionality coefficient may
be arbitrarily small. The SFF also requires a large spectral

sample, in our experience at least 105 states, to ensure that
the time smoothing sufficiently eliminates the fluctuations.
We tested alternative definitions of the SFF involving an
additional spectral filtering by using Gaussian functions of
various widths to weigh the spectra (akin to those used in
Ref. [70]). These all produced identical results after the re-
moval of the short-time disconnected part of the SFF and the
time smoothing. The only difference was in the amplitude of
the fluctuations, which is smallest with no filtering, since the
sample size is effectively larger. Regarding the distributions of
localization measures, we may comment that the results are
consistent with those found in chaotic billiards and ergodic
components of mixed-type billiards without stickiness. The
empirical beta distributions seem to provide good descriptions
of the results also in the triangle billiards, with qualitatively
well-understood deviations. However, the origin of this dis-
tribution is still unknown and lacks a theoretical foundation,
which would facilitate a more quantitative analysis.

Last, we will shortly discuss some referential numerical
studies preformed as part of the investigation of quantum
chaos in triangular billiards but not included in the paper.
Since some deviations from the RMT statistics were observed,
we attempted to produce a minimal example that would elim-
inate them. We thus computed the spectra of the triangle
billiards, A1, A2, B1, B2, with rounded corners. To elaborate,
we take each triangular billiard and cut out a circular arc with
radius R = 0.1 in each of the acute angles (leaving the obtuse
angle as is). The circular arcs form a right angle with the two
shorter sides of the triangle and are smoothly connected with
the long side. This is mainly due to technical issues with the
basis employed in the numerical method. The rounded corners
cause the billiard to become chaotic due to the defocusing
mechanism. Numerically, no islands of stability were found.
The quality of the results is much worse than the triangle
study, with many more missing levels (up to 0.1%), but some
conclusions may still be made. The rounding restores the SFF
to the GOE result in “triangles” A1, A2, but a less prominent
deviation remains in B1 and B2. Similarly, the NV is restored
to the GOE result in A1, but the linear regime remains in the
other cases. To explain these findings, we must consider how
the rounding of the corners affects the periodic orbits in the
systems. Let us consider the simplest periodic orbits that are
the cause of the bouncing ball modes. We start a trajectory in
the perpendicular direction from one of the edges and follow
it. A bounce on the straight edge can easily be visualized by
reflecting the billiard table (or unfolding) and continuing the
trajectory until the next collision and repeating the process.
If the collision is perpendicular, we have found a periodic
orbit. Once we find a periodic orbit, it is easy to see that a
whole family of bouncing ball orbits exists in the vicinity. The
termination condition is when the orbit hits one of the corners,
which are the source of instability. By rounding the corners we
greatly increase the area of instability from a single point to a
whole section of the boundary and thus eliminate many of the
periodic orbits. However, in the right triangles it is easy to see
that the family of bouncing ball orbits remains as long there is
still a straight segment left (like in the stadium billiard). These
orbits continue to cause the scarring in the eigenstates, seen
in the localization measure distributions, and deviations from
GOE statistics, even though this is now a chaotic billiard.
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