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Learning the dynamics of coupled oscillators from transients
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Whereas the importance of transient dynamics to the functionality and management of complex systems
has been increasingly recognized, most of the studies are based on models. Yet in realistic situations the
mathematical models are often unknown and what is available are only measured time series. Meanwhile,
many real-world systems are dynamically stable, in the sense that the systems return to their equilibria in a
short time after perturbations. This increases further the difficulty of dynamics analysis, as many information
of the system dynamics are lost once the system is settled onto the equilibrium states. The question we ask
is: Given the transient time series of a complex dynamical system measured in the stable regime, can we infer
from the data some properties of the system dynamics and make predictions, e.g., predicting the critical point
where the equilibrium state becomes unstable? We show that for the typical transitions in system of coupled
oscillators, including quorum sensing, amplitude death, and complete synchronization, this question can be
addressed by the technique of reservoir computing in machine learning. More specifically, by the transient
series acquired at several states in the stable regime, we demonstrate that the trained machine is able to predict
accurately not only the transient behaviors of the system in the stable regime, but also the critical point where
the stable state becomes unstable. Considering the ubiquitous existence of transient activities in natural and
man-made systems, the findings may have broad applications.
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I. INTRODUCTION

Transient activities are ubiquitous in the real world. When
a neuron is stimulated by an external signal, its membrane
voltage may raise temporally and then return to the resting
state in milliseconds; when a pebble is thrown into a pond,
ripples on the surface of the water will be disappeared in
minutes; when a traffic congestion is triggered by an ac-
cident, the traffic could return to normal in hours; when
an epidemic occurs, it might exist for months and finally
will pass away. Roughly, transient is the temporal evolution
preceding the asymptotic dynamics, which is an intrinsic
property of the dynamical systems [1,2]. In traditional studies
of system dynamics, attentions have been mainly focusing
on the asymptotic dynamics that the system presents after
the transient. Yet accumulating evidences show that transient
activities might provide a new dimension in our understand-
ing of the system dynamics [3,4], and in many cases are
more relevant to the system functions and performance than
the asymptotic dynamics, especially for complex nonlinear

*wangxg@snnu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

systems [5–16]. For instance, in ecological systems [5,6],
transient dynamics provides a possible explanation for the
occurrence of regime shift under constant environment and the
sudden extinction of many species; in neuronal systems [7–9],
neurons respond to stimulus mostly during the transients and
the information encoded in the transients is more reliable
than in the asymptotic dynamics; in climate systems [10,11],
transient dynamics provides key information for predicting
the extreme events and tipping points; in power-grids [12–14],
transient is an important concern for the system stability and
security, and provides the time window for responses; in
robotics [15,16], transient dynamics plays a crucial role in
realizing the autonomous control of robot behaviors. Whereas
the importance of transient dynamics has become increas-
ingly recognized in a wide range of disciplines, the study
of transient dynamics is challenging, especially for complex
systems of spatiotemporal nonlinear dynamics [3]. One reason
is that the transient dynamics is different from the asymptotic
dynamics. To be specific, the former is governed by the nonat-
tracting sets embedded in the phase space, while the latter
is governed by the attracting set. To analyze the transient
dynamics in depth, one has to find all the nonattracting sets
and their unstable manifolds [17,18], which are extremely
difficult for high-dimensional systems [19–21]. Another rea-
son is that in realistic situations the equations governing the
system dynamics are normally unknown, and what is available
are only the measured time series [4]. This means that any
analysis about the transient dynamics must be based on data,
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calling thus for the development of model-free, data-based
techniques [22,23].

Model-free prediction of chaotic systems by the technique
of reservoir computer (RC) in machine learning has received
considerable attention in recent years [24–37]. From the per-
spective of dynamical systems, RC can be regarded as a
complex network of coupled nonlinear units which, driven
by the input signals, generates the outputs through a readout
function [38,39]. In the training phase, the input signals are
provided by the target system, and the purpose of the training
is to find the set of coefficients in the readout function for a
best fitting of the training data. In the predicting phase, the
input signals are replaced by the outputs, and the machine
is running as an autonomous system with the fixed param-
eters. Although structurally simple, RC has shown its super
power in many data-oriented applications [38], e.g., speech
recognization, channel equalization, robot control, and chaos
prediction. In particular, it has been shown that a properly
trained RC is able to predict accurately the state evolution of a
chaotic system for about half a dozen Lyapunov times [25],
which is much longer than the prediction horizon of the
traditional methods developed in nonlinear science. Besides
predicting the short-term state evolution, RC is also able
to replicate faithfully the long-term statistical properties of
chaotic systems [27], e.g., the dimension of strange attractors
and the Lyapunov exponents. This ability, known as climate
replication, has been exploited recently to predict the crit-
ical transitions in complex nonlinear systems [32–34]. For
instance, by incorporating a parameter-control channel into
RC, it is shown that the machine trained by the time series of
several states in the oscillatory regime of a dynamical system
is able to predict not only the critical point for system collapse,
but also the averaged lifetime of the transients in the postcrit-
ical regime [32]; training the machine by the time series of
coupled oscillators at several states in the desynchronization
regime, the machine is able to predict accurately the critical
coupling for synchronization [33]. It is noted that in predicting
chaotic systems by the technique of RC, the training data are
all measured from the asymptotic dynamics that the systems
are finally developed to, while the transient behaviors preced-
ing the asymptotic dynamics is normally discarded [24–37].

Suppose that a complex system of coupled dynamical units
is operating at a stable state (say, for example, a steady state)
and, after each perturbation, restores to the stable state after a
short transient, the question we ask is: Based on the transient
time series measured at several states in the stable regime,
can we predict the critical point where the system becomes
unstable? This question is challenging and worth pursuing for
several reasons. First, it is not clear whether the machine can
be properly trained by the short time series measured on the
transient activities. In training RC, a general requirement is
that the time series should be sufficiently long (depending
on the prediction tasks and the hyperparameters of the RC,
the length of the training series may change from hundreds
to thousands system oscillations) [38]. Yet in many realistic
systems the transient activities sustain for only a short period
(normally several system oscillations). Once settled to the
asymptotic attractor, e.g., the steady state, many information
of the system dynamics will be lost. The limited length of
the transient dynamics therefore requires a fast learning of

the machine. At present, it is not clear whether this goal can
be achieved by the technique of RC. Second, different from
the asymptotic dynamics, the transient dynamics is dependent
on the initial conditions. Generally, the larger (smaller) is the
perturbation, the longer (shorter) will be the transient [1].
(Statistically, for the fixed system parameters, the lifetime
of the transients follows an exponential distribution [4].) At
present, it is not clear whether the machine trained by the time
series of one transient process is able to predict the evolution
of another transient process. Finally, even if the machine
is properly trained by the transient time series, it remains
unknown whether the trained machine is able to predict the
critical point separating the stable and unstable regimes, as
the system dynamics in the two regimes are distinctly dif-
ferent. Our main objective in the present paper is to provide
an affirmative answer to the above question. Specifically, we
are going to demonstrate that for the typical bifurcation sce-
narios in coupled oscillators, including quorum sensing [40],
amplitude death [41], and complete synchronization [42], the
machine trained by the transient time series acquired in the
stable regime is able to predict not only the system evolution
in the stable regime, but also the critical point where the stable
state becomes unstable.

The rest of the paper is organized as follows. In Sec. II,
we will propose the scheme of parameter-aware RC, and
present the details of the training and predicting phases. The
results predicted by the machine on the phase transition of
three typical models, including an ensemble of indirectly
coupled limit-cycle oscillators showing the phenomenon of
quorum sensing, two coupled nonidentical limit-cycle os-
cillators showing the phenomenon of amplitude death, and
two coupled chaotic oscillators showing the phenomenon of
complete synchronization, will be presented in Sec. III. Dis-
cussions and conclusions will be given in Sec. IV.

II. PARAMETER-AWARE RESERVOIR COMPUTER

We generalize the scheme of parameter-aware RC pro-
posed in Refs. [32,33] to predict the phase transition in
coupled oscillators. The RC consists of four components: the
I/R layer (input-to-reservoir), the parameter-control channel,
the reservoir, and the R/O layer (reservoir-to-output). The
I/R layer is characterized by the matrix Win ∈ RDr×Din , which
couples the input vector uβ (t ) ∈ RDin to the reservoir network.
Here, uβ (t ) denotes the input vector that is acquired from
the target system at time t and under the specific bifurcation
parameter β. The elements of Win are randomly drawn from a
uniform distribution within the range [−σ, σ ]. The parameter-
control channel is characterized by the vector s = βb, with β

the control parameter and b ∈ RDr the bias vector. In applica-
tions, the control parameter β can be treated as an additional
input channel marking the input vector u(t ). The elements of
b are drawn randomly from a uniform distribution within the
range [−σ, σ ]. The reservoir network contains Dr dynamical
nodes, with the initial states of the nodes being randomly
chosen from the interval [−1, 1]. The states of the nodes in
the reservoir network r(t ) ∈ RDr are updated according to the
equation

r(t + �t ) = tanh[Ar(t ) + Winuβ (t ) + βb]. (1)
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Here, �t is the time step for updating the reservoir network,
and A ∈ RDr×Dr is the weighted adjacency matrix represent-
ing the coupling relationship between nodes in the reservoir.
The adjacency matrix A is constructed as a sparse random
Erdös-Rényi matrix: with the probability p, each element
of the matrix is arranged a nonzero value drawn randomly
from the interval [−1, 1]. The matrix A is rescaled to make
its spectral radius equal λ. Before the training process, the
reservoir is evolved for a transient period of T ′

0 , so as to avoid
the influence induced by the initial states of the nodes. The
output layer is characterized by the matrix Wout ∈ RDout×Dr ,
which generates the output vector, v(t ) ∈ RDout , according to
the equation

v(t + �t ) = Wout r̃(t + �t ), (2)

with r̃ ∈ RDr the new sate vector transformed from the reser-
voir state (i.e., r̃i = ri for the odd nodes and r̃i = r2

i for the
even nodes) [28], and Wout the output matrix to be obtained
by the training process. Except Wout, all other parameters of
the RC, e.g., Win, A, and b, are fixed at the construction. The
purpose of the training process is to find a suitable output ma-
trix Wout so that the output vector v(t + �t ) as calculated by
Eq. (2) is as close as possible to the input vector u(t + �t ) for
t = (τ + 1)�t, . . . , (τ + L)�t , with T0 = τ�t the transient
period and L the length of the training time series. This can be
done by minimizing the following cost function with respect
to Wout [26–28]:

Wout = UVT (VVT + ηI)−1. (3)

Here, V ∈ RDr×L is the state matrix whose kth column is
r̃[(τ + k)�t], U ∈ RDin×L is a matrix whose kth column is
u[(τ + k)�t], I is the identity matrix, and η is the ridge re-
gression parameter for avoiding the overfitting. After training,
the output matrix Wout will be fixed, and the RC is ready for
prediction. In the predicting phase, first we set the control
parameter β to a specific value of interest (not necessarily
the parameters used in the training phase), then we evolve the
RC as an autonomous dynamical system by taking the output
vector v(t ) as the input vector at the next time step uβ (t + �t ).
The output vector v(t ) gives the prediction. For the sake of
simplicity, we set Dout = Din [26–28].

We note that in the training phase the input data consists
of two time series: (1) the input vector uβ (t ) representing the
state of the target system and (2) the control parameter β(t )
labeling the condition under which the input vector uβ (t ) is
acquired. In specific, the input vector uβ (t ) is composed of m
segments of length L′, while each segment is a time series
obtained from the target system under the specific control
parameter β. As such, β(t ) is a step-function of time. In the
predicting phase, besides replacing uβ (t ) with v(t ), we still
need to input the control parameter β(t ) in a step-wise fashion
so as to guide the reservoir evolution. The essential difference
between the current paper and the previous ones lies in the
regime where the training data are acquired. In Ref. [32],
the training data are taken from the oscillatory regime of
chaotic attractors, and the mission is to predict the critical
point leading to the steady states; in Ref. [33], the training
data are acquired from the desynchronization regime, and the
mission is to predict the critical coupling generating complete
synchronization. In both papers, the measured time series

are sufficiently long for training the machine. Different from
these papers, in our present paper the training data are taken
from the regime of steady states (or complete synchronization
state), in which only a short time series, i.e., the transient
dynamics, are available for training the machine.

III. RESULTS

A. Quorum sensing in coupled Stuart-Landau oscillators

Quorum sensing refers to the sudden switch of the dynam-
ics of an ensemble elements from the quiescent state to the
synchronized oscillatory state as the population density of the
elements exceeds a critical value, which is normally observed
in systems where a large population of dynamical elements
are coupled indirectly through a common medium, e.g., chem-
ical oscillators [40], bacterial systems [43], genetic cellular
oscillators [44], and crowd on a footbridge [45]. Below the
critical population density, the quiescent state is stable, i.e.,
once perturbed, the system will return to the quiescent state
after a short transient. Assuming that the system is operating
in the quiescent regime and only the transient series at several
population densities are available, the question here we ask
is: Without knowing the equations of the system dynamics,
can we predict when will the elements start to oscillate? We
are going to demonstrate that for the typical model showing
quorum sensing, the question can be addressed by the scheme
of parameter-aware RC introduced in Sec. II.

The model for quorum sensing we adopt here is an ensem-
ble of Stuart-Landau oscillators coupled through an external
medium [46]. The system dynamics reads

ż j = (1 + iω j − |z j |2)z j + D(Z − z j ), (4)

Ż = −(J + iω0)Z + ρD

N

N∑

j=1

(z j − Z ), (5)

where j = 1, 2, ..., N is the oscillator index, z j = x j + iy j is
the complex variable denoting the state of oscillator j, and
Z = X + iY is the complex variable denoting the state of
the external medium. In Eq. (4), ω j is the natural frequency
of oscillator j, which is randomly chosen within the range
[−1, 1]. The oscillators are isolated from each other, but are
all coupled to the external medium through the diffusions,
with the coupling strength (diffusing coefficient) being rep-
resented by D. In Eq. (5), ω0 denotes the natural frequency
of the medium, J represents the relaxation parameter, and ρ

denotes the population density, which plays as the bifurcation
parameter for generating quorum sensing. (As the number
of oscillators is fixed, the increase of the population den-
sity corresponds to the decrease of the system volume in
experiments [40,43–47].) In simulations, we set the system
parameters as N = 100, D = 1.5, ω0 = 1, and J = 0.2. The
initial states of the oscillators and the external medium (in-
cluding the real and imaginary parts) are randomly chosen
from the range (−δ, δ). The equations are solved numeri-
cally by the fourth-order Runge-Kutta method with the time
step �t = 0.1. Following Refs. [40,43–47], we characterize
the asymptotic behaviors of the oscillators and the external
medium by the the order parameters Rz = 〈| 1

N

∑N
j=1 z j |〉T and

R = 〈|Z|〉T , respectively. Here, 〈...〉T denotes that the results
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FIG. 1. Predicting the dynamics of an ensemble of Stuart-Landau oscillators coupled through an external medium. [(a1),(a2)] The
variations of the system order parameters Rz and R with respect to the population density ρ obtained from model simulations. The transition
from the quiescent to oscillatory states occurs at ρc ≈ 0.38. Vertical lines denote the sampling states where the training data are acquired.
[(b1),(b2)] The time evolution of the oscillators and the medium under different values of ρ adopted in the quiescent regime. (b3) The time
series of the control parameter. T1 = T2 = T3 = 200 is the time length of the sampling time series. [(c1)–(c5)] The time evolutions of the
system predicted by the machine for different values of ρ. Black curves are the results obtained from model simulations. Red curves are the
results predicted by the machine.

are averaged over a time period of T . To focus on the asymp-
totic behaviors of the system, a transient period of T ′ has been
discarded in calculating the order parameters.

Setting δ = 1, T ′ = 1 × 104 and T = 2 × 104, we plot in
Fig. 1(a) the variations of Rz and R with respect to ρ. It is
seen that Rz = R = 0 for ρ < ρc ≈ 0.38 and, as ρ exceeds
ρc, the values of Rz and R are gradually increased. That is,
the asymptotic dynamics of the oscillators and the medium is
quiescent for ρ < ρc and is oscillatory for ρ > ρc. To show
the transient dynamics of the system in the quiescent regime,
we plot in Figs. 1(b1) and 1(b2) the time evolution of the
oscillators and the medium for m = 3 sampling population
densities (ρ = 0.30, 0.32, and 0.34), each of time duration
T = 200. It is seen that in all three cases, the oscillators and
the medium are damped to the origin after a short transient
(t < 100). Here our mission is to infer from the transient time
series measured at the three sampling states the transition
point ρc.

To implement the parameter-aware RC, we first generate
the training data by combining the time series of the three
sampling states into a long time sequence. The training series
are plotted in Figs. 1(b1) and 1(b2). As the time series of each
sampling state contains L′ = T/�t = 2 × 103 data points, the
length of the combined sequence therefore is L = mL′ = 6 ×
103. The corresponding time series of the population density,
as shown in Fig. 1(b3), is used as the inputs of the parameter-
control channel, i.e., replacing β with ρ in Eq. (1). Then, using
the combined times series and the time series of ρ(t ) as the
inputs, we calculate the output matrix according to Eq. (3).
This completes the training phase.

In obtaining the output matrix, a short segment of τ =
100 data points in each sampling series is used to drive
the reservoir out of the transient. The hyperparameters of
RC are chosen as (Dr, p, σ, λ, η) = (5 × 103, 0.1, 1, 0.1, 1 ×
10−9), which are obtained by the optimizer “optimoptions”
in MATLAB. In addition, to reduce the complexity of the
input matrix Win, we set only one nonzero element in each
row of the input matrix. That is, each node in the reservoir
network receives only one component from the input vector
u = [x1, y1, ..., xN , yN , X,Y ]T .

Before predicting the transition point of quorum sensing,
we check first the performance of the trained machine in
predicting the transient dynamics of the sampling parameters,
including ρ = 0.30, 0.32, and 0.34. In the predicting phase,
we replace the input vector u in Eq. (1) with the output vector
v calculated by Eq. (2), while setting the control parameter β

in Eq. (1) to be one of the sampling parameters. The reservoir
network is started from the random initial conditions, and is
driven by the testing data for τ ′ = 10 time steps [48]. (This
strategy of “cold start” is necessary for predicting the time
evolution of the system state, but is not when the mission
is to predict the transition point [32,33,36].) The predicted
results are plotted in Figs. 1(c1)–1(c3). We see that in all the
cases, the machine predicts accurately not only the transient
evolution of the system state, but also the quiescent state the
system is finally settled to.

We check further the capability of the trained machine
in predicting the time evolution of the system state under a
new parameter that is not included in the sampling set. To
demonstrate, we set ρ = 0.36 as the control parameter, which
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FIG. 2. Predicting quorum-sensing transition in an ensemble of indirectly coupled Stuart-Landau oscillators. [(a),(b)] The variation of the
order parameters Rz and R with respect to ρ predicted by machine. The initial conditions of the system are randomly chosen from the range
(−δ, δ). Black squares: the results obtained by model simulations. Red discs: the predicted results for δ = 1.0. Blue triangles: the predicted
results for δ = 0.1. Vertical lines denote the sampling states. [(c),(d)] The variation of Rz and R with respect to δ for different values of ρ

adopted in the oscillatory regime. Horizontal lines are the corresponding order parameters obtained from model simulations. As δ increases,
the predicted order parameters approach the actual values.

is also within the quiescent regime. The predicted results for
this new parameter are plotted in Fig. 1(c4). It is seen that the
transient dynamics and the quiescent state are well predicted
by the machine too. Setting ρ = 0.4, we plot in Fig. 1(c5) the
time evolution predicted by the machine, which suggests that,
instead of reaching the quiescent state, the system will finally
settle to an oscillatory state. That is, the machine predicts that
quorum sensing occurs before the population density ρ = 0.4.
This prediction is consistent with the results obtained from
model simulations, as depicted in Fig. 1(a).

Having justified the capability of RC in predicting the
dynamics of the individual states in both the quiescent and
oscillatory regimes, we proceed to predict the transition point
ρc by the scheme of parameter-aware RC introduced in Sec. II.
In doing this, we increase the control parameter ρ gradually
from 0.3 to 0.5 by the step �ρ = 0.05. For each value of
ρ, we first run the machine (starting from the random initial
conditions) for a transient period of T ′

0 = 1 × 103, and then
calculate from the outputs the time-averaged order parameters
Rz and R over a period of T = 1 × 104. The results are plotted
in Figs. 2(a) and 2(b) (red discs). We see that the machine
predicts accurately the critical population density, ρc ≈ 0.38,

and also the progressive increase of Rz and R as ρ increases
from ρc. Figures 2(a) and 2(b) also show that in the oscil-
latory regime (ρ > ρc), the values of Rz and R predicted by
the machine are smaller to the values obtained from model
simulations (black squares). More specifically, as ρ increases
from ρc, the error between the predicted and actual results is
gradually enlarged.

As the training data are collected from states in the qui-
escent regime, the useful information for machine training
is thus contained in the transient activities only. It is natural
to conjecture that the longer the transient, the more infor-
mation will the machine infer from the data, and the more
accurate will be the prediction. To justify this conjecture, we
enlarge the range (−δ, δ) over which the initial conditions of
the oscillators and the medium are chosen, and check again
the prediction performance by training a new machine. Sta-
tistically, with the increase (decrease) of δ, the lifetime of
the transient will be extended (shortened) [4]. Decreasing δ

to 0.1, we generate the training data by the same sampling
states in the quiescent regime (ρ = 0.30, 0.32, and 0.34), and
train the RC again. The length of the sampling series and the
hyperparameters of the RC are the same to the ones used in
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Fig. 1. The results predicted by the new machine are plotted in
Figs. 2(a) and 2(b) (blue triangles). We see that the transition
point ρc is also accurately predicted, but, comparing with the
results of δ = 1.0, the prediction is worse in the oscillatory
regime. To explore further the impact of δ on the prediction
performance, we plot in Figs. 2(c) and 2(d) the variation of
the order parameters with respect to δ for different values of
ρ in the oscillatory regime. It is seen that with the increase
of δ, the order parameters predicted by the machine approach
gradually the actual order parameters calculated from model
simulations. Numerical evidences thus suggest that it is the
transient activities of the quiescent states that provide the use-
ful information for machine training, and, with the increase of
the transient lifetime, the prediction performance is gradually
improved.

Additional simulations have been conducted to check the
impacts of the sampling states on the prediction performance,
including the number of the sampling states and the locations
of the sampling states. The general findings are the following
(not shown): (1) when the number of sampling parameters
is fixed, the closer the sampling parameters to the transition
point, the better is the prediction; (2) the prediction perfor-
mance is improved by adopting more sampling states in the
quiescent regime. The additional results are understandable,
as: (1) in the quorum-sensing transition, as the bifurcation
parameter approaches the transition point from below, the
lifetime of the transient will be gradually increased [43–47];
(2) by combining the time series of more sampling states, the
total number of transient data in the training series will be in-
creased. These additional results suggest again that the useful
information for training the machine comes from the transient
dynamics, but not the asymptotic dynamics associated with
the quiescent state.

B. Amplitude death in coupled Stuart-Landau oscillators

Amplitude death refers to the cessation of oscillation in
coupled oscillators as the system bifurcation parameter passes
through a critical value [41,49]. For its important implica-
tions to the functioning of many real-world systems, the
phenomenon of amplitude death has been extensively studied
by researchers in different fields in the past decades [50].
Similar to the phenomenon of quorum sensing, in amplitude
death the system dynamics is also transited from the qui-
escent to oscillatory states at a critical point. To generate
amplitude death, a general approach is introducing a param-
eter mismatch among the oscillators and using the coupling
strength of the oscillators as the bifurcation parameter [51].
This phenomenon can also be observed in systems of identical
oscillators by adopting new coupling schemes, such as intro-
ducing time-delay to the couplings [51], using the conjugate
coupling functions or dynamical couplings [52,53]. Recently,
stimulated by the blooming of network science, amplitude
death in networked oscillators has been explored, in which
the important role of network structure on the transition has
been revealed [54–56]. Depending on the system functions,
amplitude death might be desired or undesired. In neuronal
systems, an ensemble of neural cells may stop pulsating under
strong couplings, leading to the pathological conditions [57].
In physiological context, the quenching of oscillations means

the loss of rhythms, resulting in diseases such as sudden
cardiac death [58]. In cases like this, amplitude death is un-
desired and the mission is to prevent its occurrence. However,
in physical systems such as coupled lasers [59], quenched
oscillations are necessary for generating a stable output; in
ecological systems, large-amplitude oscillations increase the
risk of species extinctions [60]. In cases like this, amplitude
death is desired and the mission becomes maintaining the
quiescent state.

As in realistic situations the system equations are generally
unknown, the prediction of amplitude death therefore relies
on the development of model-free techniques. By the scheme
of parameter-aware RC, in Ref. [34] the authors are able
to predict successfully the transition to amplitude death in
coupled chaotic and periodic oscillators. Different from our
present paper, in Ref. [34] the training data are collected in
the oscillatory regime, in which the length of the measured
time series at each sampling state is sufficiently long (about a
few hundreds oscillations.) The question here we ask is: If the
time series are collected in the quiescent regime in which the
transient activities sustain for only a short period (e.g., a few
dozens oscillations), can we predict the critical point where
the systems is survived from amplitude death? We are going
to show next that for the model of coupled limit cycles, the
prediction is feasible.

The model of amplitude death we consider here consists
of two diffusively coupled nonidentical Stuart-Landau oscil-
lators [41,49],

ż1 = (1 + iω1 − |z1|2)z1 + ε(z2 − z1),

ż2 = (1 + iω2 − |z2|2)z2 + ε(z1 − z2), (6)

where z1,2 = x1,2 + iy1,2 are the complex variables denoting
the oscillator states, and ε is the coupling strength. As ana-
lyzed in Ref. [49], the two oscillators are ceased to the origin
(z1 = z2 = 0) when ε > εc = 1 and �ω > 2

√
2ε − 1, with

�ω ≡ |ω1 − ω2| the frequency mismatch between the oscilla-
tors. In simulations, we fix the natural frequencies of the two
oscillators as ω1 = 2.0 and ω2 = 7.0, and tune the coupling
strength ε to investigate the transition. The initial states of
the oscillators, i.e., the values of x1,2 and y1,2 at t = 0, are
chosen randomly from the range (−1, 1). The time step used
in simulating Eq. (6) is �t = 0.02. Setting ε = 0.8 < εc, we
plot in Fig. 3(a) the evolutions of x1 and x2 with time. We see
that the system shows the feature of permanent oscillation. An
example of the quenched state is plotted in Fig. 3(b), in which
the coupling strength is set as ε = 1.15 > εc. We see that in
this case the oscillation is ceased after a transient period about
T = 20. To have a global picture on the bifurcation diagram,
we plot in Fig. 3(c) the variation of the local extrema of x1

with respect to ε, which confirms the theoretical prediction
that amplitude death occurs at εc = 1. Here our mission is to
reproduce the bifurcation diagram based on the transient time
series acquired at several states in the death regime.

In predicting the bifurcation diagram, we first generate
the training data by combining the time series of several
states in the death regime. As illustration, we choose the
sampling states at three coupling parameters: ε = 1.05, 1.1,
and 1.15. The length of the time series for each state is
T = 40, and the training data contains in total L = mT/�t =
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FIG. 3. Predicting the transition from oscillation to amplitude
death in two coupled nonidentical Stuart-Landau oscillators. (a) The
time evolutions of x1 and x2 for the coupling strength ε = 0.80.
(b) The time evolutions of x1 and x2 for the coupling strength ε =
1.15. (c) The bifurcation diagram obtained from model simulations.
xm

1 is the local maximum or minimum of the variable x1 during the
course of system evolution. Vertical lines denote the locations of
the sampling states. (d) The bifurcation diagram predicted by the
machine.

6 × 103 points. We then input the training data and the
corresponding time series of the control parameter, ε(t ), to
the machine, and estimate the output matrix according to
Eq. (3). In this application, the optimized hyperparameters
of the RC are (Dr, p, σ, λ, η) = (600, 0.1, 1, 0.1, 1 × 10−7).
Finally, we tune the control parameter ε to different values,
and calculate from the machine outputs the variation of the
system dynamics with respect to ε. The predicted results are
plotted in Fig. 3(d), in which xm

1 denotes the local maximum or
minimum of the variable x1 during the course of system evo-
lution. Comparing with the results of model simulation shown
in Fig. 3(c), we see that both the location of the transition point
εc and the oscillating amplitudes in the oscillatory regime are
well predicted by the machine.

C. Complete synchronization in coupled chaotic oscillators

We finally employ the scheme of parameter-aware RC to
predict the transition to complete synchronization in cou-
pled chaotic oscillators. As a universal concept in nonlinear
science, synchronization has been extensively studied in lit-
erature for decades [61]. Briefly, synchronization refers to
the coherent motion of coupled oscillators, which occurs
normally when the interacting strength of the oscillators is
larger to a critical value. Depending on the degree of the

correlation, the oscillators could be synchronized in different
forms, such as complete synchronization, phase synchroniza-
tion, and generalized synchronization [62]. Among them,
complete synchronization has the strongest correlation, as
in complete synchronization the states of the oscillators are
identical during the time course of system evolution [42].
Recently, stimulated by the discoveries of the small-world and
scale-free features in many realistic systems, synchronization
behaviors in complex networks have received considerable
attention [63].

In the study of complete synchronization, a typical model
employed in literature is an ensemble of identical chaotic
oscillators coupled through a linear function (i.e., the dif-
fusive coupling), and one of the central tasks is to predict,
theoretically or numerically, the critical coupling strength for
generating synchronization [61]. When the dynamical equa-
tions of the system are available, the critical coupling in many
cases can be predicted theoretically, e.g., by the method of
master-stability function [64,65]. Yet in realistic situations the
dynamical equations are mostly unknown, which means that
the prediction should be made based on solely the time series
measured from the system evolutions. One approach to ad-
dress this question is to reconstruct first the system dynamics
by techniques such as compressive sensing, and then estimate
the critical coupling by model simulations [66]. A different
approach proposed recently to address this question is ex-
ploiting RC, in which the synchronization error between the
oscillators under arbitrary coupling strength can be calculated
directly from the machine outputs [33]. In these studies, a
common requirement is that the time series must be measured
from the desynchronization states. This requirement, however,
is not met in many physical and biological systems, e.g., the
power grids and the circadian clock, whose normal functions
rely on the synchronized motion of the dynamical units. As-
suming that these systems are already operating on the stable
synchronous states, i.e., the systems will restore to the syn-
chronous states quickly after perturbations, the question we
ask here is: Given the transient time series and the coupling
parameter of several states in the synchronization regime, can
we predict whether the system will be desynchronized if a
small drift is introduced to the coupling parameter? We are
going to demonstrate that for the typical systems of coupled
chaotic oscillators, the prediction can be accomplished by the
scheme of parameter-aware RC introduced in Sec. II.

We consider first the model of two coupled chaotic Logistic
maps. The system dynamics reads

x(n + 1)1,2 = F [x(n)1,2] + ε[H (x(n)2,1) − H (x(n)1,2)], (7)

where x(n) denotes the state of the map at the nth itera-
tion, F (x) = 4x(1 − x) is the mapping function describing
the local dynamics, H (x) = F (x) is the coupling function,
and ε is the coupling strength. The initial states of the
maps are chosen randomly from the interval (0,1). When
the system equations are available, the critical coupling for
synchronization can be analyzed by the method of master
stability function [64,65], which shows that complete syn-
chronization occurs in a bounded region in the parameter
space, ε ∈ (ε1, ε2), with ε1 = 0.25 and ε2 = 0.75. To gen-
erate the training data from the synchronization regime, we
choose ε = 0.26, 0.28, and 0.30 as the sampling parameters.
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FIG. 4. Predicting synchronization transition in two coupled
chaotic Logistic maps. (a) The training time series, which is gen-
erated by combining the time series of three sampling states in the
synchronization regime, ε = 0.26, 0.28, and 0.30. (b) The time evo-
lution of the synchronization error δx = |x1 − x2| for the sampling
states. (c) The variation of the time-averaged synchronization error
�x with respect to ε around the critical point ε1 = 0.25. Black
squares are the results obtained by model simulations. Red discs are
the results predicted by the machine. Vertical dashed lines denote the
locations of the sampling states.

For each sampling parameter, we record the system state,
u(t ) = [x1, x2]T , for a period of T = L′ = 1 × 103 iterations.
The combination of the three time series forms the training
series, which is plotted in Fig. 4(a). Figure 4(b) plots the
time evolution of the synchronization error, δx = |x1 − x2|,
for different parameters. We see that in all three cases the
value of δx is decreased to 0 after a short transient (T < 50).
Figure 4(b) shows also that with the increase of ε, the lifetime
of the transient is shortened. The shortened transient at larger
coupling strengths is attributed to the decreased conditional
Lyapunov exponent. Specifically, as ε increases from εc in the
synchronization regime, the Lyapunov exponent characteriz-
ing the stability of the dynamics in the phase space transverse
to the synchronous manifold will be decreased from 0 grad-
ually, while the more negative is the exponent, the quicker
will be the system returning to the synchronous state and the
shorter will be the transient lifetime.

The training series, together with the corresponding time
series of the coupling strength ε(n), are then fed into the ma-
chine for obtaining the output matrix. In this application, the
optimized hyperparameters of the RC are (Dr, p, σ, λ, η) =
(100, 0.1, 1, 1 × 10−5, 1 × 10−7). In obtaining the output ma-
trix, a short segment of τ = 5 data points in each sampling
series is used to drive the reservoir out of the transient states.
In the predicting phase, we set ε as the control parameter

and tune it from 0.30 to 0.20 by the step �ε = 2 × 10−3.
For each value of ε, we first run the machine for a transient
period of T ′

0 = 1 × 103 iterations in order of removing the
impact induced by the initial conditions, and then calculate
from the machine outputs the time-averaged synchronization
error �x = 〈|x1 − x2|〉T , with T = 1 × 104. The variation of
�x with respect to ε is plotted in Fig. 4(c), which shows that
the two maps are desynchronized at the critical coupling εc ≈
0.25 and, as ε decreases from εc, the value of �x is gradually
increased. To evaluate the prediction performance, we plot in
Fig. 4(c) also the results obtained from model simulations. We
see that the predicted results are in good agreement with the
results obtained from model simulations.

We consider next the model of two coupled chaotic Lorenz
oscillators. The system dynamics reads

ẋ1,2 = α(y1,2 − x1,2) + ε(x2,1 − x1,2),

ẏ1,2 = x1,2(β − z1,2) − y1,2 + ε(y2,1 − y1,2),

ż1,2 = x1,2y1,2 − γ z1,2 + ε(z2,1 − z1,2). (8)

The parameters of the oscillators are (α, β, γ ) = (10, 28, 2),
by which the motion of isolated oscillator is chaotic. Anal-
ysis based on the method of master stability function shows
that the two oscillators are synchronized when ε > εc ≈
0.42 [64,65]. Still, our mission here is to predict the critical
coupling εc based on the time series acquired at several states
in the synchronization regime.

As the illustration, we choose ε = 0.5, 0.55, and 0.6 as the
sampling parameters (all within the synchronization regime).
In model simulations, the initial conditions of the oscillators
are randomly chosen within the range (−1, 1), and the system
is evolved according to Eq. (8) by the time step �t = 0.02.
For each sampling parameter, we record the system state,
u(t ) = [x1, y1, z1, x2, y2, z2]T , for a period of T = 80. The
combination of the recorded time series forms the training
series, as depicted in Fig. 5(a) for the variables x1 and x2. The
time evolutions of the synchronization error δx = |x1 − x2|
under different parameters are plotted in Fig. 5(b). We see
that in each case the synchronization error is damped to 0
after a short transient (T < 60). The training series and the
corresponding time series of the coupling strength are then
fed into the machine for estimating the output matrix. Here,
a short segment of τ = 50 data points at the beginning of
each sampling series is used to drive the reservoir out of the
transient states. In this application, the hyperparameters of the
RC are (Dr, p, σ, λ, η) = (2 × 103, 0.2, 0.05, 0.1, 1 × 10−7).

To predict the critical coupling by the scheme of parameter-
aware RC, we set ε as the control parameter and decrease it
from 0.6 to 0.3 by the step �ε = 0.1. For each value of ε, we
first run the machine for a transient period of T ′

0 = 1 × 103,
and then calculate from the machine outputs the time averaged
synchronization error �x = 〈|x1 − x2|〉T , with T = 1 × 103.
The variation of �x with respect of ε is plotted in Fig. 5(c),
which shows that the system is desynchronized at the critical
coupling εc ≈ 0.43. To check the performance of the predic-
tions, we plot in Fig. 5(c) also the results obtained from model
simulations. We see that the predicted results agree with the
results of model simulations reasonably well.

For the case of synchronization transition, additional sim-
ulations have been also conducted to check the impacts of the
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FIG. 5. Predicting synchronization transition in two coupled
chaotic Lorenz oscillators. (a) The training series of the variables
x1 and x2, which is generated by combining the time series of three
sampling states in the synchronization regime, ε = 0.5, 0.55, and 0.6.
(b) The time evolution of the synchronization error δx = |x1 − x2| for
the sampling states. (c) The variation of the time-averaged synchro-
nization error �x with respect to ε around the critical point εc ≈
0.42. Black squares are the results obtained from model simulations.
Red discs are the results predicted by the machine. Vertical dashed
lines denote the sampling parameters.

sampling states on the prediction performance (not shown).
It is found that for the fixed number of sampling states, the
prediction performance becomes worse when choosing the
larger sampling parameters. In particular, it is found that for
the model of coupled Logistic maps, the machine fails to
predict the second transition point at ε2 ≈ 0.75, despite the
number and location of the sampling parameters. A close look
to the transient behaviors of the system nearby ε2 shows that
the failure is due to the ultrashort transient in approaching
synchronization. In specific, starting from the random ini-
tial conditions, the synchronization error between the two
coupled maps is decreased to 0 after just several iterations
(∼5). (Numerically, it is found that for the machine to be
properly trained and is able to predict the transition point,
the lifetime of the transient dynamics should be not less than
T ≈ 15 iterations.) For such a short transient, the machine is
not able to get from the training data sufficient information
about the system dynamics, and therefore is not able to predict
the transition. This finding is consistent with the findings in
predicting the quorum-sensing transition, where it is shown
that the prediction performance is deteriorated gradually as
the lifetime of the transient is shortened [Figs. 2(c) and 2(d)].

IV. DISCUSSION AND CONCLUSION

In exploiting RC for predicting chaotic systems, two gen-
eral requirements are that (1) the measured time series should
reflect the actual dynamics of the target system and (2) the
measured time series should be sufficiently long. For complex
systems of coupled oscillators, when the system dynamics
is degenerated to a low-dimensional manifold in the phase
space, e.g., a fixed point (the cases of quorum sensing and am-
plitude death) or the synchronous state (the case of complete
synchronization), many information of the system dynam-
ics are missed in the asymptotic dynamics. For instance,
when two oscillators are quenched to the origin, we get no
information about the system dynamics from the constant
time series. This is one of the reasons why in previous pa-
pers of phase-transition prediction the training data are all
collected from the oscillatory regime of high-dimensional
dynamics [32–34]. Different from the previous papers, in the
current paper we predict the transition in the opposite direc-
tion, e.g., predicting the transition by the data collected from
the regime of degenerated, low-dimensional dynamics. The
key lies in the transient activities preceding the asymptotic
dynamics. We have demonstrated in different models that
the transient activities, although of short lifetimes, reflect the
actual dynamics of the target system and, by the scheme of
parameter-aware RC, can be exploited to predict the critical
point of phase transition. In systems of coupled-limit cycles,
we have shown that by the transient activities acquired in
the quiescent regime in which the asymptotic dynamics is
represented by a fixed point, the trained machine is able
to predict not only the transition point, but also the system
dynamics in the oscillatory regime (e.g., the variation of the
order parameters); in system of coupled chaotic oscillators, we
have shown that the transient dynamics in the synchronization
regime can be exploited to predict not only the critical point
for synchronization, but also the behavior of the synchroniza-
tion error in the desynchronization regime. In both cases, it
is found that the prediction performance is strongly affected
by the transients, i.e., by increasing the lifetime of the tran-
sients, the prediction performance will be gradually improved.
Considering the facts that many real-world systems are oper-
ating at stable, low-dimensional states and transient activities
are ubiquitously observed in these systems, the findings may
have broad applications, e.g., predicting the tipping points of
climate systems [11] and identifying the complex structure of
ecological networks [63].

Transient activities could be also exploited for the infer-
ence of multiple coexisting attractors. An important feature
of many nonlinear system is that the asymptotic dynamics of
the system is dependent on its initial state, i.e., the problem
of attracting basins. This poses a new challenge in machine
learning of chaotic dynamics, as the machine trained by the
time series of one attractor is not able to infer the dynamics
of other attractors in the phase space. To cope with this prob-
lem, in Ref. [30] the authors propose the idea of training the
machine by a long time series composed of many short series
acquired from different attractors, and then in the predicting
phase use a short transient sequence to drive the machine to
the desired attractor. Another approach for learning multiple
attractors is exploiting noisy time series [68]. In this approach,
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the training data is acquired from the noise-perturbed tra-
jectory of a specific attractor. It is shown that the machine,
if properly trained, is able to infer the dynamics of other
coexisting attractors in the phase space that are not exposed
to the machine in the training phase, namely the “unseen”
attractors. As did in Ref. [30], to infer the “unseen” attrac-
tors in the predicting phase, a short transient sequence is
needed to “washout” the reservoir. In the approach of noisy
trajectory, the role of noise perturbations is preventing the
system from settling onto a specific attractor, i.e., keeping the
system at transient permanently, so as to explore the global
information of the system dynamics. Our current paper is
different from these papers in the following aspects. First, the
length of the training data is different. In Refs. [30,68], the
training data is hundreds or thousands system oscillations; in
our present paper the training data sustains for only several
system oscillations. Second, the driving scheme is different. In
Refs. [30,68], the inference of the new attractors is guided by a
transient sequence, whereas in our present paper the reservoir
dynamics is guided by a constant control parameter. Lastly,
the mission is different. The task in Refs. [30,68] is to infer
the coexisting attractors in the phase space, whereas in our
present paper the mission is to infer the critical point for phase
transition. Despite the differences, all studies point to the same
fact: transient activities provide global information about the
system dynamics. This understanding is believed to be helpful
to the machine learning of multiple attractors.

While our studies show preliminarily the feasibility of pre-
dicting phase transition based on the time series of transients,
many questions remain open. One is about the generality of
the findings. For illustrative purposes, we have employed the
model of coupled oscillators to demonstrate the predictions, it
is not clear whether the similar results can be found in other
type of models, e.g., systems showing the phenomenon of
supertransient [67]. Another question is about the connection
between the transient lifetime and the prediction performance.
Our studies suggest that, to predict the transition point accu-
rately, the sampling parameters should be close to the critical
point. Normally, as the sampling parameter leaves away from
the critical point, the lifetime of the transient will be decreased

by an algebraic scaling law [4]. When the sampling parameter
is too far away from the critical point, the lifetime of the
transient will be too short to train the machine, leading to
the failed prediction. This phenomenon has been observed
in predicting the second critical coupling ε2 in the synchro-
nization of coupled chaotic Logistic maps. In this case, the
change of the initial condition of the maps does not extend
the lifetime, and new methods must be proposed for training
the machine. One approach to tackle this question could be
generating a longer sequence by combing the transients of
several system realizations; another approach could be adopt-
ing noisy trajectory (i.e., generating the training series by a
stochastic dynamics) [68]. A full exploration on the depen-
dence of machine prediction performance on transient lifetime
is out the scope of the current paper. It is our hope that this
question can be addressed by further studies.

To summarize, exploiting the technique of RC in machine
leaning, we have shown that the critical point of phase tran-
sition in coupled oscillators can be predicted by the time
series of transient activities in the stable regime. The predic-
tions are demonstrated in three different models, including an
ensemble of indirectly coupled periodic oscillators showing
quorum-sensing transition, two coupled nonidentical oscil-
lators showing amplitude-death transition, and two coupled
chaotic oscillators showing complete-synchronization transi-
tion. In all cases, it is found that the machine trained by the
transient dynamics at several states in the stable regime is
able to predict not only the transient evolution in the stable
regime, but also the critical point where the system becomes
unstable. Our paper shows the feasibility of training RC by
transient dynamics, which provides an alternative approach
for the model-free prediction of phase transition in complex
dynamical system, and shed lights on the learning of coexist-
ing attractors and attracting basins by machine.
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