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Geometric constraints alter the emergent dynamics of an active particle
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A self-propelled particle is a basic ingredient of active matter. Any handle on its noise characteristics is thus
of both fundamental and applied interest. In this paper, we show that geometric constraints are a route to affect
the emergent noise properties of a single active particle, thus demonstrating that seemingly different active
particle classes are equivalent to each other. Specifically, we find that the chiral active Brownian motion of a
self-propelled particle seen in two-dimensions switches to a run-and-tumble like motion when confined to a
quasi-one-dimensional channel. Our analysis of this switching behavior connects the resulting active stochastic
dynamics to that of a two-state molecular motor. The emergent tuning of active noise characteristics by unbiased
external driving, as we demonstrate here, is illustrative of generic mechanisms of active noise control in other
systems.
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I. INTRODUCTION

A hallmark of self-organization in non-equilibrium sys-
tems is the generation of ordered states in a controlled manner
driven by external energy input [1]. This organization often
appears due to the spontaneous rectification of environmental
fluctuations that otherwise destabilise the appearance of such
ordered states. In biological cells, for example, individual
molecular motors can utilize unbiased energy input and rectify
ambient stochasticity to generate directed motion while cells
themselves can control their direction of motion by respond-
ing to fluctuating external cues. Such emergent order is also
seen in many synthetic systems: for example, (i) the gener-
ation of persistent motion of a rotational ratchet embedded
in a granular gas of macroscopic glass beads that is driven
by mechanical agitation [2], or (ii) directed self-propelled
motion of Janus colloids with differential chemical reactions
occurring on their surfaces [3,4]. Indeed, the harnessing of
noise to generate ordered states is a fundamental tenet in many
non-equilibrium systems.

Active materials are a generic class of non-equilibrium sys-
tems in which driving and dissipation occur at the level of a in-
dividual unit [5–7]. The fundamental units of active matter—
typically self-propelled particles—display athermal motion
driven by stochastic forces arising from the broken detailed-
balance in the system. Altering the characteristics of this

*These authors contributed equally to this work.
†vijaykumar@icts.res.in
‡shashi@ncbs.res.in

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

“active noise”, therefore, can change the qualitative nature of
the emergent self-organization in these systems. Noise-control
in active matter, i.e., tuning the spatiotemporal distribution
of the driving forces, has been of growing interest recently
[8–11]. Additionally, controlling noise characteristics in an
active system can lead to efficient ways of sampling the pos-
sible microscopic states that underlie an ordered macroscopic
state [12]. Given that the active matter framework has been of
relevance in living matter [13–16] and a new class of synthetic
materials [17–21], controlling active noise opens up novel
possibilities for self-organized phenomena in these systems.

In synthetic active matter systems, self-propelled droplets
[22,23], colloidal systems [3,24], and granular media [25,26],
provide experimental realisations of “scalar active matter”—
self-propelled particles wherein the interactions between
individual particles do not depend on their respective orien-
tations [27]. Theoretical models of scalar active matter are
typically of three broad types—the essential distinguishing
feature of these is the characteristics of the active noise driv-
ing the self-propelled motion. (i) Active Brownian particles
(ABP), exemplified by the motion of self-phoretic colloids
[3,24,28] and driven granular particles [25,26], move with a
constant speed with their motility direction undergoing rota-
tional diffusion. (ii) Run-and-tumble-particles (RTP), inspired
by the swimming motion of bacteria [29], also move with
a constant speed along a given direction for a certain “run-
time”, after which they undergo an instantaneous “tumble”
that randomises their direction of motion; the run-times are
governed by a characteristic Poisson process [30]. (iii) The
dynamics of active Ornstein-Uhlenbeck particles (AOUP) are
driven by a Gaussian noise with a finite-correlation time [31].

The models of scalar active matter outlined above have
been used to understand self-propelled motion in disparate
experimental systems. However, it is an open question if these
are fundamentally different classes of active particles, or if
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FIG. 1. Experimental setup: A circular 3D printed granular particle of diameter d is driven using an electromagnetic shaker (nondimen-
sional acceleration �). The particle displays active self-propelled motion (blue trajectory) due to frictional asymmetry with the substrate.
This two-dimensional motion is well captured by an ABP model describing a chiral particle with position r and orientation ϕ. Quasi-one-
dimensional confinement of the particle is achieved using concentric circular channels of varying widths w (confinement δ = d/w). This
one-dimensional motion is tracked using the coordinate θ and the relative internal coordinate ψ .

switching between these broad types of active dynamics is
possible within a single experimental setup. Note that a direct
access to the noise characteristics in an active system can be
achieved by biasing the input that drives its dynamics. For
instance, explicitly modulating the external driving of the re-
orientation dynamics of self-propelled particles has recently
been implemented to tune the qualitative nature of their per-
sistent random walks [8–11]. Instead, we ask: Can such tuning
of the active dynamics emerge via an unbiased energy input?
We show that a subtle coupling between the internal degrees
of a self-propelled particle and the external constraints acting
upon it, can indeed switch the qualitative nature of the active
dynamics. In a broader context, such coupling mechanisms
could underlie the motility of self-propelled objects, such as
cells, due to the geometrical characteristics of their environ-
ment [32].

We use an experimental system comprised of a driven gran-
ular particle to show that laterally confining a chiral ABP-like
particle in a narrow quasi-one-dimensional channel leads to
the emergence of RTP-like motion, and that the characteristics
of this active noise can be controlled by our empirical param-
eters. To understand the geometrically induced dynamics, we
model the effect of the confining walls as a torque on the
orientation of the chiral active particle, and show that this
simple treatment captures both the steady-state and dynam-
ical characteristics of the emergent RTP motion. A natural
connection then arises between the dynamics of our active
particle and that of a molecular motor modelled by Brownian
motion in a periodic potential subject to a constant force—
indeed, it is the chirality of our granular particle that maps to
such a constant force. Our results are a clear demonstration
of confinement-induced tuning of the noise characteristics of
active particles, and suggest ways to harness their dynamics.

II. EXPERIMENTAL SETUP

Our experimental system is comprised of circular 3D
printed disks (particles) of diameter d , with an asymmetric

leg on one side (Fig. 1 and Supplemental Material [SM]
[33]); when placed on a flat surface (aluminum disk) and
driven using an electromagnetic shaker (see SM [33]), the
particles propel in-plane along a fixed body axis. The shaker
imparts a periodic (sinusoidal) driving in a plane perpendic-
ular to the aluminium disk—the frequency and amplitude
of this periodic driving can be tuned and is captured by
the nondimensional acceleration � = A�2/g, where A is the
maximum vertical displacement of the disk, � is the shak-
ing frequency and g = 9.81m/s2 is the acceleration due to
gravity. Owing to its design, a shape anisotropy is evident
in the 2-dimensional projected diameter of the particle along
the propulsion direction (Fig. 1). While the asymmetry in
the particle is front-back by design, manufacturing defects
cause slight (uncontrolled) asymmetries in the axial direction
due to which the particle motion is chiral, as we describe
later. In unconfined two-dimensional space, the particle is an
active, motile object executing a self-propelled random walk
(Movie 1 in SM [33]) with continuously and noisily varying
position r = (x, y) and orientation ϕ (Fig. 1 and SM [33]). In
addition to self-propulsion, the particles exhibit chiral motion
characterized by an angular speed ω. Altogether, the motion
of the active particle in the unconfined 2-dimensional space is
well characterized by an ABP model [26] for a chiral active
particle (see MSD analysis in the SM [33]): The particle
position evolves according to ṙ = v0 ê(ϕ) + √

2Dt η(t ) where
ê(ϕ) = cos ϕ x̂ + sin ϕ ŷ is the local direction of motion, the
over-dot indicates a time-derivative, v0 is an active speed, Dt is
the translational diffusion coefficient, and the stochastic term
η(t ) is a Gaussian white-noise process with zero mean and
unit variance. The angular coordinate ϕ of the ABP performs
a random walk governed by ϕ̇ = ω + √

2Dr ζ (t ) with ω the
(chiral) angular velocity, Dr the rotational diffusion coefficient
of the ABP while ζ (t ) is a zero-mean and unit-variance Gaus-
sian white-noise process. In our experimental set-up, we are
able to control these various parameters of the ABP model,
viz., ω, Dr , v0, and Dt , using the driving � of the electromag-
netic shaker (see SM [33]).
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FIG. 2. Emergent run-and-tumble dynamics in quasi-one-dimensional confinement. (a) Parametric plot of the particle trajectories in the
translational co-ordinate θ and the relative orientation co-ordinate ψ for varying confinements δ, with vertical grid lines marking multiples of
π/2. Discrete jumps in ψ are seen at sufficiently high δ. A constant drift of ψ , due to the particle chirality, to the right (“downhill” direction)
is evident. (b) The particle trajectory in θ is reminiscent of that of a run-and-tumble particle motion with a run duration τ . Red and blue arrows
on the trajectory mark particle flips in the “uphill” and “downhill” directions respectively.

III. EMERGENT STOCHASTIC SWITCHING DYNAMICS
IN CONFINEMENT

We now turn our attention to the behavior of these active
particles when they are confined to quasi-one-dimensional
channels—grooves of width w that run along the periphery
of the aluminum disk as concentric circles (Fig. 1). The geo-
metric configuration of the channels is such that the particles
are constrained radially to within �1% of the channel radius
(see SM [33]) and can still explore all possible values of ϕ.
When the confinement δ = d/w ≈ 0.88 is sufficiently small
(i.e., a wide channel) the orientation coordinate ψ samples all
directions uniformly [P(ψ ) for various confinements δ are not
shown] and since this co-ordinate is coupled to the position
co-ordinate θ , the particle executes a one-dimensional per-
sistent random walk along the channel (Fig. 2(a), left panel;
Movie 2 in SM [33]). The chirality of particle is evident in the
steady drift of the orientation ψ .

A striking difference is manifest when δ is increased to
≈0.9: instead of evolving continuously, the orientation of the
particle fluctuates noisily along one of the channel directions
i.e., ψ = ±π/2, only to stochastically and abruptly switch
direction [Fig. 2(a), middle panel]. The discrete orientation
jumps |�ψ | ∼ π occur either “downhill” in a direction dic-
tated by the chirality of the particle or less frequently “uphill”
[blue and red arrows, respectively in Fig. 2(b)]. As the con-
finement δ is further increased to ≈0.92, the switches in
the particle orientation become much less frequent—in the
particular run shown [Fig. 2(a), right panel], they occur only
“downhill”. When ψ ∼ ±π/2, the particle executes a “run”

along the channel for a typical “run-time” duration τ until
it stochastically switches to a “run” in the opposite direction
(Fig. 2(b); Movie 3 in SM [33]).

Taken together, the characteristics discussed above are
reminiscent of a run-and-tumble particle in one-dimension,
with position co-ordinate θ . As such, the relevant equation de-
scribing the dynamics of θ is that of an ABP confined to move
on a circle of radius R (see SM [33]), viz.,

θ̇ = ν sin ψ +
√

2D ξ (t ) ≡ ν σ (t ) +
√

2D ξ (t ), (1)

where ν = v0/R, D = Dt/R2, ξ (t ) is a Gaussian white-
noise process with zero mean and unit variance, and σ (t ) =
sin[ψ (t )] is the active noise. This model is validated by
first computing the empirical two point correlation C(|t −
t ′|) = 〈σ (t ) σ (t ′)〉 of the active noise, assuming σ (t ) is a
stationary stochastic process. The correlation function decays
exponentially with a time-constant τθ ∼ 9s [Fig. 3(a)]. For
ψ ∼ ±π/2, the active noise σ (t ) ∼ ±1, and thus ν would
correspond to the active speed of the RTP-like motion for θ .
The bounded values σ (t ) ∈ [−1, 1] and the exponential decay
of C(|t − t ′|) thus justify the effective dynamics of θ in Eq. (1)
as the position coordinate of an RTP-like particle.

We next compare the empirically measured mean-squared-
displacement (MSD) 〈[�θ (t )]2〉 with that predicted from
Eq. (1), using the values of v0 and Dt inferred from the two-
dimensional experiments for the ABP model:

〈[�θ (t )]2〉 = ν2
∫ t

0
dz

∫ t

0
dz′ C(|z − z′|) + 2Dt . (2)
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(a) (b) (c)

FIG. 3. Characteristics of the run-and-tumble dynamics. (a) Two-point correction function C(|t − t ′|) = 〈σ (t ) σ (t ′)〉 where σ (t ) =
sin[ψ (t )] is the active noise. (b) The empirical mean-squared-displacement 〈[�θ (t )]2〉 follows the RTP model in Eq. (1). MSDs for varying
confinements are shown in the inset. (c) The run-time distribution P(τ ) of θ , equivalently the dwell-time distribution of ψ , exhibits two-time
scales fit by the convolution of the statistics of two Poisson processes [Eq. (3)]. In all the plots, blue symbols indicate experimental data and
theoretical curves are shown in red.

An excellent agreement is found between the empirical MSD
and that given by Eq. (2) [Fig. 3(b)]. Of note in the MSD
are the crossovers from an initial diffusive regime (governed
by passive translational diffusion), to a super-diffusive regime
(governed by the self-propelled motion of the particle), and
then, eventually, to a diffusive regime for time-scales t 

τθ (∼9 s) corresponding to the decorrelation of the persis-
tent motion driven by the active noise σ (t ). The effective
diffusion coefficient in this asymptotic regime has an active
contribution ∼ν2 τθ in addition to the (angular) translational
diffusion coefficient D [34,35]. This additional contribution
to the effective diffusivity could dramatically increase with
increasing confinement as the particle becomes more RTP-
like. Indeed, the effective diffusion coefficient does increase
with confinement, and in fact for the highest confinements, a
crossover to the eventual diffusive regime is not seen on the
timescale of our experiments [Fig. 3(b), inset]. These results
conclusively suggest that Eq. (1) is indeed a good descriptor
for the dynamics of θ , and also that the parameters describing
the motion in confinement remain reasonably similar to the
particle motion in two-dimensions (more details in the SM
[33]).

The empirically measured dwell time distribution of ψ

(equivalently, the run time distribution of θ ) distribution of
ψ is well fit by a bi-exponential function

P(τ ) = kf kb

kf − kb
(e−kb τ − e−kf τ ), (3)

where kf/b are the forward (“downhill”) and backward (“up-
hill”) rates of the switching between the states ψ ∼ ±π/2
[Fig. 3(c)]. It is clear from the above expression that
asymptotically, i.e., for kfτ 
 1 and kf 
 kb, the dwell-time
distribution P(τ ) ∼ kb e−kbτ , decaying exponentially with the
rate kb. For the same driving strength �, the time-scales that
govern the decay of the two-point correlation C(|t − t ′|) and
the crossover of the MSD 〈[�θ (t )]2〉 from the super-diffusive
to the diffusive regime are comparable to the backward (“up-
hill”) switching rate, i.e., 1/kb ∼ τθ .

Several remarks are in order. First, the tumble rate for the
RTP motion along the channel, i.e. the transitions between
the states σ ∼ ±1, is kf + kb. However, it should be noted
that unlike the standard RTP model with an exponentially
distributed run time between tumbles, our active particle dy-
namics demonstrates a non-monotonic distribution P(τ ) of
run-times τ . Second, the discrete jumps in the trajectory of
ψ [Fig. 2(b)] are reminiscent of the positions of a molecular
motor stepping along a polymeric track [36,37]. Third, the fit
of Eq. (3) [Fig. 3(c)] suggests the presence of (at least) two
characteristic switching rates in the RTP-like dynamics of θ

driven by the active noise σ (t ). Incidentally, Eq. (3) is used
to model the dwell time distributions of a two-state molecular
motor [37–39]. All the above points hint at a possible similar-
ity between the dynamics of our active particle in confinement
and those of a processive molecular motor. We next show that
this is indeed the case.

IV. ANALOGY TO THE STEPPING DYNAMICS
OF A MOLECULAR MOTOR

We conjecture that the effects of the confining channel
on the particle can be captured by a periodic torque Twall =
λ sin 2ψ , on the particle orientation, where λ is the strength
of the wall-particle interaction. In doing this, we simplify the
interactions, which are quite complicated indeed—they not
only depend on the particle and channel surface roughness
and the resultant friction, but possibly also on the amplitude of
driving �. However, the step-like trajectories, and the prepon-
derance of the values of ψ close to ±π/2, motivate us to test
this functional form of Twall to describe the particle motion.
Following this intuition, the dynamics of ψ is modelled by
the following equation (details in SM [33]):

ψ̇ = −V ′(ψ ) +
√

2D ξ (t ) (4)

where D = Dt/R2 + Dr with R the (mean) radius of the con-
fining channel, ξ is a zero-mean unit-variance Gaussian white
noise process, and the prime denotes differentiation with
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(a) (b) (c)

FIG. 4. Dynamics and control of the stochastic switching. (a) Effective potential for the internal co-ordinate ψ and the transition rates
between the neighboring minima of the potential. In our analysis, k′

f/b ≈ kf/b. (b) The empirical steady-state distribution P (ψ ) (data points)
compared with the analytical solution obtained from the Fokker-Planck equation for the stochastic dynamics of ψ (red line). (c) Control
of the forward and backward switching rates, kf and kb by modulating the driving �. Dashed lines are a guide to the eye. Simulations are
performed with parameters extracted using a heuristic fitting procedure (SI Text). The inset shows the ratio kf/kb and its correspondence with
the prediction from Kramers’ rate theory analysis (see SM [33]). In all the plots, blue symbols indicate experimental data, open black symbols
indicate simulations and theoretical curves are shown in red.

respect the argument of its function. The effective potential

V (ψ ) = −ω ψ + λ

2
cos 2ψ − ν cos ψ (5)

thus governs the dynamics of ψ . Notice that U (ψ ) = V (ψ ) +
ω ψ is a periodic function of ψ . Thus, the Langevin equa-
tion (4) describes the stochastic dynamics of a Brownian
particle with a position coordinate ψ moving in a periodic
potential U , subject to a constant “force” ω [Fig. 4(a)]. It is
straightforward to solve the Fokker-Planck equation for P (ψ )
in the steady-state, corresponding to this motion (see SM
[33]). This theoretical P (ψ ) agrees well with the empirical
distribution, relying on a single fitting parameter λ (Fig. 4(b),
SM [33]). However, λ depends on the driving � (see SM [33]),
which is altogether not surprising given that it encapsulates
the effective strength of the complicated interactions between
the active particle and the confining channel.

Having concluded that the effective potential V (ψ ) is suf-
ficient to capture the steady-state distribution of the internal
coordinate ψ , we next show that it can also capture the dynam-
ical properties of ψ . The two point correlation function C(|t −
t ′|) computed from simulations of the Langevin equation (4)
compares well with empirical measurements (see SM [33]).
Further, the switching rates, kf and kb, as inferred from the
fits of Eq. (3) to the run-time distributions obtained from both
the experimental and simulation data compare well. These
rates and other characteristics of the RTP-like motion can
be controlled by the driving amplitude � (Fig. 4(c) and SM
[33]). The transition rates governing the jumps of ψ across
successive minima of the potential can be explicitly computed
in the Kramers’ approximation [40]. When ν �= 0 there are in
principle four transition rates, kf/b and k′

f/b, across the poten-
tial minima ([Fig. 4(a)]; however, in the approximation ν ≈ 0
(valid for our experiments, see SM [33]), only two transition
rates kf/b remain. The variation of the ratio kf/kb from the em-
pirical (experimental and simulation) data compares well with

the analytical results obtained in the Kramers’ approximation
[Fig. 4(c), inset]. Further, in analogy with two-state dynamics
of molecular motors, the chirality of our active particle makes
the forward and reverse transition rates different, concomitant
with the bi-exponential distribution of P(τ ) (see SM [33]).
Taken together, the effective potential used to describe the
confining effects of the channel is a good predictor for the
dynamical properties of ψ .

V. DISCUSSION AND CONCLUSIONS

By confining a self-propelled granular particle to a quasi-
one-dimensional channel, we have demonstrated emergent
active noise properties, qualitatively distinct from those of
the two-dimensional unconfined motion. While the two-
dimensional dynamics is well described by an ABP model,
RTP-like behavior emerges due to lateral confinement. This
dynamics of the translational coordinate θ is driven by the
internal coordinate ψ of the particle, which in turn has sim-
ilarities to the stepping dynamics of a molecular motor; most
notably, this manifests in the nonmonotonic nature of the
dwell-time distribution of ψ , which is identical to that found
in two-state processive motors. To complete the picture and
capture the dynamics of ψ , we reduced the effects of con-
finement to a simple periodic torque, thus mapping it to the
dynamics of a Brownian particle moving in a periodic poten-
tial subject to a constant external force, which is sufficient
to capture the statistical features of the emergent dynamics.
Note that our experimental system is athermal, far from equi-
librium, and the various interactions between the granular
surfaces are complicated, thus possibly requiring a priori,
a dynamical description more complex than that given by
Eqs. (4) and (5). Therefore, the agreement we find between
empirical measurements and the theoretical analysis, in par-
ticular the Kramers’ transition rates is remarkable.
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We conclude with a few comments. First, our experiment
is an explicit demonstration of the inseparable coupling be-
tween the internal degrees of freedom and the translational
co-ordinates of an active particle [Fig. 2(a)], and also under-
scores that the equivalence between ABP and RTP dynamics
observed at the many-particle level [30] is true even at the
single particle level. Second, the chirality of the ABP par-
ticle is not a requirement for the emergence of RTP-like
motion in the channel. The effects of chirality manifest as dis-
tinct forward and backward rates (kf �= kb) for the directional
(clockwise/anticlockwise) switching of ψ , while an achiral
particle would have kf = kb. As such, the resulting run (dwell)
time distribution of θ (ψ) is the convolution of the waiting
time distributions of two composite Poisson processes with
rates kf and kb (Fig. 3). Further, the ratio kf/kb is controlled by
the particle chirality ω as calculated from Kramers’ transition
rate theory (Fig. 4). Third, the RTP-like discrete dynamics that
we describe here is not directly imposed, for example, using
explicit external mechanisms [8,10,11], but is rather an emer-
gent behavior resulting from the geometric constraints on the
internal coordinate of the particle. Fourth, the nature of such
geometric constraints does indeed matter for the resultant dy-
namics. For instance, confining the three-dimensional motion
of an ABP between two-parallel plates does not, in general,
lead to RTP-like motion in two-dimensions, even though the
active noise characteristics would change. However, confining
the three-dimensional motion of an ABP to a cylinder does
indeed lead to RTP-like dynamics—our experiment is a two-
dimensional realization of this situation. Finally, the interplay
between geometry and motility that we have uncovered here
may be relevant in more broader situations such as cell motil-
ity in complex, three-dimensional environments [32,41,42]
and in other synthetic active systems such as catalytic or other
Janus colloids in confined geometries [3,24]. Altogether, our
paper opens up an avenue to exploit the effects of geometric
constraints and non-equilibrium driving to control the collec-
tive noise characteristics of interacting active particles.

VI. METHODS

A. Experiments

A Brüel & Kjær electromagnetic shaker (LDS V406) is
used to excite a patterned aluminum disk on which the par-
ticles move. The shaker is suspended on a trunnion mount
designed to isolate mechanical vibration. The aluminium disk
measures 25 cm in diameter and 19 mm in thickness. Circular
channels of varying widths, viz., 5.3 mm, 5.1 mm, and 4.9 mm
are precision milled into the disk. The channels are 5 mm in
depth with a mean circular radius of 115.7 mm, 105.5 mm and

95.5 mm (from outer perimeter of the disk inwards), leaving a
circular 2D arena of radius 88 mm and depth of 5 mm in the
center of the disk. A channel of width 5.0 mm and 116.5 mm
mean radius are etched on a separate head from which the
corresponding experiments are reported. The aluminium disk
is polished followed by soft anodizing to provide a uniform
black background and is electrically grounded. Particles are
designed in-house and fabricated using a 3D printer (Form2
SLA 3-D printer, resolution ∼25 μm). Particles are 4.5 mm
in diameter (d) and 2.5 mm in height, which includes a leg of
height 0.5 mm. The front half of the particle is marked using
yellow paint to identify particle orientation.

B. Image processing and analysis

Particle dynamics are recorded at 60 fps for a duration of
10–20 minutes using a Nikon DSLR camera aligned above the
center of aluminum disk. Images are processed using custom
written MATLAB code. From the image analysis, we extract
time-series of both the position coordinate r and the angular
orientation ϕ of the active particle (see SM [33]). We cal-
culate 〈[�r]2〉 the positional mean-squared-displacement and
〈[�ϕ]2〉 the orientation mean-squared-displacement, where
〈· · · 〉 represents an average over several realizations, and par-
ticles. We then used a Bayesian inference procedure to extract
the parameters ω, Dr , v0, Dt using the empirically measured
MSD (see SM [33]).

C. Simulations

We performed Langevin simulations of the Eqs. (1) and (4)
using an Euler-Maruyama method with a constant time-step
�t = 10−3 s and averaged over N = 104 realizations of the
noise to construct statistical measures.
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