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Mesoscopic lattice Boltzmann model for radiative heat transfer in graded-index media
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Convection, conduction, and thermal radiation are the three mechanisms of heat transfer in nature. The
lattice Boltzmann model (LBM) has already achieved great success in dealing with convection and conduction
problems. However, the mature LBM for radiative heat transfer (RHT) is still relatively lacking. Here we propose
a mesoscopic LBM for RHT in graded-index media, which enables a simple and efficient solution of both
transient and steady-state RHT in graded-index media by conducting collision and streaming processes. Via
the Chapman-Enskog analysis, the radiative transfer equation of graded-index media is rigorously derived from
the proposed LBM. The present LBM is a universal model for RHT in media with arbitrary refractive index
distribution, which can naturally handle RHT in homogeneous media with constant refractive index. This model
is expected to provide a simple and efficient mesoscopic tool for RHT in complex media and pave the way for
establishing a unified framework of LBM for convection, conduction, and thermal radiation heat transfer.
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I. INTRODUCTION

Since its introduction three decades ago [1,2], the lattice
Boltzmann model (LBM) has developed into a recognized
and popular approach for computational fluid dynamics [3–5],
with various applications including magnetohydrodynamics
[6], turbulent flow [7], multiphase flow [8], micro- and
nanoscale flow [9], thermal flow [10,11], relativistic hydrody-
namics [12] and so on [13–17]. In conjunction with the great
success in hydrodynamics, the LBM has also been success-
fully extended to macroscopic thermal conduction [18–20],
mesoscopic phonon transport [21–23]. Due to its kinetic ori-
gin, the LBM is a mesoscopic approach that possesses the
prominent features of simple formulation and implementation
as well as high parallel efficiency. Its attractive features drove
the LBM to be further introduced into many other fields, such
as convection-diffusion [24], reaction-diffusion [25], wave
propagation [26], and quantum mechanics [27].

Inspired by wide applications of the LBM in convec-
tion and conduction, numerous researchers have promoted
the application of the LBM to radiative heat transfer (RHT)
over the past decade [28–38] and have been devoted to es-
tablishing a unified framework of the LBM for convection,
conduction, and thermal radiation heat transfer. However, all
above-mentioned LBM for RHT are intended for simple ho-
mogeneous media with constant refractive index, and they
are not applicable to complex media with variable refractive
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index. Essentially, in real physical media, variable refractive
index (i.e., graded index) is universal, while the constant
refractive index is only special simplification [39,40]. RHT
in graded-index media widely appears in many scientific and
engineering fields, such as combustion [41], atmospheric ra-
diative transfer [42], optical measurement [39], as well as
thermo-optical systems [43]. In the past two decades, it has
attracted a wide range of attention and some numerical meth-
ods have been developed to investigate RHT in graded-index
media [44–53], but these methods are relatively difficult to
deal with conjugated convection, conduction, and thermal
radiation heat transfer in a unified manner. Overall, it is of
great significance to develop a LBM for RHT in graded-index
media, not only to achieve a simple and efficient solution
to the problem, but also to pave the way for establishing a
unified framework of the LBM for convection, conduction,
and thermal radiation heat transfer.

Due to its complexity, the LBM has rarely been applied
to RHT in graded-index media. Zhang et al. [54] developed
a pioneering LBM for one-dimensional transient RHT in
graded-index media. They constructed the lattice Boltzmann
equation (LBE) by discretizing the radiative transfer equation
(RTE) in time and space. The mesoscopic equilibrium distri-
bution function in the LBE and the rigorous link between the
LBE and RTE have not been established. So far, a mature
mesoscopic LBM for RHT in graded-index media is still
relatively lacking and thus urgently required.

In this work, we propose a mesoscopic LBM for RHT
in graded-index media. Our discussion and implementation
are limited to the gray RTE. We construct the LBE for
the RTE and the equilibrium distribution function for the
radiative intensity, respectively. The RTE in graded-index me-
dia is rigorously derived from the proposed LBM via the
Chapman-Enskog (CE) analysis. The present LBM shows a
clear physical picture at the mesoscopic level, and we demon-
strate that it enables a simple and efficient solution of both
transient and steady-state RHT in graded-index media. Also,
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we note that the present LBM can be naturally degenerated to
handle RHT in homogeneous media with constant refractive
index.

II. PHYSICAL MODEL AND MATHEMATICAL
FORMULATIONS

A. RTE in graded-index media

The RTE in this work is restricted to the common gray
(frequency-independent approximation) form, and the gray
RTE for RHT in absorbing, emitting, and scattering media
with graded index can be expressed as [48]

n

cl
∂t I (r,�, t ) + � · ∇I (r,�, t )

+ 1

2n2 sin θ
∂θ [I (r,�, t )(ξ� − k) · ∇n2]

+ 1

2n2 sin θ
∂ϕ[I (r,�, t )(s1 · ∇n2)] + keI (r,�, t )

= n2kaIb(r, t ) + ks

4π

∫
4π

I (r,�′, t )�(�′,�)d�′, (1)

where cl is the speed of light in vacuum; n is the refrac-
tive index of media, which is a function of spatial position
r; � = μi + ηj + ξk = cos ϕ sin θ i + sin ϕ sin θ j + cos θk is
the radiation direction with μ, η, and ξ being the direction co-
sine in Cartesian coordinate, and θ and ϕ being the zenith and
azimuthal angles, respectively; t is the time; I is the radiative
intensity; Ib is the blackbody radiative intensity; ke, ka, and ks

are the extinction, absorption, and scattering coefficients, re-
spectively, and ke = ka + ks; �(�′,�) is the scattering phase
function from the incoming direction �′ to the outgoing di-
rection �; s1 is a vector defined as s1 = − sin ϕi + cos ϕj.

For the boundary surfaces with diffuse and specular re-
flection and collimated irradiation, the boundary condition for
RTE can be written as

I (rw,�, t ) = ( fdεd + fsεs)n2
wIb,w(r, t∗)

+ fdρd

π

∫
nw ·�′<0

I (rw,�′, t )|nw · �′|d�′

+ fsρsI (rw,�′′, t ) + [ fd (1 − ρd )

+ fs(1 − ρs)]Iext (rw,�c, t ), (2)

where the subscript “w” denotes the boundary; εd and εs

are the diffuse and specular emissivity, respectively; ρd and
ρs are the diffuse and specular reflectivity, respectively; fd

and fs are the fractions of the diffuse and specular reflection,
respectively, and fd + fs = 1; �′, �′′, and �c are the incident
angle of diffuse reflection, specular reflection, and collimated
irradiation, respectively; nw is the unit inner direction of the
boundary surface; Iext denotes external irradiation intensity.

B. LBM for RHT in graded-index media

Next, a LBM for RHT in graded-index media will be
proposed. Since the refractive index of media is a function of
spatial position, our key idea is to introduce the local radiative
transfer direction u = �/n and act the gradient operator onto

it. Introducing the dimensionless time t∗ = clt/L, the tempo-
rally dimensionless RTE can be obtained as

∂t∗ I (r,�, t∗) + ∇ · [LuI (r,�, t∗)] = F (r,�, t∗), (3a)

with

F (r,�, t∗) = L[S − keI (r,�, t∗)]/n + I (r,�, t∗)∇ · (Lu),
(3b)

and

S = n2kaIb(r, t∗) + ks

4π

∫
4π

I (r,�′, t∗)�(�′,�)d�′

− 1

2n2 sin θ
∂θ [I (r,�, t∗)(ξ� − k) · ∇n2]

− 1

2n2 sin θ
∂ϕ[I (r,�, t∗)(s1 · ∇n2)], (3c)

where L is the reference length of media. Note that
I (r,�, t∗)∇ · (Lu) in source term F (r,�, t∗) is comple-
mented by acting the gradient operator on the local radiative
transfer direction.

Here we give the corresponding LBE for the temporally
dimensionless RTE, Eq. (3), as

fi(r + ci�t∗,�, t∗ + �t∗) − fi(r,�, t∗)

= − 1

τ

[
fi(r,�, t∗) − f eq

i (r,�, t∗)
]

+ �t∗
[

Ai(r,�, t∗) + Fi(r,�, t∗)

+�t∗

2
∂t∗Fi(r,�, t∗)

]
, (4)

where τ denotes the dimensionless relaxation time; �t∗ de-
notes the dimensionless time step; ci denotes the discrete
lattice velocity; fi(r,�, t∗) and f eq

i (r,�, t∗) denote the dis-
tribution function and equilibrium distribution function in
discrete velocity space, respectively; Fi(r,�, t∗) denotes the
source term distribution function; and Ai(r,�, t∗) denotes
the auxiliary source term distribution function. Noted that
∂t∗Fi(r,�, t∗) = [Fi(r,�, t∗) − Fi(r,�, t∗ − �t∗)]/�t∗.

The equilibrium distribution function in discrete velocity
space follows as [37,38]

f eq
i (r,�, t∗) = �iI (r,�, t∗)

[
1 + ci · (Lu)

c2
s

+
(
L2uu − c2

s E
)

:
(
cici − c2

s E
)

2c4
s

]
, (5)

where �i denotes the weight coefficient corresponding to
discrete lattice velocity ci; cs denotes the lattice sound speed;
and E denotes the unite tensor.

The distribution functions of source term and auxiliary
source term are, respectively, taken as

Fi(r,�, t∗) = �iF (r,�, t∗), (6a)

Ai(r,�, t∗) = λ�ici · (Lu)[F(r,�, t∗)

+ I (r,�, t∗)∇ · (Lu)]/c2
s , (6b)

where λ = 1 − 1/(2τ ). The construction of the auxiliary
source term distribution function is important in the present
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FIG. 1. Schematic of the D1Q3 and D2Q9 lattice structures.

LBM and used to modify the effect of gradient operator on
the local radiative transfer direction.

The DdQq lattice modes are employed for different di-
mensional configurations. In this work, the D1Q3 and D2Q9
models [15] are adopted, the structure of which is shown in
Fig. 1. The parameters of D1Q3 model are given by

ci =
{

0, i = 0
±c, i = 1, 2 , (7a)

cs = c√
3
, �i =

{
2/3, i = 0
1/6, i = 1, 2 . (7b)

The parameters of the D2Q9 model are given by

ci =

⎧⎪⎨
⎪⎩

(0, 0)c, i = 0(
cos(i − 1)π

2 , sin(i − 1)π
2

)
c, i = 1 − 4√

2
(
cos(2i − 1)π

4 , sin(2i − 1)π
4

)
c, i = 5 − 8

, (8a)

cs = c√
3
, �i =

⎧⎨
⎩

4/9, i = 0
1/9, i = 1 − 4
1/36, i = 5 − 8

. (8b)

Here c is the lattice velocity defined as c = �x/�t∗, and
�x∗ denotes the dimensionless lattice size. For numerical
stability, the dimensionless time step and lattice size should
meet the Courant-Friedrichs-Lewy (CFL) condition [55], i.e.,
CFL coefficient CFL � 1 (CFL = �t∗/�x).

C. Recovery of RTE from LBE

For the mesoscopic LBM, the key is to link the RTE
with the LBE. It depends on expressions of the equilibrium
distribution function, source term, and auxiliary source term
distribution functions. Here a commonly used method, i.e.,
the CE analysis, is employed to recover the RTE, Eq. (3), for
graded-index media from the LBE, Eq. (4).

The distribution function, equilibrium distribution func-
tion, source term, and auxiliary source term distribution
functions satisfy the following constrains:∑

i

fi(r,�, t∗) =
∑

i

f eq
i (r,�, t∗) = I (r,�, t∗),

∑
i

ci f eq
i (r,�, t∗) = I (r,�, t∗)Lu,

∑
i

cici f eq
i (r,�, t∗) = I (r,�, t∗)L2uu,

∑
i

Fi(r,�, t∗) = F (r,�, t∗),
∑

i

ciFi(r,�, t∗) = 0,

∑
i

Ai(r,�, t∗) = 0,

∑
i

ciAi(r,�, t∗) = λLu[F (r,�, t∗)

+ I (r,�, t∗)∇ · (Lu)]. (9)

For simplicity, the notations fi, f eq
i , Fi, and Ai are

adopted in place of fi(r,�, t∗), f eq
i (r,�, t∗), Fi(r,�, t∗), and

Ai(r,�, t∗), respectively. Firstly, the CE expansion of time
and space is applied:

fi = f eq
i + ε f (1)

i + ε2 f (2)
i + O(ε3),

Fi = εF (1)
i + ε2F (2)

i + O(ε3),

Ai = εA(1)
i + ε2A(2)

i + O(ε3),

F = εF (1) + ε2F (2) + O(ε3),

∂t∗ = ε∂t∗
1
+ ε2∂t∗

2
+ O(ε3),

∇ = ε∇1 + O(ε2), (10)

where the small expansion parameter ε satisfies ε � 1.
The following relations can be obtained from Eqs. (9) and

(10): ∑
i

f (m)
i = 0,

∑
i

F (m)
i = F (m),

∑
i

ciF
(m)

i = 0,

∑
i

A(m)
i = 0,

∑
i

ciA
(1)
i = λLu[F (1) + I (r,�, t∗)∇1 · (Lu)], (11)

where m = 1, 2.
By applying the Taylor expansion to the evolution equation

of the LBM, we have

Di fi + �t∗

2
D2

i fi + · · · = − 1

τ�t∗
(

fi − f eq
i

) + Fi+Ai

+ �t∗

2
∂t∗Fi, (12)

where Di = ∂t∗ + ci · ∇ = εD1i + ε2∂t∗
2

and D1i = ∂t∗
1
+

ci · ∇1.
Substituting Eq. (10) into Eq. (12) and equating the coef-

ficients of the same order of ε and ε2 leads to the following
sequence of equations:

ε : D1i f eq
i = − 1

τ�t∗ f (1)
i + F (1)

i + A(1)
i , (13a)

ε2 : ∂t∗
2

f eq
i + D1i f (1)

i + �t∗

2
D2

1i f eq
i

= − 1

τ�t∗ f (2)
i + F (2)

i + A(2)
i + �t∗

2
∂t∗

1
F (1)

i . (13b)

Applying Eqs. (13a) to (13b), and summing Eqs. (13a)
and (13b) over the subscript i, and with the help of moment
conditions in Eqs. (9) and (11), we obtain

∂t∗
1
I (r,�, t∗) + ∇1 · (LuI (r,�, t∗)) = F (1), (14a)

∂t∗
2
I (r,�, t∗) +

(
1 − 1

2τ

)
∇1
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·
∑

i

ci f (1)
i +

(
1 − 1

2τ

)
�t∗

2
∇1

·[Lu(F (1) + I (r,�, t∗)∇1 · (Lu))] = F (2). (14b)

Applying the expression of f (1)
i in Eq. (13a), and with the

help of Eq. (14a), Eq. (14b) can be eventually expressed as

∂t∗
2
I = F (2). (15)

Taking ε× Eq. (14a) + ε2× Eq. (15), we have

∂t∗ I (r,�, t∗) + ∇ · [LuI (r,�, t∗)] = F (r,�, t∗). (16)

Ultimately, the RTE for graded-index media is rigorously
recovered from the LBE through the CE analysis.

D. Boundary treatment

The radiative intensity at the boundary of the upstream di-
rection can be given in Eq. (2). For the downstream direction,
the radiative intensity at the boundary can be obtained as

I (rw,�, t∗)/n2
w = 2I (ra,�, t∗)/n2

a − I (rna,�, t∗)/n2
na,

(17)

where rw denotes the boundary node, ra denotes the node
neighboring the boundary node, and rna denotes the next-
neighboring node of ra, which are shown in Fig. 2; nw,
na, and nna denote the refractive index of the corresponding
nodes.

The distribution function at the boundary can be obtained
by the nonequilibrium extrapolation scheme [56]:

fi(rw,�, t∗)

= f eq
i (rw,�, t∗) + [

fi(ra,�, t∗) − f eq
i (ra,�, t∗)

]
. (18)

Until now, we have given the mesoscopic LBM for RHT
in graded-index media. Obviously, it is naturally applicable to
RHT in homogeneous media with constant refractive index.
Thus, the present LBM is a universal model for RHT in media
with arbitrary refractive index.

FIG. 2. Schematic of the boundary treatment with rw , ra, and rna

representing the boundary lattice node, the adjacent lattice node, and
the next adjacent lattice node, respectively.

III. RESULTS AND DISCUSSION

To test the applicability of present mesoscopic LBM
for RHT in graded-index media, one-dimensional and two-
dimensional transient and steady-state cases are studied in
this section. To decouple the space-angle dependency, the
spatial domain and angular domain are divided into some lat-
tices and discrete directions, respectively. The angular domain
discretization scheme adopts the popular piecewise constant
approximation scheme, and accordingly the derivative terms
of refractive index to zenith and azimuth angles are pro-
cessed by the classical finite-difference scheme [48]. After
the lattice and discrete direction independence verifications,
200 uniform lattices and 80 zenith discrete directions are
adopted for the one-dimensional cases, and 20×20 uniform
lattices and 20×40 discrete directions are adopted for the
two-dimensional cases. In this work, the dimensionless re-
laxation time is taken as τ = 1.0, and CFL is taken as 0.2.
The LBM is a transient evolutionary algorithm, and the fol-
lowing time convergence criterion is executed for steady-state
problems:∑

j |G(r j, t∗) − G(r j, t∗ − 100�t∗)|∑
j G(r j, t∗)

< 10−6, (19)

where G is the incident radiation. The solution steps of the
present LBM for RHT can be seen in Ref. [36].

A. One-dimensional cases

The first case we consider is the transient RHT in an infinite
slab with diffuse boundary radiation. The slab is absorbing,
isotropic scattering, and nonemitting bounded by two black
surfaces. The thickness of the slab is L = 1m, and the optical
thickness is τL = κeL = 1.0. The single scattering albedo is
ω = κs/κe = 0.5. The left boundary provides a diffuse in-
tensity I (0, ξ , t∗) = H (t∗)I0, where H (t∗) is the Heaviside
step function. The refractive index distribution is n = 1 + 2z.
Figures 3(a) and 3(b) show time evolutionary processes of
dimensionless incident radiation G∗ = 2π

∫ 1
−1 Idξ/π I0 and

radiative heat flux q∗ = 2π
∫ 1
−1 I|ξ |dξ/π I0 in the slab. The

results of the present LBM exhibit good agreement with those
of the discontinuous finite-element method (DFEM) [50].
Theoretically, the wavefront of the pulse irradiation will arrive
at position z at t∗ = ∫ z

0 n/ξdz for different zenith directions
ξ . We can see the wavefront with different ξ for t∗ = 0.4,
1.0, 2.0, and steady state in Figs. 3(c)–3(f), which features
a nonlinear relationship between z and ξ , instead of the
linear relationship for constant refractive index. Especially,
t∗ = z + z2 for ξ = 1, and the wavefront arrives at positions
z = 0.306, 0.618, and 1.0, respectively, when t∗ = 0.4, 1.0,
and 2.0, consistent with the LBM results. To demonstrate the
universality of present LBM for RHT, we further consider
the slab with a constant refractive index n = 1, and other
parameters remain unchanged. Time evolutionary processes
of incident radiation and radiative heat flux in the homo-
geneous slab are shown in Fig. 4. The LBM results also
exhibit good agreement with the DFEM results [57], which
indicates that the present LBM can be naturally degenerated to
handle RHT in homogeneous media with constant refractive
index by taking the global radiative transfer direction and is
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FIG. 3. Time evolutionary processes of incident radiation, radiative heat flux, and radiative intensity distribution in spatial and angular
domains with τL = 1.0, ω = 0.5, and n = 1 + 2z. (a) Dimensionless incident radiation G∗. (b) Dimensionless radiative heat flux q∗. (c)–(f)
Distribution of radiative intensity I (z, ξ ) at different times t∗ = 0.4, 1.0, 2.0, and steady state, respectively.

a universal model for RHT in media with arbitrary refractive
index.

The first case we consider is the RHT in optically thin
media with relatively small optical thickness. To investigate
the performance of the present LBM in optically thick media
with large optical thickness, the second case we consider is
the radiative intensity solution in an infinite slab with a large
optical thickness, τL = 10. The slab has two black surfaces.
The temperatures of the upper and lower boundaries are TL =
1000 K and T0 = 0 K, respectively. The temperature within
the slab decreases from TL to T0 linearly. The refractive index

distribution is n = 1.2 + 0.6(z/L). Figures 5(a) and 5(b) show
the dimensionless radiative intensity ψ = I (θ )/n2

LσT 4
L at the

upper boundary of the slab with different scattering albedos,
respectively, where nL is the refractive index of the upper
boundary. The scattering albedo is ω = 0 (pure absorption) in
Fig. 5(a), ω = 0.5 (isotropic scattering) in Fig. 5(b). The re-
sults of optical thickness τL = 1.0 are also presented in Fig. 5
for comparison. The results of the LBM and the improved
integral equation method based on radiation distribution fac-
tors [53] exhibit excellent agreement, which demonstrates that
the present LBM is accurate and stable for simulating RHT
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FIG. 4. Time evolutionary processes of incident radiation and radiative heat flux in the homogeneous slab with τL = 1.0, ω = 0.5, and
constant refractive index n = 1. (a) Dimensionless incident radiation G∗. (b) Dimensionless radiative heat flux q∗.

in graded-index media with different optical thicknesses. We
also note that for the DnQm lattice structure and the LB model
in this work, the convergence rate is embedded with respect
to lattice size and holds for different optical thicknesses. The
difference is that a greater relative error exists for optically
thick media compared to optically thin media. Since a bigger
extinction coefficient causes a sharper gradient in the radiation
intensity distribution, then the bigger relative error is produced
due to the sharper gradient.

The next case we consider is the steady-state RHT of
an infinite slab in radiative equilibrium. The slab has two
diffuse surfaces with emissivity ε0 and εL, respectively. The
temperatures of the two boundaries are T0 = 1000 K and
TL = 1500 K, respectively. The refractive index distribution
is n = 1.2 + 0.6(z/L). Figure 6 shows radiative equilibrium
temperature distributions, in which the medium in Fig. 6(a)
is nonscattering with ε0 = εL = 1 and different optical thick-
ness τL = 0.01, 1, and 3, and the medium in Fig. 6(b) is
linear-anisotropic scattering with scattering phase function

� = 1 + bξξ ′, ω = 0.8, τL = 1, and ε0 = εL = 1 and differ-
ent asymmetry factors b = 1, 0, and −1. The LBM results
with those of the curved ray-tracing (CRT) method [47] and
the Chebyshev collocation spectral-discrete ordinates method
[51] are presented in Fig. 6 for comparison. We can see that
the LBM results are in good agreement with the benchmark
results. The good agreement indicates that the present LBM
is flexible and accurate for simulating steady-state RHT in
graded-index media.

B. Two-dimensional cases

Through comparing the LBM results with other numer-
ical results as well as theoretical results, we can conclude
that the present LBM can efficiently and accurately capture
one-dimensional transient and steady-state RHT processes
in graded-index media. Also, the steady-state results can
be naturally evolved from transient results. Finally, we will
specifically test the performance of LBM on multidimensional

FIG. 5. The dimensionless radiative intensity at the upper boundary of the slab with different scattering albedos: (a) in the nonscattering
medium and (b) in the isotropic scattering medium with ω = 0.5.
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FIG. 6. Radiative equilibrium temperature distributions: (a) in the nonscattering medium with ε0 = εL = 1 and (b) in the linear-anisotropic
scattering medium with τL = 1.0, ω = 0.8, and ε0 = εL = 1.

problems. Here, two-dimensional RHT in square enclosure
with graded-index medium and opaque boundaries is stud-
ied. The lower, upper, left, and right walls of the square
enclosure keep temperature Tw1, Tw2, Tw3, and Tw4, respec-
tively. The medium in the square enclosure keeps temperature
Tg, and the absorption coefficient ka and the scattering co-
efficient ks are uniform. Firstly, the square enclosure is set
as black walls, optical thickness of τL = 2, and scattering
albedo of ω = 0.5, with anisotropic scattering phase function
� = 1 + ��′. The refractive index distribution is taken as
n = 5

√
1 − 0.4356(x2 + y2)/L2. Two kinds of temperature

distributions are considered: (1) Tw1 = Tw2 = Tw3 = Tw4 =
0 K and Tg = Tref , and (2) Tw1 = Tw2 = Tw4 = Tg = 0 K and
Tw3 = Tref . Figure 7(a) shows the dimensionless radiative heat
flux q∗

w1 = qw1/σT 4
ref along the lower boundary with two

temperature distributions, where σ is the Stefan-Boltzmann
constant. The results obtained by the present LBM and the
Monte Carlo curved ray-tracing (MCCRT) method [49] are
depicted in Fig. 7(a) for comparison. It is seen that the
LBM results agree well with the MCCRT results. Next,
the square enclosure is set as optical thickness of τL = 0.1,
the scattering albedo of ω = 1.0 (pure isotropic scattering),
and gray walls. The refractive index distribution is taken
as n = 1 + 2(x + y)/L. The lower wall keeps hot (Tw1 =
Tref ), and the other walls and the media keep cold (Tw2 =
Tw3 = Tw4 = Tg = 0 K). The dimensionless radiative heat flux
along the lower boundary with different emissivity εw =
0.1, 0.5, and 1.0 are shown in Fig. 7(b). We can observe that
the results obtained by the LBM and the finite-element method
[48] exhibit good agreement. The good agreement between

FIG. 7. Dimensionless radiative heat flux along the lower boundary: (a) square enclosure with black wall, anisotropic scattering medium,
and two kinds of temperature distributions and (b) square enclosure with different wall emissivity εw=0.1, 0.5, and 1.0 and pure isotropic
scattering medium.
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the LBM results and other numerical results indicates that the
present LBM can handle two-dimensional RHT in graded-
index media with various configurations accurately and
stably.

Overall, the present LBM has been demonstrated to be
capable of handling both transient and steady-state RHT in
graded-index media. Compared with other traditional methods
for RHT in graded-index media, the most striking feature of
the present LBM is its mesoscopic property. Light travels
along curved paths in graded-index media. Via the intro-
duction of local radiative transfer direction and equilibrium
distribution function, the present LBM enables a simple
global solution of RHT in graded-index media by conducting
collision and streaming processes in the LBE. This simple
mesoscopic property avoids not only the extensive curved ray-
tracing work of statistical methods but also complex matrix
operations of methods for solving discrete partial differential
equations.

IV. CONCLUSION

In conclusion, we have established a mesoscopic LBM
for RHT in graded-index media. The radiative intensity is
simply obtained through the LBE conducting collision and

streaming processes. Due to the introduction of the local ra-
diative transfer direction, we further construct the equilibrium
distribution function, source term, and auxiliary source term
distribution function. Numerical results demonstrate that the
present LBM is efficient, flexible, and accurate for simulating
one-dimensional and two-dimensional transient and steady-
state RHT in graded-index media. The mesoscopic property
makes the present LBM promising to provide clear insights
into RHT in complex media and pave the way for establishing
a unified framework of LBM for convection, conduction, and
thermal radiation heat transfer.

In the future work, we will work on extending the
present LBM to more complex and challenging three-
dimensional RHT in graded-index media by adopting the
three-dimensional local radiative transfer direction and lattice
models.
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