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Predicting the diversity of early epidemic spread on networks
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The interplay of biological, social, structural, and random factors makes disease forecasting extraordinarily
complex. The course of an epidemic exhibits average growth dynamics determined by features of the pathogen
and the population, yet also features significant variability reflecting the stochastic nature of disease spread.
In this paper, we reframe a stochastic branching process analysis in terms of probability generating functions
and compare it to continuous time epidemic simulations on networks. In doing so, we predict the diversity of
emerging epidemic courses on both homogeneous and heterogeneous networks. We show how the challenge
of inferring the early course of an epidemic falls on the randomness of disease spread more so than on the
heterogeneity of contact patterns. We provide an analysis, which helps quantify, in real time, the probability that
an epidemic goes supercritical or conversely, dies stochastically. These probabilities are often assumed to be
one and zero, respectively, if the basic reproduction number or R0 is greater than 1, ignoring the heterogeneity
and randomness inherent to disease spread. This framework can give more insight into early epidemic spread
by weighting standard deterministic models with likelihood to inform pandemic preparedness with probabilistic
forecasts.
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I. INTRODUCTION

By the time of this writing, the COVID-19 pandemic had
reached every corner of the world. Public health efforts are
now focused on identifying new clusters of outbreaks and
their risk of causing new epidemic waves, much like they
did at the beginning of the pandemic. As large outbreaks
soared early on in a handful of countries, sporadic clusters
of confirmed cases dotted regions in the United States. Data
surrounding new clusters or waves tend to consist of low
numbers of cases highly sensitive to noise, sparking concern
and uncertainty at the expected progression of the epidemic.

The first confirmed case of COVID-19 in the US was
reported on January 21st, 2020 in the state of Washington [1].
Three subsequent cases were later identified in Washington;
two hospitalizations on February 19th [2], and two deaths on
February 26th, one week later [3]. Then, on February 28th, a
high school closed immediately after one of its students tested
positive for a strain that had been associated with the January
21st case [4]. With limited knowledge of active cases, it was
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nearly impossible to predict the current and future severity of
the outbreak.

One critical question in Washington after over a month
with only a handful of detected cases, was whether this chain
of events suggested a single tree of very few local transmis-
sions, or multiple distinct introduction events from abroad.
Despite decades of disease modeling, the community was
ill-equipped to answer this question. The problem is chal-
lenging in part because of inadequate testing at the time, and
also because well-established disease models often operate on
deterministic mechanisms designed to describe the average
behavior of large epidemics and not the random, discrete
nature of small transmission chains. The looming question of
whether a local COVID-19 outbreak would die off by itself
or become a disaster, can only be modeled using tools cap-
turing the stochasticity, or randomness, of person-to-person
contact. To accurately model the potential outcomes of an
epidemic based on limited case data, tools that capture the
random nature of disease spread along with the structure of
the population are required.

In this paper, we analyze the diversity of early epidemic
courses. In doing so, we also hope to provide analytical tools
to inform disease forecasts by accounting for the heterogene-
ity and stochastic nature of disease transmission.

Since the introduction of mean-field epidemic models, de-
terministic models of disease spread have continued to evolve
in complexity and detail. Kermack and McKendrick’s early
work [5–7] gave rise to compartmental models, in which
the population under study is divided into two or more
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states. Perhaps the most widely known of these models is
the susceptible-infectious-recovered (SIR) model, where the
population is divided into susceptible, infectious, and recov-
ered states (or compartments) and the trajectory of the sizes
of each compartment can be tracked analytically over time
[8,9]. The standard compartmental model assumes homoge-
neous mixing of the population and is deterministic, meaning
that a given set of initial conditions and disease transmission
rates always leads to the same expected outcome. A common
extension to compartmental models is to relax the assumption
of homogeneous mixing. One method for doing so is to derive
mean-field equations for an epidemic process over contact
networks, thereby introducing heterogeneous structure into
the population [10]. Similarly, it is possible to partition the
population based on traits such as age, risk behaviors, or
location and define how these partitions mix [11–14]. While
these approaches introduce more realistic contact behavior
into a model, they fail to account for the inherently stochastic
nature of disease spread; something of particular importance
early in an outbreak.

Models based on stochastic processes address the short-
coming of deterministic outcomes in the standard mean field
compartment models. A commonly used approach is that of
branching processes. Bienayme-Galton-Watson processes are
one widely used example, as they provide a good approxima-
tion of more general stochastic epidemic models [15]. Beyond
Bienayme-Galton-Watson processes, there exist a number of
extensions such as including population structure, multiple
types of hosts/pathogens, and considering time to be contin-
uous rather than discrete [16,17]. In these branching process
models the basic reproduction number R0, the probability of
an outbreak, and the final proportion of population infected
(in a “supercritical” model) are typically tractable to com-
pute. While these are all important, a shortcoming of most
branching models is the difficulty of tracking the trajectory
of outbreaks through time and knowing whether it matches
the continuous time dynamics of real epidemics. Stochastic
differential equations are an alternative modeling approach
that allow one to track outbreak trajectories, as well as often
finding threshold conditions for the occurrence of an outbreak
or the existence of an endemic equilibrium [18–20]. Like
all models, stochastic differential equations have drawbacks;
the most relevant is standard formulations do not allow for
stochastic extinction if R0 > 1.

Another common approach in disease modeling is times
series analysis, more statistical in nature than mechanistic
models. This theory can be applied to assist in estimating the
parameters of compartmental models or to combine ensem-
bles of compartmental models to increase prediction accuracy
[21,22]. Independently of compartmental models, time series
analysis can be used to study covariates of disease occurrence
(e.g., weather), estimate the future variability in observed
cases, or to make epidemic forecasts [23–25]. A necessary
requirement for the effective use of many time series methods
however is data. When facing sparse incidence numbers, and
in the absence of historical data, the methods become prob-
lematic and thus are not suitable for emerging diseases.

Agent-based models are another family of models used for
tracking epidemic progression, in which agents, or individuals
in the population, are tracked throughout the course of the

epidemic. Agents are parameterized with individual attributes,
capturing the heterogeneity of the population and aspects from
compartmental models are used to categorize the state of each
agent [26,27]. While there is great power in adjusting various
attributes for different epidemic conditions and environmental
factors, most of these models are computationally expensive
and need a copious amount of information to generate the
entire collection of agents [26–31], making them ill-suited for
modeling early epidemic spread with a handful of cumulative
case counts and sparsely available data.

Early in an outbreak, we often face the unique challenge
of modeling disease spread while taking into account the
heterogeneity of the population and the stochastic nature of
disease spread, including stochastic extinction, without sub-
stantial amounts of data. The heterogeneous contact structure
found in populations is accounted for by network models,
and a first approximation for a relevant contact structures in
a novel outbreak can be taken from past outbreaks of similar
diseases. Including a sufficient number of possible states will
typically account for heterogeneity in host and pathogen type.
The randomness of transmission is modeled with stochastic
processes, many of which easily permit stochastic extinction.

The above considerations naturally lead to percolation the-
ory, which can be used to analyze stochastic compartmental
disease models on networks. Percolation models unite con-
tact heterogeneity and stochasticity under a single modeling
framework [32]. An underlying contact network acts as the
substrate for disease to propagate through, resulting in a
directed network of transmission [33–35]. The resulting epi-
demic percolation networks can be analyzed using branching
process theory [36,37], which model stochastic transmission
between individuals using an underlying offspring distri-
bution. Branching processes are especially useful for early
epidemic modeling, as they allow for stochastic behavior of
spread as well as stochastic extinction [38]. Specifically, the
method of probability generating functions (PGFs) can be
used to analyze branching processes on percolation networks
[37–39]. Consequently, there have been many recent applica-
tions of this framework designed specifically for COVID-19
[40–45].

The PGF formalism is traditionally used for estimating
quantities that pertain to the predicted end of an epidemic—
such as the probability of infecting a macroscopic fraction
of the population and distribution of final outbreak sizes—
but not how risk and outbreak sizes change dynamically
over time. Kenah and Robins show how modified perco-
lation models (epidemic percolation networks) have a final
state isomorphic to a network-based SIR models [33]. Most
bond percolation frameworks differ from SIR dynamics as
SIR transmission events are correlated through the distri-
bution of the infectious period of each infected individual
whereas percolation models assume independent contacts and
transmission events. More importantly, percolation models in-
tegrate over time to map transmission dynamics (which occur
in continuous time) to discrete bond percolation (which occur
in discrete time with a fixed probability of transmission).

In 2009, Noël et al. [46] offered a novel method for
tracking the stochasticity of outbreak sizes by epidemic gen-
erations, allowing us to incorporate discrete time into the
percolation-framework model. In this paper, we show how

013123-2



PREDICTING THE DIVERSITY OF EARLY EPIDEMIC … PHYSICAL REVIEW RESEARCH 4, 013123 (2022)

FIG. 1. Schematic of generations of infection through a network.
Each node’s label corresponds to the epidemic generation in which it
was infected. The initial infected node is in generation 0, any nodes
they infect constitute generation 1, and so on.

the generation-based PGF formalism also succeeds in tracking
emerging epidemic size in continuous time, by validating the
PGF approach with event-driven simulations on networks.
This result allows us to use PGFs and early disease data to
quantify epidemic risk and survival probability.

II. THEORETICAL ANALYSIS AND SIMULATIONS

A. Probability generating functions

PGFs succinctly encode a probability distribution in a
power series representation so that the methods of power
series analysis can be applied [47]. PGF theory naturally ex-
tends to disease modeling, where the distribution under study
encapsulates a disease transmission network, framed as a bond
percolation problem where the bond occupation probability T
is the probability of an infected individual infecting one of
their contacts over the course of the entire epidemic [37,39].
Typically, this approach is used to solve for the average be-
havior of the system; we can solve for quantities such as the
critical transmissibility at which the entire connected popu-
lation will become infected, or the distribution of outbreak
sizes. However, an increasing necessity of disease modeling
is to model early epidemic spread, analyzing early cases to
predict whether an outbreak will become large before it actu-
ally happens. In 2009, Noël et al. [46] developed the epidemic
PGF modeling theory further to model the sizes of progressive
epidemic generations, demonstrated in Fig. 1.

The foundations for both aforementioned generating func-
tion methodologies are the same, beginning with the under-
lying contact network. In a contact network, we represent a
collection of individuals as nodes and their contacts between
each other with edges. We say that two nodes are neighbors
if they are in contact, i.e., connected by an edge. A node’s
degree is how many neighbors it has. The degree distribution
of a network is the probability distribution for the number
of neighbors of one node. Under an SIR disease modeling

framework, nodes begin as susceptible, and become infectious
if it is infected by one of its neighbors, which occurs with
probability T .

The framework introduced by Noël et al. uses PGFs to
describe generations of infection as a piece-wise generating
function, which can then be studied using branching process
techniques. First we introduce what an epidemic generation
is. We say a node belongs to generation g if it became infected
via a neighbor belonging to generation g − 1. Assuming an
infinite-size random network drawn from a specific degree
distribution (a process known as the configuration model
[48]), each chain of infections stemming from an initial in-
fected case, patient zero, can be considered uncorrelated. This
uncorrelated assumption follows from configuration models
having locally treelike structure, thus every subsequent case to
be treated as a node that was reached by following a random
edge. In this way, each node in each generation can be treated
as independent from all other nodes in its generation. Thus, for
each node in generation g, the PGF describing the distribution
of cases that node will cause over the course of the epidemic
is given by

Gg(x; T ) =
{

G0(x; T ) (g = 0)
G1(x; T ) (g > 0) (1)

where Gg(x; T ) is the distribution, in PGF notation, of the
secondary cases caused by a single node in generation g. Now,
we will provide the derivations used to obtain this frame-
work using the underlying network, generating functions, and
branching process theory.

Using PGF notation, we will refer to the original underly-
ing network degree distribution as G0(x), which we write as

G0(x) =
∞∑

k=0

pkxk . (2)

The kth coefficient of Eq. (2) pk is the probability of randomly
choosing a node with degree k from the network. The average
degree of the network is denoted as 〈k〉, derived by the first
derivative of the generating function as

G′
0(1) = 〈k〉 =

∞∑
k=0

kpk . (3)

To study the progression of an epidemic, we are interested in
the distribution of infections from each subsequently infected
node. Before introducing transmission probability, we work
first with the aforementioned degree distribution to understand
how many infections each node could cause through each
generation. Assuming an initial infectious node, patient zero,
we know G0(x) is the distribution of contacts for them, but
that distribution is different for anyone patient zero infects.
This phenomenon is known as the friendship paradox; the
degree of a node chosen by following a random edge is on
average, larger than the degree of the node selected at random
whose edge we followed. In this context, patient zero has a
degree distribution of G0(x), but the node who patient zero
first infects has a degree distribution known as the excess de-
gree distribution, denoted as G1(x) in PGF notation. To obtain
G1(x), we are interested in the degree of nodes provided that
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we arrive there by following the edge from one of its neigh-
bors. So, this means the resulting distribution will exclude that
neighbor, reducing every node’s degree by 1, and multiplied
by the number of ways they could have been reached, which
is the original degree. This algorithm surmounts to taking
the derivative of G0(x), so that we have the excess degree
distribution

G1(x) =
∑

k (k + 1)pk+1xk∑
k (k + 1)pk+1

=
∞∑

k=0

qkxk (4)

and where the derivative is divided by the average degree of
the network 〈k〉 in order to normalize the distribution tuned to
the original node. The coefficients qk represent the probability
of reaching a node with degree k from a randomly chosen
edge.

Returning to the percolation problem, we incorporate
disease transmissibility T to transform the excess degree dis-
tribution into a secondary case distribution. The probability
that a single infectious node infects l neighbors given it has
degree k, or k neighbors, is given by

pl|k =
(

k

l

)
T l (1 − T )k−l . (5)

From this we can derive the PGF for the number of infections
caused by patient zero, which we denote G0(x; T ) for short,
given by

G0(x; T ) =
∞∑

l=0

∞∑
k=l

pk pl|kxl

=
∞∑

k=0

k∑
l=0

pk

(
k

l

)
T l (1 − T )k−l xl

= G0(1 + (x − 1)T ). (6)

From G0(x; T ), G1(x; T ) can be calculated in a parallel fash-
ion as G1(x) is from G0(x). The PGF G1(x; T ) is now the
probability distribution of the number of infections caused by
a single node, i.e., the secondary case distribution.

We now present how to study the evolution of the distribu-
tion of cumulative cases for the percolation model following
Noël et al. Let s be the number of cumulative cases at gen-
eration g and let m be the number of infectious nodes strictly
belonging to generation g. (Note that in this way, s is the sum
of all m values from generation 0 up to and including gen-
eration g.) We let the probability of having s total infections
by the end of the gth generation with m becoming infected
(and thus being infectious) during that generation be denoted
as ψ

g
sm [46]. This has an associated probability generating

function, given by

�
g
0 (x, y) =

∑
s,m

ψg
smxsym (7)

over all s, m.
We know the distribution of infections following from

a single infectious node in generation g − 1 is generated
by Gg−1(1 + (x − 1)T ) [from Eq. (6)]. The PGF of a finite
sum of independent processes is the product of their PGFs,
and as discussed above, each node in generation g − 1 can
be treated independently. Thus, if we assume the state in

generation g − 1 is given by the pair (s′, m′), then the prob-
ability of spawning m new infectious nodes in generation g is
generated by

∑
m

P(m|s′, m′)xm = [Gg−1(x; T )]m′
(8)

where the equality occurs as a result of the right side de-
scribing the probability of m infectious nodes in generation
g assuming m′ such nodes at g − 1 from branching process
theory.

For a given state (s′, m′) in generation g − 1, m new
infections will result in s′ + m cumulative infections in gen-
eration g. So, having m new infections occurs with probability
ψ

g−1
s′m′ P(m|s′, m′), where the ψ

g−1
s′m′ term is the probability of

being in the state (s′, m′) at generation g − 1. Now, we can
rewrite the entire PGF for the state space of (s, m) at genera-
tion g as

�
g
0 (x, y) =

∑
s,m

ψg
smxsym =

∑
s′,m

ψg
smxs′

(xy)m (9)

=
∑
s′m′

xs′ ∑
m

ψ
g−1
s′m′ P(m|s′, m′)(xy)m

=
∑
s′,m′

ψ
g−1
s′m′ xs′ ∑

m

P(m|s′, m′)(xy)m

=
∑
s′m′

ψ
g−1
s′m′ xs′

[Gg−1(xy; T )]m′

= �
g−1
0 (x, Gg−1(xy; T )). (10)

This defines a recurrence relation when g � 1. Taking �0
0 =

xy as the assumption that there is only one initial infectious
individual, then ψ0

sm = δs1δm1.
Our primary focus in this paper will be on the distribution

of cumulative infections s in each generation g. We derive a
generating function for this quantity by taking the marginal
distribution over y of Eq. (9). We let the coefficient pg

s be
defined as the probability of having s cumulative cases at
generation g. To derive pg

s, we wish to take the sum over all
values of m for which the state s, m holds at generation g. To
do so, we set the counting variable y of new cases simply equal
to 1. As such, the coefficients pg

s are generated by

�
g
0 (x, 1) =

∑
s,m

ψg
smxs =

∑
s

∑
m

ψg
smxs =

∑
s

pg
sx

s. (11)

Now the generating function in Eq. (11) defines a probability
distribution over s for each generation g, and is our main quan-
tity under study. The analytical distributions are illustrated
in Fig. 2 along with event-driven simulations to validate the
theory.

B. Simulations of continuous SIR dynamics

For a realistic model of the spread of disease in a pop-
ulation, we simulate a stochastic disease process of an SIR
epidemic on synthetic contact networks in continuous time
[49]. We use an event-driven framework, which is advan-
tageous for epidemic modeling, because it is much faster
compared to a brute-force time-step simulation due to its
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FIG. 2. Time evolution of epidemics on homogeneous and
heterogeneous networks. We show the probability of having s cu-
mulative cases by and including generation g for select generations
[Eq. (11)]. Panel (a) shows the results on a modified power-law
random networks with degree distribution given by pk = k−2e−k/10

with average degree 〈k〉 = 1.79, average excess degree 〈q〉 = 3.04,
β = 0.004, and γ = 0.001 such that R0 = T 〈k2〉−〈k〉

〈k〉 = β

β+γ

〈k2〉−〈k〉
〈k〉 =

2.44. The smooth lines show the theoretical prediction for the prob-
ability distribution of cumulative infections. The distributions are
validated by 75 000 simulations performed on 150 random network
realizations with 10 000 nodes, following the process outlined in
Sec. II B. Panel (b) shows the results of equivalent analysis and simu-
lations on Erdős-Rényi random networks with 〈k〉 = 2.5, β = 0.004,
and γ = 0.001 such that R0 = 2.0.

leveraging of the Markovian dynamics of infectious and re-
covery periods of individuals [50–52]. Recall in the SIR
model that nodes inhabit the susceptible, infectious, and re-
covered states as the disease progresses, where nodes become
infected if one of their infectious neighbors transmits to them.
The standard SIR model is governed by two rate parameters;
β, the rate per unit time of an infectious node transmitting
to other nodes, and γ , the rate per unit time of an infected
node recovering. In a continuous time event-driven simula-
tion, infection, and recovery are Poisson processes occurring
at rates β and γ respectively, and relate back to the percolation
framework by defining transmissibility T = β/(β + γ ).

We draw a random network from a given degree distri-
bution, and begin the simulation algorithm by assuming a
random initial infectious node, patient zero, with degree k0.
Patient zero could either recover before transmitting to any
of its neighbors, or infect one or more of its neighbor nodes.
The stochastic process governing the behavior of a single
infected node is the superposition of k̂ + 1 Poisson processes,
where k̂ is the number of susceptible neighbors, and with one
extra process governing the time until recovery. Say patient
zero infects Neighbor 1, who has k1 neighbors. Then with
two infectious nodes, the stochastic process encompassing all
possible events is a Poisson process with rate (k̂0 − 1)β +
k̂1β + 2γ , and so on as more nodes become infected.

Each possible event given by the subprocesses is the first to
occur with probability i/(k̂β + γ ) where i ∈ {β, γ }, with the
Poisson process rate term from k̂ reducing if an infection event
occurs, and stopping entirely if the contagious node recovers.
The disease process for the whole population is a natural
extension of that described above, with each node assumed
identical apart from degree. The evolution of the unmitigated
disease process from here is intuitive, either eventually all the
infectious nodes recover or the whole connected population
becomes infected.

Computationally, the above process is simulated by gen-
erating a random network from a given degree distribution
using a large enough number of nodes N , such that average
degree k � N . As we cannot simulate numerically on an
infinite network, the best choice for N is the largest value
the numeric simulation can support. A node is randomly
selected to be patient zero, and the disease spread proceeds
via stochastic event-driven simulation, often known as the
Gillespie algorithm [53]. Continuous time is tracked using a
random variable τ , known as the waiting time, which is expo-
nentially distributed with parameter the sum of the rates of all
the potential infection and recovery events. Each competing
process is the first to occur with probability of its own rate di-
vided by the sum of all rates of that process type, as described
by the Poisson process above. The simulation is advanced via
this algorithm until either there are no more infectious nodes
or until there are no more susceptible nodes, and allows for
obtaining the resulting evolution of the disease spread in terms
of both generations of infection and continuous time.

III. RESULTS

We employ the generational size distribution theory to ex-
plore the evolution of epidemic size on a variety of network
structures, and compare the generating function theory against
continuous-time simulations. We use the event-driven simula-
tion framework so that we can track the progression of the
epidemic in both continuous time as well as the generation
sizes corresponding with the branching process, which allows
us to validate the theoretical distributions, as well as introduce
a preliminary prediction for the expected continuous time
emergence of successive generations. Then, we use the PGF
framework to measure the probability of an epidemic surviv-
ing, or continuing on, past an arbitrary generation, depending
on the characteristics of the network and disease.
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A. Time evolution on homogeneous and heterogeneous networks

In Fig. 2 we show the probability distributions of cumu-
lative infections by the specific generation for two network
models. It is noteworthy that this modeling method holds for
configuration model networks with varying types of degree
distributions. Here, we show the results on a modified power
law network and an Erdős-Rényi (ER) network both used in
Ref. [46]. The ER network has mean degree and excess de-
gree 〈k〉 = 〈q〉 = 2.5, while the modified power law has mean
degree 〈k〉 = 1.79 and average excess degree 〈q〉 = 3.04, a
more heterogeneous distribution. We demonstrate that the
distributions of outbreak size appear to be more a result of
the stochastic nature of the disease spread, rather than the
structure of the network, though the structure does play a role
in the shape of the distribution.

Our results convey that there is not one clear trajectory
of a typical large outbreak, in contrast to traditional results
with deterministic modeling. Instead, the stochastic nature
of epidemic size is captured by a long tail in the distribu-
tion of cumulative cases over each epidemic generation. One
unique aspect of this paper is that we validate this result using
continuous-time simulations showing the same shape and long
tail in outbreak size distributions as our analytical results. We
do anticipate the simulated distributions and analytical distri-
butions to vary from each other due to a few factors including
the finite-size effects of simulated networks, and the fact that
we compare a discrete analysis with a continuous-time pro-
cess, but the general behavior appears consistent throughout
the different generations.

We also find that on both the heterogeneous network and
the homogeneous network, there is a high probability of an
outbreak going extinct before growing large, however, if it
does take off, the distribution levels off over the space of
epidemic size. That is to say, if indeed an epidemic takes off
and has arrived at generation six, via a transmission chain of
length six, there is an almost equal probability of having any-
where from 50 to 500 cumulative cases by the time generation
six is reached. We emphasize that these results display the un-
predictability in early stages of epidemics, even ignoring the
difficulty of estimating model parameters, it is near impossible
to infer with much confidence how many infections there may
actually be in the population.

B. Generations of infection in continuous time

While the behavior of the epidemic in our formalism is
described by generations of infection, most applications of
disease models desire descriptions of the dynamics in con-
tinuous time. We find early agreement from our model of
generational infections with a distribution in continuous time,
described in terms of the expected time of emergence of an
arbitrary generation g. The agreement is surprising since one
might not expect a consistent relationship between a gener-
ation number and the expected time of its emergence given
the observed heterogeneity of early spread in Fig 2. Yet, by
defining the emergence of generation g as the time its first
member is infected, we find a simple linear relationship that
allows us to map the PGF framework to continuous time.

We can show that the expected time of emergence of an
arbitrary generation g is given by

E[t (g)] = g

〈q〉β
where 〈q〉 = G′

1(1) is the average excess degree of the net-
work. We arrive at this expression for E[t (g)] via a simple
argument over the Poisson process governing how nodes in
generation g − 1 can lead to the first cases of generation g.
Each node of generation g − 1 can recover at rate γ but also
has on average 〈q〉 neighbors they can infect at rate β. There-
fore, the first event around them will occur at a combined rate
α = 〈q〉β + γ and will lead to a case in generation g with
probability Tq = 〈q〉β/(〈q〉β + γ ). The first infectious node
in generation g − 1 can therefore lead to the emergence of
generation g after 1/α with probability Tq; if not, or the second
node in generation g − 1 could lead to the emergence of gen-
eration g with probability Tq(1 − Tq) after 2/α (approximate
delay between the first and second node of generation g − 1
plus the expected time to generation g); and so on for the
third node and beyond. This sequence of possibilities can be
summarized by an arithmetico-geometric sum,

E[t (g) − t (g − 1)] = Tq

α

∞∑
k=1

(1 − Tq)k−1k

= Tq

α

1

T 2
q

= 1

〈q〉β . (12)

In Fig. 3, we demonstrate in practice how the expected
time of emergence of consecutive generations falls in line with
the predicted time measure. To show intuitively why we see
this phenomenon, we show the time evolution of the active
epidemic generations. We track time in two ways; in con-
tinuous time following the event-driven process discussed in
Sec. II B, and also in terms of the expected time of emergence
of each generation g, in the form t = g/〈q〉β. We define a
generation to be active if it contains one or more nodes who
are not recovered and have susceptible neighbors at time t in
the simulation. We illustrate the number of total and active
generations over time, as well as the number of active nodes
belonging to each generation, which helps clarify the roles
each generation plays in causing the next wave of infection
over a given interval in continuous time.

Having an understanding of the time at which a genera-
tion will emerge acts as a complement to the probabilities of
extinction and cumulative cases discussed in Secs. III A and
III C. Equipped with the distributions describing the stochas-
ticity of outbreaks, the expected time mapping can be a tool
for analysis of the dynamics of the worst-case scenarios when
an outbreak does occur.

C. Probability of pandemics or stochastic extinction

The PGF generational theory can also be used to measure
the probability that an emerging epidemic has a chance of
dying off on its own, or “surviving”. Deterministic models
always predict that an epidemic will occur if R0 > 1, that is,
if the average number of secondary infections caused by an
infectious individual is more than one. In reality, there is a
nonzero chance the outbreak will die off by chance, shown in
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FIG. 3. Time evolution of the active epidemic generations and
emergence times. Top panel (curves): Average number of total and
active generations at time t for the modified power-law network with
degree distribution pk = k−2e−k/10. Bottom panel (curves): Average
number of active nodes belonging to each generation shown over
time to accompany the top panel. The tick marks in the top panel
(and dotted-vertical lines) correspond to increments of g/〈q〉β, the
predicted generational emergence times, and the bottom tick marks
(and solid-vertical lines) correspond to the average empirical time
at which that generation g emerged, for an example network. If the
average time of emergence was greater than its respective g/〈q〉β
value, that is, after the predicted time, the difference is highlighted in
green. If the average empirical time was less than that predicted, the
difference is highlighted in yellow.

Fig. 4. Branching process models have been used in theoret-
ical epidemiology for estimating such probabilities [56–58].
However, simple branching process models are Markovian
in the number of active infections m. This is problematic in
an applied setting as cumulative cases s are often the avail-
able data. Moreover, we show that conditioned on reaching
generation g, the probability of the outbreak going extinct
after generation g rather than becoming an epidemic is path
dependent in the sense that the value of s at g changes the
extinction probability, shown in Fig. 5.

To utilize the extinction probabilities, we want to look
specifically at the variable ρ

g
s , the probability that given s

cumulative cases at generation g the epidemic will go extinct,
or die off, sometime afterwards. Given that the evolution of m
occurs as a branching process with the offspring PGF given by
Eq. (6), one can easily compute the probability of extinction of
a single infection chain pe as the solution of pe = G1(pe; T )
using branching process theory [38]. The distribution of prob-
abilities of reaching (s, m) in the state space for each g is given
by ψ

g
sm, as discussed in Sec. II A. We define a new distribution,

that of the probability of the outbreak still being in existence
in generation g, by

ψ̃g
sm =

⎧⎪⎪⎨
⎪⎪⎩

ψ
g
sm∑

s′,m′>0

ψ
g
s′m′

m > 0

0 otherwise

. (13)

FIG. 4. Probability of epidemic survival as a function of contact
structure. The contour plot shows the initial probability of epidemic
survival for negative binomial distributions of infections over a range
of possible R0 values (average transmissions per case) and dispersion
parameter k (inverse of heterogeneity). The box highlights estimates
for COVID-19 based on data from Wuhan, China [54]. We assume an
epidemic generation of g = 4 and s = 16 cases, which corresponds
to the epidemic growing from 1 case to 16 over 4 generations. Using
a serial interval of 4 days, the average of the estimated range for
COVID-19 [55], this tracks to roughly over two weeks of spread.
Similarly, in the state of Washington, the first recorded case of
COVID-19 occurred on January 21st, 2020 but following cases were
only identified on February 19th and increased to 18 by March 2nd.
This figure illustrates how these cumulative case data could have
been used in real time with our theoretical tools to estimate epidemic
risk.

Thus, ρ
g
s , the probability of the epidemic going extinct given

it has arrived at s cases by generation g is given by

ρg
s =

∑
m

ψ̃
g
sm∑

m′ ψ̃
g
sm′

pm
e . (14)

The probability of epidemic survival for an epidemic being
active in generation g with s cumulative infections is then
given by 1 − ρ

g
s . We illustrate an example of how the survival

probabilities change depending on the underlying network and
disease parameters in Fig. 4.

D. Epidemic probability and COVID-19 data

We now apply the epidemic survival probability theory to
early incidence of COVID-19 cases in the US. This allows us
to look at the evolution over time of public health risk, while
taking into account the stochastic elements of the early spread.
We assume a distribution of secondary infections parameter-
ized as a negative binomial with R0, the basic reproductive
number, and k, the dispersion parameter of the contact net-
work [54]. Together, these parameters determine the average
behavior of disease spread where k is responsible for the
variation in secondary cases, in turn affecting the likelihood
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FIG. 5. Probability of epidemic continuing on as a function of
case counts and time. As a simple comparison, we use early data from
the COVID-19 pandemic and show a selection of U.S. states follow-
ing unique timelines from the first recorded case onward. This simple
visualization is not meant as a validation but only to explore how
quickly our predictions for the probability of the epidemic not dying
off changes as an epidemic grows. To calculate these probabilities,
we use a negative binomial distribution of secondary infections with
k = 10−1, R0 = 2.5 along with data from the COVID-19 Repository
by the CSSE at Johns Hopkins [64,65]. The first data point for each
state shown correspond to the first date on which 1 or more cases
were recorded. Raw data of cumulative case counts are used, and
plotted on the same range of epidemic generations for purposes of
comparison, despite an evident variability in the duration of genera-
tion length. Using a serial interval of 4 days, progressive generations
are shown along the horizontal axis (generation two corresponds
to 8 days, for example). On the vertical axis, the cumulative case
counts for each state are plotted. We see how a state’s proclivity
to the epidemic taking off changes over the course of successive
generations. Several states such as California, Massachusetts, and
Washington had a lower probability of epidemic survival early on,
then crossed the band into a higher likelihood over a short time
span. Although the data used in this figure does not take into account
factors such as missing count data, it serves as a visualization of how
sharply the interplay of generation of epidemic and cumulative cases
demarcate the probability of the epidemic continuing.

of superspreading events [59–61]. A low dispersion parameter
k (high heterogeneity) means that a select few cases may
cause the majority of secondary infections [62], which in our
framework here might correspond to a single case leading
to an extreme increase in cases in the next generation. For
that reason, it is often assumed that the early spread of an
epidemic is highly sensitive to superspreading events [63].
Yet, as shown in Fig. 2, heterogeneity in contact structure
actually has less of an impact on the distribution of outcomes
than the inherent stochasticity of transmission.

In Fig. 4 we show the probability of epidemic survival (that
is, the probability of an epidemic continuing to grow) with a
fixed generation g = 4 and fixed cumulative cases s = 16 over
a range of R0 and k values, highlighting parameter estimates
for COVID-19 [62]. Despite the relatively low number of
cases after several generations, clearly affected by the lack

of testing resources at the time, the chances of the epidemic
stochastically dying out were already close to a simple coin
flip. In Fig. 5, we show the inverse problems: fixing disease
parameters and varying temporal variables. We set R0 = 2.5
and k = 0.1, falling within the range of values for COVID-
19, and track seven US states over time to observe where
their disease progression state falls in the probability space
of epidemic survival.

Guided by the results shown in Fig. 3, we proceed know-
ing that our model predicts generations to emerge in linear
increments of time. We use the serial interval of 4 days,
taken from the window for COVID-19 [55] to correspond
with successive generational emergence. We observe that
several states hovered around a low probability of epidemic
survival at low early cases, but very quickly crossed to a
much higher bracket where natural extinction of the disease
spread is virtually impossible. The states of Washington and
Massachusetts each took only two generations to cross from
sub to supercritical epidemic survival probability, even de-
rived from limited data and poor testing at the time. The
extraordinary leap in epidemic probability from just one gen-
eration to the next explain, in part, why it was so hard
for public health systems to react and adapt to the spread
of COVID-19.

IV. DISCUSSION

Temporal models of disease spread often fall in one of three
categories. (i) Compartmental models that are deterministic in
nature as they rely on ordinary differential equations, where
uncertainty only stems from our imperfect knowledge of
model parameters, rather than from the inherent randomness
of disease transmission. (ii) Complicated agent-based models
that lose the tractability of analytical models, which require
significant amount of data to parametrize and do not produce
explicit likelihood of outcomes. (iii) Time series analyses that
can produce probabilistic forecasts. This last approach can
produce useful predictions by ignoring transmission mecha-
nisms or contact structure, but that perspective also precludes
it from evaluating potential interventions that affect individual
parameters or contact structure.

In this paper, we have shown that analysis of branching
processes often used to only study the final state of epidemic
models can actually combine the strengths of these different
approaches by including stochasticity, contact heterogeneity
and even individual characteristics [33,39,66]. The reason this
framework is usually used to solely predict the probability
and final size of an epidemic is that the mathematical treat-
ment involves integrating over contacts and therefore time
[54]. However, we provided a first demonstration that the
predictions made over generations by the branching process
are actually very close approximation of continuous time epi-
demic dynamics on equivalent contact networks. This result
alone justifies a large body of work and creates a founda-
tion for analytical, probabilistic, epidemic forecasts based on
PGFs.

Our probabilistic and temporal forecasts allowed us to
uncover the diversity of epidemic courses, in the form of an
unusually broad distribution of potential transmission trees
over time. We have also shown that these flat distributions
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emerge on both homogeneous (e.g., Erdős-Rényi graphs) and
heterogeneous (e.g., scale-free) contact networks. This phe-
nomenon is therefore driven by the stochasticity of disease
transmission rather than by the complexity of the contact
structure. This broad likelihood of early disease incidence
justifies our use of a stochastic branching process, whereas
deterministic models would typically track only the average
or expected number of cases, which is a poor description of
flat distributions.

Our framework currently rests on a few assumptions. By
building our framework on a configuration model, we ig-
nore potentially important structural correlations. The PGF
framework itself can be extended, data permitting, to include
such correlations like degree-degree assortativity [67,68],
clustering [69,70], and more general structures [71,72]. All
of these generalizations of the PGF framework still rely,
at some level, on a treelike approximation, but this ap-
proach has been shown to capture most important network
features [73].

We also assume that there are a finite number of active
generations at any given time and that the distribution of
contacts and transmission probability do not change over time.
This first assumption was tested in Fig. 3 where we show that
a simple network-based serial interval provides a reasonable
approximation for time of emergence of epidemic generations
in the continuous dynamics, illustrating both why and how
we can align the generation-based branching process with the
underlying temporal dynamics.

Our assumptions on the constant contact patterns and trans-
missibility provide a great road map for future work. In
Eq. (1), we formulate our PGFs on a per generation basis,
which would allow us to change these patterns over time
to model adaptive behavior or top-down interventions (e.g.,
lockdowns limiting contacts or masks reducing transmissibil-
ity). Certain network interventions have been shown to alter
the dynamics of epidemic outcomes in interesting ways, such
as contact tracing [45,74] or vaccination roll-outs [75,76].
Specifically, when interventions are targeted around key in-
dividuals (e.g., hubs [77]) or affect different subset of the
population differently [66], one can see the emergence of
smeared transitions when epidemics mostly spread in spe-
cific subgraphs with subcritical spillover in other populations
[78]. Modeling interventions under a generational PGF frame-
work would provide probabilistic forecasts not only of disease

dynamics but also of the impact and timing of particular
interventions.

Importantly, our results on the diversity of epidemic
courses highlight how little information can actually be gath-
ered from early incidence data. In Fig. 2, we see that the same
disease in the same population can be roughly as likely to
produce 40 or 400 cases after 10 epidemic generations.

Finally, our results on epidemic survival show how quickly
a situation can move from an uncertain outbreak to supercriti-
cal exponential growth. Due to both the randomness of disease
spread and the imperfect COVID-19 testing protocols from
early 2020, most states in the US moved from below 20%
survival probability of the epidemic to above 80% in about
two epidemic generations (2 weeks or less).

Altogether, our results stress the danger of justifying a
lack of intervention with slow trends in early disease spread
data. Little can be learned about transmission mechanisms and
dynamics from the first few epidemic generations. The distri-
bution of epidemic courses is mostly driven by the inherent
randomness of transmission, and the window in which the
dynamics settle into their subcritical or supercritical behavior
tends to be unfortunately narrow, which leaves little room for
fast adaptive responses.

Faced now with emergence of variants of COVID-19
around the world, the current situation is reminiscent of the
scenario in the state of Washington during January of 2020—
sporadic clusters of cases with an unclear growth trajectory.
We see from the data in Washington, as well as many other
states and countries, how quickly cases explode and what that
means for the likelihood of controlling the epidemic without
external intervention efforts. Slow initial disease growth does
not preclude a rapid increase shortly thereafter.
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